1
|
ElKhooly IA, El-Bassossy HM, Mohammed HO, Atwa AM, Hassan NA. Vitamin B1 and calcitriol enhance glibenclamide suppression of diabetic nephropathy: Role of HMGB1/TLR4/NF-κB/TNF-α/Nrf2/α-SMA trajectories. Life Sci 2024; 357:123046. [PMID: 39255926 DOI: 10.1016/j.lfs.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Glibenclamide is one of the most prescribed insulin secretagogues in diabetes due to its low cost, but its efficacy on suppressing diabetic complications is limited. Here, we examine whether addition of either vitamin B1 or calcitriol to glibenclamide could produce more suppression of diabetic nephropathy. Type 2 diabetes was induced by high fructose (10 % in drinking water), high salt (3 % in diet), and high fat diet (25 % in diet) for 3 weeks, followed by single dose of STZ (40 mg/kg, i.p.). Diabetic rats were treated with either glibenclamide (0.6 mg/kg), vitamin B1 (70 mg/kg), glibenclamide/vitamin B1, calcitriol (0.1 μg/kg), or glibenclamide/calcitriol. Addition of either vitamin B1 or calcitriol to glibenclamide therapy enabled more suppression of diabetic nephropathy development as evidenced by more preserved creatinine clearance and less renal damage scores. Combination therapy resulted in mild enhancement in the effect of glibenclamide on glucose tolerance without affecting the area under the curve. Combination therapy was associated with more suppression of inflammatory cascades as evidenced by reducing the expression of high mobility group box-1 (HMGB1), toll-like receptor-4 (TLR4), nuclear factor-kappa B (NF-κB), and tumor necrosis factor-α (TNF-α). In addition, combination therapy enhanced the antioxidant mechanisms as evidenced by increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione content and reducing malondialdehyde and nitric oxide levels. Furthermore, combination therapy provided more suppression of fibrotic pathways as appear from reducing collagen deposition and the expression of α- smooth muscle actin (α-SMA). In conclusion, addition of vitamin B1 or calcitriol to glibenclamide therapy can enhance the therapeutic efficiency of glibenclamide in suppressing diabetic nephropathy progression to the same extend, the protective effect is mediated through modulating HMGB1/TLR4/NF-κB/TNF-α/Nrf2/α-SMA trajectories.
Collapse
Affiliation(s)
- Ibtisam Ahmed ElKhooly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Heba Osama Mohammed
- Human anatomy and embryology department, Faculty of Medicine -Zagazig University, Zagazig 44519, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar 64001, Iraq.
| | - Noura A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
3
|
‘t Hart DC, van der Vlag J, Nijenhuis T. A Putative Role for TRPC6 in Immune-Mediated Kidney Injury. Int J Mol Sci 2023; 24:16419. [PMID: 38003608 PMCID: PMC10671681 DOI: 10.3390/ijms242216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive activation of the immune system is the cause of a wide variety of renal diseases. However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels, is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune system and the pathogenesis of renal inflammation are intertwined. In this review, we present an overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role in the immune system.
Collapse
|
4
|
Huang HY, Lin TW, Hong ZX, Lim LM. Vitamin D and Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24043751. [PMID: 36835159 PMCID: PMC9960850 DOI: 10.3390/ijms24043751] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Vitamin D is a hormone involved in many physiological processes. Its active form, 1,25(OH)2D3, modulates serum calcium-phosphate homeostasis and skeletal homeostasis. A growing body of evidence has demonstrated the renoprotective effects of vitamin D. Vitamin D modulates endothelial function, is associated with podocyte preservation, regulates the renin-angiotensin-aldosterone system, and has anti-inflammatory effects. Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease worldwide. There are numerous studies supporting vitamin D as a renoprotector, potentially delaying the onset of DKD. This review summarizes the findings of current research on vitamin D and its role in DKD.
