1
|
Rjeily NB, Solomon AJ. Misdiagnosis of Multiple Sclerosis: Past, Present, and Future. Curr Neurol Neurosci Rep 2024; 24:547-557. [PMID: 39243340 DOI: 10.1007/s11910-024-01371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE OF REVIEW Misdiagnosis of multiple sclerosis (MS) is a prevalent worldwide problem. This review discusses how MS misdiagnosis has evolved over time and focuses on contemporary challenges and potential strategies for its prevention. RECENT FINDINGS Recent studies report cohorts with a range of misdiagnosis between 5 and 18%. Common disorders are frequently misdiagnosed as MS. Overreliance on MRI findings and misapplication of MS diagnostic criteria are often associated with misdiagnosis. Emerging imaging biomarkers, including the central vein sign and paramagnetic rim lesions, may aid diagnostic accuracy when evaluating patients for suspected MS. MS misdiagnosis can have harmful consequences for patients and healthcare systems. Further research is needed to better understand its causes. Concerted and novel educational efforts to ensure accurate and widespread implementation of MS diagnostic criteria remain an unmet need. The incorporation of diagnostic biomarkers highly specific for MS in the future may prevent misdiagnosis.
Collapse
Affiliation(s)
- Nicole Bou Rjeily
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, 1 South Prospect St., Burlington, VT, 05477, USA.
| |
Collapse
|
2
|
Toljan K, Daboul L, Raza P, Martin ML, Cao Q, O'Donnell CM, Rodrigues P, Derbyshire J, Azevedo CJ, Bar-Or A, Caverzasi E, Calabresi PA, Cree BA, Freeman L, Henry RG, Longbrake EE, Oh J, Papinutto N, Pelletier D, Samudralwar RD, Schindler MK, Sotirchos ES, Sicotte NL, Solomon AJ, Shinohara RT, Reich DS, Sati P, Ontaneda D. Diagnostic performance of central vein sign versus oligoclonal bands for multiple sclerosis. Mult Scler 2024; 30:1268-1277. [PMID: 39234802 PMCID: PMC11421977 DOI: 10.1177/13524585241271988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) oligoclonal bands (OCB) are a diagnostic biomarker in multiple sclerosis (MS). The central vein sign (CVS) is an imaging biomarker for MS that may improve diagnostic accuracy. OBJECTIVES The objective of the study is to examine the diagnostic performance of simplified CVS methods in comparison to OCB in participants with clinical or radiological suspicion for MS. METHODS Participants from the CentrAl Vein Sign in MS (CAVS-MS) pilot study with CSF testing were included. Select-3 and Select-6 (counting up to three or six CVS+ lesions per scan) were rated on post-gadolinium FLAIR* images. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value for Select-3, Select-6, OCB, and combinations thereof were calculated for MS diagnosis at baseline and at 12 months. RESULTS Of 53 participants, 25 were OCB+. At baseline, sensitivity for MS diagnosis was 0.75 for OCB, 0.83 for Select-3, and 0.71 for Select-6. Specificity for MS diagnosis was 0.76 for OCB, 0.48 for Select-3, and 0.86 for Select-6. At 12 months, PPV for MS diagnosis was 0.95 for Select-6 and 1.00 for Select-6 with OCB+ status. DISCUSSION Results suggest similar diagnostic performance of simplified CVS methods and OCB. Ongoing studies will refine whether CVS could be used in replacement or in conjunction with OCB.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn Daboul
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA/Department of Neurology, Brigham and Women's Hospital, MA, USA
| | - Praneeta Raza
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Melissa L Martin
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Quy Cao
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carly M O'Donnell
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John Derbyshire
- Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eduardo Caverzasi
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Bruce Ac Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Leorah Freeman
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Jiwon Oh
- Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Nico Papinutto
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Daniel Pelletier
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Rohini D Samudralwar
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Matthew K Schindler
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Rovira À, Auger C, Sceppacuercia S, Torres C. Typical and Emerging Diagnostic MRI Features in Multiple Sclerosis. Can Assoc Radiol J 2024:8465371241261847. [PMID: 39044390 DOI: 10.1177/08465371241261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) stands as the most sensitive paraclinical technique for detecting the demyelinating lesions characteristic of multiple sclerosis (MS). Consequently, MRI plays a pivotal role in establishing an accurate and timely diagnosis of the disease, ultimately based on the application of the McDonald criteria. Early diagnosis is particularly important as it facilitates the prompt initiation of disease-modifying treatments, deemed most effective during the initial phases of MS. This review article examines the recommended standardized MRI protocol, as well as the classic imaging features of MS in the brain, optic nerve, and spinal cord, capable of discriminating, in most cases, MS from other disorders that can mimic this disease. Additionally, novel MR imaging findings, such as the central vein sign and paramagnetic rim lesion, which have been proposed as new imaging biomarkers to enhance diagnostic specificity for MS, are also discussed. These emerging features are likely to be incorporated in the future iterations of the McDonald criteria, and therefore, radiologists should be familiar with their appearance and with the optimal MRI protocols required for their detection.
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Carlos Torres
- Department of Radiology, University of Ottawa, The Ottawa Hospital Civic and General Campus, Ottawa, ON, Canada
| |
Collapse
|
5
|
Borrelli S, Martire MS, Stölting A, Vanden Bulcke C, Pedrini E, Guisset F, Bugli C, Yildiz H, Pothen L, Elands S, Martinelli V, Smith B, Jacobson S, Du Pasquier RA, Van Pesch V, Filippi M, Reich DS, Absinta M, Maggi P. Central Vein Sign, Cortical Lesions, and Paramagnetic Rim Lesions for the Diagnostic and Prognostic Workup of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200253. [PMID: 38788180 PMCID: PMC11129678 DOI: 10.1212/nxi.0000000000200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AND OBJECTIVES The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.
Collapse
Affiliation(s)
- Serena Borrelli
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Maria Sofia Martire
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anna Stölting
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Colin Vanden Bulcke
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Edoardo Pedrini
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - François Guisset
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Céline Bugli
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Halil Yildiz
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lucie Pothen
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sophie Elands
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vittorio Martinelli
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bryan Smith
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven Jacobson
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Renaud A Du Pasquier
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vincent Van Pesch
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Massimo Filippi
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel S Reich
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Martina Absinta
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pietro Maggi
- From the Neuroinflammation Imaging Lab (NIL) (S.B., A.S., C.V.B., F.G., P.M.), Institute of NeuroScience, Université catholique de Louvain; Department of Neurology (S.B., S.E.), Hôpital Erasme, Hôpital Universitaire de Bruxelles; Department of Neurology (S.B.), Centre Hospitalier Universitaire Brugmann, Université Libre de Brussels, Belgium; Neurology Unit (M.S.M., V.M., M.F.), IRCCS San Raffaele Hospital, Milan, Italy; ICTEAM Institute (C.V.B.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Vita-Salute San Raffaele University (E.P., M.F., M.A.); Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Plateforme technologique de Support en Méthodologie et Calcul Statistique (C.B.); Department of Internal Medicine and Infectious Diseases (H.Y., L.P.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Section of Infections of the Nervous System (B.S.); Viral Immunology Section (S.J.), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD; Neurology Service (R.A.D.P., P.M.), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland; Department of Neurology (V.V.P., P.M.), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Neuroimaging Research Unit (M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational Neuroradiology Section (D.S.R.), National Institute of Neurological Disorders and Stroke (NINDS), National In-stitutes of Health (NIH); and Department of Neurology (M.A.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Moura J, Granziera C, Marta M, Silva AM. Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation. Neurol Sci 2024; 45:3061-3068. [PMID: 38374458 DOI: 10.1007/s10072-024-07402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
The presence of central nervous system lesions fulfilling the criteria of dissemination in space and time on MRI leads to the diagnosis of a radiologically isolated syndrome (RIS), which may be an early sign of multiple sclerosis (MS). However, some patients who do not fulfill the necessary criteria for RIS still evolve to MS, and some T2 hyperintensities that resemble demyelinating lesions may originate from mimics. In light of the recent recognition of the efficacy of disease-modifying therapy (DMT) in RIS, it is relevant to consider additional imaging features that are more specific of MS. We performed a narrative review on cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL) in patients with RIS. In previous RIS studies, the reported prevalence of CLs ranges between 20.0 and 40.0%, CVS + white matter lesions (WMLs) between 87.0 and 93.0% and PRLs between 26.7 and 63.0%. Overall, these imaging findings appear to be frequent in RIS cohorts, although not consistently taken into account in previous studies. The search for CLs, CVS + WML and PRLs in RIS patients could lead to earlier identification of patients who will evolve to MS and benefit from DMTs.
Collapse
Affiliation(s)
- João Moura
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Monica Marta
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London, UK
| | - Ana Martins Silva
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
7
|
Rimkus CDM, Otsuka FS, Nunes DM, Chaim KT, Otaduy MCG. Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology. Diagnostics (Basel) 2024; 14:1362. [PMID: 39001252 PMCID: PMC11240827 DOI: 10.3390/diagnostics14131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands
- Instituto D'Or de Ensino e Pesquisa (IDOR), Sao Paulo 01401-002, SP, Brazil
| | - Fábio Seiji Otsuka
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Douglas Mendes Nunes
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Grupo Fleury, Sao Paulo 04701-200, SP, Brazil
| | - Khallil Taverna Chaim
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Maria Concepción Garcia Otaduy
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| |
Collapse
|
8
|
Ontaneda D, Chitnis T, Rammohan K, Obeidat AZ. Identification and management of subclinical disease activity in early multiple sclerosis: a review. J Neurol 2024; 271:1497-1514. [PMID: 37864717 PMCID: PMC10972995 DOI: 10.1007/s00415-023-12021-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
IMPORTANCE Early treatment initiation in multiple sclerosis (MS) is crucial in preventing irreversible neurological damage and disability progression. The current assessment of disease activity relies on relapse rates and magnetic resonance imaging (MRI) lesion activity, but inclusion of other early, often "hidden," indicators of disease activity may describe a more comprehensive picture of MS. OBSERVATIONS Early indicators of MS disease activity other than relapses and MRI activity, such as cognitive impairment, brain atrophy, and fatigue, are not typically captured by routine disease monitoring. Furthermore, silent progression (neurological decline not clearly captured by standard methods) may occur undetected by relapse and MRI lesion activity monitoring. Consequently, patients considered to have no disease activity actually may have worsening disease, suggesting a need to revise MS management strategies with respect to timely initiation and escalation of disease-modifying therapy (DMT). Traditionally, first-line MS treatment starts with low- or moderate-efficacy therapies, before escalating to high-efficacy therapies (HETs) after evidence of breakthrough disease activity. However, multiple observational studies have shown that early initiation of HETs can prevent or reduce disability progression. Ongoing randomized clinical trials are comparing escalation and early HET approaches. CONCLUSIONS AND RELEVANCE There is an urgent need to reassess how MS disease activity and worsening are measured. A greater awareness of "hidden" indicators, potentially combined with biomarkers to reveal silent disease activity and neurodegeneration underlying MS, would provide a more complete picture of MS and allow for timely therapeutic intervention with HET or switching DMTs to address suboptimal treatment responses.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Department of Neurology, Cleveland Clinic, Cleveland, OH, USA.
