1
|
Metrangolo V, Blomquist MH, Dutta A, Gårdsvoll H, Krigslund O, Nørregaard KS, Jürgensen HJ, Ploug M, Flick MJ, Behrendt N, Engelholm LH. Targeting uPAR with an antibody-drug conjugate suppresses tumor growth and reshapes the immune landscape in pancreatic cancer models. SCIENCE ADVANCES 2025; 11:eadq0513. [PMID: 39823326 PMCID: PMC11740940 DOI: 10.1126/sciadv.adq0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692). In vitro, FL1-PNU exhibited potent and specific cytotoxicity against uPAR-expressing PDAC cell lines, stromal and immune cells, and bystander killing of uPAR-negative cells. In vivo, the ADC induced remission or sustained tumor regression and extended survival in xenograft models. In syngeneic orthotopic models, the antitumor effect promoted immunomodulation by enhancing infiltrating immune effectors and decreasing immunosuppressive cells. This study lays grounds for further exploring FL1-PNU as a putative clinical ADC candidate, potentially providing a promising therapeutic avenue for PDAC as a monotherapy or in combinatorial regimens.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Ananya Dutta
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | - Oliver Krigslund
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Matthew J. Flick
- Department of Medicine and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, GK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
3
|
Willems RAL, Biesmans C, Campello E, Simioni P, de Laat B, de Vos-Geelen J, Roest M, Ten Cate H. Cellular Components Contributing to the Development of Venous Thrombosis in Patients with Pancreatic Cancer. Semin Thromb Hemost 2024; 50:429-442. [PMID: 38049115 DOI: 10.1055/s-0043-1777304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer and has a poor prognosis. Patients with PDAC are at high risk of developing thromboembolic events, which is a leading cause of morbidity and mortality following cancer progression. Plasma-derived coagulation is the most studied process in cancer-associated thrombosis. Other blood components, such as platelets, red blood cells, and white blood cells, have been gaining less attention. This narrative review addresses the literature on the role of cellular components in the development of venous thromboembolism (VTE) in patients with PDAC. Blood cells seem to play an important role in the development of VTE. Altered blood cell counts, i.e., leukocytosis, thrombocytosis, and anemia, have been found to associate with VTE risk. Tumor-related activation of leukocytes leads to the release of tissue factor-expressing microvesicles and the formation of neutrophil extracellular traps, initiating coagulation and forming a scaffold for thrombi. Tissue factor-expressing microvesicles are also thought to be released by PDAC cells. PDAC cells have been shown to stimulate platelet activation and aggregation, proposedly via the secretion of podoplanin and mucins. Hypofibrinolysis, partially explained by increased plasminogen activator inhibitor-1 activity, is observed in PDAC. In short, PDAC-associated hypercoagulability is a complex and multifactorial process. A better understanding of cellular contributions to hypercoagulability might lead to the improvement of diagnostic tests to identify PDAC patients at highest risk of VTE.
Collapse
Affiliation(s)
- Ruth Anne Laura Willems
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Charlotte Biesmans
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elena Campello
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Hugo Ten Cate
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
| |
Collapse
|
4
|
Rodriguez M, Zheng Z. Connecting impaired fibrinolysis and dyslipidemia. Res Pract Thromb Haemost 2024; 8:102394. [PMID: 38706781 PMCID: PMC11066549 DOI: 10.1016/j.rpth.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024] Open
Abstract
A State of the Art lecture entitled "Connecting Fibrinolysis and Dyslipidemia" was presented at the International Society on Thrombosis and Haemostasis Congress 2023. Hemostasis balances the consequences of blood clotting and bleeding. This balance relies on the proper formation of blood clots, as well as the breakdown of blood clots. The primary mechanism that breaks down blood clots is fibrinolysis, where the fibrin net becomes lysed and the blood clot dissolves. Dyslipidemia is a condition where blood lipid and lipoprotein levels are abnormal. Here, we review studies that observed connections between impaired fibrinolysis and dyslipidemia. We also summarize the different correlations between thrombosis and dyslipidemia in different racial and ethnic groups. Finally, we summarize relevant and new findings on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress. More studies are needed to investigate the mechanistic connections between impaired fibrinolysis and dyslipidemia and whether these mechanisms differ in racially and ethnically diverse populations.
