1
|
Tarhan G, Domaç SF, Selek Ş, Gül AZ, Demir S. Utilizing metabolomic profiling as a supportive diagnostic tool for radiologically isolated syndrome. Mult Scler Relat Disord 2025; 94:106250. [PMID: 39764909 DOI: 10.1016/j.msard.2024.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Radiologically Isolated Syndrome (RIS) characterized by abnormalities on MRI that do not manifest as clinical symptoms of Multiple Sclerosis (MS) but raise suspicion for MS. Considering that RIS often evolves into MS, various diagnostic criteria have been established, and each suggested biomarker warrants thorough consideration and discussion. In this study, metabolomic profiling of body fluids of patients who were being followed up with a pre-diagnosis of RIS or MS and had not yet received any treatment was conducted. The results were compared internally and with healthy controls to contribute to the early diagnosis of the disease. METHODS In this study, the body fluids of 63 patients (30 RIS, 33 MS) and 30 healthy controls were used. From the patient group, samples of cerebrospinal fluid (CSF), serum, and urine; from the healthy group, blood and urine were collected. Metabolomic profiles of the body fluids were generated using Nuclear Magnetic Resonance spectroscopy (NMRS). Multivariate statistics were conducted on the NMRS intensity data using the MetaboAnalyst R package after auto-scaling and log-transformation. RESULTS In CSF levels of lactate, creatine phosphate, and pyruvate; in serum, levels of hydroxyvalerate, xylitol, and agmatine; in urine threonine, creatine, cystine, 2-aminobutyrate, and ascorbic acid were found significantly higher in the MS group compared to RIS (p ≤ 0.05). In Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA), it was observed that there was not enough differentiation between these two groups. Enrichment Analysis was performed on the CSF results of the RIS group, it was highly consistent with MS disease (ratio=∼1.8). CONCLUSION Literature reveals various results in this regard; however, the findings here emphasize a new distinction. It's important not to expect a single biomarker to stand out in metabolomic profiling methods; instead, the patient's overall results should be collectively evaluated to conduct a comprehensive analysis. The collective findings of RIS patients being consistent with MS indicate the necessity of widespread adoption and utilization of NMRS technique and metabolomic profiling, especially for CSF, in MS diagnostic criteria. Furthermore, this study provides laboratory evidence suggesting that RIS patients constitute a subtype of MS.
Collapse
Affiliation(s)
- Güllü Tarhan
- Erenköy Mental and Nervous Diseases Hospital, Neurology, Turkey
| | | | - Şahabettin Selek
- Bezmialem Vakif University Faculty of Medicine Hospital, Biochemistry, Turkey.
| | - Ayşe Zehra Gül
- Bezmialem Vakif University Faculty of Medicine Hospital, Biochemistry, Turkey
| | - Serkan Demir
- Sancaktepe Prof.Dr.Ilhan Varank State Hospital, Neurology, Turkey
| |
Collapse
|
2
|
Růžičková T, Vlachová M, Pečinka L, Brychtová M, Večeřa M, Radová L, Ševčíková S, Jarošová M, Havel J, Pour L, Ševčíková S. Detection of early relapse in multiple myeloma patients. Cell Div 2025; 20:4. [PMID: 39881385 PMCID: PMC11776158 DOI: 10.1186/s13008-025-00143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse. RESULTS Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning. CONCLUSION Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.
Collapse
Affiliation(s)
- Tereza Růžičková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Monika Vlachová
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukáš Pečinka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Monika Brychtová
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Večeřa
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radová
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Simona Ševčíková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Jarošová
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Luděk Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Sabina Ševčíková
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
3
|
Tan IL, Modderman R, Stachurska A, Almeida R, de Vries R, Heersema DJ, Gacesa R, Wijmenga C, Jonkers IH, Meilof JF, Withoff S. Potential biomarkers for multiple sclerosis stage from targeted proteomics and microRNA sequencing. Brain Commun 2024; 6:fcae209. [PMID: 38978729 PMCID: PMC11229703 DOI: 10.1093/braincomms/fcae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system. There is a need for new circulating biomarkers for multiple sclerosis, in particular, markers that differentiate multiple sclerosis subtypes (relapsing-remitting, secondary progressive and primary progressive multiple sclerosis), as this can help in making treatment decisions. In this study, we explore two classes of potential multiple sclerosis biomarkers-proteins and microRNAs-circulating in the cerebrospinal fluid and serum. Targeted medium-throughput proteomics (92 proteins) and microRNA sequencing were performed on serum samples collected in a cross-sectional case-control cohort (cohort I, controls n = 30, multiple sclerosis n = 75) and a prospective multiple sclerosis cohort (cohort II, n = 93). For cohort I, we also made these measurements in paired cerebrospinal fluid samples. In the cohort I cerebrospinal fluid, we observed differences between multiple sclerosis and controls for 13 proteins, including some previously described to be markers for multiple sclerosis [e.g. CD27, C-X-C motif chemokine 13 (CXCL13) and interleukin-7 (IL7)]. No microRNAs were significantly differentially expressed between multiple sclerosis and controls in the cerebrospinal fluid. In serum, 10 proteins, including angiopoietin-1 receptor (TIE2), and 16 microRNAs were significantly different between relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis after performing a meta-analysis combining both cohorts. In the prospective part of the study, participants with relapsing-remitting multiple sclerosis were followed for around 3 years, during which time 12 participants converted to secondary progressive multiple sclerosis. In these longitudinally collected serum samples, we observed a peak in granzyme B, A and H proteins around the time of conversion. Single-sample enrichment analysis of serum microRNA profiles revealed that the peak in granzyme B levels around conversion coincides with enrichment for microRNAs that are enriched in CD4+, CD8+ and natural killer cells (e.g. miRNA-150). We identified several proteins and microRNAs in serum that represent potential biomarkers for relapsing-remitting and secondary progressive multiple sclerosis. Conversion to secondary progressive disease is marked by a peak in granzyme B levels and enrichment for immune-related microRNAs. This indicates that specific immune cell-driven processes may contribute to the conversion of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Ineke L Tan
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anna Stachurska
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rodrigo Almeida
- Telespazio Belgium S.R.L. for the European Space Agency (ESA), 2200AG Noordwijk, The Netherlands
| | - Riemer de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Dorothea J Heersema
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Jan F Meilof
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Salazar IL, Lourenço AST, Manadas B, Baldeiras I, Ferreira C, Teixeira AC, Mendes VM, Novo AM, Machado R, Batista S, Macário MDC, Grãos M, Sousa L, Saraiva MJ, Pais AACC, Duarte CB. Posttranslational modifications of proteins are key features in the identification of CSF biomarkers of multiple sclerosis. J Neuroinflammation 2022; 19:44. [PMID: 35135578 PMCID: PMC8822857 DOI: 10.1186/s12974-022-02404-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Background Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system (CNS) characterized by demyelination and concomitant axonal loss. The lack of a single specific test, and the similarity to other inflammatory diseases of the central nervous system, makes it difficult to have a clear diagnosis of multiple sclerosis. Therefore, laboratory tests that allows a clear and definite diagnosis, as well as to predict the different clinical courses of the disease are of utmost importance. Herein, we compared the cerebrospinal fluid (CSF) proteome of patients with multiple sclerosis (in the relapse–remitting phase of the disease) and other diseases of the CNS (inflammatory and non-inflammatory) aiming at identifying reliable biomarkers of multiple sclerosis. Methods CSF samples from the discovery group were resolved by 2D-gel electrophoresis followed by identification of the protein spots by mass spectrometry. The results were analyzed using univariate (Student’s t test) and multivariate (Hierarchical Cluster Analysis, Principal Component Analysis, Linear Discriminant Analysis) statistical and numerical techniques, to identify a set of protein spots that were differentially expressed in CSF samples from patients with multiple sclerosis when compared with other two groups. Validation of the results was performed in samples from a different set of patients using quantitative (e.g., ELISA) and semi-quantitative (e.g., Western Blot) experimental approaches. Results Analysis of the 2D-gels showed 13 protein spots that were differentially expressed in the three groups of patients: Alpha-1-antichymotrypsin, Prostaglandin-H2-isomerase, Retinol binding protein 4, Transthyretin (TTR), Apolipoprotein E, Gelsolin, Angiotensinogen, Agrin, Serum albumin, Myosin-15, Apolipoprotein B-100 and EF-hand calcium-binding domain—containing protein. ELISA experiments allowed validating part of the results obtained in the proteomics analysis and showed that some of the alterations in the CSF proteome are also mirrored in serum samples from multiple sclerosis patients. CSF of multiple sclerosis patients was characterized by TTR oligomerization, thus highlighting the importance of analyzing posttranslational modifications of the proteome in the identification of novel biomarkers of the disease. Conclusions The model built based on the results obtained upon analysis of the 2D-gels and in the validation phase attained an accuracy of about 80% in distinguishing multiple sclerosis patients and the other two groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02404-2.
