1
|
Górecka Ż, Idaszek J, Heljak M, Martinez DC, Choińska E, Kulas Z, Święszkowski W. Indocyanine green and iohexol loaded hydroxyapatite in poly(L-lactide-co-caprolactone)-based composite for bimodal near-infrared fluorescence- and X-ray-based imaging. J Biomed Mater Res B Appl Biomater 2024; 112:e35313. [PMID: 37596854 DOI: 10.1002/jbm.b.35313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
This study aimed to develop material for multimodal imaging by means of X-ray and near-infrared containing FDA- and EMA-approved iohexol and indocyanine green (ICG). The mentioned contrast agents (CAs) are hydrophilic and amphiphilic, respectively, which creates difficulties in fabrication of functional polymeric composites for fiducial markers (FMs) with usage thereof. Therefore, this study exploited for the first time the possibility of enhancing the radiopacity and introduction of the NIR fluorescence of FMs by adsorption of the CAs on hydroxyapatite (HAp) nanoparticles. The particles were embedded in the poly(L-lactide-co-caprolactone) (P[LAcoCL]) matrix resulting in the composite material for bimodal near-infrared fluorescence- and X-ray-based imaging. The applied method of material preparation provided homogenous distribution of both CAs with high iohexol loading efficiency and improved fluorescence signal due to hindered ICG aggregation. The material possessed profound contrasting properties for both imaging modalities. Its stability was evaluated during in vitro experiments in phosphate-buffered saline (PBS) and foetal bovine serum (FBS) solutions. The addition of HAp nanoparticles had significant effect on the fluorescence signal. The X-ray radiopacity was stable within minimum 11 weeks, even though the addition of ICG contributed to a faster release of iohexol. The stiffness of the material was not affected by iohexol or ICG, but incorporation of HAp nanoparticles elevated the values of bending modulus by approximately 70%. Moreover, the performed cell study revealed that all tested materials were not cytotoxic. Thus, the developed material can be successfully used for fabrication of FMs.
Collapse
Affiliation(s)
- Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Joanna Idaszek
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Heljak
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Diana C Martinez
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Emilia Choińska
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zbigniew Kulas
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Wojciech Święszkowski
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
2
|
Ainsworth V, Moreau M, Guthier R, Zegeye Y, Kozono D, Swanson W, Jandel M, Oh P, Quon H, Hobbs RF, Yasmin-Karim S, Sajo E, Ngwa W. Smart Radiotherapy Biomaterials for Image-Guided In Situ Cancer Vaccination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1844. [PMID: 37368273 PMCID: PMC10303169 DOI: 10.3390/nano13121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Recent studies have highlighted the potential of smart radiotherapy biomaterials (SRBs) for combining radiotherapy and immunotherapy. These SRBs include smart fiducial markers and smart nanoparticles made with high atomic number materials that can provide requisite image contrast during radiotherapy, increase tumor immunogenicity, and provide sustained local delivery of immunotherapy. Here, we review the state-of-the-art in this area of research, the challenges and opportunities, with a focus on in situ vaccination to expand the role of radiotherapy in the treatment of both local and metastatic disease. A roadmap for clinical translation is outlined with a focus on specific cancers where such an approach is readily translatable or will have the highest impact. The potential of FLASH radiotherapy to synergize with SRBs is discussed including prospects for using SRBs in place of currently used inert radiotherapy biomaterials such as fiducial markers, or spacers. While the bulk of this review focuses on the last decade, in some cases, relevant foundational work extends as far back as the last two and half decades.
Collapse
Affiliation(s)
- Victoria Ainsworth
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Michele Moreau
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Romy Guthier
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
| | - Ysaac Zegeye
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
- Department of Cell and Molecular Biology, Northeastern University, Boston, MA 02115, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
| | - William Swanson
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Marian Jandel
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Philmo Oh
- NanoCan Therapeutics Corporation, Princeton, NJ 08540, USA;
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
| | - Robert F. Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (D.K.); (S.Y.-K.)
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erno Sajo
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21201, USA; (M.M.); (H.Q.); (R.F.H.)
