1
|
Suha SA, Islam MN. An extended machine learning technique for polycystic ovary syndrome detection using ovary ultrasound image. Sci Rep 2022; 12:17123. [PMID: 36224353 PMCID: PMC9556522 DOI: 10.1038/s41598-022-21724-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/30/2022] [Indexed: 01/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrinological abnormality and one of the primary causes of anovulatory infertility in women globally. The detection of multiple cysts using ovary ultrasonograpgy (USG) scans is one of the most reliable approach for making an accurate diagnosis of PCOS and creating an appropriate treatment plan to heal the patients with this syndrome. Instead of depending on error-prone manual identification, an intelligent computer-aided cyst detection system can be a viable approach. Therefore, in this research, an extended machine learning classification technique for PCOS prediction has been proposed, trained and tested over 594 ovary USG images; where the Convolutional Neural Network (CNN) incorporating different state-of-the-art techniques and transfer learning has been employed for feature extraction from the images; and then stacking ensemble machine learning technique using conventional models as base learners and bagging or boosting ensemble model as meta-learner have been used on that reduced feature set to classify between PCOS and non-PCOS ovaries. The proposed technique significantly enhances the accuracy while also reducing training execution time comparing with the other existing ML based techniques. Again, following the proposed extended technique, the best performing results are obtained by incorporating the "VGGNet16" pre-trained model with CNN architecture as feature extractor and then stacking ensemble model with the meta-learner being "XGBoost" model as image classifier with an accuracy of 99.89% for classification.
Collapse
Affiliation(s)
- Sayma Alam Suha
- grid.442983.00000 0004 0456 6642Military Institute of Science and Technology, Department of Computer Science and Technology, Dhaka, 1216 Bangladesh
| | - Muhammad Nazrul Islam
- grid.442983.00000 0004 0456 6642Military Institute of Science and Technology, Department of Computer Science and Technology, Dhaka, 1216 Bangladesh
| |
Collapse
|
2
|
Quantitative MRI of Pancreatic Cystic Lesions: A New Diagnostic Approach. Healthcare (Basel) 2022; 10:healthcare10061039. [PMID: 35742090 PMCID: PMC9222599 DOI: 10.3390/healthcare10061039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
The commonly used magnetic resonance (MRI) criteria can be insufficient for discriminating mucinous from non-mucinous pancreatic cystic lesions (PCLs). The histological differences between PCLs’ fluid composition may be reflected in MRI images, but cannot be assessed by visual evaluation alone. We investigate whether additional MRI quantitative parameters such as signal intensity measurements (SIMs) and radiomics texture analysis (TA) can aid the differentiation between mucinous and non-mucinous PCLs. Fifty-nine PCLs (mucinous, n = 24; non-mucinous, n = 35) are retrospectively included. The SIMs were performed by two radiologists on T2 and diffusion-weighted images (T2WI and DWI) and apparent diffusion coefficient (ADC) maps. A total of 550 radiomic features were extracted from the T2WI and ADC maps of every lesion. The SIMs and TA features were compared between entities using univariate, receiver-operating, and multivariate analysis. The SIM analysis showed no statistically significant differences between the two groups (p = 0.69, 0.21–0.43, and 0.98 for T2, DWI, and ADC, respectively). Mucinous and non-mucinous PLCs were successfully discriminated by both T2-based (83.2–100% sensitivity and 69.3–96.2% specificity) and ADC-based (40–85% sensitivity and 60–96.67% specificity) radiomic features. SIMs cannot reliably discriminate between PCLs. Radiomics have the potential to augment the common MRI diagnosis of PLCs by providing quantitative and reproducible imaging features, but validation is required by further studies.