Collapse
Affiliation(s)
- Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana S T Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Anabela Claro Teixeira
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Novo
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rita Machado
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sónia Batista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria do Carmo Macário
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Mário Grãos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,Biocant-Associação de Transferência de Tecnologia, Cantanhede, Portugal
| | - Lívia Sousa
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Lazari LC, Ghilardi FDR, Rosa-Fernandes L, Assis DM, Nicolau JC, Santiago VF, Dalçóquio TF, Angeli CB, Bertolin AJ, Marinho CR, Wrenger C, Durigon EL, Siciliano RF, Palmisano G. Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci Alliance 2021; 4:e202000946. [PMID: 34168074 PMCID: PMC8321665 DOI: 10.26508/lsa.202000946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
SARS-CoV-2 infection poses a global health crisis. In parallel with the ongoing world effort to identify therapeutic solutions, there is a critical need for improvement in the prognosis of COVID-19. Here, we report plasma proteome fingerprinting that predict high (hospitalized) and low-risk (outpatients) cases of COVID-19 identified by a platform that combines machine learning with matrix-assisted laser desorption ionization mass spectrometry analysis. Sample preparation, MS, and data analysis parameters were optimized to achieve an overall accuracy of 92%, sensitivity of 93%, and specificity of 92% in dataset without feature selection. We identified two distinct regions in the MALDI-TOF profile belonging to the same proteoforms. A combination of SDS-PAGE and quantitative bottom-up proteomic analysis allowed the identification of intact and truncated forms of serum amyloid A-1 and A-2 proteins, both already described as biomarkers for viral infections in the acute phase. Unbiased discrimination of high- and low-risk COVID-19 patients using a technology that is currently in clinical use may have a prompt application in the noninvasive prognosis of COVID-19. Further validation will consolidate its clinical utility.
Collapse
Affiliation(s)
- Lucas Cardoso Lazari
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - José Carlos Nicolau
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Veronica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Claudia B Angeli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Claudio Rf Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. Int J Mol Sci 2021; 22:ijms22147377. [PMID: 34298997 PMCID: PMC8306353 DOI: 10.3390/ijms22147377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple Sclerosis (MS) is a demyelinating disease of the human central nervous system having an unconfirmed pathoetiology. Although animal models are used to mimic the pathology and clinical symptoms, no single model successfully replicates the full complexity of MS from its initial clinical identification through disease progression. Most importantly, a lack of preclinical biomarkers is hampering the earliest possible diagnosis and treatment. Notably, the development of rationally targeted therapeutics enabling pre-emptive treatment to halt the disease is also delayed without such biomarkers. Using literature mining and bioinformatic analyses, this review assessed the available proteomic studies of MS patients and animal models to discern (1) whether the models effectively mimic MS; and (2) whether reasonable biomarker candidates have been identified. The implication and necessity of assessing proteoforms and the critical importance of this to identifying rational biomarkers are discussed. Moreover, the challenges of using different proteomic analytical approaches and biological samples are also addressed.
Collapse
|
7
|
Zhan X, Wen G, Jiang E, Li F, Wu X, Pang H. Secretogranin III upregulation is involved in parkinsonian toxin-mediated astroglia activation. J Toxicol Sci 2020; 45:271-280. [PMID: 32404559 DOI: 10.2131/jts.45.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental neurotoxins such as paraquat (PQ), manganese, and 1-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are associated with a higher risk of Parkinson's disease (PD). These parkinsonian toxins exert certain common toxicological effects on astroglia; however, their role in the regulatory functions of astroglial secretory proteins remains unclear. In a previous study, we observed that secretogranin II (SCG2) and secretogranin III (SCG3), which are important components of the regulated secretory pathway, were elevated in PQ-activated U118 astroglia. In the current study, we used the parkinsonian toxins dopamine (DA), active metabolite of MPTP (MPP+), MnCl2, and lipopolysaccharide (LPS) as inducers, and studied the potential regulation of SCG2 and SCG3. Our results showed that all the parkinsonian toxins except LPS affected astroglial viability but did not cause apoptosis. Exposure to DA, MPP+, and MnCl2 upregulated glial fibrillary acidic protein (GFAP), a marker for astrocyte activation, and stimulated the levels of several astrocytic-derived factors. Further, DA, MPP+, and MnCl2 exposure impeded astroglial cell cycle progression. Moreover, the expression of SCG3 was elevated, while its exosecretion was inhibited in astroglia activated by parkinsonian toxins. The level of SCG2 remained unchanged. In combination with our previous findings, the results of this study indicate that SCG3 may act as a cofactor in astrocyte activation stimulated by various toxins, and the regulation of SCG3 could be involved in the toxicological mechanism by which parkinsonian toxins affect astroglia.
Collapse
Affiliation(s)
- Xiaoni Zhan
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| | - Gehua Wen
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, China
| | - Enzhu Jiang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| | | | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, China
| | - Hao Pang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| |
Collapse
|
8
|
Ferrazzano G, Crisafulli SG, Baione V, Tartaglia M, Cortese A, Frontoni M, Altieri M, Pauri F, Millefiorini E, Conte A. Early diagnosis of secondary progressive multiple sclerosis: focus on fluid and neurophysiological biomarkers. J Neurol 2020; 268:3626-3645. [PMID: 32504180 DOI: 10.1007/s00415-020-09964-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Most patients with multiple sclerosis presenting with a relapsing-remitting disease course at diagnosis transition to secondary progressive multiple sclerosis (SPMS) 1-2 decades after onset. SPMS is characterized by predominant neurodegeneration and atrophy. These pathogenic hallmarks result in unsatisfactory treatment response in SPMS patients. Therefore, early diagnosis of SPMS is necessary for prompt treatment decisions. The aim of this review was to assess neurophysiological and fluid biomarkers that have the potential to monitor disease progression and support early SPMS diagnosis. METHODS We performed a systematic review of studies that analyzed the role of neurophysiological techniques and fluid biomarkers in supporting SPMS diagnosis using the preferred reporting items for systematic reviews and meta-analyses statement. RESULTS From our initial search, we selected 24 relevant articles on neurophysiological biomarkers and 55 articles on fluid biomarkers. CONCLUSION To date, no neurophysiological or fluid biomarker is sufficiently validated to support the early diagnosis of SPMS. Neurophysiological measurements, including short interval intracortical inhibition and somatosensory temporal discrimination threshold, and the neurofilament light chain fluid biomarker seem to be the most promising. Cross-sectional studies on an adequate number of patients followed by longitudinal studies are needed to confirm the diagnostic and prognostic value of these biomarkers. A combination of neurophysiological and fluid biomarkers may be more sensitive in detecting SPMS conversion.