- Department of Physics, Medical Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA (M.J.); (E.S.)
| |
Collapse
|
3
|
Brown K, Ghita M, Prise KM, Butterworth KT. Feasibility and guidelines for the use of an injectable fiducial marker (BioXmark ®) to improve target delineation in preclinical radiotherapy studies using mouse models. F1000Res 2023; 12:526. [PMID: 38799243 PMCID: PMC11116939 DOI: 10.12688/f1000research.130883.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Preclinical models of radiotherapy (RT) response are vital for the continued success and evolution of RT in the treatment of cancer. The irradiation of tissues in mouse models necessitates high levels of precision and accuracy to recapitulate clinical exposures and limit adverse effects on animal welfare. This requirement has been met by technological advances in preclinical RT platforms established over the past decade. Small animal RT systems use onboard computed tomography (CT) imaging to delineate target volumes and have significantly refined radiobiology experiments with major 3Rs impacts. However, the CT imaging is limited by the differential attenuation of tissues resulting in poor contrast in soft tissues. Clinically, radio-opaque fiducial markers (FMs) are used to establish anatomical reference points during treatment planning to ensure accuracy beam targeting, this approach is yet to translate back preclinical models. METHODS We report on the use of a novel liquid FM BioXmark ® developed by Nanovi A/S (Kongens Lyngby, Denmark) that can be used to improve the visualisation of soft tissue targets during beam targeting and minimise dose to surrounding organs at risk. We present descriptive protocols and methods for the use of BioXmark ® in experimental male and female C57BL/6J mouse models. RESULTS These guidelines outline the optimum needle size for uptake (18-gauge) and injection (25- or 26-gauge) of BioXmark ® for use in mouse models along with recommended injection volumes (10-20 µl) for visualisation on preclinical cone beam CT (CBCT) scans. Injection techniques include subcutaneous, intraperitoneal, intra-tumoral and prostate injections. CONCLUSIONS The use of BioXmark ® can help to standardise targeting methods, improve alignment in preclinical image-guided RT and significantly improve the welfare of experimental animals with the reduction of normal tissue exposure to RT.
Collapse
Affiliation(s)
- Kathryn Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| |
Collapse
|
4
|
Lim Joon D, Berry C, Harris B, Tacey M, Smith D, Lawrentschuk N, Schneider ME, Fraser O, Hall M, Chao M, Foroudi F, Jenkins T, Angus D, Wada M, Sengupta S, Khoo V. A clinical study comparing polymer and gold fiducials for prostate cancer radiotherapy. Front Oncol 2023; 12:1023288. [PMID: 36818674 PMCID: PMC9930895 DOI: 10.3389/fonc.2022.1023288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/30/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Image guidance with gold fiducials improves outcomes of prostate radiotherapy. However, gold produces artefact on CT imaging, interfering with contouring and verification. The purpose of this study was to compare polymer to standard gold fiducials using radiotherapy imaging modalities to assess the visibility and artefact. Methods Twenty eight patients with locally advanced prostate cancer were enrolled, half had three polymer fiducials implanted into the prostate and half underwent insertion of gold fiducials. Patients were imaged with CT, T2 weighted MRI, cone-beam CT (CBCT) and planar KV images. Fiducials were scored for visibility and assessed for CT artefact in surrounding prostate tissue. The artefact was quantified from Hounsfield number histograms and separated into percentile ranges and proportion of voxels in HU normal tissue range of a 2cm sphere surrounding the fiducial. Results Gold and polymer fiducials were sufficiently visible for CT and CBCT verification. The gold fiducials could be visualized well on KV planar imaging; however, the polymer markers were obscured by pelvic bones. Neither polymer nor gold fiducials could be visualized on MRI. The polymer fiducial produced less artefact than gold on CT, having less voxel spread for the HU percentile ranges and a greater proportion of voxels in the normal tissue range. Conclusions Polymer fiducials are a more suitable fiducial than gold for CT/CBCT in prostate cancer radiotherapy, demonstrating minimal artefact and good visibility on CT. However, they were not well seen on MRI or KV imaging and thus not suitable for co-registration or planar KV verification.