Collapse
|
3
|
Gupta N, Gupta SK, Pathak RK, Jain V, Rashidi P, Suri JS. Human activity recognition in artificial intelligence framework: a narrative review. Artif Intell Rev 2022; 55:4755-4808. [PMID: 35068651 PMCID: PMC8763438 DOI: 10.1007/s10462-021-10116-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human activity recognition (HAR) has multifaceted applications due to its worldly usage of acquisition devices such as smartphones, video cameras, and its ability to capture human activity data. While electronic devices and their applications are steadily growing, the advances in Artificial intelligence (AI) have revolutionized the ability to extract deep hidden information for accurate detection and its interpretation. This yields a better understanding of rapidly growing acquisition devices, AI, and applications, the three pillars of HAR under one roof. There are many review articles published on the general characteristics of HAR, a few have compared all the HAR devices at the same time, and few have explored the impact of evolving AI architecture. In our proposed review, a detailed narration on the three pillars of HAR is presented covering the period from 2011 to 2021. Further, the review presents the recommendations for an improved HAR design, its reliability, and stability. Five major findings were: (1) HAR constitutes three major pillars such as devices, AI and applications; (2) HAR has dominated the healthcare industry; (3) Hybrid AI models are in their infancy stage and needs considerable work for providing the stable and reliable design. Further, these trained models need solid prediction, high accuracy, generalization, and finally, meeting the objectives of the applications without bias; (4) little work was observed in abnormality detection during actions; and (5) almost no work has been done in forecasting actions. We conclude that: (a) HAR industry will evolve in terms of the three pillars of electronic devices, applications and the type of AI. (b) AI will provide a powerful impetus to the HAR industry in future. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-021-10116-x.
Collapse
Affiliation(s)
- Neha Gupta
- CSE Department, Bennett University, Greater Noida, UP India
- Bharati Vidyapeeth’s College of Engineering, Paschim Vihar, New Delhi, India
| | | | | | - Vanita Jain
- Bharati Vidyapeeth’s College of Engineering, Paschim Vihar, New Delhi, India
| | - Parisa Rashidi
- Intelligent Health Laboratory, Department of Biomedical Engineering, University of Florida, Gainesville, USA
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPointTM, Roseville, CA 95661 USA
- Global Biomedical Technologies, Inc., Roseville, CA USA
| |
Collapse
|
4
|
Suri JS, Agarwal S, Carriero A, Paschè A, Danna PSC, Columbu M, Saba L, Viskovic K, Mehmedović A, Agarwal S, Gupta L, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Gupta A, Naidu S, Paraskevas KI, Kalra MK. COVLIAS 1.0 vs. MedSeg: Artificial Intelligence-Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts. Diagnostics (Basel) 2021; 11:diagnostics11122367. [PMID: 34943603 PMCID: PMC8699928 DOI: 10.3390/diagnostics11122367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020–2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland–Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Armin Mehmedović
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Samriddhi Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Lakshya Gupta
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | | | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| |
Collapse
|
5
|
Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review. Comput Biol Med 2021; 137:104803. [PMID: 34536856 DOI: 10.1016/j.compbiomed.2021.104803] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Artificial intelligence (AI) has served humanity in many applications since its inception. Currently, it dominates the imaging field-in particular, image classification. The task of image classification became much easier with machine learning (ML) and subsequently got automated and more accurate by using deep learning (DL). By default, DL consists of a single architecture and is termed solo deep learning (SDL). When two or more DL architectures are fused, the result is termed a hybrid deep learning (HDL) model. The use of HDL models is becoming popular in several applications, but no review of these uses has been designed thus far. Therefore, this study provides the first narrative HDL review by considering all facets of image classification using AI. APPROACH Our review employs a PRISMA search strategy using Google Scholar, PubMed, IEEE, and Elsevier Science Direct, through which 127 relevant HDL studies were considered. Based on the computer vision evolution, HDLs were subsequently classified into three categories (spatial, temporal, and spatial-temporal). Each study was then analyzed based on several attributes, including continent, publisher, hybridization of two DL or ML, architecture layout, application type, data set type, dataset size, feature extraction methodology, connecting classifier, performance evaluation metrics, and risk-of-bias. CONCLUSION The HDL models have shown stable and superior performance by taking the best aspects of two or more solo DL or fusion of DL with ML models. Our findings indicate that HDL is being applied aggressively to several medical and non-medical applications. Furthermore, risk-of-bias is highly debatable for DL and HDL models.