Collapse
Affiliation(s)
- Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, San Filippo Neri Hospital, Rome, Italy
| | - Marco Frontoni
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Flavia Pauri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
9
|
Silva‐Costa LC, Garcia‐Rosa S, Smith BJ, Baldasso PA, Steiner J, Martins‐de‐Souza D. Blood plasma high abundant protein depletion unintentionally carries over 100 proteins. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Licia C. Silva‐Costa
- Laboratory of NeuroproteomicsInstitute of BiologyDepartment of Biochemistry and Tissue BiologyUniversity of Campinas (UNICAMP) Campinas Brazil
| | - Sheila Garcia‐Rosa
- Laboratory of NeuroproteomicsInstitute of BiologyDepartment of Biochemistry and Tissue BiologyUniversity of Campinas (UNICAMP) Campinas Brazil
| | - Bradley J. Smith
- Laboratory of NeuroproteomicsInstitute of BiologyDepartment of Biochemistry and Tissue BiologyUniversity of Campinas (UNICAMP) Campinas Brazil
| | - Paulo A. Baldasso
- Laboratory of NeuroproteomicsInstitute of BiologyDepartment of Biochemistry and Tissue BiologyUniversity of Campinas (UNICAMP) Campinas Brazil
| | - Johann Steiner
- Department of PsychiatryUniversity of Magdeburg Magdeburg Germany
| | - Daniel Martins‐de‐Souza
- Laboratory of NeuroproteomicsInstitute of BiologyDepartment of Biochemistry and Tissue BiologyUniversity of Campinas (UNICAMP) Campinas Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION)Conselho Nacional de Desenvolvimento Científico e Tecnológico São Paulo Brazil
| |
Collapse
|
10
|
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease with a complex clinical course characterized by inflammation, demyelination, and axonal degeneration. Diagnosis of MS most commonly includes finding lesions in at least two separate areas of the central nervous system (CNS), including the brain, spinal cord, and optic nerves. In recent years, there has been a remarkable increase in the number of available treatments for MS. An optimal treatment is usually based on a personalized approach determined by an individual patient's prognosis and treatment risks. Biomarkers that can predict disability progression, monitor ongoing disease activity, and assess treatment response are integral in making important decisions regarding MS treatment. This review describes MS biomarkers that are currently being used in clinical practice; it also reviews and consolidates published findings from clinically relevant potential MS biomarkers in recent years. The work also discusses the challenges of validating and application of biomarkers in MS clinical practice.
Collapse
Affiliation(s)
- Anu Paul
- Department of Neurology, Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Manuel Comabella
- Department of Neurology, MS Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona 08035, Spain
| | - Roopali Gandhi
- Department of Neurology, Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
11
|
Bridel C, Eijlers AJC, van Wieringen WN, Koel-Simmelink M, Leurs CE, Schoonheim MM, Killestein J, Teunissen CE. No Plasmatic Proteomic Signature at Clinical Disease Onset Associated With 11 Year Clinical, Cognitive and MRI Outcomes in Relapsing-Remitting Multiple Sclerosis Patients. Front Mol Neurosci 2018; 11:371. [PMID: 30429773 PMCID: PMC6220078 DOI: 10.3389/fnmol.2018.00371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023] Open
Abstract
Background: The clinical course of relapsing-remitting multiple sclerosis (RRMS) is highly heterogeneous and prognostic biomarkers at time of diagnosis are lacking. Objective: We investigated the predictive value of the plasma proteome at time of diagnosis in RRMS patients. Methods: The plasma proteome was interrogated using a novel aptamer-based proteomics platform, which allows to measure the levels of a predefined set of 1310 proteins. Results: In 67 clinically and radiologically well characterized RRMS patients, we found no association between the plasma proteome at diagnosis and clinical, cognitive or MRI outcomes after 11 years. Conclusions: Proteomics studies on cerebrospinal fluid may be better suited to identify prognostic biomarkers in early RRMS.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Anand J C Eijlers
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Wessel N van Wieringen
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands and Department of Mathematics, VU University, Amsterdam, Netherlands
| | - Marleen Koel-Simmelink
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Cyra E Leurs
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Joep Killestein
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
12
|
Zhan X, Li F, Chu Q, Pang H. Secretogranin III may be an indicator of paraquat-induced astrocyte activation and affects the recruitment of BDNF during this process. Int J Mol Med 2018; 42:3622-3630. [PMID: 30280190 DOI: 10.3892/ijmm.2018.3909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022] Open
Abstract
Astrocyte activation has been described as a multi‑stage defensive response, which is characterized by the morphological alteration of astrocytes and the overexpression of intermediate filament proteins. However, the functional mechanism of the secretion system in activated astroglia remains unclear. It has previously been demonstrated that secretogranin II, a member of the granin family, may be involved in the sorting and expression of inflammatory factors and excitatory neurotransmitters in paraquat (PQ)‑induced astroglial activation. Secretogranin III (SCG3) has been reported to represent an important component of the regulated secretory pathway in neuroendocrine cells; however, its role as an anchor protein of dense‑core vesicles in astrocytes remains to be elucidated. In the present study, a PQ‑activated U118MG astrocytoma cell model established in our previous study was used to investigate the effects of SCG3. The results revealed that SCG3 was highly expressed and subsequently released from cells in response to PQ. Inhibition of SCG3 expression via transfection with small interfering RNA partially restored astrocyte morphology, but did not affect the expression of astrocytic factors. Further studies investigating the association between SCG3 and other cellular factors were conducted, in order to determine the expression levels and subcellular localization of these proteins. Neurotrophins and inflammatory factors exhibited an increase in characteristic expression patterns, paralleling the alterations in SCG3 expression. The results further demonstrated that brain‑derived neurotrophic factor partially colocalized with SCG3‑positive vesicles; however, the localization of interleukin‑6 was not affected. In conclusion, SCG3 may be involved in PQ‑induced astrocyte activation via regulation of the expression and selective recruitment of cellular factors, thus suggesting that SCG3 may represent an indicator of astrocyte activation.
Collapse
Affiliation(s)
- Xiaoni Zhan
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Fengrui Li
- Department of Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Qiaohong Chu
- Precision Medicine and Healthcare Center, Qingdao Binhai University, Qingdao, Shandong 266555, P.R. China
| | - Hao Pang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
13
|
Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 2018; 15:683-696. [PMID: 30058389 DOI: 10.1080/14789450.2018.1505510] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.
Collapse
Affiliation(s)
- Viviana Greco
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| | - Cristian Piras
- c Dipartimento di Medicina Veterinaria , Università degli studi di Milano , Milano , Italy
| | - Luisa Pieroni
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy
| | - Maurizio Ronci
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy.,e Department of Medical, Oral and Biotechnological Sciences , University "G. D'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Lorenza Putignani
- f Unit of Parasitology Bambino Gesù Children's Hospital , IRCCS , Rome , Italy.,g Unit of Human Microbiome , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Paola Roncada
- h Dipartimento di Scienze della Salute , Università degli studi "Magna Græcia" di Catanzaro , Catanzaro , Italy
| | - Andrea Urbani
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| |
Collapse
|
14
|
Novakova L, Singh AK, Axelsson M, Ståhlman M, Adiels M, Malmeström C, Zetterberg H, Borén J, Lycke J, Cardell SL, Blomqvist M. Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive MS from relapsing-remitting MS. J Neurochem 2018; 146:322-332. [DOI: 10.1111/jnc.14452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Lenka Novakova
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Avadhesh Kumar Singh
- Department of Microbiology and Immunology; Institute of Biomedicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Marcus Ståhlman
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital; Mölndal Sweden
- Department of Molecular Neuroscience; UCL Institute of Neurology; Queen Square; London UK
- UK Dementia Research Institute at UCL; London UK
| | - Martin Adiels
- Department of Molecular and Clinical Medicine/Wallenberg Lab; University of Gothenburg and Sahlgrenska University Hospital; Gothenburg Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Henrik Zetterberg
- Department of Molecular and Clinical Medicine/Wallenberg Lab; University of Gothenburg and Sahlgrenska University Hospital; Gothenburg Sweden
- Health Metrics Unit; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Lab; University of Gothenburg and Sahlgrenska University Hospital; Gothenburg Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Susanna L. Cardell
- Department of Microbiology and Immunology; Institute of Biomedicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Maria Blomqvist
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
15
|
Ligandomics: a paradigm shift in biological drug discovery. Drug Discov Today 2018; 23:636-643. [PMID: 29326083 DOI: 10.1016/j.drudis.2018.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
As productivity of pharmaceutical research and development (R&D) for small-molecule drugs declines, the trend in drug discovery strategies is shifting towards biologics, which predominantly target secreted or cell surface proteins. Receptors and ligands are the most-valuable drug targets. In contrast to conventional approaches of discovering one ligand at a time, the emerging technology of ligandomics can systematically map disease-selective cellular ligands in the absence of molecular probes. Biologics targeting these ligands with disease selectivity have the advantages of high efficacy, minimal adverse effects, wide therapeutic indices, and low safety-related attrition rates. Therefore, ligandomics represents a paradigm shift to address the bottleneck of target discovery for biologics development.