Collapse
Affiliation(s)
- Ho-Yin Huang
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zi-Xuan Hong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-7351; Fax: +886-7-3228721
| |
Collapse
|
5
|
Ushakov A, Ivanchenko V, Gagarina A. Heart Failure And Type 2 Diabetes Mellitus: Neurohumoral, Histological And Molecular Interconnections. Curr Cardiol Rev 2023; 19:e170622206132. [PMID: 35718961 PMCID: PMC10201898 DOI: 10.2174/1573403x18666220617121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) is a global healthcare burden and a leading cause of morbidity and mortality worldwide. Type 2 diabetes mellitus (T2DM) appears to be one of the major risk factors that significantly worsen HF prognosis and increase the risk of fatal cardiovascular outcomes. Despite a great knowledge of pathophysiological mechanisms involved in HF development and progression, hospitalization rates in patients with HF and concomitant T2DM remain elevated. In this review, we discuss the complex interplay between systemic neurohumoral regulation and local cardiac mechanisms participating in myocardial remodeling and HF development in T2DM with special attention to cardiomyocyte energy metabolism, mitochondrial function and calcium metabolism, cardiomyocyte hypertrophy and death, extracellular matrix remodeling.
Collapse
Affiliation(s)
- A. Ushakov
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - V. Ivanchenko
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - A. Gagarina
- Department of Internal Medicine 1, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
6
|
Gaikwad DD, Bangar NS, Apte MM, Gvalani A, Tupe RS. Mineralocorticoid interaction with glycated albumin downregulates NRF - 2 signaling pathway in renal cells: Insights into diabetic nephropathy. Int J Biol Macromol 2022; 220:837-851. [PMID: 35987363 DOI: 10.1016/j.ijbiomac.2022.08.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/30/2022] [Accepted: 08/13/2022] [Indexed: 12/20/2022]
Abstract
In diabetic nephropathy, hyperglycemia elevates albumin glycation and also results in increased plasma aldosterone. Both glycation and aldosterone are reported to cause oxidative stress by downregulating the NRF-2 pathway and thereby resulting in reduced levels of antioxidants and glycation detoxifying enzymes. We hypothesize that an interaction between aldosterone and glycated albumin may be responsible for amplified oxidative stress and concomitant renal cell damage. Hence, human serum albumin was glycated by methylglyoxal (MGO) in presence of aldosterone. Different structural modifications of albumin, functional modifications and aldosterone binding were analyzed. HEK-293 T cells were treated with aldosterone+glycated albumin along with inhibitors of receptors for mineralocorticoid (MR) and advanced glycation endproducts (RAGE). Cellular MGO content, antioxidant markers (nitric oxide, glutathione, catalase, superoxide dismutase, glutathione peroxidase), detoxification enzymes (aldose reductase, Glyoxalase I, II), their expression along with NRF-2 and Keap-1 were measured. Aldosterone binds to albumin with high affinity which is static and spontaneous. Cell treatment by aldosterone+glycated albumin increased intracellular MGO, MR and RAGE expression; hampered antioxidant, detoxification enzyme activities and reduced NRF-2, Keap-1 expression. Thus, the glycated albumin-aldosterone interaction and its adverse effect on renal cells were confirmed. The results will help in developing better pharmacotherapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Deepesh D Gaikwad
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Mayura M Apte
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
7
|
Sigesbeckia orientalis Extract Ameliorates the Experimental Diabetic Nephropathy by Downregulating the Inflammatory and Oxidative Stress Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3323745. [PMID: 35966750 PMCID: PMC9374551 DOI: 10.1155/2022/3323745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Diabetes in children and its complications are on the rise globally, which is accompanied by increasing in diabetes-related complications. Oxidative stress and inflammation induced by elevated blood sugar in diabetic patients are considered risk factors associated with the development of diabetes complications, including chronic kidney disease and its later development to end-stage renal disease. Microvascular changes within the kidneys of DM patients often lead to chronic kidney disease, which aggravates the illness. Sigesbeckia orientalis extract (SOE), reported to have strong antioxidative and excellent anti-inflammatory activities, is used in the modern practice of traditional Chinese medicine. Kidneys from three groups of control mice (CTR), mice with streptozotocin (STZ)-induced diabetes (DM), and mice with STZ-induced DM treated with SOE (DMRx) were excised for morphological analyses and immunohistochemical assessments. Only mice in the DM group exhibited significantly lower body weight, but higher blood sugar was present. The results revealed more obvious renal injury in the DM group than in the other groups, which appeared as greater glomerular damage and tubular injury, sores, and plenty of connective tissues within the mesangium. Not only did the DM group have a higher level of cytokine, tumor necrosis factor, and the oxidative stress marker, 8-hydroxyguanosine expression, but also factors of the nuclear factor pathway and biomarkers of microvascular status had changed. Disturbances to the kidneys in DMRx mice were attenuated compared to the DM group. We concluded that SOE is an effective medicine, with antioxidative and anti-inflammatory abilities, to protect against or attenuate diabetic nephropathy from inflammatory disturbances by oxidative stress and to cure vessel damage in a hyperglycemic situation.