Collapse
|
6
|
Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Sharma N, Nicolaides A, Suri JS. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1206. [PMID: 34430647 PMCID: PMC8350643 DOI: 10.21037/atm-20-7676] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (AOU), Cagliari, Italy
| | - Skandha S Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India.,CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
| | - Durga P Misra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Neeraj Sharma
- Department of Biomedical Engineering, IIT-BHU, Banaras, UP, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
7
|
Ștefan RA, Ștefan PA, Mihu CM, Csutak C, Melincovici CS, Crivii CB, Maluțan AM, Hîțu L, Lebovici A. Ultrasonography in the Differentiation of Endometriomas from Hemorrhagic Ovarian Cysts: The Role of Texture Analysis. J Pers Med 2021; 11:jpm11070611. [PMID: 34203314 PMCID: PMC8306221 DOI: 10.3390/jpm11070611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
The ultrasonographic (US) features of endometriomas and hemorrhagic ovarian cysts (HOCs) are often overlapping. With the emergence of new computer-aided diagnosis techniques, this is the first study to investigate whether texture analysis (TA) could improve the discrimination between the two lesions in comparison with classic US evaluation. Fifty-six ovarian cysts (endometriomas, 30; HOCs, 26) were retrospectively included. Four classic US features of endometriomas (low-level internal echoes, perceptible walls, no solid components, and less than five locules) and 275 texture parameters were assessed for every lesion, and the ability to identify endometriomas was evaluated through univariate, multivariate, and receiver operating characteristics analyses. The sensitivity (Se) and specificity (Sp) were calculated with 95% confidence intervals (CIs). The texture model, consisting of seven independent predictors (five variations of difference of variance, image contrast, and the 10th percentile; 100% Se and 100% Sp), was able to outperform the ultrasound model composed of three independent features (low-level internal echoes, perceptible walls, and less than five locules; 74.19% Se and 84.62% Sp) in the diagnosis of endometriomas. The TA showed statistically significant differences between the groups and high diagnostic value, but it remains unclear if the textures reflect the intrinsic histological characteristics of the two lesions.
Collapse
Affiliation(s)
- Roxana-Adelina Ștefan
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, Number 4, 400349 Cluj-Napoca, Romania; (R.-A.Ș.); (C.M.M.); (C.S.M.)
- Obstetrics and Gynecology Clinic “Dominic Stanca”, County Emergency Hospital, 21 Decembrie 1989 Boulevard, Number 55, 400094 Cluj-Napoca, Romania;
| | - Paul-Andrei Ștefan
- Anatomy and Embryology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babes, Street, Number 8, 400012 Cluj-Napoca, Romania;
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, 400006 Cluj-Napoca, Romania; (C.C.); (A.L.)
- Correspondence: or
| | - Carmen Mihaela Mihu
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, Number 4, 400349 Cluj-Napoca, Romania; (R.-A.Ș.); (C.M.M.); (C.S.M.)
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, 400006 Cluj-Napoca, Romania; (C.C.); (A.L.)
| | - Csaba Csutak
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, 400006 Cluj-Napoca, Romania; (C.C.); (A.L.)
- Radiology, Surgical Specialties Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Clinicilor Street, Number 3-5, 400006 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, Number 4, 400349 Cluj-Napoca, Romania; (R.-A.Ș.); (C.M.M.); (C.S.M.)
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, 400006 Cluj-Napoca, Romania; (C.C.); (A.L.)
| | - Carmen Bianca Crivii
- Anatomy and Embryology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babes, Street, Number 8, 400012 Cluj-Napoca, Romania;
| | - Andrei Mihai Maluțan
- Obstetrics and Gynecology Clinic “Dominic Stanca”, County Emergency Hospital, 21 Decembrie 1989 Boulevard, Number 55, 400094 Cluj-Napoca, Romania;
- Obstetrics and Gynecology Clinic II, Mother and Child Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 21 Decembrie 1989 Boulevard, Number 55, 400094 Cluj-Napoca, Romania
| | - Liviu Hîțu
- Doctoral School, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Andrei Lebovici
- Radiology and Imaging Department, County Emergency Hospital, Cluj-Napoca, Clinicilor Street, Number 5, 400006 Cluj-Napoca, Romania; (C.C.); (A.L.)