Collapse
Affiliation(s)
- Maya Rodriguez
- Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Ze Zheng
- Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Leth JM, Newcombe EA, Grønnemose AL, Jørgensen JT, Qvist K, Clausen AS, Knudsen LBS, Kjaer A, Kragelund BB, Jørgensen TJD, Ploug M. Targeted imaging of uPAR expression in vivo with cyclic AE105 variants. Sci Rep 2023; 13:17248. [PMID: 37821532 PMCID: PMC10567728 DOI: 10.1038/s41598-023-43934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
A comprehensive literature reports on the correlation between elevated levels of urokinase-type plasminogen activator receptor (uPAR) and the severity of diseases with chronic inflammation including solid cancers. Molecular imaging is widely used as a non-invasive method to locate disease dissemination via full body scans and to stratify patients for targeted treatment. To date, the only imaging probe targeting uPAR that has reached clinical phase-II testing relies on a high-affinity 9-mer peptide (AE105), and several studies by positron emission tomography (PET) scanning or near-infra red (NIR) fluorescence imaging have validated its utility and specificity in vivo. While our previous studies focused on applying various reporter groups, the current study aims to improve uPAR-targeting properties of AE105. We successfully stabilized the small uPAR-targeting core of AE105 by constraining its conformational landscape by disulfide-mediated cyclization. Importantly, this modification mitigated the penalty on uPAR-affinity typically observed after conjugation to macrocyclic chelators. Cyclization did not impair tumor targeting efficiency of AE105 in vivo as assessed by PET imaging and a trend towards increased tracer uptake was observed. In future studies, we predict that this knowledge will aid development of new fluorescent AE105 derivatives with a view to optical imaging of uPAR to assist precision guided cancer surgery.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Estella Anne Newcombe
- Structural Biology and NMR Laboratory, Copenhagen N, Denmark
- REPIN, Copenhagen N, Denmark
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Katrine Qvist
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Line Bruhn Schneider Knudsen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe Brandt Kragelund
- Structural Biology and NMR Laboratory, Copenhagen N, Denmark
- REPIN, Copenhagen N, Denmark
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | | | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
6
|
Baart VM, van Manen L, Bhairosingh SS, Vuijk FA, Iamele L, de Jonge H, Scotti C, Resnati M, Cordfunke RA, Kuppen PJK, Mazar AP, Burggraaf J, Vahrmeijer AL, Sier CFM. Side-by-Side Comparison of uPAR-Targeting Optical Imaging Antibodies and Antibody Fragments for Fluorescence-Guided Surgery of Solid Tumors. Mol Imaging Biol 2023; 25:122-132. [PMID: 34642899 PMCID: PMC9970952 DOI: 10.1007/s11307-021-01657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. PROCEDURES Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab')2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. RESULTS Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. CONCLUSIONS In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.
Collapse
Affiliation(s)
- Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Labrinus van Manen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Floris A Vuijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Luisa Iamele
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Hugo de Jonge
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Massimo Resnati
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Percuros BV, Leiden, The Netherlands
| |
Collapse
|
7
|
Christensen A, Grønhøj C, Jensen JS, Lelkaitis G, Kiss K, Juhl K, Charabi BW, Mortensen J, Kjær A, Von Buchwald C. Expression patterns of uPAR, TF and EGFR and their potential as targets for molecular imaging in oropharyngeal squamous cell carcinoma. Oncol Rep 2022; 48:147. [PMID: 35775375 PMCID: PMC9263836 DOI: 10.3892/or.2022.8359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
The clinical introduction of molecular imaging for the management of oropharyngeal squamous cell carcinoma (OPSCC) relies on the identification of relevant cancer-specific biomarkers. The application of three membrane-bound receptors, namely urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and EGFR have been previously explored for targeted imaging and therapeutic strategies in a broad range of solid cancers. The present study aimed to investigate the expression patterns of uPAR, EGFR and TF by immunohistochemistry (IHC) to evaluate their potential for targeted imaging and prognostic value in OPSCC. In a retrospective cohort of 93 patients with primary OPSCC, who were balanced into the 45 human papillomavirus (HPV)-positive and 48 HPV-negative groups, the IHC-determined expression profiles of uPAR, TF and EGFR in large biopsy or tumor resection specimens were analyzed. Using the follow-up data, overall survival (OS) and recurrence-free survival were measured. Specifically, associations between survival outcome, biomarker expression and clinicopathological factors were examined using Cox proportional hazards model and log-rank test following Kaplan-Meier statistics. After comparing the expression pattern of biomarkers within the tumor compartment with that in the adjacent normal tissues, uPAR and TF exhibited a highly tumor-specific expression pattern, whereas EGFR showed a homogeneous expression within the tumor compartment as well as a consistent expression in the normal mucosal epithelium and salivary gland tissues. The positive expression rate of uPAR, TF and EGFR in the tumors was 98.9, 76.3 and 98.9%, respectively. No statistically significant association between biomarker expression and survival outcome could be detected. Higher uPAR expression levels had a trend towards reduced OS according to results from univariate analysis (P=0.07; hazard ratio=2.01; 95% CI=0.92-4.37). Taken together, these results suggest that uPAR, TF and EGFR may be suitable targets for molecular imaging and therapy in OPSCC. In particular, uPAR may be an attractive target owing to their high positive expression rates in tumors and a highly tumor-specific expression pattern.