Collapse
|
8
|
Pengrattanachot N, Thongnak L, Lungkaphin A. The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and diabetes related kidney disease. Food Funct 2022; 13:5925-5945. [PMID: 35583860 DOI: 10.1039/d1fo04428a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is an extensive health problem worldwide that is frequently associated with diabetes. It is a risk factor for the development of several diseases including diabetic nephropathy. Recent studies have reported that gut dysbiosis aggravates the progression of obesity and diabetes by increasing the production of uremic toxins in conjunction with gut barrier dysfunction which then leads to increased passage of lipopolysaccharides (LPS) into the blood circulatory system eventually causing systemic inflammation. Therefore, the modification of gut microbiota using a prebiotic supplement may assist in the restoration of gut barrier function and reduce any disturbance of the inflammatory response. In this review information has been compiled concerning the possible mechanisms involved in an increase in obesity, diabetes and kidney dysfunction via the exacerbation of the inflammatory response and its association with gut dysbiosis. In addition, the role of fructooligosaccharides (FOS), a source of prebiotic widely available commercially, on the improvement of gut dysbiosis and attenuation of inflammation on obese and diabetic conditions has been reviewed. The evidence confirms that FOS supplementation could improve the pathological changes associated with obesity and diabetes related kidney disease, however, knowledge concerning the mechanisms involved is still limited and needs further elucidation.
Collapse
Affiliation(s)
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Liu H, Sridhar VS, Boulet J, Dharia A, Khan A, Lawler PR, Cherney DZI. Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: from biomarkers to clinical outcomes in heart failure and diabetic kidney disease. Metabolism 2022; 126:154918. [PMID: 34699838 DOI: 10.1016/j.metabol.2021.154918] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes (T2D) is one of the most common causes of chronic kidney disease (CKD) and cardiovascular (CV) disease. Until recently, glycemic and BP control were the cornerstones for preventing progression of CKD and CV disease associated with T2D. However, there has been a paradigm shift in treatment since the publication of the first clinical trial demonstrating benefits of sodium glucose cotransporter 2 (SGLT2) inhibitors in 2015. SGLT2 inhibitors have been shown to reduce the risk of major adverse CV events and progression of kidney disease in the setting of T2D. However, the elucidation of mechanisms of underlying these clinical benefits is the subject of ongoing investigation. Experimental studies have shown that SGLT2 inhibitors have diverse pleiotropic effects such as modulation of neurohormones such as the renin-angiotensin-aldosterone system, increasing hematocrit, altering energy substrate use, and attenuating systemic inflammation and oxidative stress, all of which have been implicated in the CV and kidney protective effects of SGLT2 inhibitors. In this review, we highlight biomarkers linked with diabetic kidney disease and heart failure and discuss how SGLT2 inhibitor-associated changes potentially mediate the cardiorenal protection observed with these therapies.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vikas S Sridhar
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacinthe Boulet
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Atit Dharia
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Abid Khan
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada; Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Sangartit W, Ha KB, Lee ES, Kim HM, Kukongviriyapan U, Lee EY, Chung CH. Tetrahydrocurcumin Ameliorates Kidney Injury and High Systolic Blood Pressure in High-Fat Diet-Induced Type 2 Diabetic Mice. Endocrinol Metab (Seoul) 2021; 36:810-822. [PMID: 34474516 PMCID: PMC8419617 DOI: 10.3803/enm.2021.988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Activation of the intrarenal renin-angiotensin system (RAS) is implicated in the pathogenesis of kidney injury and hypertension. We aimed to investigate the protective effect of tetrahydrocurcumin (THU) on intrarenal RAS expression, kidney injury, and systolic blood pressure (SBP) in high-fat diet (HFD)-induced type 2 diabetic mice. METHODS Eight-week-old male mice were fed a regular diet (RD) or HFD for 12 weeks, and THU (50 or 100 mg/kg/day) was intragastrically administered with HFD. Physiological and metabolic changes were monitored and the expression of RAS components and markers of kidney injury were assessed. RESULTS HFD-fed mice exhibited hyperglycemia, insulin resistance, and dyslipidemia compared to those in the RD group (P<0.05). Kidney injury in these mice was indicated by an increase in the ratio of albumin to creatinine, glomerular hypertrophy, and the effacement of podocyte foot processes. Expression of intrarenal angiotensin-converting enzyme, angiotensin II type I receptor, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4, and monocyte chemoattractant protein-1 was also markedly increased in HFD-fed mice. HFD-fed mice exhibited elevated SBP that was accompanied by an increase in the wall thickness and vascular cross-sectional area (P<0.05), 12 weeks post-HFD consumption. Treatment with THU (100 mg/kg/day) suppressed intrarenal RAS activation, improved insulin sensitivity, and reduced SBP, thus, attenuating kidney injury in these mice. CONCLUSION THU alleviated kidney injury in mice with HFD-induced type 2 diabetes, possibly by blunting the activation of the intrarenal RAS/nicotinamide adenine dinucleotide phosphate oxidase IV (NOX4)/monocyte chemoattractant protein 1 (MCP-1) axis and by lowering the high SBP.