- Radiology, Surgical Specialties Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Clinicilor Street, Number 3-5, 400006 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Park H, Qin L, Guerra P, Bay CP, Shinagare AB. Decoding incidental ovarian lesions: use of texture analysis and machine learning for characterization and detection of malignancy. Abdom Radiol (NY) 2021; 46:2376-2383. [PMID: 32728871 DOI: 10.1007/s00261-020-02668-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To compare CT texture features of benign and malignant ovarian lesions and to build a machine learning model to detect malignancy in incidental ovarian lesions. METHODS In this IRB-approved, HIPAA-compliant, retrospective study, 427 consecutive patients with incidental ovarian lesions detected on contrast-enhanced CT (348, 81.5% benign and 79, 18.5% malignant) were included. The following CT texture features were analyzed using commercially available software (TexRAD, Feedback Plc, Cambridge, UK): total pixel, mean, standard deviation (SD), entropy, mean value of positive pixels (MPP), skewness, kurtosis and entropy. Three machine learning models were created by combining texture features and patients' age, and performance of these models was assessed using tenfold cross-validation. Receiver operating characteristics (ROC) were constructed to assess sensitivity and specificity. The cutoff value was picked using a cost-weighted method. RESULTS Total pixels, mean, SD, entropy, MPP, and skewness were significantly different between benign and malignant groups (p < 0.05). With a selected 10 as a cost factor to optimize cutoff value selection, sensitivity 92%, specificity 60% in the random forest (RF) model, sensitivity 91%, specificity 69% in SVM model, and sensitivity 92%, specificity 61% in the logistic regression, respectively. CONCLUSION CT texture analysis could provide objective imaging analysis of incidental ovarian lesions and ML models using CT texture features and age demonstrated high sensitivity and moderate specificity for detection of malignant lesions.
Collapse
|
9
|
Ștefan PA, Lupean RA, Mihu CM, Lebovici A, Oancea MD, Hîțu L, Duma D, Csutak C. Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis. Diagnostics (Basel) 2021; 11:diagnostics11050812. [PMID: 33947150 PMCID: PMC8145244 DOI: 10.3390/diagnostics11050812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
The classic ultrasonographic differentiation between benign and malignant adnexal masses encounters several limitations. Ultrasonography-based texture analysis (USTA) offers a new perspective, but its role has been incompletely evaluated. This study aimed to further investigate USTA’s capacity in differentiating benign from malignant adnexal tumors, as well as comparing the workflow and the results with previously-published research. A total of 123 adnexal lesions (benign, 88; malignant, 35) were retrospectively included. The USTA was performed on dedicated software. By applying three reduction techniques, 23 features with the highest discriminatory potential were selected. The features’ ability to identify ovarian malignancies was evaluated through univariate, multivariate, and receiver operating characteristics analyses, and also by the use of the k-nearest neighbor (KNN) classifier. Three parameters were independent predictors for ovarian neoplasms (sum variance, and two variations of the sum of squares). Benign and malignant lesions were differentiated with 90.48% sensitivity and 93.1% specificity by the prediction model (which included the three independent predictors), and with 71.43–80% sensitivity and 87.5–89.77% specificity by the KNN classifier. The USTA shows statistically significant differences between the textures of the two groups, but it is unclear whether the parameters can reflect the true histopathological characteristics of adnexal lesions.
Collapse
Affiliation(s)
- Paul-Andrei Ștefan
- Anatomy and Embryology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babes Street 8, 400012 Cluj-Napoca, Romania;
- Radiology and Imaging Department, County Emergency Hospital, Clinicilor Street 5, 400006 Cluj-Napoca, Romania; (C.M.M.); (A.L.); (D.D.); (C.C.)
| | - Roxana-Adelina Lupean
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 4, 400349 Cluj-Napoca, Romania
- Obstetrics and Gynecology Clinic “Dominic Stanca”, County Emergency Hospital, 21 Decembrie 1989 Boulevard 55, 400094 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-7464-31286
| | - Carmen Mihaela Mihu
- Radiology and Imaging Department, County Emergency Hospital, Clinicilor Street 5, 400006 Cluj-Napoca, Romania; (C.M.M.); (A.L.); (D.D.); (C.C.)
- Histology, Morphological Sciences Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 4, 400349 Cluj-Napoca, Romania
| | - Andrei Lebovici
- Radiology and Imaging Department, County Emergency Hospital, Clinicilor Street 5, 400006 Cluj-Napoca, Romania; (C.M.M.); (A.L.); (D.D.); (C.C.)