Collapse
|
16
|
Morel A, Bijak M, Niwald M, Miller E, Saluk J. Markers of oxidative/nitrative damage of plasma proteins correlated with EDSS and BDI scores in patients with secondary progressive multiple sclerosis. Redox Rep 2017; 22:547-555. [PMID: 28521618 DOI: 10.1080/13510002.2017.1325571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The objective of the present study was to evaluate oxidative/nitrative stress in the plasma of 50 patients suffering from the secondary progressive course of multiple sclerosis (MS), and to verify its correlation with physical and mental disability as assessed by the Expanded Disability Status Scale (EDSS), and the Beck Depression Inventory (BDI). METHODS Oxidative and nitrative damage to proteins was determined by the level of carbonyl groups and 3-nitrotyrosine using ELISA test. Based on the reaction with Ellman's reagent, we estimated the concentration of oxidized thiol groups. Additionally, we measured the level of lipid peroxidation. RESULTS In plasma drawn from MS patients, we observed a significantly higher level of 3-NT (92%; P < 0.0003), carbonyl groups (29%; P < 0.0001) and thiobarbituric acid reactive substances (73%; P < 0.0001), as well as a lower concentration of thiol groups (33%; P < 0.0001), in comparison to healthy subjects. We noted positive correlations between the level of carbonyl groups or 3-NT and both diagnostic parameters, EDSS and BDI. Negative correlations were observed between concentration of -SH groups and EDSS and BDI. CONCLUSION Our results indicate that impaired red-ox balance can significantly promote neurodegeneration in secondary progressive MS.
Collapse
Affiliation(s)
- Agnieszka Morel
- a Faculty of Biology and Environmental Protection, Department of General Biochemistry , University of Lodz , Lodz , Poland
| | - Michał Bijak
- a Faculty of Biology and Environmental Protection, Department of General Biochemistry , University of Lodz , Lodz , Poland
| | - Marta Niwald
- b Department of Physical Medicine , Medical University of Lodz , Lodz , Poland.,c Neurorehabilitation Ward , III General Hospital in Lodz , Lodz , Poland
| | - Elżbieta Miller
- b Department of Physical Medicine , Medical University of Lodz , Lodz , Poland.,c Neurorehabilitation Ward , III General Hospital in Lodz , Lodz , Poland
| | - Joanna Saluk
- a Faculty of Biology and Environmental Protection, Department of General Biochemistry , University of Lodz , Lodz , Poland
| |
Collapse
|
17
|
Bastos P, Ferreira R, Manadas B, Moreira PI, Vitorino R. Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid. Crit Rev Clin Lab Sci 2017; 54:185-204. [PMID: 28393582 DOI: 10.1080/10408363.2017.1299682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is an excellent source of biological information regarding the nervous system, once it is in close contact and accurately reflects alterations in this system. Several studies have analyzed differential protein profiles of CSF samples between healthy and diseased human subjects. However, the pathophysiological mechanisms and how CSF proteins relate to diseases are still poorly known. By applying bioinformatics tools, we attempted to provide new insights on the biological and functional meaning of proteomics data envisioning the identification of putative disease biomarkers. Bioinformatics analysis of data retrieved from 99 mass spectrometry (MS)-based studies on CSF profiling highlighted 1985 differentially expressed proteins across 49 diseases. A large percentage of the modulated proteins originate from exosome vesicles, and the majority are involved in either neuronal cell growth, development, maturation, migration, or neurotransmitter-mediated cellular communication. Nevertheless, some diseases present a unique CSF proteome profile, which were critically analyzed in the present study. For instance, 48 proteins were found exclusively upregulated in the CSF of patients with Alzheimer's disease and are mainly involved in steroid esterification and protein activation cascade processes. A higher number of exclusively upregulated proteins were found in the CSF of patients with multiple sclerosis (76 proteins) and with bacterial meningitis (70 proteins). Whereas in multiple sclerosis, these proteins are mostly involved in the regulation of RNA metabolism and apoptosis, in bacterial meningitis the exclusively upregulated proteins participate in inflammation and antibacterial humoral response, reflecting disease pathogenesis. The exploration of the contribution of exclusively upregulated proteins to disease pathogenesis will certainly help to envision potential biomarkers in the CSF for the clinical management of nervous system diseases.
Collapse
Affiliation(s)
- Paulo Bastos
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal.,b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal
| | - Rita Ferreira
- c QOPNA, Department of Chemistry , University of Aveiro , Aveiro , Portugal
| | - Bruno Manadas
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal.,e Laboratory of Physiology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rui Vitorino
- b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal.,f Departmento de Cirurgia e Fisiologia, Faculdade de Medicina , Unidade de Investigação Cardiovascular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
18
|
Leurs CE, Podlesniy P, Trullas R, Balk L, Steenwijk MD, Malekzadeh A, Piehl F, Uitdehaag BM, Killestein J, van Horssen J, Teunissen CE. Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Mult Scler 2017; 24:472-480. [PMID: 28294696 PMCID: PMC5987988 DOI: 10.1177/1352458517699874] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is increasingly recognized as an important feature of multiple sclerosis (MS) pathology and may be relevant for clinical disease progression. However, it is unknown whether mitochondrial DNA (mtDNA) levels in the cerebrospinal fluid (CSF) associate with disease progression and therapeutic response. OBJECTIVES To evaluate whether CSF concentrations of mtDNA in MS patients can serve as a marker of ongoing neuropathology and may be helpful to differentiate between MS disease subtypes. To explore the effect of disease-modifying therapies on mtDNA levels in the CSF. METHODS CSF mtDNA was measured using a digital polymerase chain reaction (PCR) CSF mtDNA in two independent MS cohorts. The cohorts included 92 relapsing-remitting multiple sclerosis (RRMS) patients, 40 progressive multiple sclerosis (PMS) patients (27 secondary progressive and 13 primary progressive), 50 various neurologic disease controls, and 5 healthy controls. RESULTS Patients with PMS showed a significant increase in CSF mtDNA compared to non-inflammatory neurologic disease controls. Patients with higher T2 lesion volumes and lower normalized brain volumes showed increased concentration of mtDNA. Patients treated with fingolimod had significantly lower mtDNA copy levels at follow-up compared to baseline. CONCLUSION Our results showed a non-specific elevation of concentration of mtDNA in PMS patients. mtDNA concentrations respond to fingolimod and may be used to monitor biological effect of this treatment.
Collapse
Affiliation(s)
- Cyra E Leurs
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Petar Podlesniy
- Institute of Biomedical Research of Barcelona, CSIC-IDIBAPS, CIBERNED, Barcelona, Spain
| | - Ramon Trullas
- Institute of Biomedical Research of Barcelona, CSIC-IDIBAPS, CIBERNED, Barcelona, Spain
| | - Lisanne Balk
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Departments of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan Malekzadeh
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bernard Mj Uitdehaag
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Kizlaitienė R, Kaubrys G, Giedraitienė N, Ramanauskas N, Dementavičienė J. Composite Marker of Cognitive Dysfunction and Brain Atrophy is Highly Accurate in Discriminating Between Relapsing-Remitting and Secondary Progressive Multiple Sclerosis. Med Sci Monit 2017; 23:588-597. [PMID: 28145395 PMCID: PMC5301955 DOI: 10.12659/msm.903234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background With the advent of numerous new-generation disease-modifying drugs for multiple sclerosis (MS), the discrimination between relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) has become a problem of high importance. The aim of our study was to find a simple way to accurately discriminate between RRMS and SPMS that is applicable in clinical practice as a composite marker, using the linear measures of magnetic resonance imaging (MRI) and the results of cognitive tests. Material/Methods We included 88 MS patients in the study: 43 participants had RRMS and 45 had SPMS. A battery consisting of 11 tests was used to evaluate cognitive function. We used 11 linear MRI measures and 7 indexes to assess brain atrophy. Results Four cognitive tests and 3 linear MRI measures were able to distinguish RRMS from SPMS with the AUC >0.8 based on ROC analysis. Multiple logistic regression models were constructed to identify the best set of cognitive and MRI markers. The model, using the Rey Auditory Verbal Learning Test (RAVLT), Digit Symbol Substitution Test (DSST), and Huckman Index, showed the highest predictive ability: AUC=0.921 (p<0.001). We constructed a simple remission-progression index from the same 3 variables, which discriminated well between RRMS and SPMS: AUC=0.920 (p<0.001), maximal Youden Index=0.702, cut-off=1.68, sensitivity=79.1%, and specificity=91.1%. Conclusions The composite remission-progression index, using the RAVLT test, DSST test, and MRI Huckman Index, is highly accurate in discriminating between RRMS and SPMS.