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kottil Rammohan
- Division of Multiple Sclerosis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ahmed Z Obeidat
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Landes-Chateau C, Levraut M, Okuda DT, Themelin A, Cohen M, Kantarci OH, Siva A, Pelletier D, Mondot L, Lebrun-Frenay C. The diagnostic value of the central vein sign in radiologically isolated syndrome. Ann Clin Transl Neurol 2024; 11:662-672. [PMID: 38186317 DOI: 10.1002/acn3.51986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE The radiologically isolated syndrome (RIS) represents the earliest detectable preclinical phase of multiple sclerosis (MS). Increasing evidence suggests that the central vein sign (CVS) enhances lesion specificity, allowing for greater MS diagnostic accuracy. This study evaluated the diagnostic performance of the CVS in RIS. METHODS Patients were prospectively recruited in a single tertiary center for MS care. Participants with RIS were included and compared to a control group of sex and age-matched subjects. All participants underwent 3 Tesla magnetic resonance imaging, including postcontrast susceptibility-based sequences, and the presence of CVS was analyzed. Sensitivity and specificity were assessed for different CVS lesion criteria, defined by proportions of lesions positive for CVS (CVS+) or by the absolute number of CVS+ lesions. RESULTS 180 participants (45 RIS, 45 MS, 90 non-MS) were included, representing 5285 white matter lesions. Among them, 4608 were eligible for the CVS assessment (970 in RIS, 1378 in MS, and 2260 in non-MS). According to independent ROC comparisons, the proportion of CVS+ lesions performed similarly in diagnosing RIS from non-MS than MS from non-MS (p = 0.837). When a 6-lesion CVS+ threshold was applied, RIS lesions could be diagnosed with an accuracy of 87%. MS could be diagnosed with a sensitivity of 98% and a specificity of 83%. Adding OCBs or Kappa index to CVS biomarker increased the specificity to 100% for RIS diagnosis. INTERPRETATION This study shows evidence that CVS is an effective imaging biomarker in differentiating RIS from non-MS, with similar performances to those in MS.
Collapse
Affiliation(s)
| | - Michael Levraut
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet 1, Nice, France
| | - Darin T Okuda
- The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Albert Themelin
- Service de Radiologie, Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| | - Mikael Cohen
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Neurologie, Centre de Ressource et de Compétence Sclérose en Plaques (CRC-SEP), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| | | | - Aksel Siva
- Istanbul University, Cerrahpasa School of Medicine, Istanbul, Turkey
| | | | - Lydiane Mondot
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Radiologie, Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| | - Christine Lebrun-Frenay
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Neurologie, Centre de Ressource et de Compétence Sclérose en Plaques (CRC-SEP), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| |
Collapse
|
10
|
Strunk D, Sinnecker T, Kleffner I, Doerr J, Ringelstein M, Gross CC, Deuschl C, Maderwald S, Quick HH, Yamac E, Wrede KH, Kraemer M. Central intra-lesional iron deposits as a possible novel imaging marker at 7 Tesla MRI in Susac Syndrome - an exploratory study. BMC Med Imaging 2024; 24:4. [PMID: 38166655 PMCID: PMC10759674 DOI: 10.1186/s12880-023-01171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Susac syndrome (SuS) is a rare autoimmune disease that leads to hearing impairment, visual field deficits, and encephalopathy due to an occlusion of precapillary arterioles in the brain, retina, and inner ear. Given the potentially disastrous outcome and difficulties in distinguishing SuS from its differential diagnoses, such as multiple sclerosis (MS), our exploratory study aimed at identifying potential new SuS-specific neuroimaging markers. METHODS Seven patients with a definite diagnosis of SuS underwent magnetic resonance imaging (MRI) at 7 Tesla (7T), including T2* weighted and quantitative susceptibility mapping (QSM) sequences. T2 weighted hyperintense lesions were analyzed with regard to number, volume, localization, central vein sign, T1 hypointensity, and focal iron deposits in the center of SuS lesions ("iron dots"). Seven T MRI datasets from the same institute, comprising 75 patients with, among others, MS, served as controls. RESULTS The "iron dot" sign was present in 71.4% (5/7) of the SuS patients, compared to 0% in our control cohort. Thus, sensitivity was 71.4% and specificity 100%. A central vein sign was only incidentally detected. CONCLUSION We are the first to demonstrate this type of "iron dot" lesions on highly resolving 7T T2*w and QSM images in vivo as a promising neuroimaging marker of SuS, corroborating previous histopathological ex vivo findings.
Collapse
Affiliation(s)
- Daniel Strunk
- Department of Neurology, Alfried Krupp Hospital, Essen, Germany
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
| | - Tim Sinnecker
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Ilka Kleffner
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - Jan Doerr
- Department of Neurology, Oberhavel Kliniken, Hennigsdorf, Germany
- Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Westfälische Wilhelms University of Münster, Münster, Germany
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssen, Germany & High Field and Hybrid MR Imaging, University Duisburg-EssenUniversity Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssen, Germany & High Field and Hybrid MR Imaging, University Duisburg-EssenUniversity Hospital Essen, Essen, Germany
| | - Elif Yamac
- Department of Intracranial Endovascular Therapy, Alfried Krupp Hospital, Essen, Germany
| | - Karsten H Wrede
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssen, Germany & High Field and Hybrid MR Imaging, University Duisburg-EssenUniversity Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147, Essen, Germany
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp Hospital, Essen, Germany.
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Belov SE, Boyko AN, Dolgushin MB. [The central vein sign in the differential diagnosis of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:58-65. [PMID: 39175241 DOI: 10.17116/jnevro202412407258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To carry out a clinical and radiological assessment of the central vein sign (CVS) as a diagnostic marker for multiple sclerosis (MS) and other demyelinating and non-demyelinating diseases with focal brain damage, using clinical and laboratory examination data, as well as MRI. MATERIAL AND METHODS The results of clinical and neuroradiological examination of 107 patients diagnosed with MS or with other diseases accompanied by focal brain damage according to MRI data were analyzed. RESULTS CVS is a sensitive but low-specific diagnostic marker of MS. According to our data, the sensitivity and specificity of 40 and 50% of the threshold of perivenular lesions in the diagnosis of MS are the same and amount to 100% and 39.4%, respectively. Neither the type of MS course, nor the severity of the course, nor the intake of DMT (disease modifying treatment), affect the proportion of foci with CVS. The spread of the proportion of foci with CVS in patients with MS was 60-100%. The proportion of foci with CVS is below 40 and 50% of the threshold in patients with demyelinating and non-demyelinating diseases (NMOSD, migraine, systemic lupus erythematosus, Susak disease, CLIPPERS), which allows for differential diagnosis with MS. The proportion of foci with CVS comparable to MS in patients with acute disseminated encephalomyelitis, small vessel disease, as well as in patients with radiologically isolated syndrome does not allow using this symptom in the differential diagnosis of these conditions. CONCLUSION The use of CVS as a diagnostic marker of MS is possible only in combination with the already existing diagnostic criteria of MS.
Collapse
Affiliation(s)
- S E Belov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center for Brain Research and Neurotechnology, Moscow, Russia
| | - M B Dolgushin
- Federal Center for Brain Research and Neurotechnology, Moscow, Russia
| |
Collapse
|
12
|
Daboul L, O’Donnell CM, Amin M, Rodrigues P, Derbyshire J, Azevedo C, Bar-Or A, Caverzasi E, Calabresi PA, Cree BA, Freeman L, Henry RG, Longbrake EE, Oh J, Papinutto N, Pelletier D, Prchkovska V, Raza P, Ramos M, Samudralwar RD, Schindler MK, Sotirchos ES, Sicotte NL, Solomon AJ, Shinohara RT, Reich DS, Sati P, Ontaneda D. A multicenter pilot study evaluating simplified central vein assessment for the diagnosis of multiple sclerosis. Mult Scler 2024; 30:25-34. [PMID: 38088067 PMCID: PMC11037932 DOI: 10.1177/13524585231214360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND The central vein sign (CVS) is a proposed magnetic resonance imaging (MRI) biomarker for multiple sclerosis (MS); the optimal method for abbreviated CVS scoring is not yet established. OBJECTIVE The aim of this study was to evaluate the performance of a simplified approach to CVS assessment in a multicenter study of patients being evaluated for suspected MS. METHODS Adults referred for possible MS to 10 sites were recruited. A post-Gd 3D T2*-weighted MRI sequence (FLAIR*) was obtained in each subject. Trained raters at each site identified up to six CVS-positive lesions per FLAIR* scan. Diagnostic performance of CVS was evaluated for a diagnosis of MS which had been confirmed using the 2017 McDonald criteria at thresholds including three positive lesions (Select-3*) and six positive lesions (Select-6*). Inter-rater reliability assessments were performed. RESULTS Overall, 78 participants were analyzed; 37 (47%) were diagnosed with MS, and 41 (53%) were not. The mean age of participants was 45 (range: 19-64) years, and most were female (n = 55, 71%). The area under the receiver operating characteristic curve (AUROC) for the simplified counting method was 0.83 (95% CI: 0.73-0.93). Select-3* and Select-6* had sensitivity of 81% and 65% and specificity of 68% and 98%, respectively. Inter-rater agreement was 78% for Select-3* and 83% for Select-6*. CONCLUSION A simplified method for CVS assessment in patients referred for suspected MS demonstrated good diagnostic performance and inter-rater agreement.