- Radiology, Surgical Specialties Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Clinicilor Street 3–5, 400006 Cluj-Napoca, Romania
| | - Mihaela Daniela Oancea
- Obstetrics and Gynecology Clinic “Dominic Stanca”, County Emergency Hospital, 21 Decembrie 1989 Boulevard 55, 400094 Cluj-Napoca, Romania;
- Obstetrics and Gynecology Clinic II, Mother and Child Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 21 Decembrie 1989 Boulevard 55, 400094 Cluj-Napoca, Romania
| | - Liviu Hîțu
- Doctoral School, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniel Duma
- Radiology and Imaging Department, County Emergency Hospital, Clinicilor Street 5, 400006 Cluj-Napoca, Romania; (C.M.M.); (A.L.); (D.D.); (C.C.)
- Doctoral School, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Csaba Csutak
- Radiology and Imaging Department, County Emergency Hospital, Clinicilor Street 5, 400006 Cluj-Napoca, Romania; (C.M.M.); (A.L.); (D.D.); (C.C.)
- Radiology, Surgical Specialties Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Clinicilor Street 3–5, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Guerriero S, Pascual M, Ajossa S, Neri M, Musa E, Graupera B, Rodriguez I, Alcazar JL. Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis. Eur J Obstet Gynecol Reprod Biol 2021; 261:29-33. [PMID: 33873085 DOI: 10.1016/j.ejogrb.2021.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to compare the accuracy of seven classical Machine Learning (ML) models trained with ultrasound (US) soft markers to raise suspicion of endometriotic bowel involvement. MATERIALS AND METHODS Input data to the models was retrieved from a database of a previously published study on bowel endometriosis performed on 333 patients. The following models have been tested: k-nearest neighbors algorithm (k-NN), Naive Bayes, Neural Networks (NNET-neuralnet), Support Vector Machine (SVM), Decision Tree, Random Forest, and Logistic Regression. The data driven strategy has been to split randomly the complete dataset in two different datasets. The training dataset and the test dataset with a 67 % and 33 % of the original cases respectively. All models were trained on the training dataset and the predictions have been evaluated using the test dataset. The best model was chosen based on the accuracy demonstrated on the test dataset. The information used in all the models were: age; presence of US signs of uterine adenomyosis; presence of an endometrioma; adhesions of the ovary to the uterus; presence of "kissing ovaries"; absence of sliding sign. All models have been trained using CARET package in R with ten repeated 10-fold cross-validation. Accuracy, Sensitivity, Specificity, positive (PPV) and negative (NPV) predictive value were calculated using a 50 % threshold. Presence of intestinal involvement was defined in all cases in the test dataset with an estimated probability greater than 0.5. RESULTS In our previous study from where the inputs were retrieved, 106 women had a final expert US diagnosis of rectosigmoid endometriosis. In term of diagnostic accuracy the best model was the Neural Net (Accuracy, 0.73; sensitivity, 0.72; specificity 0.73; PPV 0.52; and NPV 0.86) but without significant difference with the others. CONCLUSIONS The accuracy of ultrasound soft markers in raising suspicion of rectosigmoid endometriosis using Artificial Intelligence (AI) models showed similar results to the logistic model.
Collapse
Affiliation(s)
- Stefano Guerriero
- Centro Integrato di Procreazione Medicalmente Assistita (PMA) e Diagnostica Ostetrico-Ginecologica, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy; University of Cagliari, Cagliari, Italy.