Collapse
Affiliation(s)
- Rasa Kizlaitienė
- Department of Neurology and Neurosurgery, Center of Neurology, Vilnius University, Vilnius, Lithuania
| | - Gintaras Kaubrys
- Department of Neurology and Neurosurgery, Center of Neurology, Vilnius University, Vilnius, Lithuania
| | - Nataša Giedraitienė
- Department of Neurology and Neurosurgery, Center of Neurology, Vilnius University, Vilnius, Lithuania
| | | | - Jūratė Dementavičienė
- Department of Radiology, Nuclear Medicine and Physics of Medicine, Center of Radiology and Nuclear Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
20
|
Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, Bangham CR. Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Res 2016; 1:10. [PMID: 27996064 PMCID: PMC5159626 DOI: 10.12688/wellcomeopenres.9967.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background A major cause of disability in secondary progressive multiple sclerosis (SPMS) is progressive brain atrophy, whose pathogenesis is not fully understood. The objective of this study was to identify protein biomarkers of brain atrophy in SPMS. Methods We used surface-enhanced laser desorption-ionization time-of-flight mass spectrometry to carry out an unbiased search for serum proteins whose concentration correlated with the rate of brain atrophy, measured by serial MRI scans over a 2-year period in a well-characterized cohort of 140 patients with SPMS. Protein species were identified by liquid chromatography-electrospray ionization tandem mass spectrometry. Results There was a significant (p<0.004) correlation between the rate of brain atrophy and a rise in the concentration of proteins at 15.1 kDa and 15.9 kDa in the serum. Tandem mass spectrometry identified these proteins as alpha-haemoglobin and beta-haemoglobin, respectively. The abnormal concentration of free serum haemoglobin was confirmed by ELISA (p<0.001). The serum lactate dehydrogenase activity was also highly significantly raised (p<10-12) in patients with secondary progressive multiple sclerosis. Conclusions An underlying low-grade chronic intravascular haemolysis is a potential source of the iron whose deposition along blood vessels in multiple sclerosis plaques contributes to the neurodegeneration and consequent brain atrophy seen in progressive disease. Chelators of free serum iron will be ineffective in preventing this neurodegeneration, because the iron (Fe2+) is chelated by haemoglobin.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK,Present address: Department of Mathematics, Brunel University, London, UK,
| | - Shea Hamilton
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK,
| | - Aviva Witkover
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Paul Langford
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jeremy Chataway
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust and Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, UK
| | - Charles R.M. Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK,
| |
Collapse
|
21
|
Lewin A, Hamilton S, Witkover A, Langford P, Nicholas R, Chataway J, Bangham CRM. Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Res 2016. [PMID: 27996064 DOI: 10.12688/wellcomeopenres.9967.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background A major cause of disability in secondary progressive multiple sclerosis (SPMS) is progressive brain atrophy, whose pathogenesis is not fully understood. The objective of this study was to identify protein biomarkers of brain atrophy in SPMS. Methods We used surface-enhanced laser desorption-ionization time-of-flight mass spectrometry to carry out an unbiased search for serum proteins whose concentration correlated with the rate of brain atrophy, measured by serial MRI scans over a 2-year period in a well-characterized cohort of 140 patients with SPMS. Protein species were identified by liquid chromatography-electrospray ionization tandem mass spectrometry. Results There was a significant (p<0.004) correlation between the rate of brain atrophy and a rise in the concentration of proteins at 15.1 kDa and 15.9 kDa in the serum. Tandem mass spectrometry identified these proteins as alpha-haemoglobin and beta-haemoglobin, respectively. The abnormal concentration of free serum haemoglobin was confirmed by ELISA (p<0.001). The serum lactate dehydrogenase activity was also highly significantly raised (p<10-12) in patients with secondary progressive multiple sclerosis. Conclusions An underlying low-grade chronic intravascular haemolysis is a potential source of the iron whose deposition along blood vessels in multiple sclerosis plaques contributes to the neurodegeneration and consequent brain atrophy seen in progressive disease. Chelators of free serum iron will be ineffective in preventing this neurodegeneration, because the iron (Fe2+) is chelated by haemoglobin.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,Present address: Department of Mathematics, Brunel University, London, UK
| | - Shea Hamilton
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Aviva Witkover
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Paul Langford
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jeremy Chataway
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust and Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London, London, UK
| | - Charles R M Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
22
|
Schott AS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One 2016; 11:e0165504. [PMID: 27783652 PMCID: PMC5082675 DOI: 10.1371/journal.pone.0165504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jennifer Quinn
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
23
|
Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the Human Protein Atlas. Clin Proteomics 2016; 13:11. [PMID: 27186164 PMCID: PMC4868024 DOI: 10.1186/s12014-016-9111-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is a proximal fluid which communicates closely with brain tissue, contains numerous brain-derived proteins and thus represents a promising fluid for discovery of biomarkers of central nervous system (CNS) diseases. The main purpose of this study was to generate an extensive CSF proteome and define brain-related proteins identified in CSF, suitable for development of diagnostic assays. Methods Six non-pathological CSF samples from three female and three male individuals were selected for CSF analysis. Samples were first subjected to strong cation exchange chromatography, followed by LC-MS/MS analysis. Secreted and membrane-bound proteins enriched in the brain tissues were retrieved from the Human Protein Atlas. Results In total, 2615 proteins were identified in the CSF. The number of proteins identified per individual sample ranged from 1109 to 1421, with inter-individual variability between six samples of 21 %. Based on the Human Protein Atlas, 78 brain-specific proteins found in CSF samples were proposed as a signature of brain-enriched proteins in CSF. Conclusion A combination of Human Protein Atlas database and experimental search of proteins in specific body fluid can be applied as an initial step in search for disease biomarkers specific for a particular tissue. This signature may be of significant interest for development of novel diagnostics of CNS diseases and identification of drug targets. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9111-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| |
Collapse
|
24
|
Challenges in biomarker discovery with MALDI-TOF MS. Clin Chim Acta 2016; 458:84-98. [PMID: 27134187 DOI: 10.1016/j.cca.2016.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
MALDI-TOF MS technique is commonly used in system biology and clinical studies to search for new potential markers associated with pathological conditions. Despite numerous concerns regarding a sample preparation or processing of complex data, this strategy is still recognized as a popular tool and its awareness has risen in the proteomic community over the last decade. In this review, we present comprehensive application of MALDI mass spectrometry with special focus on profiling research. We also discuss major advantages and disadvantages of universal sample preparation methods such as micro-SPE columns, immunodepletion or magnetic beads, and we show the potential of nanostructured materials in capturing low molecular weight subproteomes. Furthermore, as the general protocol considerably affects spectra quality and interpretation, an alternative solution for improved ion detection, including hydrophobic constituents, data processing and statistical analysis is being considered in up-to-date profiling pattern. In conclusion, many reports involving MALDI-TOF MS indicated highly abundant proteins as valuable indicators, and at the same time showed the inaccuracy of available methods in the detection of low abundant proteome that is the most interesting from the clinical perspective. Therefore, the analytical aspects of sample preparation methods should be standardized to provide a reproducible, low sample handling and credible procedure.
Collapse
|
25
|
Complement Receptor 2 is increased in cerebrospinal fluid of multiple sclerosis patients and regulates C3 function. Clin Immunol 2016; 166-167:89-95. [PMID: 27085202 DOI: 10.1016/j.clim.2016.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Besides its vital role in immunity, the complement system also contributes to the shaping of the synaptic circuitry of the brain. We recently described that soluble Complement Receptor 2 (sCR2) is part of the nerve injury response in rodents. We here study CR2 in context of multiple sclerosis (MS) and explore the molecular effects of CR2 on C3 activation. Significant increases in sCR2 levels were evident in cerebrospinal fluid (CSF) from both patients with relapsing-remitting MS (n=33; 6.2ng/mL) and secondary-progressive MS (n=9; 7.0ng/mL) as compared to controls (n=18; 4.1ng/mL). Furthermore, CSF sCR2 levels correlated significantly both with CSF C3 and C1q as well as to a disease severity measure. In vitro, sCR2 inhibited the cleavage and down regulation of C3b to iC3b, suggesting that it exerts a modulatory role in complement activation downstream of C3. These results propose a novel function for CR2/sCR2 in human neuroinflammatory conditions.