Collapse
Affiliation(s)
- Weerapon Sangartit
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Kyung Bong Ha
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| | | | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen,
Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen,
Thailand
| | - Eun Young Lee
- Department of Internal Medicine and Institute of Tissue Regeneration, BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan,
Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju,
Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju,
Korea
| |
Collapse
|
11
|
Federico M, De la Fuente S, Palomeque J, Sheu SS. The role of mitochondria in metabolic disease: a special emphasis on heart dysfunction. J Physiol 2021; 599:3477-3493. [PMID: 33932959 PMCID: PMC8424986 DOI: 10.1113/jp279376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Metabolic diseases (MetDs) embrace a series of pathologies characterized by abnormal body glucose usage. The known diseases included in this group are metabolic syndrome, prediabetes and diabetes mellitus types 1 and 2. All of them are chronic pathologies that present metabolic disturbances and are classified as multi-organ diseases. Cardiomyopathy has been extensively described in diabetic patients without overt macrovascular complications. The heart is severely damaged during the progression of the disease; in fact, diabetic cardiomyopathies are the main cause of death in MetDs. Insulin resistance, hyperglycaemia and increased free fatty acid metabolism promote cardiac damage through mitochondria. These organelles supply most of the energy that the heart needs to beat and to control essential cellular functions, including Ca2+ signalling modulation, reactive oxygen species production and apoptotic cell death regulation. Several aspects of common mitochondrial functions have been described as being altered in diabetic cardiomyopathies, including impaired energy metabolism, compromised mitochondrial dynamics, deficiencies in Ca2+ handling, increases in reactive oxygen species production, and a higher probability of mitochondrial permeability transition pore opening. Therefore, the mitochondrial role in MetD-mediated heart dysfunction has been studied extensively to identify potential therapeutic targets for improving cardiac performance. Herein we review the cardiac pathology in metabolic syndrome, prediabetes and diabetes mellitus, focusing on the role of mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Marilen Federico
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Medicas, UNLP, La Plata, Argentina
| | - Sergio De la Fuente
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Medicas, UNLP, La Plata, Argentina
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, CABA, Argentina
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
12
|
Curcumin Improved Glucose Intolerance, Renal Injury, and Nonalcoholic Fatty Liver Disease and Decreased Chromium Loss through Urine in Obese Mice. Processes (Basel) 2021. [DOI: 10.3390/pr9071132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity-associated hyperglycemia underlies insulin resistance, glucose intolerance, and related metabolic disorders including type 2 diabetes, renal damage, and nonalcoholic fatty liver disease. Turmeric root is commonly used in Asia, and curcumin, one of its pharmacological components, can play a role in preventing and treating certain chronic physiological disorders. Accordingly, this study examined how high-fat diet (HFD)-induced hyperglycemia and hyperlipidemia are reduced by curcumin through changes in fatty liver scores, chromium distribution, and renal injury in mice. Relative to the control group, also fed an HFD, the curcumin group weighed less and had smaller adipocytes; it also had lower daily food efficiency, blood urea nitrogen and creatinine levels, serum alanine aminotransferase and aspartate aminotransferase levels, serum and hepatic triglyceride levels, and hepatic lipid regulation marker expression. The curcumin-treated obese group exhibited significantly lower fasting blood glucose, was less glucose intolerant, had higher Akt phosphorylation and glucose transporter 4 (GLUT4) expression, and had greater serum insulin levels. Moreover, the group showed renal damage with lower TNF-α expression along with more numerous renal antioxidative enzymes that included superoxide dismutase, glutathione peroxidase, and catalase. The liver histology of the curcumin-treated obese mice showed superior lipid infiltration and fewer FASN and PNPLA3 proteins in comparison with the control mice. Curcumin contributed to creating a positive chromium balance by decreasing the amount of chromium lost through urine, leading to the chromium mobilization needed to mitigate hyperglycemia. Thus, the results suggest that curcumin prevents HFD-induced glucose intolerance, kidney injury, and nonalcoholic fatty liver disease.