| | - MariaAngela Pascual
- Department of Obstetrics, Gynecology, and Reproduction, Hospital Universitari Dexeus, Spain
| | - Silvia Ajossa
- Department of Obstetrics and Gynecology, University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy
| | - Manuela Neri
- Department of Obstetrics and Gynecology, University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy
| | - Eleonora Musa
- Department of Obstetrics and Gynecology, University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato, Cagliari, Italy
| | - Betlem Graupera
- Department of Obstetrics, Gynecology, and Reproduction, Hospital Universitari Dexeus, Spain
| | - Ignacio Rodriguez
- Unidad Epidemiología y Estadística, Departamento de Obstetricia, Ginecología y Reproducción, Hospital Universitario Quirón Dexeus, Barcelona, Spain
| | - Juan Luis Alcazar
- Department of Obstetrics and Gynecology, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
11
|
Agarwal M, Saba L, Gupta SK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Sharma AM, Viswanathan V, Kitas GD, Nicolaides A, Suri JS. Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application. Med Biol Eng Comput 2021; 59:511-533. [PMID: 33547549 DOI: 10.1007/s11517-021-02322-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 01/16/2023]
Abstract
Wilson's disease (WD) is caused by copper accumulation in the brain and liver, and if not treated early, can lead to severe disability and death. WD has shown white matter hyperintensity (WMH) in the brain magnetic resonance scans (MRI) scans, but the diagnosis is challenging due to (i) subtle intensity changes and (ii) weak training MRI when using artificial intelligence (AI). Design and validate seven types of high-performing AI-based computer-aided design (CADx) systems consisting of 3D optimized classification, and characterization of WD against controls. We propose a "conventional deep convolution neural network" (cDCNN) and an "improved DCNN" (iDCNN) where rectified linear unit (ReLU) activation function was modified ensuring "differentiable at zero." Three-dimensional optimization was achieved by recording accuracy while changing the CNN layers and augmentation by several folds. WD was characterized using (i) CNN-based feature map strength and (ii) Bispectrum strengths of pixels having higher probabilities of WD. We further computed the (a) area under the curve (AUC), (b) diagnostic odds ratio (DOR), (c) reliability, and (d) stability and (e) benchmarking. Optimal results were achieved using 9 layers of CNN, with 4-fold augmentation. iDCNN yields superior performance compared to cDCNN with accuracy and AUC of 98.28 ± 1.55, 0.99 (p < 0.0001), and 97.19 ± 2.53%, 0.984 (p < 0.0001), respectively. DOR of iDCNN outperformed cDCNN fourfold. iDCNN also outperformed (a) transfer learning-based "Inception V3" paradigm by 11.92% and (b) four types of "conventional machine learning-based systems": k-NN, decision tree, support vector machine, and random forest by 55.13%, 28.36%, 15.35%, and 14.11%, respectively. The AI-based systems can potentially be useful in the early WD diagnosis. Graphical Abstract.
Collapse
Affiliation(s)
- Mohit Agarwal
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Ontario, Kingston, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Athens, Greece
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
12
|
Agarwal M, Saba L, Gupta SK, Carriero A, Falaschi Z, Paschè A, Danna P, El-Baz A, Naidu S, Suri JS. A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort. J Med Syst 2021; 45:28. [PMID: 33496876 PMCID: PMC7835451 DOI: 10.1007/s10916-021-01707-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023]
Abstract
Computer Tomography (CT) is currently being adapted for visualization of COVID-19 lung damage. Manual classification and characterization of COVID-19 may be biased depending on the expert's opinion. Artificial Intelligence has recently penetrated COVID-19, especially deep learning paradigms. There are nine kinds of classification systems in this study, namely one deep learning-based CNN, five kinds of transfer learning (TL) systems namely VGG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, three kinds of machine-learning (ML) systems, namely artificial neural network (ANN), decision tree (DT), and random forest (RF) that have been designed for classification of COVID-19 segmented CT lung against Controls. Three kinds of characterization systems were developed namely (a) Block imaging for COVID-19 severity index (CSI); (b) Bispectrum analysis; and (c) Block Entropy. A cohort of Italian patients with 30 controls (990 slices) and 30 COVID-19 patients (705 slices) was used to test the performance of three types of classifiers. Using K10 protocol (90% training and 10% testing), the best accuracy and AUC was for DCNN and RF pairs were 99.41 ± 5.12%, 0.991 (p < 0.0001), and 99.41 ± 0.62%, 0.988 (p < 0.0001), respectively, followed by other ML and TL classifiers. We show that diagnostics odds ratio (DOR) was higher for DL compared to ML, and both, Bispecturm and Block Entropy shows higher values for COVID-19 patients. CSI shows an association with Ground Glass Opacities (0.9146, p < 0.0001). Our hypothesis holds true that deep learning shows superior performance compared to machine learning models. Block imaging is a powerful novel approach for pinpointing COVID-19 severity and is clinically validated.