Collapse
|
26
|
Perga S, Giuliano Albo A, Lis K, Minari N, Falvo S, Marnetto F, Caldano M, Reviglione R, Berchialla P, Capobianco MA, Malentacchi M, Corpillo D, Bertolotto A. Vitamin D Binding Protein Isoforms and Apolipoprotein E in Cerebrospinal Fluid as Prognostic Biomarkers of Multiple Sclerosis. PLoS One 2015; 10:e0129291. [PMID: 26046356 PMCID: PMC4457896 DOI: 10.1371/journal.pone.0129291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system with a heterogeneous and unpredictable course. To date there are no prognostic biomarkers even if they would be extremely useful for early patient intervention with personalized therapies. In this context, the analysis of inter-individual differences in cerebrospinal fluid (CSF) proteome may lead to the discovery of biological markers that are able to distinguish the various clinical forms at diagnosis. METHODS To this aim, a two dimensional electrophoresis (2-DE) study was carried out on individual CSF samples from 24 untreated women who underwent lumbar puncture (LP) for suspected MS. The patients were clinically monitored for 5 years and then classified according to the degree of disease aggressiveness and the disease-modifying therapies prescribed during follow up. RESULTS The hierarchical cluster analysis of 2-DE dataset revealed three protein spots which were identified by means of mass spectrometry as Apolipoprotein E (ApoE) and two isoforms of vitamin D binding protein (DBP). These three protein spots enabled us to subdivide the patients into subgroups correlated with clinical classification (MS aggressive forms identification: 80%). In particular, we observed an opposite trend of values for the two protein spots corresponding to different DBP isoforms suggesting a role of a post-translational modification rather than the total protein content in patient categorization. CONCLUSIONS These findings proved to be very interesting and innovative and may be developed as new candidate prognostic biomarkers of MS aggressiveness, if confirmed.
Collapse
Affiliation(s)
- Simona Perga
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Alessandra Giuliano Albo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Katarzyna Lis
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Nicoletta Minari
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Sara Falvo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Fabiana Marnetto
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Marzia Caldano
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| | - Raffaella Reviglione
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marco A. Capobianco
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
| | - Maria Malentacchi
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
| | - Davide Corpillo
- ABLE Biosciences, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
- LIMA, Bioindustry Park Silvano Fumero SpA, Colleretto Giacosa, Italy
| | - Antonio Bertolotto
- Neurology Unit 2 & Regional Referral Multiple Sclerosis Centre (CReSM), San Luigi University Hospital, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), c/o San Luigi University Hospital, Orbassano, Italy
| |
Collapse
|
27
|
Haines JD, Vidaurre OG, Zhang F, Riffo-Campos ÁL, Castillo J, Casanova B, Casaccia P, Lopez-Rodas G. Multiple sclerosis patient-derived CSF induces transcriptional changes in proliferating oligodendrocyte progenitors. Mult Scler 2015; 21:1655-69. [PMID: 25948622 DOI: 10.1177/1352458515573094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/25/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is in contact with brain parenchyma and ventricles, and its composition might influence the cellular physiology of oligodendrocyte progenitor cells (OPCs) thereby contributing to multiple sclerosis (MS) disease pathogenesis. OBJECTIVE To identify the transcriptional changes that distinguish the transcriptional response induced in proliferating rat OPCs upon exposure to CSF from primary progressive multiple sclerosis (PPMS) or relapsing remitting multiple sclerosis (RRMS) patients and other neurological controls. METHODS We performed gene microarray analysis of OPCs exposed to CSF from neurological controls, or definitive RRMS or PPMS disease course. Results were confirmed by quantitative reverse transcriptase polymerase chain reaction, immunocytochemistry and western blot of cultured cells, and validated in human brain specimens. RESULTS We identified common and unique oligodendrocyte genes for each treatment group. Exposure to CSF from PPMS uniquely induced branching of cultured progenitors and related transcriptional changes, including upregulation (P<0.05) of the adhesion molecule GALECTIN-3/Lgals3, which was also detected at the protein level in brain specimens from PPMS patients. This pattern of gene expression was distinct from the transcriptional programme of oligodendrocyte differentiation during development. CONCLUSIONS Despite evidence of morphological differentiation induced by exposure to CSF of PPMS patients, the overall transcriptional response elicited in cultured OPCs was consistent with the activation of an aberrant transcriptional programme.
Collapse
Affiliation(s)
- Jeffery D Haines
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Oscar G Vidaurre
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fan Zhang
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ángela L Riffo-Campos
- Department of Biochemistry and Molecular Biology, University of Valencia, and Institute of Health Research INCLIVA, Valencia, Spain
| | - Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, and Institute of Health Research INCLIVA, Valencia, Spain
| | | | - Patrizia Casaccia
- Department of Neuroscience, Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gerardo Lopez-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
28
|
Stilund M, Gjelstrup MC, Petersen T, Møller HJ, Rasmussen PV, Christensen T. Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: contributions of the soluble CD163 CSF/serum ratio to a biomarker panel. PLoS One 2015; 10:e0119681. [PMID: 25860354 PMCID: PMC4393241 DOI: 10.1371/journal.pone.0119681] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Expression of soluble CD163 (sCD163), a macrophage/microglia biomarker, is increased in inflammatory conditions, and sCD163 levels in the cerebrospinal fluid (CSF) have recently been shown to be elevated in patients with multiple sclerosis (MS): the sCD163 CSF/serum ratio was elevated in patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and clinically isolated syndrome (CIS) compared with symptomatic controls. OBJECTIVE To investigate the contributions of the sCD163 CSF/serum ratio to a biomarker panel focusing on inflammation and axonal degeneration in newly diagnosed MS; thus optimising a diagnostic biomarker panel for MS. METHODS After a full MS diagnostic work-up, including collection of paired samples of CSF and serum, 125 patients were included in this study. Patients were divided into groups based on their diagnosis, and patients with normal clinical and paraclinical findings were defined as symptomatic controls. Serum and CSF levels, ratios, and indices of sCD163, CXCL13, osteopontin, neopterin, and CSF levels of neurofilament light polypeptide were determined by enzyme-linked immunosorbent assays (ELISAs). For sCD163 the results constitute a post-hoc analysis of already published data. RESULTS All tested biomarkers, notably the sCD163 ratio, the CXCL13 ratio, the NEO ratio, the CSF level of NfL, the IgG index, and the serum level of OPN, were significantly correlated to RRMS, PPMS, and/or CIS. The individual biomarkers in single tests had a lower performance than the IgG index, however, their combined receiver operating characteristic (ROC) curve demonstrated excellent diagnostic discriminatory power. CONCLUSION The biomarker panel showed distinct profiles for each patient group and could be a valuable tool for clinical differentiation of MS subgroups. The combined ROC analysis showed that sCD163 contributes positively as a diagnostic marker to a panel of established MS biomarkers. Patients with PPMS were demonstrated to have significantly elevated levels of both inflammatory and degenerative markers.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antigens, CD/analysis
- Antigens, CD/blood
- Antigens, CD/cerebrospinal fluid
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/cerebrospinal fluid
- Area Under Curve
- Axons/metabolism
- Biomarkers/analysis
- Biomarkers/blood
- Biomarkers/cerebrospinal fluid
- Chemokine CXCL13/blood
- Chemokine CXCL13/cerebrospinal fluid
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Inflammation/metabolism
- Linear Models
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Microglia/metabolism
- Middle Aged
- Multiple Sclerosis/cerebrospinal fluid
- Multiple Sclerosis/diagnosis
- Multiple Sclerosis, Chronic Progressive/cerebrospinal fluid
- Multiple Sclerosis, Chronic Progressive/diagnosis
- Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid
- Multiple Sclerosis, Relapsing-Remitting/diagnosis
- Neopterin/blood
- Neopterin/cerebrospinal fluid
- Osteopontin/blood
- Osteopontin/cerebrospinal fluid
- ROC Curve
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/blood
- Young Adult
Collapse
Affiliation(s)
- Morten Stilund
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
- Department of Biomedicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus University, DK-8000 Aarhus C, Denmark
- * E-mail:
| | - Mikkel Carstensen Gjelstrup
- Department of Biomedicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Thor Petersen
- Department of Neurology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | | | - Tove Christensen
- Department of Biomedicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
29
|
Alonso R, Pisa D, Marina AI, Morato E, Rábano A, Rodal I, Carrasco L. Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. Int J Biol Sci 2015; 11:546-58. [PMID: 25892962 PMCID: PMC4400386 DOI: 10.7150/ijbs.11084] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Among neurogenerative diseases, amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by a progressive motor neuron dysfunction in the motor cortex, brainstem and spinal cord. ALS is the most common form of motor neuron disease; yet, to date, the exact etiology of ALS remains unknown. In the present work, we have explored the possibility of fungal infection in cerebrospinal fluid (CSF) and in brain tissue from ALS patients. Fungal antigens, as well as DNA from several fungi, were detected in CSF from ALS patients. Additionally, examination of brain sections from the frontal cortex of ALS patients revealed the existence of immunopositive fungal antigens comprising punctate bodies in the cytoplasm of some neurons. Fungal DNA was also detected in brain tissue using PCR analysis, uncovering the presence of several fungal species. Finally, proteomic analyses of brain tissue demonstrated the occurrence of several fungal peptides. Collectively, our observations provide compelling evidence of fungal infection in the ALS patients analyzed, suggesting that this infection may play a part in the etiology of the disease or may constitute a risk factor for these patients.