Collapse
Affiliation(s)
- Daryl Lim Joon
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia,*Correspondence: Daryl Lim Joon,
| | - Colleen Berry
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Benjamin Harris
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Mark Tacey
- Office of Research, The Northern Hospital, Epping, VIC, Australia,Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Carlton, VIC, Australia
| | - Drew Smith
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | | | | | - Olivia Fraser
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Megan Hall
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Michael Chao
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Farshad Foroudi
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Trish Jenkins
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - David Angus
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Morikatsu Wada
- Radiation Oncology Department, Olivia Newton-John Cancer Centre, Heidelberg, VIC, Australia
| | - Shomik Sengupta
- Austin Health, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Daryl Lim Joon,
| | - Vincent Khoo
- Department of Clinical Oncology, Royal Marsden Hospital, London, United Kingdom,*Correspondence: Daryl Lim Joon,
| |
Collapse
|
5
|
Moreau M, Richards G, Yasmin-Karim S, Narang A, Deville C, Ngwa W. A liquid immunogenic fiducial eluter for image-guided radiotherapy. Front Oncol 2022; 12:1020088. [PMID: 36620560 PMCID: PMC9812550 DOI: 10.3389/fonc.2022.1020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Fiducials are routinely used to provide image-guidance during radiotherapy. Here, a new nanoparticle-based liquid immunogenic fiducial is investigated for its potential to provide image-guidance, while also enhancing treatment outcomes. Methods This fiducial, liquid immunogenic fiducial eluter (LIFE) biomaterial, is formulated with natural biodegradable polymers, chitosan and sodium alginate with radio-sensitizing nanoparticles, and immunoadjuvant like anti-CD40 monoclonal antibody. Once administered intra-tumorally, this liquid smart radiotherapy biomaterial congeals within the calcium rich tumor microenvironment. The potential use of LIFE biomaterial for providing image guidance in magnetic resonance imaging (MRI) and computed tomography (CT) was investigated over different time period in a pre-clinical tumored mouse model. Results Results showed that the LIFE biomaterial can provide both MRI contrast and CT imaging contrast over 3-weeks, with gradual decrease of the contrast over time, as the LIFE biomaterial biodegrades. Results also showed the LIFE biomaterial significantly slowed tumor growth and prolonged mice survival (p < 0.0001) over time. Discussion The results highlight the potential use of the LIFE biomaterial as a multi-functional smart radiotherapy biomaterial that could be developed and optimized for hypo-fractionated radiotherapy applications and combining radiotherapy with immunoadjuvants.
Collapse
Affiliation(s)
- Michele Moreau
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States,Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Michele Moreau, ; Wilfred Ngwa,
| | - Geraud Richards
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Amol Narang
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Curtiland Deville
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States,Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Michele Moreau, ; Wilfred Ngwa,
| |
Collapse
|
6
|
Górecka Ż, Choińska E, Heljak M, Święszkowski W. Long-Term In Vitro Assessment of Biodegradable Radiopaque Composites for Fiducial Marker Fabrication. Int J Mol Sci 2022; 23:ijms232214363. [PMID: 36430842 PMCID: PMC9697335 DOI: 10.3390/ijms232214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
Abstract
Biodegradable polymer-based composite materials may be successfully utilised to fabricate fiducial markers (FMs), which are intended to precisely label tumour margins during image-guided surgery or radiotherapy. However, due to matrix degradability, the stability of the functional properties of FMs depends on the chosen polymer. Thus, this study aimed to investigate novel radiopaque composites which varied in the polymeric matrix-polycaprolactone (PCL), poly(L-lactide-co-caprolactone) (P[LAcoCL]) with two molar ratios (70:30 and 85:15), and poly(L-lactide-co-glycolide) (with molar ratio 82:18). The radiopaque component of the materials was a mixture of barium sulphate and hydroxyapatite. The changes in water contact angle, stiffness, and radiopacity occurring during the 24-week-long degradation experiment were examined for the first time. This study comprehensively analyses the microstructural causes of composites behaviour within degradation experiments using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permitted chromatography (GPC), and scanning electron microscopy (SEM). The obtained results suggest that the utilized biodegradable matrix plays an essential role in radiopaque composite properties and stability thereof. This long-term in vitro assessment enabled a comparison of the materials and aided in choosing the most favourable composite for FMs' fabrication.