Collapse
Affiliation(s)
- Mohit Agarwal
- CSE Department, Bennett University, Greater Noida, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Monserrato, Italy
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, India
| | - Alessandro Carriero
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Zeno Falaschi
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Alessio Paschè
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Pietro Danna
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Ayman El-Baz
- Biomedical Engineering Department, Louisville, KY, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| |
Collapse
|
13
|
Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system. Int J Cardiovasc Imaging 2021; 37:1511-1528. [DOI: 10.1007/s10554-020-02124-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
|
14
|
Skandha SS, Gupta SK, Saba L, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Nicolaides A, Suri JS. 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0. Comput Biol Med 2020; 125:103958. [PMID: 32927257 DOI: 10.1016/j.compbiomed.2020.103958] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. METHODS We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. RESULTS After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. CONCLUSIONS The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
Collapse
Affiliation(s)
- Sanagala S Skandha
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India; CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Greece
| | - Durga P Misra
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
15
|
The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study). J Ultrasound 2020; 24:429-437. [DOI: 10.1007/s40477-020-00503-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023] Open
|
16
|
Kheiri SA, Kunna A, Babiker AY, Alsuhaibani SA, Ahmed RY, Alsammani MA. Histopathological Pattern and Age Distribution, of Malignant Ovarian Tumor among Sudanese Ladies. Open Access Maced J Med Sci 2018. [PMID: 29531580 PMCID: PMC5839424 DOI: 10.3889/oamjms.2018.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION: Ovarian cancer is the cause of a high case-fatality ratio, and most of the cases are diagnosed in late stages. OBJECTIVES: To determine the histopathological types, age distribution, and ovarian tumour stages among diagnosed with ovarian cancer at Al - Amal Tower a multi-referral polyclinic of Radiology & Isotope Center Khartoum (RICK), Sudan. METHODS: All histopathology reports patients’ case from January to June 2015 were reviewed. The cancers classified according to federation international of Obstetrics and Gynecology (FIGO). RESULTS: There were 127 cases of ovarian cancers. Surface epithelial cancers were the most common 77.7% (n = 98), followed by sex cord-stromal cancers 11.23% (n = 14), Germ cell tumor 1.6% (n = 2). Metastatic cancers were seen from colon and breast in 6.3% and 3.9 % of cases respectively. Few cases (14%) of ovarian cancers were reported before 40 years of age, after the age of 50 is a sharp increase in the incidence of a tumour. The mean age at presentation was 52.36 ± 14.210 years, there is mean age of menarche 13.59 ± 2.706 years. Very few patients used HRT (1.6%) or had been on ovulation induction treatment (8.7%). Most of patients 39 (30.7%) presented in stage IIIC, and stage 1V 32 (25.2%) indicating a poor prognosis. CONCLUSION: The incidence of different types of ovarian cancers in the present study is similar to worldwide incidence. The surface epithelial tumour is the commonest ovarian cancer, of which serous adenocarcinoma is the commonest and most of our patients present in late stages.