Collapse
Affiliation(s)
- Ruth Alonso
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Diana Pisa
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Ana Isabel Marina
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Esperanza Morato
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Alberto Rábano
- 2. Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid. Spain
| | - Izaskun Rodal
- 2. Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid. Spain
| | - Luis Carrasco
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| |
Collapse
|
30
|
Aeinehband S, Lindblom RPF, Al Nimer F, Vijayaraghavan S, Sandholm K, Khademi M, Olsson T, Nilsson B, Ekdahl KN, Darreh-Shori T, Piehl F. Complement component C3 and butyrylcholinesterase activity are associated with neurodegeneration and clinical disability in multiple sclerosis. PLoS One 2015; 10:e0122048. [PMID: 25835709 PMCID: PMC4383591 DOI: 10.1371/journal.pone.0122048] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genome-wide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE), an enzyme hydrolyzing acetylcholine (ACh), a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL), a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE) and BuChE, in cerebrospinal fluid (CSF) from patients with MS (n = 48) and non-inflammatory controls (n = 18). C3 levels were elevated in MS patients compared to controls and correlated both to disability and NFL. C3 levels were not induced by relapses, but were increased in patients with ≥9 cerebral lesions on magnetic resonance imaging and in patients with progressive disease. BuChE activity did not differ at the group level, but was correlated to both C3 and NFL levels in individual samples. In conclusion, we show that CSF C3 correlates both to a marker for ongoing nerve injury and degree of disease disability. Moreover, our results also suggest a potential link between intrathecal cholinergic activity and complement activation. These results motivate further efforts directed at elucidating the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone.
Collapse
Affiliation(s)
- Shahin Aeinehband
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Rickard P. F. Lindblom
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Swetha Vijayaraghavan
- Division of Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | - Mohsen Khademi
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Bo Nilsson
- Division of Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Nilsson Ekdahl
- Division of Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- School of Natural Sciences, Linnæus University, Kalmar, Sweden
| | - Taher Darreh-Shori
- Division of Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Rehema A, Kullisaar T, Seer K, Reinmann K, Zilmer M, Kilk K. Proteomic proof that a probiotic elevates glutathione level in human serum. Open Life Sci 2015. [DOI: 10.1515/biol-2015-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractLactobacillus fermentum ME-3 (LfME-3) has been
proven to synthesize and secrete glutathione. A regular
use of the foods fermented by it has shown a favourable
influence on human lipid profiles and several antioxidant
parameters. We administered the LfME-3-fermented kefir
for 14 days to 43 human subjects and evaluated their serum
with MALDI-TOF mass spectrometer at the beginning and
end of the test period. We found an increase of the peak at
m/z 308 (corresponding to glutathione) and a new peak
at m/z 1467.
Collapse
Affiliation(s)
- Aune Rehema
- 1Tartu University Medical Faculty Department of Biochemistry 50411 Tartu, Ravila st. 19, Estonia
| | - Tiiu Kullisaar
- 1Tartu University Medical Faculty Department of Biochemistry 50411 Tartu, Ravila st. 19, Estonia
| | - Kärt Seer
- 1Tartu University Medical Faculty Department of Biochemistry 50411 Tartu, Ravila st. 19, Estonia
| | - Kristen Reinmann
- 1Tartu University Medical Faculty Department of Biochemistry 50411 Tartu, Ravila st. 19, Estonia
| | - Mihkel Zilmer
- 1Tartu University Medical Faculty Department of Biochemistry 50411 Tartu, Ravila st. 19, Estonia
| | - Kalle Kilk
- 1Tartu University Medical Faculty Department of Biochemistry 50411 Tartu, Ravila st. 19, Estonia
| |
Collapse
|
32
|
Serum proteomics in multiple sclerosis disease progression. J Proteomics 2015; 118:2-11. [PMID: 25753122 DOI: 10.1016/j.jprot.2015.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 11/20/2022]
Abstract
UNLABELLED Multiple sclerosis (MS) is associated with chronic degeneration of the central nervous system and may cause permanent neurological problems and considerable disability. While its causes remain unclear, its extensive phenotypic variability makes its prognosis and treatment difficult. The identification of serum proteomic biomarkers of MS progression could further our understanding of the molecular mechanisms related to MS disease processes. In the current study, we used isobaric tagging for relative and absolute protein quantification (iTRAQ) methodology and advanced multivariate statistical analysis to quantify and identify potential serum biomarker proteins of MS progression. We identified a panel of 11 proteins and combined them into a classifier that best classified samples into the two disease groups. The estimated area under the receiver operating curve of this classifier was 0.88 (p-value=0.017), with 86% sensitivity and specificity. The identified proteins encompassed processes related to inflammation, opsonization, and complement activation. Results from this study are in particular valuable to design a targeted Multiple Reaction Monitoring mass spectrometry based (MRM-MS) assay to conduct an external validation in an independent and larger cohort of patients. Validated biomarkers may result in the development of a minimally-invasive tool to monitor MS progression and complement current clinical practices. BIOLOGICAL SIGNIFICANCE A hallmark of multiple sclerosis is the unpredictable disease course (progression). There are currently no clinically useful biomarkers of MS disease progression; most work has focused on the analysis of CSF, which requires an invasive procedure. Here, we explore the potential of proteomics to identify panels of serum biomarkers of disease progression in MS. By comparing the protein signatures of two challenging to obtain, but well-defined, MS phenotypic groups at the extremes of progression (benign and aggressive cases of MS), we identified proteins that encompass processes related to inflammation, opsonization, and complement activation. Findings require validation, but are an important step on the pathway to clinically useful biomarker discovery. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
|
33
|
Kroksveen AC, Opsahl JA, Guldbrandsen A, Myhr KM, Oveland E, Torkildsen Ø, Berven FS. Cerebrospinal fluid proteomics in multiple sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:746-56. [PMID: 25526888 DOI: 10.1016/j.bbapap.2014.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/27/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated chronic inflammatory disease of the central nervous system usually initiated during young adulthood, affecting approximately 2.5 million people worldwide. There is currently no cure for MS, but disease modifying treatment has become increasingly more effective, especially when started in the first phase of the disease. The disease course and prognosis are often unpredictable and it can be challenging to determine an early diagnosis. The detection of novel biomarkers to understand more of the disease mechanism, facilitate early diagnosis, predict disease progression, and find treatment targets would be very attractive. Over the last decade there has been an increasing effort toward finding such biomarker candidates. One promising strategy has been to use state-of-the-art quantitative proteomics approaches to compare the cerebrospinal fluid (CSF) proteome between MS and control patients or between different subgroups of MS. In this review we summarize and discuss the status of CSF proteomics in MS, including the latest findings with a focus on the last five years. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ann C Kroksveen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Jill A Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Astrid Guldbrandsen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway
| | - Kjell-Morten Myhr
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Øivind Torkildsen
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway.