Collapse
Affiliation(s)
- Lynn Daboul
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Carly M. O’Donnell
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Moein Amin
- Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | - John Derbyshire
- Functional MRI Facility, NIMH, National Institutes of Health, Bethesda, MD
| | - Christina Azevedo
- Department of Neurology, University of Southern California, Los Angeles, CA
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eduardo Caverzasi
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | | | - Bruce A.C. Cree
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | - Leorah Freeman
- Department of Neurology, Dell Medical School, The University of Texas, Austin, TX
| | - Roland G. Henry
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | | | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON, CANADA
| | - Nico Papinutto
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | - Daniel Pelletier
- Department of Neurology, University of Southern California, Los Angeles, CA
| | | | - Praneeta Raza
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Marc Ramos
- QMENTA Cloud Platform, QMENTA Inc., Boston, MA, USA
| | | | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Nancy L. Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Andrew J. Solomon
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
13
|
Castillo Villagrán D, Yeh EA. Pediatric Multiple Sclerosis: Changing the Trajectory of Progression. Curr Neurol Neurosci Rep 2023; 23:657-669. [PMID: 37792206 DOI: 10.1007/s11910-023-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is a chronic inflammatory disease of the central nervous system. When seen in children and adolescents, crucial stages of brain development and maturation may be affected. Prompt recognition of multiple sclerosis in this population is essential, as early intervention with disease-modifying therapies may change developmental trajectories associated with the disease. In this paper, we will review diagnostic criteria for pediatric multiple sclerosis, outcomes, differential diagnosis, and current therapeutic approaches. RECENT FINDINGS Recent studies have demonstrated the utility of newer structural and functional metrics in facilitating early recognition and diagnosis of pediatric MS. Knowledge about disease-modifying therapies in pediatric multiple sclerosis has expanded in recent years: important developmental impacts of earlier therapeutic intervention and use of highly effective therapies have been demonstrated. Pediatric MS is characterized by highly active disease and high disease burden. Advances in knowledge have led to early identification, diagnosis, and treatment. Lifestyle-related interventions and higher efficacy therapies are currently undergoing investigation.
Collapse
Affiliation(s)
- Daniela Castillo Villagrán
- Department of Pediatrics (Neurology), SickKids Research Institute, Division of Neurosciences and Mental Health, Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada
| | - E Ann Yeh
- Department of Pediatrics (Neurology), SickKids Research Institute, Division of Neurosciences and Mental Health, Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, ON, M5G1X8, Canada.
| |
Collapse
|
14
|
Carnero Contentti E, Okuda DT, Rojas JI, Chien C, Paul F, Alonso R. MRI to differentiate multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. J Neuroimaging 2023; 33:688-702. [PMID: 37322542 DOI: 10.1111/jon.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Differentiating multiple sclerosis (MS) from other relapsing inflammatory autoimmune diseases of the central nervous system such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is crucial in clinical practice. The differential diagnosis may be challenging but making the correct ultimate diagnosis is critical, since prognosis and treatments differ, and inappropriate therapy may promote disability. In the last two decades, significant advances have been made in MS, NMOSD, and MOGAD including new diagnostic criteria with better characterization of typical clinical symptoms and suggestive imaging (magnetic resonance imaging [MRI]) lesions. MRI is invaluable in making the ultimate diagnosis. An increasing amount of new evidence with respect to the specificity of observed lesions as well as the associated dynamic changes in the acute and follow-up phase in each condition has been reported in distinct studies recently published. Additionally, differences in brain (including the optic nerve) and spinal cord lesion patterns between MS, aquaporin4-antibody-positive NMOSD, and MOGAD have been described. We therefore present a narrative review on the most relevant findings in brain, spinal cord, and optic nerve lesions on conventional MRI for distinguishing adult patients with MS from NMOSD and MOGAD in clinical practice. In this context, cortical and central vein sign lesions, brain and spinal cord lesions characteristic of MS, NMOSD, and MOGAD, optic nerve involvement, role of MRI at follow-up, and new proposed diagnostic criteria to differentiate MS from NMOSD and MOGAD were discussed.
Collapse
Affiliation(s)
| | - Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan I Rojas
- Centro de esclerosis múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemman Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
15
|
Abou Mrad T, Naja K, Khoury SJ, Hannoun S. Central vein sign and paramagnetic rim sign: From radiologically isolated syndrome to multiple sclerosis. Eur J Neurol 2023; 30:2912-2918. [PMID: 37350369 DOI: 10.1111/ene.15922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
The widespread use of magnetic resonance imaging (MRI) has led to an increase in incidental findings in the central nervous system. Radiologically isolated syndrome (RIS) is a condition where imaging reveals lesions suggestive of demyelinating disease without any clinical episodes consistent with multiple sclerosis (MS). The prognosis for RIS patients is uncertain, with some remaining asymptomatic while others progress to MS. Several risk factors for disease progression have been identified, including male sex, younger age at diagnosis, and spinal cord lesions. This article reviews two promising biomarkers, the central vein sign (CVS) and the paramagnetic rim sign (PRS), and their potential role in the diagnosis and prognosis of MS and RIS. Both CVS and PRS have been shown to be accurate diagnostic markers in MS, with high sensitivity and specificity, and have been useful in distinguishing MS from other disorders. Further research is needed to validate these findings and determine the clinical utility of these biomarkers in routine practice.
Collapse
Affiliation(s)
- Tatiana Abou Mrad
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Kim Naja
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Salem Hannoun
- Medical Imaging Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Harrison KL, Gaudioso C, Levasseur VA, Dunham SR, Schanzer N, Keuchel C, Salter A, Goyal MS, Mar S. Central Vein Sign in Pediatric Multiple Sclerosis and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Pediatr Neurol 2023; 146:21-25. [PMID: 37406422 DOI: 10.1016/j.pediatrneurol.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The central vein sign (CVS) on brain magnetic resonance imaging (MRI) is a promising diagnostic marker for distinguishing adult multiple sclerosis (MS) from other demyelinating conditions, but its prevalence is not well-established in pediatric-onset multiple sclerosis (POMS) versus myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). MOGAD can mimic MS radiologically. This study seeks to determine the utility of CVS, together with other radiological findings, in distinguishing POMS from MOGAD in children. METHODS Children with POMS or MOGAD were identified in a pediatric demyelinating database. Two reviewers, blinded to diagnosis, fused fluid-attenuated inversion recovery sequences and susceptibility-weighted imaging from clinical imaging to identify CVS. Agreement in CVS number was reported using intraclass correlation coefficients (ICC). We performed topographic analyses as well as characterization of the clinical information and lesions on brain, spinal cord, and orbital MRI when available. RESULTS Twenty children, 10 with POMS and 10 with MOGAD, were assessed. The median lesion percentage of CVS was higher in POMS versus MOGAD for both raters (rater 1: 80% vs 9.8%; rater 2: 22.7% vs 7.5%). Inter-rater reliability for identifying total white matter lesions was strong (ICC 0.94 [95% confidence interval [CI] 0.84, 0.97]); however, it was poor for detecting CVS lesions (ICC -0.17 [95% CI: -0.37, 0.58]). CONCLUSION The CVS can be a useful diagnostic tool for differentiating POMS from MOGAD. However, advanced clinical imaging tools that can better detect CVS are needed to increase inter-rater reliability before clinical application.
Collapse
Affiliation(s)
- Kimystian L Harrison
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| | - Cristina Gaudioso
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Victoria A Levasseur
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - S Richard Dunham
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Natalie Schanzer
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Connor Keuchel
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Amber Salter
- Department of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Manu S Goyal
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Soe Mar
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Lapucci C, Tazza F, Rebella S, Boffa G, Sbragia E, Bruschi N, Mancuso E, Mavilio N, Signori A, Roccatagliata L, Cellerino M, Schiavi S, Inglese M. Central vein sign and diffusion MRI differentiate microstructural features within white matter lesions of multiple sclerosis patients with comorbidities. Front Neurol 2023; 14:1084661. [PMID: 36970546 PMCID: PMC10030505 DOI: 10.3389/fneur.2023.1084661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction The Central Vein Sign (CVS) has been suggested as a potential biomarker to improve diagnostic specificity in multiple sclerosis (MS). Nevertheless, the impact of comorbidities on CVS performance has been poorly investigated so far. Despite the similar features shared by MS, migraine and Small Vessel Disease (SVD) at T2-weighted conventional MRI sequences, ex-vivo studies demonstrated their heterogeneous histopathological substrates. If in MS, inflammation, primitive demyelination and axonal loss coexist, in SVD demyelination is secondary to ischemic microangiopathy, while the contemporary presence of inflammatory and ischemic processes has been suggested in migraine. The aims of this study were to investigate the impact of comorbidities (risk factors for SVD and migraine) on the global and subregional assessment of the CVS in a large cohort of MS patients and to apply the Spherical Mean Technique (SMT) diffusion model to evaluate whether perivenular and non-perivenular lesions show distinctive microstructural features. Methods 120 MS patients stratified into 4 Age Groups performed 3T brain MRI. WM lesions were classified in "perivenular" and "non-perivenular" by visual inspection of FLAIR* images; mean values of SMT metrics, indirect estimators of inflammation, demyelination and fiber disruption (EXTRAMD: extraneurite mean diffusivity, EXTRATRANS: extraneurite transverse diffusivity and INTRA: intraneurite signal fraction, respectively) were extracted. Results Of the 5303 lesions selected for the CVS assessment, 68.7% were perivenular. Significant differences were found between perivenular and non-perivenular lesion volume in the whole brain (p < 0.001) and between perivenular and non-perivenular lesion volume and number in all the four subregions (p < 0.001 for all). The percentage of perivenular lesions decreased from youngest to oldest patients (79.7%-57.7%), with the deep/subcortical WM of oldest patients as the only subregion where the number of non-perivenular was higher than the number of perivenular lesions. Older age and migraine were independent predictors of a higher percentage of non-perivenular lesions (p < 0.001 and p = 0.013 respectively). Whole brain perivenular lesions showed higher inflammation, demyelination and fiber disruption than non perivenular lesions (p = 0.001, p = 0.001 and p = 0.02 for EXTRAMD, EXTRATRANS and INTRA respectively). Similar findings were found in the deep/subcortical WM (p = 0.001 for all). Compared to non-perivenular lesions, (i) perivenular lesions located in periventricular areas showed a more severe fiber disruption (p = 0.001), (ii) perivenular lesions located in juxtacortical and infratentorial regions exhibited a higher degree of inflammation (p = 0.01 and p = 0.05 respectively) and (iii) perivenular lesions located in infratentorial areas showed a higher degree of demyelination (p = 0.04). Discussion Age and migraine have a relevant impact in reducing the percentage of perivenular lesions, particularly in the deep/subcortical WM. SMT may differentiate perivenular lesions, characterized by higher inflammation, demyelination and fiber disruption, from non perivenular lesions, where these pathological processes seemed to be less pronounced. The development of new non-perivenular lesions, especially in the deep/subcortical WM of older patients, should be considered a "red flag" for a different -other than MS- pathophysiology.