Collapse
Affiliation(s)
- Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki Str., 02-882 Warsaw, Poland
| | - Emilia Choińska
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Marcin Heljak
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Wojciech Święszkowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki Str., 02-882 Warsaw, Poland
- Correspondence:
| |
Collapse
|
7
|
Prisciandaro J, Zoberi JE, Cohen G, Kim Y, Johnson P, Paulson E, Song W, Hwang KP, Erickson B, Beriwal S, Kirisits C, Mourtada F. AAPM Task Group Report 303 endorsed by the ABS: MRI Implementation in HDR Brachytherapy-Considerations from Simulation to Treatment. Med Phys 2022; 49:e983-e1023. [PMID: 35662032 DOI: 10.1002/mp.15713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Task Group (TG) on Magnetic Resonance Imaging (MRI) Implementation in High Dose Rate (HDR) Brachytherapy - Considerations from Simulation to Treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR brachytherapy (BT) workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT related TG reports, and new image guided recommendations beyond CT based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA,1 an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society (ABS). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Gil'ad Cohen
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Perry Johnson
- University of Florida Health Proton Therapy Institute, Jacksonville, FL
| | | | | | - Ken-Pin Hwang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Sushil Beriwal
- Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | | | - Firas Mourtada
- Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Vasmel JE, Groot Koerkamp ML, Mandija S, Veldhuis WB, Moman MR, Froeling M, van der Velden BH, Charaghvandi RK, Vreuls CP, van Diest PJ, van Leeuwen AG, van Gorp J, Philippens ME, van Asselen B, Lagendijk JJ, Verkooijen HM, van den Bongard HD, Houweling AC. Dynamic Contrast-enhanced and Diffusion-weighted Magnetic Resonance Imaging for Response Evaluation After Single-Dose Ablative Neoadjuvant Partial Breast Irradiation. Adv Radiat Oncol 2022; 7:100854. [PMID: 35387418 PMCID: PMC8977856 DOI: 10.1016/j.adro.2021.100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose We aimed to evaluate changes in dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) scans acquired before and after single-dose ablative neoadjuvant partial breast irradiation (NA-PBI), and explore the relation between semiquantitative MRI parameters and radiologic and pathologic responses. Methods and Materials We analyzed 3.0T DCE and DW-MRI of 36 patients with low-risk breast cancer who were treated with single-dose NA-PBI, followed by breast-conserving surgery 6 or 8 months later. MRI was acquired before NA-PBI and 1 week, 2, 4, and 6 months after NA-PBI. Breast radiologists assessed the radiologic response and breast pathologists scored the pathologic response after surgery. Patients were grouped as either pathologic responders or nonresponders (<10% vs ≥10% residual tumor cells). The semiquantitative MRI parameters evaluated were time to enhancement (TTE), 1-minute relative enhancement (RE1min), percentage of enhancing voxels (%EV), distribution of washout curve types, and apparent diffusion coefficient (ADC). Results In general, the enhancement increased 1 week after NA-PBI (baseline vs 1 week median – TTE: 15s vs 10s; RE1min: 161% vs 197%; %EV: 47% vs 67%) and decreased from 2 months onward (6 months median – TTE: 25s; RE1min: 86%; %EV: 12%). Median ADC increased from 0.83 × 10−3 mm2/s at baseline to 1.28 × 10−3 mm2/s at 6 months. TTE, RE1min, and %EV showed the most potential to differentiate between radiologic responses, and TTE, RE1min, and ADC between pathologic responses. Conclusions Semiquantitative analyses of DCE and DW-MRI showed changes in relative enhancement and ADC 1 week after NA-PBI, indicating acute inflammation, followed by changes indicating tumor regression from 2 to 6 months after radiation therapy. A relation between the MRI parameters and radiologic and pathologic responses could not be proven in this exploratory study.