Collapse
Affiliation(s)
- Anders Christensen
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Jakob Schmidt Jensen
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Giedrius Lelkaitis
- Department of Pathology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Karina Juhl
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Birgitte Wittenborg Charabi
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Jann Mortensen
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Andreas Kjær
- Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| | - Christian Von Buchwald
- Department of Otolaryngology, Head & Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, DK‑2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
9
|
Kumar AA, Buckley BJ, Ranson M. The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets. Biomolecules 2022; 12:152. [PMID: 35204653 PMCID: PMC8961517 DOI: 10.3390/biom12020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy that features high recurrence rates and the poorest prognosis of all solid cancers. The urokinase plasminogen activation system (uPAS) is strongly implicated in the pathophysiology and clinical outcomes of patients with pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic cancers. Overexpression of the urokinase-type plasminogen activator (uPA) or its cell surface receptor uPAR is a key step in the acquisition of a metastatic phenotype via multiple mechanisms, including the increased activation of cell surface localised plasminogen which generates the serine protease plasmin. This triggers multiple downstream processes that promote tumour cell migration and invasion. Increasing clinical evidence shows that the overexpression of uPA, uPAR, or of both is strongly associated with worse clinicopathological features and poor prognosis in PDAC patients. This review provides an overview of the current understanding of the uPAS in the pathogenesis and progression of pancreatic cancer, with a focus on PDAC, and summarises the substantial body of evidence that supports the role of uPAS components, including plasminogen receptors, in this disease. The review further outlines the clinical utility of uPAS components as prospective diagnostic and prognostic biomarkers for PDAC, as well as a rationale for the development of novel uPAS-targeted therapeutics.
Collapse
Affiliation(s)
- Ashna A. Kumar
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J. Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
10
|
van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021; 13:6088. [PMID: 34885196 PMCID: PMC8656821 DOI: 10.3390/cancers13236088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins. Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. METHODS A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.
Collapse
Affiliation(s)
- Martijn A. van Dam
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Floris A. Vuijk
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Judith A. Stibbe
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, University Medical Center Leiden, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | | | - Albert D. Windhorst
- Department of Radiology, Section of Nuclear Medicine, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.V.); (J.A.S.); (R.D.H.); (B.A.B.); (C.F.M.S.); (P.J.K.K.); (J.B.); (A.L.V.); (J.S.D.M.)
| |
Collapse
|
11
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
12
|
Montemagno C, Cassim S, De Leiris N, Durivault J, Faraggi M, Pagès G. Pancreatic Ductal Adenocarcinoma: The Dawn of the Era of Nuclear Medicine? Int J Mol Sci 2021; 22:6413. [PMID: 34203923 PMCID: PMC8232627 DOI: 10.3390/ijms22126413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Nicolas De Leiris
- Nuclear Medicine Department, Grenoble-Alpes University Hospital, 38000 Grenoble, France;
- Laboratoire Radiopharmaceutiques Biocliniques, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Marc Faraggi
- Centre Hospitalier Princesse Grace, Nuclear Medicine Department, 98000 Monaco, Monaco;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
13
|
Molecular targets for diagnostic and intraoperative imaging of pancreatic ductal adenocarcinoma after neoadjuvant FOLFIRINOX treatment. Sci Rep 2020; 10:16211. [PMID: 33004930 PMCID: PMC7529886 DOI: 10.1038/s41598-020-73242-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Neoadjuvant systemic treatment is increasingly being integrated in the standard treatment of pancreatic ductal adenocarcinoma (PDAC) patients to improve oncological outcomes. Current available imaging techniques remain unreliable in assessing response to therapies, as they cannot distinguish between (vital) tumor tissue and therapy induced fibrosis (TIF). Consequently, resections with tumor positive margins and subsequent early post-operative recurrences occur and patients eligible for potential radical resection could be missed. To optimize patient selection and monitor results of neoadjuvant treatment, PDAC-specific diagnostic and intraoperative molecular imaging methods are required. This study aims to evaluate molecular imaging targets for PDAC after neoadjuvant FOLFIRINOX treatment. Expression of integrin αvβ6, carcinoembryonic antigen cell adhesion molecule 5 (CEACAM5), mesothelin, prostate-specific membrane antigen (PSMA), urokinase-type plasminogen activator receptor, fibroblast activating receptor, integrin α5 subunit and epidermal growth factor receptor was evaluated using immunohistochemistry. Immunoreactivity was determined using the semiquantitative H-score. Resection specimens from patients after neoadjuvant FOLFIRINOX treatment containing PDAC (n = 32), tumor associated pancreatitis (TAP) and TIF (n = 15), normal pancreas parenchyma (NPP) (n = 32) and tumor positive (n = 24) and negative (n = 56) lymph nodes were included. Integrin αvβ6, CEACAM5, mesothelin and PSMA stainings showed significantly higher expression in PDAC compared to TAP and NPP. No expression of αvβ6, CEACAM5 and mesothelin was observed in TIF. Integrin αvβ6 and CEACAM5 allow for accurate metastatic lymph node detection. Targeting integrin αvβ6, CEA, mesothelin and PSMA has the potential to distinguish vital PDAC from fibrotic tissue after neoadjuvant FOLFIRINOX treatment. Integrin αvβ6 and CEACAM5 detect primary tumors and tumor positive lymph nodes.