Collapse
|
13
|
Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, Sun X, Ahmad S. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol 2021; 529:111119. [PMID: 33309638 PMCID: PMC8127338 DOI: 10.1016/j.mce.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin II generation from angiotensin-(1-12) does not require renin participation while chymase rather than angiotensin converting enzyme shows high catalytic activity in converting this tissue substrate into angiotensin II directly.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
14
|
Gillard P, Schnell O, Groop PH. The nephrological perspective on SGLT-2 inhibitors in type 1 diabetes. Diabetes Res Clin Pract 2020; 170:108462. [PMID: 32971152 DOI: 10.1016/j.diabres.2020.108462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Prevalence of type 1 diabetes mellitus (T1DM) is globally continuously increasing. T1DM is accompanied by a high risk of developing cardiovascular and renal comorbidities and is one of the leading causes of end-stage renal disease (ESRD). However, current therapeutic approaches for chronic and/or diabetic kidney disease (CKD/DKD) existed for a long time, and offer room for improvement, particularly in T1DM. In 2019, the European Medicines Agency (EMA) approved a first sodium/glucose co-transporter 2 inhibitor (SGLT-2i) and a first dual SGLT-1/-2i to improve glycaemic control, as an adjunctive treatment to insulin in persons with T1DM and a body mass index ≥27 kg/m2. Of note, SGLT-1/2is and SGLT-2is are not approved by the Food and Drug Administration (FDA) as an adjunct treatment in T1DM, nor approved for the treatment of CKD or DKD by EMA and FDA. SGLT is have shown to mediate different renoprotective effects in type 2 diabetes mellitus in corresponding cardiovascular and renal outcome trials. First efficacy trials offer insights into potential positive effects on renal function and kidney disease of SGLTis in T1DM. This review summarizes and discusses latest available data on SGLT inhibition and provides an update on the nephrological perspective on SGLTis, specifically in T1DM.
Collapse
Affiliation(s)
- Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven, KU Leuven, Belgium
| | - Oliver Schnell
- Sciarc GmbH, Baierbrunn, Germany; Forschergruppe Diabetes e.V., München - Neuherberg, Germany.
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Centre, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
Ichikawa M, Konoshita T, Makino Y, Suzuki J, Ishizuka T, Nakamura H. An association study of C9orf3, a novel component of the renin-angiotensin system, and hypertension in diabetes. Sci Rep 2020; 10:16111. [PMID: 32999396 PMCID: PMC7528017 DOI: 10.1038/s41598-020-73094-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is important in the onset and course of cardiovascular, kidney, and metabolic disorders. Previous reports showed that the RAS blockade protects organs and suppress the development of type 2 diabetes mellitus. A novel component of the RAS, namely, chromosome 9 open reading frame 3 (C9orf3), was recently identified, however, its effects are unclear. We evaluated whether the genetic variant of C9orf3 is associated with morbidity of hypertension among subjects with type 2 diabetes. We enrolled 382 subjects with type 2 diabetes, 222 of whom were diagnosed with hypertension. Human leukocyte genomic DNA was isolated and a genetic variant was analyzed for a C/T variant of C9orf3 (rs4385527) via PCR analysis. The relationship between the genotype and hypertension morbidity among subjects with diabetes was examined. The proportion of the respective C9orf3 genetic variants were as follows 247 CC, 119 CT, and 16 TT. The risk of hypertension was determined to be 1.58, with a 95% confidence interval of 1.11–2.27. Moreover, the p value was 0.012 for allelic comparison and for Armitage’s trend test, with the C allele identified as the risk factor. Consequently, hypertension was markedly associated with type 2 diabetes in subjects with the C9orf3 variant, exhibiting a nearly 1.6-fold increased risk. The C variant of a new component of the RAS, C9orf3 (rs4385527) might have a considerable impact on the pathogenesis of hypertension in diabetes.