Collapse
|
9
|
Hybrid 3D T1-weighted gradient-echo sequence for fiducial marker detection and tumor delineation via magnetic resonance imaging in liver stereotactic body radiation therapy. Phys Med 2022; 95:9-15. [DOI: 10.1016/j.ejmp.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
|
10
|
Górecka Ż, Grzelecki D, Paskal W, Choińska E, Gilewicz J, Wrzesień R, Macherzyński W, Tracz M, Budzińska-Wrzesień E, Bedyńska M, Kopka M, Jackowska-Tracz A, Świątek-Najwer E, Włodarski PK, Jaworowski J, Święszkowski W. Biodegradable Fiducial Markers for Bimodal Near-Infrared Fluorescence- and X-ray-Based Imaging. ACS Biomater Sci Eng 2022; 8:859-870. [PMID: 35020357 DOI: 10.1021/acsbiomaterials.1c01259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study aimed to evaluate, for the first time, implantable, biodegradable fiducial markers (FMs), which were designed for bimodal, near-infrared fluorescence-based (NIRF) and X-ray-based imaging. The developed FMs had poly(l-lactide-co-caprolactone)-based core-shell structures made of radiopaque (core) and fluorescent (shell) composites with a poly(l-lactide-co-caprolactone) matrix. The approved for human use contrast agents were utilized as fillers. Indocyanine green was applied to the shell material, whereas in the core materials, iohexol and barium sulfate were compared. Moreover, the possibility of tailoring the stability of the properties of the core materials by the addition of hydroxyapatite (HAp) was examined. The performed in situ (porcine tissue) and in vivo experiment (rat model) confirmed that the developed FMs possessed pronounced contrasting properties in NIRF and X-ray imaging. The presence of HAp improved the radiopacity of FMs at the initial state. It was also proved that, in iohexol-containing FMs, the presence of HAp slightly decreased the stability of contrasting properties, while in BaSO4-containing ones, changes were less pronounced. A comprehensive material analysis explaining the differences in the stability of the contrasting properties was also presented. The tissue response around the FMs with composite cores was comparable to that of the FMs with a pristine polymeric core. The developed composite FMs did not cause serious adverse effects on the surrounding tissues even when irradiated in vivo. The developed FMs ensured good visibility for NIRF image-supported tumor surgery and the following X-ray image-guided radiotherapy. Moreover, this study replenishes a scanty report regarding similar biodegradable composite materials with a high potential for application.
Collapse
Affiliation(s)
- Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland.,Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Dariusz Grzelecki
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.,Department of Orthopedics and Rheumoorthopedics, Professor Adam Gruca Teaching Hospital, Centre of Postgraduate Medical Education, 05-400 Otwock, Poland
| | - Wiktor Paskal
- Centre for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Emilia Choińska
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Joanna Gilewicz
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Robert Wrzesień
- Central Laboratory of Experimental Animal, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wojciech Macherzyński
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland
| | - Michał Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | | | - Maria Bedyńska
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Kopka
- Centre for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ewelina Świątek-Najwer
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-371 Wroclaw, Poland
| | - Paweł K Włodarski
- Centre for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Janusz Jaworowski
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wojciech Święszkowski
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| |
Collapse
|
11
|
Hall WA, Paulson E, Li XA, Erickson B, Schultz C, Tree A, Awan M, Low DA, McDonald BA, Salzillo T, Glide-Hurst CK, Kishan AU, Fuller CD. Magnetic resonance linear accelerator technology and adaptive radiation therapy: An overview for clinicians. CA Cancer J Clin 2022; 72:34-56. [PMID: 34792808 PMCID: PMC8985054 DOI: 10.3322/caac.21707] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.