Collapse
|
14
|
Loosen SH, Tacke F, Püthe N, Binneboesel M, Wiltberger G, Alizai PH, Kather JN, Paffenholz P, Ritz T, Koch A, Bergmann F, Trautwein C, Longerich T, Roderburg C, Neumann UP, Luedde T. High baseline soluble urokinase plasminogen activator receptor (suPAR) serum levels indicate adverse outcome after resection of pancreatic adenocarcinoma. Carcinogenesis 2020; 40:947-955. [PMID: 30805627 PMCID: PMC6735890 DOI: 10.1093/carcin/bgz033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/22/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Surgical resection represents the only potentially curative therapy for patients with pancreatic adenocarcinoma (PDAC), an aggressive malignancy with a very limited 5-year survival rate. However, even after complete tumor resection, many patients are still facing an unfavorable prognosis underlining the need for better preoperative stratification algorithms. Here, we explored the role of the secreted glycoprotein soluble urokinase plasminogen activator receptor (suPAR) as a novel circulating biomarker for patients undergoing resection of PDAC. Serum levels of suPAR were measured by enzyme-linked immunosorbent assay (ELISA) in an exploratory as well as a validation cohort comprising a total of 127 PDAC patients and 75 healthy controls. Correlating with a cytoplasmic immunohistochemical expression of uPAR in PDAC tumor cells, serum levels of suPAR were significantly elevated in PDAC patients compared to healthy controls and patient with PDAC precursor lesions. Importantly, patients with high preoperative suPAR levels above a calculated cutoff value of 5.956 ng/ml showed a significantly reduced overall survival after tumor resection. The prognostic role of suPAR was further corroborated by uni- and multivariate Cox-regression analyses including parameters of systemic inflammation, liver and kidney function as well as clinico-pathological patients’ characteristics. Moreover, high baseline suPAR levels identified those patients particularly susceptible to acute kidney injury and surgical complications after surgery. In conclusion, our data suggest that circulating suPAR represents a novel prognostic marker in PDAC patients undergoing tumor resection that might be a useful addition to existing preoperative stratification algorithms for identifying patients that particularly benefit from extended tumor resection.