Collapse
Affiliation(s)
- Caterina Lapucci
- HNSR, IRRCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesco Tazza
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Elvira Sbragia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicolò Bruschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Elisabetta Mancuso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicola Mavilio
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| |
Collapse
|
18
|
Abdel-Mannan O, Ciccarelli O. Is the central vein sign a useful diagnostic marker for paediatric-onset multiple sclerosis? Mult Scler 2023; 29:479-480. [PMID: 36514269 PMCID: PMC9972230 DOI: 10.1177/13524585221142318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Omar Abdel-Mannan
- Queen Square MS Centre, UCL Queen Square
Institute of Neurology, Faculty of Brain Sciences, University College
London, London, UK/Department of Neurology, Great Ormond Street Hospital NHS
Trust, London, UK
| | - Olga Ciccarelli
- O Ciccarelli Queen Square MS Centre, UCL
Queen Square Institute of Neurology, Faculty of Brain Sciences, University
College London, London, WC1N 3BG, UK.
| |
Collapse
|
19
|
Lee HJ, Shin KJ, Kang Y, Oh SI. Multiple Sclerosis in a Patient With Neurogenic Locus Notch Homolog Protein 3 Mutation. J Clin Neurol 2023; 19:201-203. [PMID: 36854337 PMCID: PMC9982179 DOI: 10.3988/jcn.2022.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 02/21/2023] Open
Affiliation(s)
- Ho-Joon Lee
- Department of Radiology, Haeundae-Paik Hospital, Inje University, College of Medicine, Busan, Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, Busan, Korea.
| | - Yeonah Kang
- Department of Radiology, Haeundae-Paik Hospital, Inje University, College of Medicine, Busan, Korea
| | - Seong-Il Oh
- Department of Neurology, Busan-Paik Hospital, Inje University, College of Medicine, Busan, Korea
| |
Collapse
|
20
|
Heming M, Müller-Miny L, Rolfes L, Schulte-Mecklenbeck A, Brix TJ, Varghese J, Pawlitzki M, Pavenstädt H, Kriegel MA, Gross CC, Wiendl H, Meyer zu Hörste G. Supporting the differential diagnosis of connective tissue diseases with neurological involvement by blood and cerebrospinal fluid flow cytometry. J Neuroinflammation 2023; 20:46. [PMID: 36823602 PMCID: PMC9951507 DOI: 10.1186/s12974-023-02733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE Neurological manifestations of autoimmune connective tissue diseases (CTD) are poorly understood and difficult to diagnose. We here aimed to address this shortcoming by studying immune cell compositions in CTD patients with and without neurological manifestation. METHODS Using flow cytometry, we retrospectively investigated paired cerebrospinal fluid (CSF) and blood samples of 28 CTD patients without neurological manifestation, 38 CTD patients with neurological manifestation (N-CTD), 38 non-inflammatory controls, and 38 multiple sclerosis (MS) patients, a paradigmatic primary neuroinflammatory disease. RESULTS We detected an expansion of plasma cells in the blood of both N-CTD and CTD compared to non-inflammatory controls and MS. Blood plasma cells alone distinguished the clinically similar entities N-CTD and MS with high discriminatory performance (AUC: 0.81). Classical blood monocytes indicated higher disease activity in systemic lupus erythematosus (SLE) patients. Surprisingly, immune cells in the CSF did not differ significantly between N-CTD and CTD, while CD4+ T cells and the CD4+/CD8+ ratio were elevated in the blood of N-CTD compared to CTD. Several B cell-associated parameters partially overlapped in the CSF in MS and N-CTD. We built a machine learning model that distinguished N-CTD from MS with high discriminatory power using either blood or CSF. CONCLUSION We here find that blood flow cytometry alone surprisingly suffices to distinguish CTD with neurological manifestations from clinically similar entities, suggesting that a rapid blood test could support clinicians in the differential diagnosis of N-CTD.
Collapse
Affiliation(s)
- Michael Heming
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Louisa Müller-Miny
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Leoni Rolfes
- grid.14778.3d0000 0000 8922 7789Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Schulte-Mecklenbeck
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Tobias J. Brix
- grid.5949.10000 0001 2172 9288Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Julian Varghese
- grid.5949.10000 0001 2172 9288Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Marc Pawlitzki
- grid.14778.3d0000 0000 8922 7789Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hermann Pavenstädt
- grid.16149.3b0000 0004 0551 4246Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Martin A. Kriegel
- grid.5949.10000 0001 2172 9288Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany ,grid.16149.3b0000 0004 0551 4246Section of Rheumatology and Clinical Immunology, Department of Medicine, University Hospital Münster, Münster, Germany
| | - Catharina C. Gross
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Heinz Wiendl
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Gerd Meyer zu Hörste
- grid.16149.3b0000 0004 0551 4246Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| |
Collapse
|
21
|
Lashch NY, Pavlicov AE. [Changes in venous circulation in patients with multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:22-28. [PMID: 37560830 DOI: 10.17116/jnevro202312307222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Multiple sclerosis (MS) is a common neurological disease, especially among people of young working age, and the number of MS cases registered in the world and in the Russian Federation tends to increase. The pathogenesis of MS is based on the theory of damage to its own myelin sheath as a result of activation of autoreactive T cells, which also leads to damage to both oligodendrocytes and axons. In addition, the role of vascular factor in the pathogenesis of MS is discussed in the literature periodically and several areas of research of vascular dysfunction in patients are identified. This article provides a retrospective analysis of the available literature dating from the 19th century to the present time in order to find the relationship between MS and changes in venous circulation.
Collapse
Affiliation(s)
- N Y Lashch
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A E Pavlicov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
22
|
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis 2023; 15:e1583. [PMID: 35948371 PMCID: PMC9839517 DOI: 10.1002/wsbm.1583] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Axonal loss in multiple sclerosis (MS) is a key component of disease progression and permanent neurologic disability. MS is a heterogeneous demyelinating and neurodegenerative disease of the central nervous system (CNS) with varying presentation, disease courses, and prognosis. Immunomodulatory therapies reduce the frequency and severity of inflammatory demyelinating events that are a hallmark of MS, but there is minimal therapy to treat progressive disease and there is no cure. Data from patients with MS, post-mortem histological analysis, and animal models of demyelinating disease have elucidated patterns of MS pathogenesis and underlying mechanisms of neurodegeneration. MRI and molecular biomarkers have been proposed to identify predictors of neurodegeneration and risk factors for disease progression. Early signs of axonal dysfunction have come to light including impaired mitochondrial trafficking, structural axonal changes, and synaptic alterations. With sustained inflammation as well as impaired remyelination, axons succumb to degeneration contributing to CNS atrophy and worsening of disease. These studies highlight the role of chronic demyelination in the CNS in perpetuating axonal loss, and the difficulty in promoting remyelination and repair amidst persistent inflammatory insult. Regenerative and neuroprotective strategies are essential to overcome this barrier, with early intervention being critical to rescue axonal integrity and function. The clinical and basic research studies discussed in this review have set the stage for identifying key propagators of neurodegeneration in MS, leading the way for neuroprotective therapeutic development. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gabrielle M. Mey
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| | - Kedar R. Mahajan
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
- Mellen Center for MS Treatment and ResearchNeurological Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Tara M. DeSilva
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
23
|
Yavaş HG, Sağtaş E. Central vein sign: comparison of multiple sclerosis and leukoaraiosis. Turk J Med Sci 2022; 52:1933-1942. [PMID: 36945994 PMCID: PMC10390208 DOI: 10.55730/1300-0144.5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Leukoaraiosis produces white matter lesions (WML) similar to multiple sclerosis (MS) on brain magnetic resonance imaging (MRI), and the distinction between these two conditions is difficult radiologically. This study aimed to investigate the role of the central vein sign (CVS) in susceptibility-weighted imaging (SWI) sequence in distinguishing MS lesions from leukoaraiosis lesions in Turkish population. METHODS In this prospective study, axial SWI and sagittal three-dimensional fluid-attenuated inversion recovery (3DFLAIR) were obtained in 374 consecutive patients. The study consisted of 169 (89 MS patients, 80 patients with leukoaraiosis) patients according to the inclusion and exclusion criteria. Two observers evaluated MR images by consensus, and observers were unaware of the patient's clinical findings. Locations (periventricular, juxtacortical, and deep white matter) and the presence of CVS were investigated for each of the lesions. Differences between patients in the leukoaraiosis and MS groups were investigated using the Mann-Whitney U test or chi-square analysis. In addition, receiver operating characteristic (ROC) analysis was used to analyze the diagnostic performance of CVS. RESULTS A total of 1908 WMLs (1265 MS lesions, 643 leukoaraiosis) were detected in 169 patients. The CVS was significantly higher in the MS lesions (p < 0.001). The CVS positivity rate in periventricular WMLs was higher than in juxtacortical WMLs or deep WMLs, both for all patients and for patients with MS (p < 0.001). The area under the curve (AUC) of the ROC analysis was 0.88 (95% confidence interval 0.83-0.93) for CVS in the distinction of MS lesions and leukoaraiosis. DISCUSSION The presence of CVS in the SWI sequence can be used as an auxiliary finding for the diagnosis of MS in the differentiation of MS and leukoaraiosis lesions.
Collapse
Affiliation(s)
- Hüseyin Gökhan Yavaş
- Department of Radiology, Ahi Evran University Kırşehir Education and Research Hospital, Kırşehir, Turkey
| | - Ergin Sağtaş
- Department of Radiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
24
|
Martire MS, Moiola L, Rocca MA, Filippi M, Absinta M. What is the potential of paramagnetic rim lesions as diagnostic indicators in multiple sclerosis? Expert Rev Neurother 2022; 22:829-837. [PMID: 36342396 DOI: 10.1080/14737175.2022.2143265] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION In multiple sclerosis (MS), paramagnetic rim lesions (PRLs) on MRI identify a subset of chronic active lesions (CALs), which have been linked through clinical and pathological studies to more severe disease course and greater disability accumulation. Beside their prognostic relevance, increasing evidence supports the use of PRL as a diagnostic biomarker. AREAS COVERED This review summarizes the most recent updates regarding the MRI pathophysiology of PRL, their prevalence in MS (by clinical phenotypes) vs mimicking conditions, and their potential role as diagnostic MS biomarkers. We searched PubMed with terms including 'multiple sclerosis' AND 'paramagnetic rim lesions' OR 'iron rim lesions' OR 'rim lesions' for manuscripts published between January 2008 and July 2022. EXPERT OPINION Current research suggests that PRL can improve the diagnostic specificity and the overall accuracy of MS diagnosis when used together with the dissemination in space MRI criteria and the central vein sign. Nevertheless, future prospective multicenter studies should further define the real-world prevalence and specificity of PRL. International guidelines are needed to establish methodological criteria for PRL identification before its implementation into clinical practice.
Collapse
Affiliation(s)
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Assunta Rocca
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Absinta
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Kolb H, Al-Louzi O, Beck ES, Sati P, Absinta M, Reich DS. From pathology to MRI and back: Clinically relevant biomarkers of multiple sclerosis lesions. Neuroimage Clin 2022; 36:103194. [PMID: 36170753 PMCID: PMC9668624 DOI: 10.1016/j.nicl.2022.103194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Focal lesions in both white and gray matter are characteristic of multiple sclerosis (MS). Histopathological studies have helped define the main underlying pathological processes involved in lesion formation and evolution, serving as a gold standard for many years. However, histopathology suffers from an intrinsic bias resulting from over-reliance on tissue samples from late stages of the disease or atypical cases and is inadequate for routine patient assessment. Pathological-radiological correlative studies have established advanced MRI's sensitivity to several relevant MS-pathological substrates and its practicality for assessing dynamic changes and following lesions over time. This review focuses on novel imaging techniques that serve as biomarkers of critical pathological substrates of MS lesions: the central vein, chronic inflammation, remyelination and repair, and cortical lesions. For each pathological process, we address the correlative value of MRI to MS pathology, its contribution in elucidating MS pathology in vivo, and the clinical utility of the imaging biomarker.