Collapse
Affiliation(s)
- Sumeya A Kheiri
- Department of Obstetrics and Gynecology, College of Medicine, University of Bahri, Khartoum, Sudan
| | - Abdelillah Kunna
- Department of Obstetrics and Gynecology, College of Medicine, University of Bahri, Khartoum, Sudan
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Sultan A Alsuhaibani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Rami Yousif Ahmed
- Department of Obstetrics and Gynecology, College of Medicine, University of Bahri, Khartoum, Sudan
| | - Mohamed Alkhatim Alsammani
- Department of Obstetrics and Gynecology, College of Medicine, University of Bahri, Khartoum, Sudan.,Department of Obstetrics and Gynecology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
17
|
Faust O, Acharya UR, Meiburger KM, Molinari F, Koh JE, Yeong CH, Kongmebhol P, Ng KH. Comparative assessment of texture features for the identification of cancer in ultrasound images: a review. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, Sanches J, Kumar D, Marinho R, Suri JS. Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:118-134. [PMID: 27208527 DOI: 10.1016/j.cmpb.2016.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE Fatty liver disease (FLD) is one of the most common diseases in liver. Early detection can improve the prognosis considerably. Using ultrasound for FLD detection is highly desirable due to its non-radiation nature, low cost and easy use. However, the results can be slow and ambiguous due to manual detection. The lack of computer trained systems leads to low image quality and inefficient disease classification. Thus, the current study proposes novel, accurate and reliable detection system for the FLD using computer-based training system. MATERIALS AND METHODS One hundred twenty-four ultrasound sample images were selected retrospectively from a database of 62 patients consisting of normal and cancerous. The proposed training system was generated offline parameters using training liver image database. The classifier applied transformation parameters to an online system in order to facilitate real-time detection during the ultrasound scan. The system utilized six sets of features (a total of 128 features), namely Haralick, basic geometric, Fourier transform, discrete cosine transform, Gupta transform and Gabor transform. These features were extracted for both offline training and online testing. Levenberg-Marquardt back propagation network (BPN) classifier was used to classify the liver disease into normal and abnormal categories. RESULTS Random partitioning approach was adapted to evaluate the classifier performance and compute its accuracy. Utilizing all the six sets of 128 features, the computer aided diagnosis (CAD) system achieved classification accuracy of 97.58%. Furthermore, the four performance metrics consisting of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) realized 98.08%, 97.22%, 96.23%, and 98.59%, respectively. CONCLUSION The proposed system was successfully able to detect and classify the FLD. Furthermore, the proposed system was benchmarked against previous methods. The comparison established an advanced set of features in the Levenberg-Marquardt back propagation network reports a significant improvement compared to the existing techniques.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari - Polo di Monserrato, Università di Cagliari, Italy
| | - Nilanjan Dey
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Amira S Ashour
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Egypt
| | - Sourav Samanta
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | | | - Sayan Chakraborty
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - João Sanches
- Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), Lisbon, Portugal
| | - Dinesh Kumar
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - RuiTato Marinho
- Liver Unit, Department of Gastroenterology and Hepatology, Hospital de Santa Maria, Medical School of Lisbon, Portugal
| | - Jasjit S Suri
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Electrical Engineering Department (Affl.), Idaho State University, ID, USA.
| |
Collapse
|
19
|
Dey N, Bose S, Das A, Chaudhuri SS, Saba L, Shafique S, Nicolaides A, Suri JS. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine. J Med Syst 2016; 40:91. [PMID: 26860914 DOI: 10.1007/s10916-016-0451-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India.,Department of Information Technology, Techno India College of Technology, Kolkata, India.,Point of Care Devices, Global Biomedical Technologies, Inc, Roseville, CA, USA
| | - Soumyo Bose
- Department of Information Technology, Techno India College of Technology, Kolkata, India
| | - Achintya Das
- Department of ECE, Kalyani Government Engineering College, Bengal, India
| | - Sheli Sinha Chaudhuri
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
| | - Luca Saba
- Radiology Department, zienda Ospedaliero Universitaria (A.O.U.) di Cagliari, Via Roma, 67, 56126, Pisa, PI, Italy
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK.,Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jasjit S Suri
- Point of Care Devices, Global Biomedical Technologies, Inc, Roseville, CA, USA. .,Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA. .,Electrical Engineering Department (Affl.), Idaho State University, 921 S 8th Ave, Pocatello, ID, 83201, USA.
| |
Collapse
|
20
|
Sudarshan VK, Mookiah MRK, Acharya UR, Chandran V, Molinari F, Fujita H, Ng KH. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review. Comput Biol Med 2015; 69:97-111. [PMID: 26761591 DOI: 10.1016/j.compbiomed.2015.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/12/2015] [Accepted: 12/11/2015] [Indexed: 02/01/2023]
Abstract
Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.
Collapse
Affiliation(s)
- Vidya K Sudarshan
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore
| | | | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Malaysia; Department of Biomedical Engineering, School of Science and Technology, SIM University, 599491, Singapore
| | - Vinod Chandran
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane QLD 4000, Australia
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
| | - Hamido Fujita
- Faculty of Software and Information Science, Iwate Prefectural University (IPU), Iwate 020-0693, Japan
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603, Malaysia
| |
Collapse
|