Collapse
Affiliation(s)
- Mai Ichikawa
- Third Department of Internal Medicine, University of Fukui Faculty of Medical Sciences, 23-3, Matsuokashimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui Faculty of Medical Sciences, 23-3, Matsuokashimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| | - Yasukazu Makino
- Third Department of Internal Medicine, University of Fukui Faculty of Medical Sciences, 23-3, Matsuokashimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Jinya Suzuki
- Third Department of Internal Medicine, University of Fukui Faculty of Medical Sciences, 23-3, Matsuokashimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, University of Fukui Faculty of Medical Sciences, 23-3, Matsuokashimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Herein, we provide a review of the recent literature on the epidemiological and pathophysiological relationship between hypertension (HTN) and diabetes mellitus, along with prognostic implications and current treatment concepts. RECENT FINDINGS Diabetes mellitus affects ∼10% of US adults. The prevalence of HTN in adults with diabetes mellitus was 76.3% or 66.0% based on the definitions used by guidelines. There exist differences among major society guidelines regarding the definition of HTN and target blood pressure (BP) levels. Recent basic and clinical research studies have shed light on pathophysiologic and genetic links between HTN and diabetes mellitus. Randomized controlled trials over the past 5 years have confirmed the favorable BP and cardiovascular risk reduction by antidiabetic agents. SUMMARY HTN and diabetes mellitus are 'silent killers' with rising global prevalence. The development of HTN and diabetes mellitus tracks each other over time. The coexistence of both clinical entities synergistically contributes to micro- and macro-vasculopathy along with cardiovascular and all-cause mortality. Various shared mechanisms underlie the pathophysiological relationship between HTN and diabetes mellitus. Moreover, BP reduction with lifestyle interventions and antihypertensive agents is a primary target for reducing cardiovascular risk among patients with HTN and diabetes mellitus.
Collapse
|
17
|
Semenko AV, Murdasov YV, Kirichenko SV, Zhyliuk VI, Ushakovа GA. Influence of melatonin on the kidneys of rats with experimental diabetes mellitus type 2. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is characterized by numerous pathological changes in the body. Under conditions of diabetes, hyperglycemic intoxication of the organism rapidly develops, which in turn leads to an increase of oxidative stress with subsequent disturbance of the anatomical and functional integrity of the components of organisms. Today, the search for the substances that would contribute to the multi-vectoral effect on the negative consequences of diabetes is actively being pursued. Melatonin is one of such substances. In this work, we studied the effect of melatonin on oxidative stress markers (oxidized products content, activities of superoxide dismutase and catalase), the concentration of metabolism end products (creatinine and urea), main ions concentration (potassium and chlorine), and protein content (total protein and electropherogram in polyacrylamide gel), enzymatic activity of gamma-glutamyltrasferase in the cytosolic fraction of rat kidneys under condition of type 2 diabetes mellitus (EDM2). Experimental studies were performed on 18 white adult Wistar rats divided into three groups (control, group with EDM2 and group with EDM2, which were treated with melatonin). The increase of concentration of oxidized products, the activity of catalase and gamma-glutamyltrasferase, creatinine, urea, K+ and Cl– and the decrease of concentration of superoxide dismutase in the rats’ kidneys was noted after development of EDM2. The electrophoretic proteinogram of the cytosolic proteins obtained from the rats’ kidneys showed an increase of content of high-molecular-weight and a decrease of low-molecular-weight proteins. Administration of melatonin in a dose of 10 mg/kg of body weight for 7 days after development of EDM2 restored the studied parameters almost to the control group values. Therefore, the influence of melatonin can prevent chronic development of oxidative stress in kidneys under hyperglycemic intoxication, and lead to normalization of kidney function and the restoration of homeostasis.