Collapse
Affiliation(s)
- Hadar Kolb
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel,Corresponding author at: Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv-Yaffo, Israel.
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA,Institute of Experimental Neurology (INSPE), IRCSS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy,Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
26
|
Giannoccaro MP, Matteo E, Bartiromo F, Tonon C, Santorelli FM, Liguori R, Rizzo G. Multiple sclerosis in patients with hereditary spastic paraplegia: a case report and systematic review. Neurol Sci 2022; 43:5501-5511. [PMID: 35595875 DOI: 10.1007/s10072-022-06145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION An increasing number of cases of comorbid hereditary spastic paraplegia (HSP) and multiple sclerosis (MS) have been described. We report a patient with the SPG3A form of HSP and features of relapsing-remitting MS (RRMS). We took this opportunity to review the current literature of co-occurring MS and HSP. METHOD The patient underwent clinical, laboratory and neuroimaging evaluations. We performed a literature search for cases of HSP and MS. The 2017 McDonalds Criteria for MS were retrospectively applied to the selected cases. RESULTS A 34-year-old woman, presenting a molecular diagnosis of SPG3A, complained subacute sensory-motor symptoms. Spinal MRI disclosed T2-hyperintense lesions at C2, T6 and T4 level, the latter presenting contrast-enhancement. CSF analysis showed oligoclonal bands. She was treated with intravenous high-dose steroids, with symptom resolution. The literature review yielded 13 papers reporting 20 possible cases of MS and HSP. Nine patients (5 M, median age 34) met the 2017 McDonald criteria. Five (25%) received a diagnosis of RRMS and four (20%) of primary progressive MS. Brain MRI showed multiple WM lesions, mostly periventricular. Six of seven cases (85.7%) had spinal cord involvement. Oligoclonal bands were found in 6/8 (75%) patients. Seven patients (77.7%) improved/stabilized on immunotherapy. CONCLUSION This is the first description on the association between SPG3A type of HSP and MS. This report adds to the other reported cases of co-occurring HSPs and MS. Although it remains unclear if this association is casual or causal, clinicians should be aware that an HSP diagnosis does not always exclude a concomitant MS.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Eleonora Matteo
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139, Bologna, Italy.
| |
Collapse
|
27
|
Al-Louzi O, Letchuman V, Manukyan S, Beck ES, Roy S, Ohayon J, Pham DL, Cortese I, Sati P, Reich DS. Central Vein Sign Profile of Newly Developing Lesions in Multiple Sclerosis: A 3-Year Longitudinal Study. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1120. [PMID: 35027474 PMCID: PMC8759076 DOI: 10.1212/nxi.0000000000001120] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The central vein sign (CVS), a central linear hypointensity within lesions on T2*-weighted imaging, has been established as a sensitive and specific biomarker for the diagnosis of multiple sclerosis (MS). However, the CVS has not yet been comprehensively studied in newly developing MS lesions. We aimed to identify the CVS profiles of new white matter lesions in patients with MS followed over time and investigate demographic and clinical risk factors associated with new CVS+ or CVS- lesion development. METHODS In this retrospective longitudinal cohort study, adults from the NIH MS Natural History Study were considered for inclusion. Participants with new T2 or enhancing lesions were identified through review of the radiology report and/or longitudinal subtraction imaging. Each new lesion was evaluated for the CVS. Clinical characteristics were identified through chart review. RESULTS A total of 153 adults (95 relapsing-remitting MS, 27 secondary progressive MS, 16 primary progressive MS, 5 clinically isolated syndrome, and 10 healthy; 67% female) were included. Of this cohort, 96 had at least 1 new T2 or contrast-enhancing lesion during median 3.1 years (Q1-Q3: 0.7-6.3) of follow-up; lesions eligible for CVS evaluation were found in 62 (65%). Of 233 new CVS-eligible lesions, 159 (68%) were CVS+, with 30 (48%) individuals having only CVS+, 12 (19%) only CVS-, and 20 (32%) both CVS+ and CVS- lesions. In gadolinium-enhancing (Gd+) lesions, the CVS+ percentage increased from 102/152 (67%) at the first time point where the lesion was observed, to 92/114 (82%) after a median follow-up of 2.8 years. Younger age (OR = 0.5 per 10-year increase, 95% CI = 0.3-0.8) and higher CVS+ percentage at baseline (OR = 1.4 per 10% increase, 95% CI = 1.1-1.9) were associated with increased likelihood of new CVS+ lesion development. DISCUSSION In a cohort of adults with MS followed over a median duration of 3 years, most newly developing T2 or enhancing lesions were CVS+ (68%), and nearly half (48%) developed new CVS+ lesions only. Importantly, the effects of edema and T2 signal changes can obscure small veins in Gd+ lesions; therefore, caution and follow-up is necessary when determining their CVS status. TRIAL REGISTRATION INFORMATION Clinical trial registration number NCT00001248. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that younger age and higher CVS+ percentage at baseline are associated with new CVS+ lesion development.
Collapse
Affiliation(s)
- Omar Al-Louzi
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Vijay Letchuman
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Sargis Manukyan
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Erin S Beck
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Snehashis Roy
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Joan Ohayon
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Dzung L Pham
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Irene Cortese
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Pascal Sati
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Daniel S Reich
- From the Translational Neuroradiology Section (O.A.-L., V.L., S.M., E.S.B., P.S., D.S.R.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Neurology (O.A.-L., P.S.), Cedars-Sinai Medical Center, Los Angeles, CA; Section on Neural Function (S.R.), National Institute of Mental Health, NIH, Bethesda, MD; Neuroimmunology Clinic (J.O., I.C.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; and Center for Neuroscience and Regenerative Medicine (D.L.P.), the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD.
| |
Collapse
|
28
|
Chaaban L, Safwan N, Moussa H, El‐Sammak S, Khoury S, Hannoun S. Central vein sign: A putative diagnostic marker for multiple sclerosis. Acta Neurol Scand 2022; 145:279-287. [PMID: 34796472 DOI: 10.1111/ane.13553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
The presence of a "central vein sign" (CVS) has been introduced as a biomarker for the diagnosis of multiple sclerosis (MS) and shown to have the ability to accurately differentiate MS from other white matter diseases (MS mimics). Following the development of susceptibility-based magnetic resonance venography that allowed the in vivo detection of CVS, a standard CVS definition was established by introducing the "40% rule" that assesses the number of MS lesions with CVS as a fraction of the total number of lesions to differentiate MS lesions from other types of lesions. The "50% rule," the "three-lesion criteria," and the "six-lesion criteria" were later introduced and defined. Each of these rules had high levels of sensitivity, specificity, and accuracy in differentiating MS from other diseases, which has been recognized by the Magnetic Resonance Imaging in MS (MAGNIMS) group and the Consortium of MS Centers task force. The North American Imaging in Multiple Sclerosis Cooperative even provided statements and recommendations aiming to refine, standardize and evaluate the CVS in MS. Herein, we review the existing literature on CVS and evaluate its added value in the diagnosis of MS and usefulness in differentiating it from other vasculopathies. We also review the histopathology of CVS and identify available automated CVS assessment methods as well as define the role of vascular comorbidities in the diagnosis of MS.
Collapse
Affiliation(s)
- Lara Chaaban
- Department of Agriculture and Food Sciences American University of Beirut Beirut Lebanon
| | - Nancy Safwan
- Department of Agriculture and Food Sciences American University of Beirut Beirut Lebanon
| | - Hussein Moussa
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
| | - Sally El‐Sammak
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
- Faculty of Medicine Abu‐Haidar Neuroscience Institute American University of Beirut Medical Center Beirut Lebanon
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
- Medical Imaging Sciences Program Division of Health Professions Faculty of Health Sciences American University of Beirut Beirut Lebanon
| |
Collapse
|
29
|
Rath J, Foesleitner O, Haider L, Bickel H, Leutmezer F, Polanec S, Arnoldner MA, Sunder-Plassmann G, Prayer D, Berger T, Rommer P, Kasprian G. Neuroradiological differentiation of white matter lesions in patients with multiple sclerosis and Fabry disease. Orphanet J Rare Dis 2022; 17:37. [PMID: 35123534 PMCID: PMC8817613 DOI: 10.1186/s13023-022-02187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/20/2022] Open
Abstract
Objective White matter lesions (WML) in multiple sclerosis (MS) differ from vascular WML caused by Fabry disease (FD). However, in atypical cases the discrimination can be difficult and may vary between individual raters. The aim of this study was to evaluate interrater reliability of WML differentiation between MS and FD patients. Materials and methods Brain MRI scans of 21 patients with genetically confirmed FD were compared to 21 matched patients with MS. Pseudonymized axial FLAIR sequences were assessed by 6 blinded raters and attributed to either the MS or the FD group to investigate interrater reliability. Additionally, localization of WML was compared between the two groups. Results The median age of patients was 46 years (IQR 35–58). Interrater reliability was moderate with a Fleiss' Kappa of 0.45 (95%CI 0.3–0.59). Overall, 85% of all ratings in the MS group and 75% in the FD group were correct. However, only 38% of patients with MS and 33% of patients with FD were correctly identified by all 6 raters. WML involving the corpus callosum (p < 0.001) as well as juxtacortical (p < 0.001) and infratentorial lesions (p = 0.03) were more frequently observed in MS patients. Conclusion Interrater reliability regarding visual differentiation of WML in MS from vascular WML in FD on standard axial FLAIR images alone is only moderate, despite the distinctive features of lesions in each group.
Collapse
|
30
|
Belov S, Boyko A. A symptom of the central vein in various diseases and protocols of MRI examination. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:19-26. [DOI: 10.17116/jnevro202212207219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Galetta K, Bhattacharyya S. Acute Neurologic Manifestations of Systemic Immune-Mediated Diseases. Semin Neurol 2021; 41:541-553. [PMID: 34619780 DOI: 10.1055/s-0041-1733790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Systemic autoimmune diseases can affect the peripheral and central nervous system. In this review, we outline the common inpatient consultations for patients with neurological symptoms from rheumatoid arthritis, Sjogren's syndrome, systemic lupus erythematosus, sarcoidosis, immunoglobulin G4-related disease, Behçet's disease, giant cell arteritis, granulomatosis with polyangiitis, microscopic polyangiitis, eosinophilic granulomatosis, polyarteritis nodosa, and ankylosing spondylitis. We discuss the symptoms, diagnostic strategies, and treatment options.