Collapse
Affiliation(s)
- Sven H Loosen
- Department of Medicine III, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| | - Niklas Püthe
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| | - Marcel Binneboesel
- Department of Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Pauwelsstrasse, Aachen, Germany.,Department of General and Visceral Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Georg Wiltberger
- Department of Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Pauwelsstrasse, Aachen, Germany
| | - Patrick H Alizai
- Department of Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Pauwelsstrasse, Aachen, Germany
| | - Jakob N Kather
- Department of Medicine III, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| | - Pia Paffenholz
- Department of Urology, University Hospital Cologne, Kerpener Straße, Germany
| | - Thomas Ritz
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstrasse, Aachen, Germany.,Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Alexander Koch
- Department of Medicine III, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Christian Trautwein
- Department of Medicine III, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstrasse, Aachen, Germany.,Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Christoph Roderburg
- Department of Medicine III, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| | - Ulf P Neumann
- Department of Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Pauwelsstrasse, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany.,Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, Pauwelsstrasse, Aachen, Germany
| |
Collapse
|
15
|
Juhl K, Christensen A, Rubek N, Karnov KKS, von Buchwald C, Kjaer A. Improved surgical resection of metastatic pancreatic cancer using uPAR targeted in vivo fluorescent guidance: comparison with traditional white light surgery. Oncotarget 2019; 10:6308-6316. [PMID: 31695839 PMCID: PMC6824874 DOI: 10.18632/oncotarget.27220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers. The five-year survival rates have been reported as 3%. Radical surgical tumor resection is critical for improved outcome and the low survival rate for pancreatic cancer is due to lack of other effective treatments and here optical guided surgery could be a solution for better surgical outcome. In the present study, we targeted the urokinase plasminogen activator receptor (uPAR) with a peptide conjugated with the fluophore ICG (ICG-Glu-Glu-AE105) for optical imaging. In the first part of the study we aimed to validate ICG-Glu-Glu-AE105 for resection of the primary tumor and metastases in an orthotopic human xenograft pancreatic cancer model. In the second part of the study we aimed to investigate if fluorescent-guided imaging could locate additional metastases following conventional removal of metastasis under normal white light surgery. Our study showed that ICG-Glu-Glu-AE105 was an excellent probe for intraoperative optical imaging with a mean tumor-to-background ratio (TBR) for the primary tumor of 3.5 and a TBR for the metastases of 3.4. Further, a benefit using intraoperative fluorescent guidance yielded identification of an additional 14% metastases compared to using normal white light surgery. In 4 of 8 mice there were identified additional metastases with uPAR optical imaging compared to white light. In conclusion, the uPAR-targeted optical probe ICG-Glu-Glu-AE105 enables intraoperative optical cancer imaging, including robotic surgery, and may be a benefit during intended radical resection of disseminated pancreas cancer by finding more metastasis than with traditional white light surgery.
Collapse
Affiliation(s)
- Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niclas Rubek
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Kim Schmidt Karnov
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Kirstine Kim Schmidt Karnov sadly passed away before publishing of this article. We will miss her and our thoughts are with her family
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Hugdahl E, Bachmann IM, Schuster C, Ladstein RG, Akslen LA. Prognostic value of uPAR expression and angiogenesis in primary and metastatic melanoma. PLoS One 2019; 14:e0210399. [PMID: 30640942 PMCID: PMC6331131 DOI: 10.1371/journal.pone.0210399] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is important for the progression of cutaneous melanoma. Here, we analyzed the prognostic impact of the angiogenic factor urokinase plasminogen activator resecptor (uPAR), vascular proliferation index (VPI) and tumor necrosis as a measure of hypoxia in a patient series of nodular melanomas (n = 255) and matched loco-regional metastases (n = 78). Expression of uPAR was determined by immunohistochemistry and VPI was assessed by dual immunohistochemistry using Factor-VIII/Ki67 staining. Necrosis was recorded based on HE-slides. As novel findings, high uPAR expression and high VPI were associated with each other, and with increased tumor thickness, presence of tumor necrosis, tumor ulceration, increased mitotic count and reduced cancer specific survival in primary melanoma. In matched cases, VPI was decreased in metastases, whereas the frequency of necrosis was increased. Our findings demonstrate for the first time the impact on melanoma specific survival of uPAR expression and VPI in primary tumors, and of increased necrosis as an indicator of tumor hypoxia in loco-regional metastases. These findings support the importance of tumor angiogenesis in melanoma aggressiveness, and suggest uPAR as an indicator of vascular proliferation and a potential biomarker in melanoma.
Collapse
Affiliation(s)
- Emilia Hugdahl
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg M. Bachmann
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Cornelia Schuster
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology Haukeland University Hospital, Bergen, Norway
| | - Rita G. Ladstein
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
17
|
Lebreton S, Zurzolo C, Paladino S. Organization of GPI-anchored proteins at the cell surface and its physiopathological relevance. Crit Rev Biochem Mol Biol 2018; 53:403-419. [PMID: 30040489 DOI: 10.1080/10409238.2018.1485627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. The presence of both glycolipid anchor and protein portion confers them unique features. GPI-APs are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, neuritogenesis, and immune response. Likewise other plasma membrane proteins, the spatio-temporal organization of GPI-APs is critical for their biological activities in physiological conditions. In this review, we will summarize the latest findings on plasma membrane organization of GPI-APs and the mechanism of its regulation in different cell types. We will also examine the involvement of specific GPI-APs namely the prion protein PrPC, the Folate Receptor alpha and the urokinase plasminogen activator receptor in human diseases focusing on neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Chiara Zurzolo
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Simona Paladino
- b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II , Napoli , Italy.,c CEINGE Biotecnologie Avanzate , Napoli , Italy
| |
Collapse
|