Collapse
MESH Headings
- History, 20th Century
- History, 21st Century
- Humans
- Magnetic Resonance Imaging, Interventional/history
- Magnetic Resonance Imaging, Interventional/instrumentation
- Magnetic Resonance Imaging, Interventional/methods
- Magnetic Resonance Imaging, Interventional/trends
- Neoplasms/diagnostic imaging
- Neoplasms/radiotherapy
- Particle Accelerators
- Radiation Oncology/history
- Radiation Oncology/instrumentation
- Radiation Oncology/methods
- Radiation Oncology/trends
- Radiotherapy Planning, Computer-Assisted/history
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy Planning, Computer-Assisted/trends
Collapse
Affiliation(s)
- William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Tree
- The Royal Marsden National Health Service Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel A. Low
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Travis Salzillo
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Carri K. Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Yasue K, Fuse H, Asano Y, Kato M, Shinoda K, Ikoma H, Fujisaki T, Tamaki Y. Investigation of fiducial marker recognition possibility by water equivalent length in real-time tracking radiotherapy. Jpn J Radiol 2021; 40:318-325. [PMID: 34655387 DOI: 10.1007/s11604-021-01207-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Real-time tumor tracking radiotherapy (RTRT) systems typically use fiducial markers implanted near the tumor to track the target using X-ray fluoroscopy. Template pattern matching, used in tracking, is often used to automatically localize the fiducial markers. In radiotherapy of the liver, the thickness of the body that can recognize the fiducial markers must be clinically assessed. The purpose of this study was to quantify the recognition of fiducial markers according to body thickness in stereotactic body radiotherapy of the liver using clinical images obtained using SyncTraX FX4. The recognition scores of fiducial markers were examined in relation to water equivalent length (WEL), tube current, and each flat panel detector. The relationship between the contrast ratio of the fiducial marker and the background and the WEL was also investigated. The average recognition score was found to be less than 20 when the WEL was greater than 25 cm. The probability of successful tracking of image recognition was mostly smaller than 0.8 when the WEL was over 30 cm. The relationship between WEL and tube current did not significantly differ between 100 and 140 mA, but there was a significant difference (p < 0.05) for all other combinations. To ensure tracking of fiducial markers during SBRT, if the WEL representing body thickness is longer than 25 cm, the X-ray fluoroscopy arrangement should be determined based on the WEL.
Collapse
Affiliation(s)
- Kenji Yasue
- Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan.,Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Hiraku Fuse
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan.
| | - Yuto Asano
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Miho Kato
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Kazuya Shinoda
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Hideaki Ikoma
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Tatsuya Fujisaki
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan
| | - Yoshio Tamaki
- Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| |
Collapse
|
13
|
McGeachy P, Watt E, Husain S, Martell K, Martinez P, Sawhney S, Thind K. MRI-TRUS registration methodology for TRUS-guided HDR prostate brachytherapy. J Appl Clin Med Phys 2021; 22:284-294. [PMID: 34318581 PMCID: PMC8364261 DOI: 10.1002/acm2.13292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose High‐dose‐rate (HDR) prostate brachytherapy is an established technique for whole‐gland treatment. For transrectal ultrasound (TRUS)‐guided HDR prostate brachytherapy, image fusion with a magnetic resonance image (MRI) can be performed to make use of its soft‐tissue contrast. The MIM treatment planning system has recently introduced image registration specifically for HDR prostate brachytherapy and has incorporated a Predictive Fusion workflow, which allows clinicians to attempt to compensate for differences in patient positioning between imaging modalities. In this study, we investigate the accuracy of the MIM algorithms for MRI‐TRUS fusion, including the Predictive Fusion workflow. Materials and Methods A radiation oncologist contoured the prostate gland on both TRUS and MRI. Four registration methodologies to fuse the MRI and the TRUS images were considered: rigid registration (RR), contour‐based (CB) deformable registration, Predictive Fusion followed by RR (pfRR), and Predictive Fusion followed by CB deformable registration (pfCB). Registrations were compared using the mean distance to agreement and the Dice similarity coefficient for the prostate as contoured on TRUS and the registered MRI prostate contour. Results Twenty patients treated with HDR prostate brachytherapy at our center were included in this retrospective evaluation. For the cohort, mean distance to agreement was 2.1 ± 0.8 mm, 0.60 ± 0.08 mm, 2.0 ± 0.5 mm, and 0.59 ± 0.06 mm for RR, CB, pfRR, and pfCB, respectively. Dice similarity coefficients were 0.80 ± 0.05, 0.93 ± 0.02, 0.81 ± 0.03, and 0.93 ± 0.01 for RR, CB, pfRR, and pfCB, respectively. The inclusion of the Predictive Fusion workflow did not significantly improve the quality of the registration. Conclusions The CB deformable registration algorithm in the MIM treatment planning system yielded the best geometric registration indices. MIM offers a commercial platform allowing for easier access and integration into clinical departments with the potential to play an integral role in future focal therapy applications for prostate cancer.