Collapse
|
18
|
Schnell O, Valensi P, Standl E, Ceriello A. Comparison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes. Endocrinol Diabetes Metab 2020; 3:e00129. [PMID: 32704554 PMCID: PMC7375088 DOI: 10.1002/edm2.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a major chronic disease with ever-increasing prevalence and a variety of serious complications for persons with DM, such as cardiovascular and/or renal complications. New glucose-lowering therapies like DPP-4 inhibitors, GLP-1 receptor agonists, and SGLT-2 inhibitors have undergone cardiovascular outcome trials (CVOTs) for type 2 diabetes (T2DM), as by the guidance of the FDA. However, CVOTs for type 1 diabetes (T1DM) are generally lacking. Both, persons with T1DM and T2DM, are burdened with a high incidence of cardiovascular and renal disease such as atherosclerotic cardiovascular disease (ASCVD) and diabetic kidney disease (DKD). Although pathologies of the two types of diabetes cannot be compared, similar mechanisms and risk factors like sex, hyperglycaemia, hypertension, endothelial damage and (background) inflammation have been identified in the development of CVD and DKD in T1DM and T2DM. Recent CVOTs in T2DM demonstrated that SGLT-2 inhibitors, besides exerting a glucose-lowering effect, have beneficial effects on cardiovascular and renal mechanisms. These mechanisms are reviewed in detail in this manuscript and evaluated for possible transferability to, and thus efficacy in, T1DM. Our review of current literature suggests that SGLT-2 inhibitors have cardioprotective benefits beyond their glucose-lowering effects. As this mainly has been observed in CVOTs in T2DM, further investigation in the adjunctive therapy for type 1 diabetes is suggested.
Collapse
Affiliation(s)
| | - Paul Valensi
- Department of Endocrinology Diabetology NutritionAPHP, Jean VERDIER Hospital, Paris Nord University, CINFO, CRNH‐IdFBondyFrance
| | | | - Antonio Ceriello
- Department of Cardiovascular and Metabolic DiseasesIRCCS MultiMedicaSesto San Giovanni (MI)Italy
| |
Collapse
|
19
|
Meng X, Ma J, Kang SY, Jung HW, Park YK. Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses. Chin Med 2020; 15:24. [PMID: 32190104 PMCID: PMC7066842 DOI: 10.1186/s13020-020-00306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Jowiseungki decoction (JSD) is a prescription commonly used for the treatment of diabetic complications or diabetic nephropathy (DN) in traditional medicine clinics. However, the underlying therapeutic mechanisms of JSD are still unclear. Methods Streptozotocin (STZ)-induced DN mice were administered 100 and 500 mg/kg JSD for 4 weeks, and the therapeutic mechanisms and targets of JSD were analyzed by network pharmacology and gut microbiota analyses. Results JSD significantly decreased the increase in food and water intake, urine volume, fasting blood glucose, serum glucose and triglyceride levels, and urinary albumin excretion. JSD administration significantly increased the decrease in insulin secretion and creatinine clearance and reduced the structural damage to the kidney tissues. Moreover, JSD administration significantly inhibited the expression of protein kinase C-alpha (PKC-α), transforming growth factor beta-1 (TGF-β1), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in the kidney tissues of DN mice, while it significantly increased the phosphorylation of insulin receptor substrate 1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). In the network pharmacological analysis, JSD obviously influenced phosphatase binding, protein serine/threonine kinase, and mitogen-activated protein kinase (MAPK)-related signaling pathways. Our data suggest that JSD can improve symptoms in STZ-induced DN mice through the inhibition of kidney dysfunction, in particular, by regulating the PKCα/PI3K/Akt and NF-κB/α-SMA signaling pathways. Gut microbiota analysis can help to discover the pharmaco-mechanisms of the influence of JSD on bacterial diversity and flora structures in DN. Conclusion JSD can improve the symptoms of DN, and the underlying mechanism of this effect is renal protection through the inhibition of fibrosis and inflammation. JSD can also change bacterial diversity and community structures in DN.