Collapse
Affiliation(s)
- Kristin Galetta
- Division of Hospital Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Shamik Bhattacharyya
- Division of Hospital Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
32
|
Rovira À, Auger C. Beyond McDonald: updated perspectives on MRI diagnosis of multiple sclerosis. Expert Rev Neurother 2021; 21:895-911. [PMID: 34275399 DOI: 10.1080/14737175.2021.1957832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) is an essential paraclinical test to establish an accurate and early diagnosis of multiple sclerosis (MS), which is based on the application of the McDonald criteria. AREAS COVERED The objective of this article is to analyze, based on publicly available database since the publication of the 2017 McDonald diagnostic criteria, the clinical impact of these criteria, to discuss the potential inclusion within these criteria of the optic nerve to demonstrate dissemination in space, and to guide the acquisition and interpretation of MRI scans for diagnostic purposes. Finally, the authors will review emerging MRI features that could improve the specificity of MRI in the diagnosis of MS and consequently minimize the misdiagnosis of this disease. EXPERT OPINION Although the optic nerve has not been included as one of the topographies required to demonstrate demyelinating lesion disseminated in space in the 2017 McDonald criteria, new studies seem to show some improvement in the sensitivity of these criteria when this topography is considered. New radiological findings such as the central vein sign and iron rims, should be considered within the typical MRI features of this disease with the objective of minimizing MRI-based diagnostic errors.
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology (Department of Radiology), Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona, Spain.,Vall d´Hebron Research Institute, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology (Department of Radiology), Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona, Spain.,Vall d´Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
33
|
El Jammal T, Jamilloux Y, Gerfaud-Valentin M, Richard-Colmant G, Weber E, Bert A, Androdias G, Sève P. Challenging Mimickers in the Diagnosis of Sarcoidosis: A Case Study. Diagnostics (Basel) 2021; 11:1240. [PMID: 34359324 PMCID: PMC8304686 DOI: 10.3390/diagnostics11071240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous disease of unknown cause characterized by a wide variety of presentations. Its diagnosis is based on three major criteria: a clinical presentation compatible with sarcoidosis, the presence of non-necrotizing granulomatous inflammation in one or more tissue samples, and the exclusion of alternative causes of granulomatous disease. Many conditions may mimic a sarcoid-like granulomatous reaction. These conditions include infections, neoplasms, immunodeficiencies, and drug-induced diseases. Moreover, patients with sarcoidosis are at risk of developing opportunistic infections or lymphoma. Reliably confirming the diagnosis of sarcoidosis and better identifying new events are major clinical problems in daily practice. To address such issues, we present seven emblematic cases, seen in our department, over a ten-year period along with a literature review about case reports of conditions misdiagnosed as sarcoidosis.
Collapse
Affiliation(s)
- Thomas El Jammal
- Department of Internal Medicine, Lyon University Hospital, 69004 Lyon, France; (T.E.J.); (Y.J.); (M.G.-V.); (G.R.-C.); (E.W.); (A.B.)
| | - Yvan Jamilloux
- Department of Internal Medicine, Lyon University Hospital, 69004 Lyon, France; (T.E.J.); (Y.J.); (M.G.-V.); (G.R.-C.); (E.W.); (A.B.)
| | - Mathieu Gerfaud-Valentin
- Department of Internal Medicine, Lyon University Hospital, 69004 Lyon, France; (T.E.J.); (Y.J.); (M.G.-V.); (G.R.-C.); (E.W.); (A.B.)
| | - Gaëlle Richard-Colmant
- Department of Internal Medicine, Lyon University Hospital, 69004 Lyon, France; (T.E.J.); (Y.J.); (M.G.-V.); (G.R.-C.); (E.W.); (A.B.)
| | - Emmanuelle Weber
- Department of Internal Medicine, Lyon University Hospital, 69004 Lyon, France; (T.E.J.); (Y.J.); (M.G.-V.); (G.R.-C.); (E.W.); (A.B.)
| | - Arthur Bert
- Department of Internal Medicine, Lyon University Hospital, 69004 Lyon, France; (T.E.J.); (Y.J.); (M.G.-V.); (G.R.-C.); (E.W.); (A.B.)
| | - Géraldine Androdias
- Department of Neurology, Service Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Lyon University Hospital, F-69677 Bron, France;
| | - Pascal Sève
- Department of Internal Medicine, Lyon University Hospital, 69004 Lyon, France; (T.E.J.); (Y.J.); (M.G.-V.); (G.R.-C.); (E.W.); (A.B.)
- Research on Healthcare Performance (RESHAPE), INSERM U1290, 69373 Lyon, France
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To summarize recent evidence from the application of susceptibility-based MRI sequences to investigate the 'central vein sign' (CVS) and 'iron rim' as biomarkers to improve the diagnostic work-up of multiple sclerosis (MS) and predict disease severity. RECENT FINDINGS The CVS is a specific biomarker for MS being detectable from the earliest phase of the disease. A threshold of 40% of lesions with the CVS can be optimal to distinguish MS from non-MS patients. Iron rim lesions, reflecting chronic active lesions, develop in relapsing-remitting MS patients and persist in progressive MS. They increase in size in the first few years after their formation and then stabilize. Iron rim lesions can distinguish MS from non-MS patients but not the different MS phenotypes. The presence of at least four iron rim lesions is associated with an earlier clinical disability, higher prevalence of clinically progressive MS and more severe brain atrophy. Automated methods for CVS and iron rim lesion detection are under development to facilitate their quantification. SUMMARY The assessment of the CVS and iron rim lesions is feasible in the clinical scenario and provides MRI measures specific to MS pathological substrates, improving diagnosis and prognosis of these patients.
Collapse
|
35
|
Oh J, Suthiphosuwan S, Sati P, Absinta M, Dewey B, Guenette M, Selchen D, Bharatha A, Donaldson E, Reich DS, Feinstein A. Cognitive impairment, the central vein sign, and paramagnetic rim lesions in RIS. Mult Scler 2021; 27:2199-2208. [PMID: 33754887 PMCID: PMC8458475 DOI: 10.1177/13524585211002097] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: The central vein sign (CVS) and “paramagnetic rim lesions” (PRL) are emerging imaging biomarkers in multiple sclerosis (MS) reflecting perivenular demyelination and chronic, smoldering inflammation. The objective of this study was to assess relationships between cognitive impairment (CI) and the CVS and PRL in radiologically isolated syndrome (RIS). Methods: Twenty-seven adults with RIS underwent 3.0 T MRI of the brain and cervical spinal cord (SC) and cognitive assessment using the minimal assessment of cognitive function in MS battery. The CVS and PRL were assessed in white-matter lesions (WMLs) on T2*-weighted segmented echo-planar magnitude and phase images. Multivariable linear regression evaluated relationships between CI and MRI measures. Results: Global CI was present in 9 (33%) participants with processing speed and visual memory most frequently affected. Most participants (93%) had ⩾ 40% CVS + WML (a threshold distinguishing MS from other WM disorders); 63% demonstrated PRL. Linear regression revealed that CVS + WML predicted performance on verbal memory(β =-0.024, p = 0.03) while PRL predicted performance on verbal memory (β = -0.040, p = 0.04) and processing speed (β = -0.039, p = 0.03). Conclusions: CI is common in RIS and is associated with markers of perivenular demyelination and chronic inflammation in WML, such as CVS + WML and PRL. A prospective follow-up of this cohort will ascertain the importance of CI, CVS, and PRL as risk factors for conversion from RIS to MS.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada/Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Suradech Suthiphosuwan
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada/Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA/Neuroimaging Unit, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA/Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Blake Dewey
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Melanie Guenette
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Daniel Selchen
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Aditya Bharatha
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada/Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Emily Donaldson
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Daniel S Reich
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA/Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Anthony Feinstein
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada/Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Midaglia L, Sastre-Garriga J, Pappolla A, Quibus L, Carvajal R, Vidal-Jordana A, Arrambide G, Río J, Comabella M, Nos C, Castilló J, Galan I, Rodríguez-Acevedo B, Auger C, Tintoré M, Montalban X, Rovira À. The frequency and characteristics of MS misdiagnosis in patients referred to the multiple sclerosis centre of Catalonia. Mult Scler 2021; 27:913-921. [DOI: 10.1177/1352458520988148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Multiple sclerosis (MS) misdiagnosis may cause physical and emotional damage to patients. Objectives: The objective of this study is to determine the frequency and characteristics of MS misdiagnosis in patients referred to the Multiple Sclerosis Centre of Catalonia. Methods: We designed a prospective study including all new consecutive patients referred to our centre between July 2017 and June 2018. Instances of misdiagnosis were identified, and referral diagnosis and final diagnosis were compared after 1 year of follow-up. Association of misdiagnosis with magnetic resonance imaging (MRI) findings, presence of comorbidities and family history of autoimmunity were assessed. Results: A total of 354 patients were referred to our centre within the study period, 112 (31.8%) with ‘established MS’. Misdiagnosis was identified in eight out of 112 cases (7.1%). MRI identified multifocal white matter lesions, deemed non-specific or not suggestive of MS in all misdiagnosed cases. Patients with MS misdiagnosis had more comorbidities in general than patients with MS ( p = 0.026) as well as a personal history of autoimmunity ( p < 0.001). Conclusion: A low frequency of MS misdiagnosis was found in our clinical setting. Multifocal non-specific white matter lesions in referral MRI examinations and the presence of comorbidities, including a personal history of autoimmunity, seem to be contributing factors to misdiagnosis.
Collapse
Affiliation(s)
- Luciana Midaglia
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustín Pappolla
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Quibus
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Carvajal
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angela Vidal-Jordana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Georgina Arrambide
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Río
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Nos
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Castilló
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ingrid Galan
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Breogan Rodríguez-Acevedo
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology, Radiology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àlex Rovira
- Section of Neuroradiology, Radiology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Kaisey M, Solomon AJ, Guerrero BL, Renner B, Fan Z, Ayala N, Luu M, Diniz MA, Sati P, Sicotte NL. Preventing multiple sclerosis misdiagnosis using the "central vein sign": A real-world study. Mult Scler Relat Disord 2020; 48:102671. [PMID: 33444958 DOI: 10.1016/j.msard.2020.102671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Misdiagnosis of multiple sclerosis (MS) is common and often occurs due to misattribution of non-MS magnetic resonance imaging (MRI) lesions to MS demyelination. A recently developed MRI biomarker, the central vein sign (CVS), has demonstrated high specificity for MS lesions and may thus help prevent misdiagnosis. OBJECTIVE This study explores the potential "real world" diagnostic value of CVS by comparing CVS in patients with MS and patients previously misdiagnosed with MS. METHODS Fifteen patients with MS and 15 misdiagnosed with MS were prospectively recruited to undergo 3T brain MRI. T2-weighted fluid-attenuated inversion recovery (FLAIR) and T2*-weighted segmented echo-planar-imaging (T2*-EPI) were acquired. The generated FLAIR* images were analyzed by two independent raters. The percentage of lesions with CVS was calculated for each patient. RESULTS A CVS lesion threshold of 29% or higher resulted in high sensitivity (0.79) and specificity (0.88) for MS and correctly identified 87% of patients previously misdiagnosed with MS. Interrater reliability for CVS was high with a Cohen's kappa coefficient of 0.86. CONCLUSION This study demonstrates the ability of CVS to differentiate between patients with MS and patients with an MS misdiagnosis resulting from standard MRI and clinical evaluation. Clinical application of CVS may reduce MS misdiagnosis.