Collapse
Affiliation(s)
- Philip McGeachy
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Watt
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Siraj Husain
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Kevin Martell
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Pedro Martinez
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Summit Sawhney
- Department of Radiology and Diagnostic Imaging, University of Calgary, Calgary, AB, Canada
| | - Kundan Thind
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Shahid W, Mukhtar R, Rizvi SFA, Shahid S, Iqbal MA. Evaluation and validation of tungsten fiducial marker-based image-guided radiotherapy. Biomed Phys Eng Express 2021; 7. [PMID: 33862602 DOI: 10.1088/2057-1976/abf90b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/16/2021] [Indexed: 11/11/2022]
Abstract
In this research work, a simple homemade cubic phantom was designed to validate the Image-Guided Radiotherapy (IGRT) set up and verified with the help of tungsten fiducial markers (size 2-3 mm) inserted into the cubic phantom. Phantom made up of Styrofoam, was scanned with the help of 16 slice Toshiba CT scanner where each slice was of 1 mm thickness and HU level set to -1000. A radio-opaque contrast medium was rubbed on the phantom to visualize the scanner images. Once the iso-center had been marked on a phantom with the help of in-room positioning laser and the fields (RT-LAT and AP) were applied on the contoured body of the phantom in Varian's ARIA-11 Eclipse dosimeter software, the same position of the phantom was reproduced on Varian's Linear Accelerator DHX. Known shifts of 3.0 to 30.0 mm from the marked iso-center were applied on the phantom by moving the couch in all six directions one by one. On each applied couch shift, an x-ray image of the phantom was acquired with the help of an MV portal imager of Linac in AP and RT-LAT direction. This image was superimposed with a reference image of phantom and shift accuracy calculated by ARIA-11 software was noted down. It turned out that irrespective of the position of the phantom on the couch, the calculated corrected shift and deviation from reference position was always between ± 1-2 mm which is the required accuracy for IGRT according to International Atomic Energy Agency (IAEA). This process was repeated 40 times and each time, the corrected shift came out to be ± 1-2 mm. We can conclude that our system is safe and accurate enough to perfectly position the actual patient for IGRT.
Collapse
Affiliation(s)
- Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore-54000, Punjab, Pakistan
| | - Raheel Mukhtar
- Department of Physics, The University of Lahore, Lahore-54000, Punjab, Pakistan
| | - Syed Faheem Askari Rizvi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou-730000, Gansu, People's Republic of China
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore-54000, Punjab, Pakistan
| | - Muhammad Aamir Iqbal
- School of Material Science and Engineering, Zhejiang University, People's Republic of China
| |
Collapse
|
15
|
A phantom study to contrast and compare polymer and gold fiducial markers in radiotherapy simulation imaging. Sci Rep 2021; 11:8931. [PMID: 33903651 PMCID: PMC8076319 DOI: 10.1038/s41598-021-88300-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
To assess visibility and artifact characteristics of polymer fiducials compared to standard gold fiducials for radiotherapy CT and MRI simulation. Three gold and three polymer fiducials were inserted into a CT and MRI tissue-equivalent phantom that approximated the prostate cancer radiotherapy configuration. The phantom and fiducials were imaged on CT and MRI. Images were assessed in terms of fiducial visibility and artifact. ImageJ was employed to quantify the pixel gray-scale of each fiducial and artifact. Fiducial gray-scale histograms and profiles were generated for analysis. Objective measurements of the contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and artifact index (AI) were calculated. The CT images showed that the gold fiducials are visually brighter, with greater contrast than the polymer. The higher peak values illustrate this in the line profiles. However, they produce bright radiating and dark shadowing artifacts. This is depicted by the greater width of line profiles and the disruption of phantom area profiles. Quantitatively this results in greater percentile ranges of the histograms. Furthermore, for CT, gold had a higher CNR than polymer, relative to the phantom. However, the gold CNR and SNR were degraded by the greater artifact and thus AI. Both fiducials were visible on MRI and had similar histograms and profiles that were also reflected in comparable CNR, SNR and AI. Polymer fiducials were well visualized in a phantom on CT and MR and produce less artifact than the gold fiducials. Polymer markers could enhance the quality and accuracy of radiotherapy co-registration and planning but require clinical confirmation.