| |
Collapse
|
34
|
Wallin MT, Oh U, Nyalwidhe J, Semmes J, Kislinger T, Coffman P, Kurtzke JF, Jacobson S. Serum proteomic analysis of a pre-symptomatic multiple sclerosis cohort. Eur J Neurol 2014; 22:591-9. [DOI: 10.1111/ene.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Affiliation(s)
- M. T. Wallin
- VA Multiple Sclerosis Center of Excellence - East; Washington DC USA
- Georgetown University School of Medicine; Washington DC USA
| | - U. Oh
- Virginia Commonwealth University School of Medicine; Richmond VA USA
| | - J. Nyalwidhe
- Leroy T. Canoles Jr Cancer Research Center; Eastern Virginia Medical School; Norfolk VA USA
| | - J. Semmes
- Leroy T. Canoles Jr Cancer Research Center; Eastern Virginia Medical School; Norfolk VA USA
| | | | - P. Coffman
- VA Multiple Sclerosis Center of Excellence - East; Washington DC USA
| | - J. F. Kurtzke
- VA Multiple Sclerosis Center of Excellence - East; Washington DC USA
- Georgetown University School of Medicine; Washington DC USA
| | - S. Jacobson
- National Institute of Neurological Disorders and Stroke; NIH; Bethesda MD USA
| |
Collapse
|
35
|
Liguori M, Qualtieri A, Tortorella C, Direnzo V, Bagalà A, Mastrapasqua M, Spadafora P, Trojano M. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration. PLoS One 2014; 9:e103984. [PMID: 25098164 PMCID: PMC4123901 DOI: 10.1371/journal.pone.0103984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022] Open
Abstract
The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF) proteomic profiles of Multiple Sclerosis (MS) patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS), 16 Relapsing Remitting (RR) MS, 11 Progressive (Pr) MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF) mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000–25000 Da). Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05), whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04). Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013). Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS.
Collapse
Affiliation(s)
- Maria Liguori
- National Research Council of Italy, Institute for Biomedical Technologies, Bari, Italy
- * E-mail:
| | - Antonio Qualtieri
- National Research Council of Italy, Institute of Neurological Sciences, Mangone (CS), Italy
| | - Carla Tortorella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Vita Direnzo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Angelo Bagalà
- National Research Council of Italy, Institute of Neurological Sciences, Mangone (CS), Italy
| | - Mariangela Mastrapasqua
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Patrizia Spadafora
- National Research Council of Italy, Institute of Neurological Sciences, Mangone (CS), Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| |
Collapse
|
36
|
Percy AJ, Yang J, Chambers AG, Simon R, Hardie DB, Borchers CH. Multiplexed MRM with Internal Standards for Cerebrospinal Fluid Candidate Protein Biomarker Quantitation. J Proteome Res 2014; 13:3733-3747. [DOI: 10.1021/pr500317d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew J. Percy
- University of
Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101-4464 Markham Street, Victoria, BC V8Z
7X8, Canada
| | - Juncong Yang
- University of
Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101-4464 Markham Street, Victoria, BC V8Z
7X8, Canada
| | - Andrew G. Chambers
- University of
Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101-4464 Markham Street, Victoria, BC V8Z
7X8, Canada
| | - Romain Simon
- University of
Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101-4464 Markham Street, Victoria, BC V8Z
7X8, Canada
| | - Darryl B. Hardie
- University of
Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101-4464 Markham Street, Victoria, BC V8Z
7X8, Canada
| | - Christoph H. Borchers
- University of
Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101-4464 Markham Street, Victoria, BC V8Z
7X8, Canada
- Department
of Biochemistry and Microbiology, University of Victoria, Petch Building
Room 207, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
37
|
Malekzadeh A, Teunissen C. Recent progress in omics-driven analysis of MS to unravel pathological mechanisms. Expert Rev Neurother 2014; 13:1001-16. [PMID: 24053344 DOI: 10.1586/14737175.2013.835602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, the pathophysiology and specific biological markers reflecting pathology of multiple sclerosis (MS) remain undetermined. The risk of developing MS is considered to depend on genetic susceptibility and environmental factors. The interaction of environmental factors with epigenetic mechanisms could affect the transcriptional level and therefore also the translational level. In the last decade, growing amount of hypothesis-free 'omics' studies have shed light on the potential MS mechanisms and raised potential biomarker targets. To understand MS pathophysiology and discover a subset of biomarkers, it is becoming essential to take a step forward and integrate the findings of the different fields of 'omics' into a systems biology network. In this review, we will discuss the recent findings of the genomic, transcriptomic and proteomic fields for MS and aim to make a unifying model.
Collapse
Affiliation(s)
- Arjan Malekzadeh
- Department of Clinical Chemistry, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
|
39
|
Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis 2014; 6:247-66. [DOI: 10.4155/bio.13.313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human urine is an attractive and informative biofluid for medical diagnosis, which has been shown to reflect the (patho)-physiology of not only the urogenital system, but also others such as the cardiovascular system. For this reason, many studies have concentrated on the study of the urine proteome, aiming to find relevant biomarkers that could be applied in a clinical setting. However, this goal can only be achieved after reliable quantitative and qualitative analysis of the urinary proteome. In the last two decades, MS-based platforms have evolved to become indispensable tools for biomarker research. In this review, we will present and compare two of the most clinically relevant analytical platforms that have been used for the study of the urinary proteome, namely CE-based ESI-MS and classical MALDI-MS. These platforms, although not directly comparable, have been extensively used in proteomic profiling and therefore their comparison is fundamentally relevant to this field.
Collapse
|
40
|
Fiorini A, Koudriavtseva T, Bucaj E, Coccia R, Foppoli C, Giorgi A, Schininà ME, Di Domenico F, De Marco F, Perluigi M. Involvement of oxidative stress in occurrence of relapses in multiple sclerosis: the spectrum of oxidatively modified serum proteins detected by proteomics and redox proteomics analysis. PLoS One 2013; 8:e65184. [PMID: 23762311 PMCID: PMC3676399 DOI: 10.1371/journal.pone.0065184] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/24/2013] [Indexed: 01/26/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. Several evidences suggest that MS can be considered a multi-factorial disease in which both genetics and environmental factors are involved. Among proposed candidates, growing results support the involvement of oxidative stress (OS) in MS pathology. The aim of this study was to investigate the role of OS in event of exacerbations in MS on serum of relapsing-remitting (RR-MS) patients, either in relapsing or remitting phase, with respect to serum from healthy subjects. We applied proteomics and redox proteomics approaches to identify differently expressed and oxidatively modified proteins in the low-abundant serum protein fraction. Among differently expressed proteins ceruloplasmin, antithrombin III, clusterin, apolipoprotein E, and complement C3, were up-regulated in MS patients compared with healthy controls. Further by redox proteomics, vitamin D-binding protein showed a progressive trend of oxidation from remission to relapse, respect with controls. Similarly, the increase of oxidation of apolipoprotein A-IV confirmed that levels of OS are elevated with the progression of the disease. Our findings support the involvement of OS in MS and suggest that dysfunction of target proteins occurs upon oxidative damage and correlates with the pathology.
Collapse
Affiliation(s)
- Ada Fiorini
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Elona Bucaj
- Laboratory of Virology, the Regina Elena National Cancer Institute, Rome, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Cesira Foppoli
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - M. Eugenia Schininà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Federico De Marco
- Laboratory of Virology, the Regina Elena National Cancer Institute, Rome, Italy
- * E-mail: (FDM); (MP)
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- * E-mail: (FDM); (MP)
| |
Collapse
|
41
|
Cerebrospinal fluid anti-whole myelin antibodies are not correlated to magnetic resonance imaging activity in multiple sclerosis. J Neuroimmunol 2012; 251:103-6. [DOI: 10.1016/j.jneuroim.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/12/2012] [Accepted: 07/03/2012] [Indexed: 11/22/2022]
|
42
|
Singh V, Hintzen RQ, Luider TM, Stoop MP. Proteomics technologies for biomarker discovery in multiple sclerosis. J Neuroimmunol 2011; 248:40-7. [PMID: 22129845 DOI: 10.1016/j.jneuroim.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/02/2011] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis is a disabling inflammatory and neurodegenerative disorder that predominantly affects young adults. There is a great need for biomarkers, which could elucidate pathology as well as provide prognosis of disease progression and therapy response in multiple sclerosis. Rapidly evolving, technology driven applications such as mass spectrometry based proteomics are currently being developed for this purpose. In this review, we will outline the current status of the field and detail a number of the bottlenecks as well as future prospects of this type of biomarker research.
Collapse
Affiliation(s)
- Vaibhav Singh
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|