Collapse
Affiliation(s)
- Marwa Kaisey
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, Suite A6600, Los Angeles, CA 90048, USA.
| | - Andrew J Solomon
- Larner College of Medicine at the University of Vermont, Department of Neurological Sciences, 1 South Prospect Street, Arnold, Level 2, Burlington, Vermont 05401, USA.
| | - Brooke L Guerrero
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, Suite A6600, Los Angeles, CA 90048, USA.
| | - Brian Renner
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, Suite A6600, Los Angeles, CA 90048, USA.
| | - Zhaoyang Fan
- Cedars-Sinai Biomedical Imaging Research Institute, 116 N Robertson Blvd, Los Angeles, CA 90048, USA.
| | - Natalie Ayala
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, Suite A6600, Los Angeles, CA 90048, USA.
| | - Michael Luu
- Cedars-Sinai Biostatistics and Bioinformatics Research Center, 8700 Beverly Blvd North Tower, Los Angeles, CA 90048, USA.
| | - Marcio A Diniz
- Cedars-Sinai Biostatistics and Bioinformatics Research Center, 8700 Beverly Blvd North Tower, Los Angeles, CA 90048, USA.
| | - Pascal Sati
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, Suite A6600, Los Angeles, CA 90048, USA.
| | - Nancy L Sicotte
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, Suite A6600, Los Angeles, CA 90048, USA.
| |
Collapse
|
38
|
Castellaro M, Tamanti A, Pisani AI, Pizzini FB, Crescenzo F, Calabrese M. The Use of the Central Vein Sign in the Diagnosis of Multiple Sclerosis: A Systematic Review and Meta-analysis. Diagnostics (Basel) 2020; 10:diagnostics10121025. [PMID: 33260401 PMCID: PMC7760678 DOI: 10.3390/diagnostics10121025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/01/2023] Open
Abstract
Background: The central vein sign (CVS) is a radiological feature proposed as a multiple sclerosis (MS) imaging biomarker able to accurately differentiate MS from other white matter diseases of the central nervous system. In this work, we evaluated the pooled proportion of the CVS in brain MS lesions and to estimate the diagnostic performance of CVS to perform a diagnosis of MS and propose an optimal cut-off value. Methods: A systematic search was performed on publicly available databases (PUBMED/MEDLINE and Web of Science) up to 24 August 2020. Analysis of the proportion of white matter MS lesions with a central vein was performed using bivariate random-effect models. A meta-regression analysis was performed and the impact of using particular sequences (such as 3D echo-planar imaging) and post-processing techniques (such as FLAIR*) was investigated. Pooled sensibility and specificity were estimated using bivariate models and meta-regression was performed to address heterogeneity. Inclusion and publication bias were assessed using asymmetry tests and a funnel plot. A hierarchical summary receiver operating curve (HSROC) was used to estimate the summary accuracy in diagnostic performance. The Youden index was employed to estimate the optimal cut-off value using individual patient data. Results: The pooled proportion of lesions showing a CVS in the MS population was 73%. The use of the CVS showed a remarkable diagnostic performance in MS cases, providing a pooled specificity of 92% and a sensitivity of 95%. The optimal cut-off value obtained from the individual patient data pooled together was 40% with excellent accuracy calculated by the area under the ROC (0.946). The 3D-EPI sequences showed both a higher pooled proportion compared to other sequences and explained heterogeneity in the meta-regression analysis of diagnostic performances. The 1.5 Tesla (T) scanners showed a lower (58%) proportion of MS lesions with a CVS compared to both 3T (74%) and 7T (82%). Conclusions: The meta-analysis we have performed shows that the use of the CVS in differentiating MS from other mimicking diseases is encouraged; moreover, the use of dedicated sequences such as 3D-EPI and the high MRI field is beneficial.
Collapse
Affiliation(s)
- Marco Castellaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
- Correspondence:
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| | - Anna Isabella Pisani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| | | | - Francesco Crescenzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| |
Collapse
|
39
|
Maggi P, Sati P, Nair G, Cortese IC, Jacobson S, Smith BR, Nath A, Ohayon J, van Pesch V, Perrotta G, Pot C, Théaudin M, Martinelli V, Scotti R, Wu T, Du Pasquier R, Calabresi PA, Filippi M, Reich DS, Absinta M. Paramagnetic Rim Lesions are Specific to Multiple Sclerosis: An International Multicenter 3T MRI Study. Ann Neurol 2020; 88:1034-1042. [PMID: 32799417 PMCID: PMC9943711 DOI: 10.1002/ana.25877] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023]
Abstract
In multiple sclerosis (MS), a subset of chronic active white matter lesions are identifiable on magnetic resonance imaging by their paramagnetic rims, and increasing evidence supports their association with severity of clinical disease. We studied their potential role in differential diagnosis, screening an international multicenter clinical research-based sample of 438 individuals affected by different neurological conditions (MS, other inflammatory, infectious, and non-inflammatory conditions). Paramagnetic rim lesions, rare in other neurological conditions (52% of MS vs 7% of non-MS cases), yielded high specificity (93%) in differentiating MS from non-MS. Future prospective multicenter studies should validate their role as a diagnostic biomarker. ANN NEUROL 2020;88:1034-1042.
Collapse
Affiliation(s)
- Pietro Maggi
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium;,Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium;,Service of Neurology, Department of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Sati
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA;,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Govind Nair
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Irene C.M. Cortese
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Steven Jacobson
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bryan R. Smith
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joan Ohayon
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetano Perrotta
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Caroline Pot
- Service of Neurology, Department of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Théaudin
- Service of Neurology, Department of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vittorio Martinelli
- Departments of Neurology and Neurophysiology and Neuroimaging Research Unit, Ospedale San Raffaele and Università Vita e Salute, Milan, Italy
| | - Roberta Scotti
- Department of Neuroradiology, Ospedale San Raffaele and Università Vita e Salute, Milan, Italy
| | - Tianxia Wu
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Renaud Du Pasquier
- Service of Neurology, Department of clinical neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Massimo Filippi
- Departments of Neurology and Neurophysiology and Neuroimaging Research Unit, Ospedale San Raffaele and Università Vita e Salute, Milan, Italy
| | - Daniel S. Reich
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
40
|
Boucher JJ, Counihan TJ. Co-incident primary progressive multiple sclerosis and hereditary spastic paraplegia (SPG4) - a case report. Mult Scler Relat Disord 2020; 44:102375. [PMID: 32650125 DOI: 10.1016/j.msard.2020.102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 01/15/2023]
Abstract
The cause of progressive disability in Primary Progressive Multiple Sclerosis (PPMS) is unknown. Pathogenic genes have been described in some MS cases that may contribute to progressive disability, independent of immune - mediated mechanisms (Jia et al., 2018). The autosomal dominant SPG4 (Spastin) mutation is the most common genotype in Hereditary Spastic Paraplegia (Solowska and Baas, 2015) and has been found in some patients with Relapsing Remitting Multiple Sclerosis (Mead et al., 2001, Yazici et al., 2013). Here, we describe the novel association of PPMS and the SPG4 (Spastin) mutation, in a patient with a family history of Hereditary Spastic Paraplegia, and discuss the therapeutic implications. While this single case report cannot discrimiate between simple co-occurence and the possibility of a pathogenic association, our report invites larger scale investigation.
Collapse
Affiliation(s)
- John J Boucher
- Department of Neurology, University College Hospital Galway, Ireland; School of Medicine, National University of Ireland Galway, Ireland.
| | - Timothy J Counihan
- Department of Neurology, University College Hospital Galway, Ireland; School of Medicine, National University of Ireland Galway, Ireland
| |
Collapse
|
41
|
Lv A, Zhang Z, Fu Y, Yan Y, Yang L, Zhu W. Dawson's Fingers in Cerebral Small Vessel Disease. Front Neurol 2020; 11:669. [PMID: 32849175 PMCID: PMC7396560 DOI: 10.3389/fneur.2020.00669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
To explore Dawson's fingers in cerebral small vessel disease (CSVD) and factors related to the development of Dawson's finger, we collected and analyzed clinical data of 65 patients with CSVD. We found a venous abnormality feature called Dawson's fingers around the ventricles in magnetic resonance images (MRIs) of 20 out of 65 patients with CSVD (30. 8%). A significant association between Dawson's fingers and diabetes mellitus (DM) was also detected (30 vs. 8.9%, P < 0.05). CSVD patients with Dawson's fingers had significantly increased cerebral microbleeds (CMB) (44.2 vs. 75.0%, p < 0.05), lacunae (66.7 vs. 95.0%, p < 0.05), and white matter hyperintensity (WMH) (p < 0.05) damage, and these patients exhibited significant cognitive domain impairment as assessed via Montreal Cognitive Assessment (MoCA) (18.9 ± 1.8 vs. 24.0 ± 0.8, p < 0.05) and Mini-Mental State Examination (MMSE) (24.5 ± 1.1 vs. 26.6 ± 0.6, p < 0.05). Our results show a distinctly high incidence of Dawson's fingers in CSVD patients and identify a significant association with DM, thus yielding insights about the appropriate use of Dawson's fingers, a venous imaging marker, to explore the basic pathophysiology of CSVD.