Collapse
Affiliation(s)
- Xianglong Meng
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea.,Experimental Teaching Center, College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619 China
| | - Junnan Ma
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Seok Yong Kang
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Hyo Won Jung
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Yong-Ki Park
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| |
Collapse
|
20
|
Abstract
Aim: Supplemental oxygen is often used to treat neonates with respiratory disorders. Human and animal studies have demonstrated that neonatal hyperoxia increases oxidative stress and induces damage and collagen deposition in kidney during the perinatal period. Cathelicidin LL-37 is one important group of human antimicrobial peptides which exhibits antioxidant activity and its overexpression resists hyperoxia-induced oxidative stress. This study was designed to evaluate the protective effects of cathelicidin in hyperoxia-induced kidney injury in newborn rats. Methods: Sprague-Dawley rat pups were reared in either room air (RA) or hyperoxia (85% O2) and were randomly treated with low-dose (4 mg/kg) and high-dose (8 mg/kg) cathelicidin in normal saline (NS) administered intraperitoneally on postnatal days 1–6. The following six groups were obtained: RA + NS, RA + low-dose cathelicidin, RA + high-dose cathelicidin, O2 + NS, O2 + low-dose cathelicidin, and O2 + high-dose cathelicidin. Kidneys were taken for Western blot and histological analyses on postnatal day 7. Results: The hyperoxia-reared rats exhibited significantly lower body weights and anti-inflammatory M2 macrophages, but the kidney injury scores, oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells, pro-inflammatory M1 macrophages, collagen deposition, and NF-κB expression were higher than did the RA-reared rats. Conclusions: Cathelicidin treatment attenuated kidney injury as evidenced by lower kidney injury scores, 8-OHdG-positive cells, collagen deposition, and reversion of hyperoxia-induced M1/M2 macrophage polarization. The role of Cathelicidin in ameliorates kidney injury of the hyperoxia newborn rats was accompanied by decreased NF-κB expression, which probably through the modulating NF-κB activity in the kidney.
Collapse
Affiliation(s)
- Hsiu-Chu Chou
- Department of Anatomy and Cellular Biology, School of Medicine, College of Medicine, Taipei Medical University , Taipei , Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
21
|
Zhuang L, Jin G, Hu X, Yang Q, Shi Z. The inhibition of SGK1 suppresses epithelial-mesenchymal transition and promotes renal tubular epithelial cell autophagy in diabetic nephropathy. Am J Transl Res 2019; 11:4946-4956. [PMID: 31497211 PMCID: PMC6731399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes that is the dominant cause of end-stage renal disease. However, the pathological mechanism of DN is yet to be elucidated. Serum and glucocorticoid induced kinase (SGK) 1, a ubiquitously expressed kinase, was employed in the current study to assess its effect on DN in vivo and in vitro. Male BALB/C mice and a human tubular epithelial cell line (HK-2) were utilized for experimentation. Male BALB/C mice and a human tubular epithelial cell line (HK-2) were utilized for experimentation. Pathological changes were measured via HE and staining and immunohistochemistry was performed to measure the expression of SGK 1. An SGK1 inhibitor, GSK650394, was applied to analyze the role of SGK1 in HK-2 cell epithelial-mesenchymal transition (EMT). Associated protein expressions were assessed via western blotting. In addition, migration was measured using a scratch wound healing assay. 3-methyladenine (3-MA), an autophagy inhibitor, was used to determine the variation of autophagy following SGK1 inhibition. The expression of autophagy proteins were analyzed. Furthermore, the expression of PI3K, AKT, mTOR and their levels of phosphorylation were measured. The results revealed that the ultrastructure of renal tissue suffered damage and that the expression of SGK1 was markedly increased. After SGK1 inhibition, HK-2 cell EMT was suppressed and cell migration was attenuated. Furthermore, the autophagy of HK-2 cells was promoted, an increased expression of Beclin-1 and LC3 II was detected, and a decreased expression of p62 was observed. Additionally, the phosphorylation of PI3K, AKT and mTOR were markedly upregulated. The results indicated that blocking autophagy signaling via 3-MA muted SGK1-protected against HG-evoked cell injury. Our study demonstrated that SGK1 inhibition promoted autophagy and suppressed renal tubular epithelial cell EMT in DN, indicating that SGK1 may serve as a potential therapeutic target of DN.
Collapse
Affiliation(s)
- Langen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College Bengbu 233004, Anhui, China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College Bengbu 233004, Anhui, China
| | - Xiaolei Hu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College Bengbu 233004, Anhui, China
| | - Qingqing Yang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College Bengbu 233004, Anhui, China
| | - Zhaoming Shi
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College Bengbu 233004, Anhui, China
| |
Collapse
|