Collapse
Affiliation(s)
- Aowei Lv
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zaiqiang Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Fu
- Central Laboratory, Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Zhu
- Central Laboratory, Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
42
|
Guisset F, Lolli V, Bugli C, Perrotta G, Absil J, Dachy B, Pot C, Théaudin M, Pasi M, van Pesch V, Maggi P. The central vein sign in multiple sclerosis patients with vascular comorbidities. Mult Scler 2020; 27:1057-1065. [DOI: 10.1177/1352458520943785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The central vein sign (CVS) is an imaging biomarker able to differentiate multiple sclerosis (MS) from other conditions causing similar appearance lesions on magnetic resonance imaging (MRI), including cerebral small vessel disease (CSVD). However, the impact of vascular risk factors (VRFs) for CSVD on the percentage of CVS positive (CVS+) lesions in MS has never been evaluated. Objective: To investigate the association between different VRFs and the percentage of CVS+ lesions in MS. Methods: In 50 MS patients, 3T brain MRIs (including high-resolution 3-dimensional T2*-weighted images) were analyzed for the presence of the CVS and MRI markers of CSVD. A backward stepwise regression model was used to predict the combined predictive effect of VRF (i.e. age, hypertension, diabetes, obesity, ever-smoking, and hypercholesterolemia) and MRI markers of CSVD on the CVS. Results: The median frequency of CVS+ lesions was 71% (range: 35%–100%). In univariate analysis, age ( p < 0.0001), hypertension ( p < 0.001), diabetes ( p < 0.01), obesity ( p < 0.01), smoking ( p < 0.05), and the presence of enlarged-perivascular-spaces on MRI ( p < 0.005) were all associated with a lower percentage of CVS+ lesions. The stepwise regression model showed that age and arterial hypertension were both associated with the percentage of CVS+ lesions in MS (adjusted R2 = 0.46; p < 0.0001 and p = 0.01, respectively). Conclusion: The proportion of CVS+ lesions significantly decreases in older and hypertensive MS patients. Although this study was conducted in patients with an already established MS diagnosis, the diagnostic yield of the previously proposed 35% CVS proportion-based diagnostic threshold appears to be not affected. Overall these results suggest that the presence of VRF for CSVD should be taken into account during the CVS assessment.
Collapse
Affiliation(s)
- François Guisset
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium/Department of Neurology, Hôpital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetano Perrotta
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Bernard Dachy
- Department of Neurology, Hôpital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Pot
- Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Théaudin
- Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marco Pasi
- University of Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neuroscience & Cognition, Lille, France
| | - Vincent van Pesch
- Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pietro Maggi
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium/Department of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland/Department of Neurology, Cliniques universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
43
|
Clarke MA, Pareto D, Pessini-Ferreira L, Arrambide G, Alberich M, Crescenzo F, Cappelle S, Tintoré M, Sastre-Garriga J, Auger C, Montalban X, Evangelou N, Rovira À. Value of 3T Susceptibility-Weighted Imaging in the Diagnosis of Multiple Sclerosis. AJNR Am J Neuroradiol 2020; 41:1001-1008. [PMID: 32439639 DOI: 10.3174/ajnr.a6547] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies have suggested that the central vein sign and iron rims are specific features of MS lesions. Using 3T SWI, we aimed to compare the frequency of lesions with central veins and iron rims in patients with clinically isolated syndrome and MS-mimicking disorders and test their diagnostic value in predicting conversion from clinically isolated syndrome to MS. MATERIALS AND METHODS For each patient, we calculated the number of brain lesions with central veins and iron rims. We then identified a simple rule involving an absolute number of lesions with central veins and iron rims to predict conversion from clinically isolated syndrome to MS. Additionally, we tested the diagnostic performance of central veins and iron rims when combined with evidence of dissemination in space. RESULTS We included 112 patients with clinically isolated syndrome and 35 patients with MS-mimicking conditions. At follow-up, 94 patients with clinically isolated syndrome developed MS according to the 2017 McDonald criteria. Patients with clinically isolated syndrome had a median of 2 central veins (range, 0-19), while the non-MS group had a median of 1 central vein (range, 0-6). Fifty-six percent of patients who developed MS had ≥1 iron rim, and none of the patients without MS had iron rims. The sensitivity and specificity of finding ≥3 central veins and/or ≥1 iron rim were 70% and 86%, respectively. In combination with evidence of dissemination in space, the 2 imaging markers had higher specificity than dissemination in space and positive findings of oligoclonal bands currently used to support the diagnosis of MS. CONCLUSIONS A single 3T SWI scan offers valuable diagnostic information, which has the potential to prevent MS misdiagnosis.
Collapse
Affiliation(s)
- M A Clarke
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain
| | - D Pareto
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Pessini-Ferreira
- Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - G Arrambide
- Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Alberich
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain
| | - F Crescenzo
- Department of Neurosciences, Biomedicine and Movement Sciences (F.C.), University of Verona, Verona, Italy
| | - S Cappelle
- Division of Radiology (S.C.), University Hospital Leuven, Leuven, Belgium
| | - M Tintoré
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Sastre-Garriga
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Auger
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - X Montalban
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Division of Neurology (X.M.), St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - N Evangelou
- Division of Clinical Neuroscience (N.E.), University of Nottingham, Nottingham, UK
| | - À Rovira
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain .,Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Maggi P, Fartaria MJ, Jorge J, La Rosa F, Absinta M, Sati P, Meuli R, Du Pasquier R, Reich DS, Cuadra MB, Granziera C, Richiardi J, Kober T. CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR IN BIOMEDICINE 2020; 33:e4283. [PMID: 32125737 PMCID: PMC7754184 DOI: 10.1002/nbm.4283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 05/28/2023]
Abstract
The central vein sign (CVS) is an efficient imaging biomarker for multiple sclerosis (MS) diagnosis, but its application in clinical routine is limited by inter-rater variability and the expenditure of time associated with manual assessment. We describe a deep learning-based prototype for automated assessment of the CVS in white matter MS lesions using data from three different imaging centers. We retrospectively analyzed data from 3 T magnetic resonance images acquired on four scanners from two different vendors, including adults with MS (n = 42), MS mimics (n = 33, encompassing 12 distinct neurological diseases mimicking MS) and uncertain diagnosis (n = 5). Brain white matter lesions were manually segmented on FLAIR* images. Perivenular assessment was performed according to consensus guidelines and used as ground truth, yielding 539 CVS-positive (CVS+ ) and 448 CVS-negative (CVS- ) lesions. A 3D convolutional neural network ("CVSnet") was designed and trained on 47 datasets, keeping 33 for testing. FLAIR* lesion patches of CVS+ /CVS- lesions were used for training and validation (n = 375/298) and for testing (n = 164/150). Performance was evaluated lesion-wise and subject-wise and compared with a state-of-the-art vesselness filtering approach through McNemar's test. The proposed CVSnet approached human performance, with lesion-wise median balanced accuracy of 81%, and subject-wise balanced accuracy of 89% on the validation set, and 91% on the test set. The process of CVS assessment, in previously manually segmented lesions, was ~ 600-fold faster using the proposed CVSnet compared with human visual assessment (test set: 4 seconds vs. 40 minutes). On the validation and test sets, the lesion-wise performance outperformed the vesselness filter method (P < 0.001). The proposed deep learning prototype shows promising performance in differentiating MS from its mimics. Our approach was evaluated using data from different hospitals, enabling larger multicenter trials to evaluate the benefit of introducing the CVS marker into MS diagnostic criteria.
Collapse
Affiliation(s)
- Pietro Maggi
- Department of Neurology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Neurology, Saint-Luc University Hospital, Brussels, Belgium
| | - Mário João Fartaria
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédéral de Lausanne, Switzerland
| | - João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), École Polytechnique Fédéral de Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Reto Meuli
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Department of Neurology, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), École Polytechnique Fédéral de Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jonas Richiardi
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédéral de Lausanne, Switzerland
| |
Collapse
|
45
|
Diagnostic and therapeutic issues of inflammatory diseases of the elderly. Rev Neurol (Paris) 2020; 176:739-749. [PMID: 32312496 DOI: 10.1016/j.neurol.2020.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/24/2022]
Abstract
Inflammatory diseases of the central nervous system (CNS) mainly occur during early adulthood and multiple sclerosis (MS) represents the overwhelming majority of these disorders. Nevertheless, MS only rarely begins after 50 years and a diagnosis of late-onset MS should only be done when clinical as well as radiological and biological findings are typical of MS since the probability of misdiagnosis is higher in elderly patients. Indeed, in patients aged over 50 years, along with a relative decrease of MS incidence, other inflammatory diseases of the CNS but also differential diagnoses including neoplastic as well as infectious disorders should be thoroughly searched to avoid diagnostic mistakes and the prescription of inadequate and potentially harmful immunomodulatory/immunosuppressive therapies. Moreover, aging is associated with diverse immune changes also known as immunosenescence resulting in, notably, higher risk of comorbidities (including vascular diseases) and infections which need to be considered when planning medical treatments of elderly patients with inflammatory diseases of the CNS. Herein, therapeutic and diagnostic challenges faced by neurologists are reviewed to ease patient management.
Collapse
|
46
|
Affiliation(s)
- Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
47
|
Evangelou N, Ontaneda D. Detection of central vein should be part of MS diagnostic criteria – Yes. Mult Scler 2020; 26:405-406. [DOI: 10.1177/1352458520908176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nikos Evangelou
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
48
|
Gaitán MI, Yañez P, Paday Formenti ME, Calandri I, Figueiredo E, Sati P, Correale J. SWAN-Venule: An Optimized MRI Technique to Detect the Central Vein Sign in MS Plaques. AJNR Am J Neuroradiol 2020; 41:456-460. [PMID: 32054616 DOI: 10.3174/ajnr.a6437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/08/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis lesions develop around small veins that are radiologically described as the so-called central vein sign. With 7T MR imaging and magnetic susceptibility-based sequences, the central vein sign has been observed in 80%-100% of MS lesions in patients' brains. However, a lower proportion ∼50% has been reported at 3T using susceptibility-weighted angiography (SWAN). Our aim was to assess a modified version of SWAN optimized at 3T for sensitive detection of the central vein sign. MATERIALS AND METHODS Thirty subjects with MS were scanned on a 3T clinical MR imaging system. 3D T2-weighted FLAIR and optimized 3D SWAN called SWAN-venule, were acquired after injection of a gadolinium-based contrast agent. Patients showing >3 focal white matter lesions were included. The central vein sign was recorded by 2 trained raters on SWAN-venule images in the supratentorial brain. RESULTS Twenty patients showing >3 white matter lesions were included. A total of 380 white matter lesions (135 periventricular, 144 deep white matter, and 101 juxtacortical) seen on both FLAIR and SWAN-venule images were analyzed. Overall, the central vein sign was detected in 86% of the white matter lesions (periventricular, 89%; deep white matter, 95%; and juxtacortical, 78%). CONCLUSIONS The SWAN-venule technique is an optimized MR imaging sequence for highly sensitive detection of the central vein sign in MS brain lesions. This work will facilitate the validation and integration of the central vein sign to increase the diagnostic certainty of MS and further prevent misdiagnosis in clinical practice.
Collapse
Affiliation(s)
- M I Gaitán
- From the Department of Neurology (M.I.G., J.C.), Neuroimmunolgy Section
| | - P Yañez
- Departments of Radiology (P.Y., M.E.P.F.)
| | | | - I Calandri
- Neurology (I.C.), FLENI, Buenos Aires, Argentina
| | | | - P Sati
- Translational Neuroradiology Section (P.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - J Correale
- From the Department of Neurology (M.I.G., J.C.), Neuroimmunolgy Section
| |
Collapse
|