Collapse
|
16
|
Hijab A, Tocco B, Hanson I, Meijer H, Nyborg CJ, Bertelsen AS, Smeenk RJ, Smith G, Michalski J, Baumann BC, Hafeez S. MR-Guided Adaptive Radiotherapy for Bladder Cancer. Front Oncol 2021; 11:637591. [PMID: 33718230 PMCID: PMC7947660 DOI: 10.3389/fonc.2021.637591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has an important role in the curative and palliative treatment settings for bladder cancer. As a target for radiotherapy the bladder presents a number of technical challenges. These include poor tumor visualization and the variability in bladder size and position both between and during treatment delivery. Evidence favors the use of magnetic resonance imaging (MRI) as an important means of tumor visualization and local staging. The availability of hybrid systems incorporating both MRI scanning capabilities with the linear accelerator (MR-Linac) offers opportunity for in-room and real-time MRI scanning with ability of plan adaption at each fraction while the patient is on the treatment couch. This has a number of potential advantages for bladder cancer patients. In this article, we examine the technical challenges of bladder radiotherapy and explore how magnetic resonance (MR) guided radiotherapy (MRgRT) could be leveraged with the aim of improving bladder cancer patient outcomes. However, before routine clinical implementation robust evidence base to establish whether MRgRT translates into improved patient outcomes should be ascertained.
Collapse
Affiliation(s)
- Adham Hijab
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Boris Tocco
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ian Hanson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Hanneke Meijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gillian Smith
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Brian C Baumann
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Shaista Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Lim Joon D, Berlangieri A, Harris B, Tacey M, O'Meara R, Pitt B, Viotto A, Brown K, Schneider M, Lawrentschuk N, Sengupta S, Berry C, Jenkins T, Chao M, Wada M, Foroudi F, Khoo V. Exploratory models comparing ethiodized oil-glue and gold fiducials for bladder radiotherapy image-guidance. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 17:77-83. [PMID: 33898783 PMCID: PMC8058020 DOI: 10.1016/j.phro.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Background and purpose Image-guidance with fiducials has been shown to improve pelvic radiotherapy outcome. However, bladder fiducials using ethiodized oil (EO) alone can disperse widely, and gold causes Computed Tomography scan (CT) metal artifacts. The study's purpose was to investigate the ability to deliver EO-tissue glue fiducials and compare them to gold for bladder radiotherapy image guidance. Materials and methods A fluid-filled porcine bladder model was used to assess the ability to cystoscopically inject visible EO glue fiducials into the submucosa. We then transferred the bladders into a porcine pelvis for imaging and compared them to gold fiducials using CT, Cone Beam CT (CBCT), and kilovoltage (KV) planar views. A tissue-equivalent phantom was utilized to analyze the CT number Hounsfield Unit (HU) characteristics and artifacts of the glue and gold fiducials. Percentile ranges and normal tissue voxel percentages of the subsequent CT number voxel histogram from a 2 cm sphere surrounding the fiducial was used to characterize the artifact. Results We successfully delivered all EO glue fiducials into the porcine bladders as discrete fiducials. They were well seen on CT, CBCT, and KV imaging. The glue fiducials had lower CT number values, but less CT number spread of the voxel percentile ranges consistent with the diminished contrast and less artifact than gold. The glue fiducial types had similar CT number characteristics. Conclusion This study has shown that EO glue fiducials can be delivered with online visualization qualities comparable to gold fiducials without metal-related artifacts.
Collapse
Affiliation(s)
- Daryl Lim Joon
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia.,Monash University, Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Wellington Rd, Clayton, Victoria 3800, Australia
| | - Alexandra Berlangieri
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Benjamin Harris
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Mark Tacey
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Rachel O'Meara
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Brent Pitt
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Angela Viotto
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Kerryn Brown
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Michal Schneider
- Monash University, Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Wellington Rd, Clayton, Victoria 3800, Australia
| | - Nathan Lawrentschuk
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Shomik Sengupta
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Colleen Berry
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Trish Jenkins
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Michael Chao
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Morikatsu Wada
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Farshad Foroudi
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Vincent Khoo
- Olivia Newton John Cancer Center, Radiation Oncology, 145 Studley Rd, Heidelberg, Victoria 3084, Australia.,Monash University, Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Wellington Rd, Clayton, Victoria 3800, Australia.,Royal Marsden NHS Foundation Trust, 203 Fulham Rd, Chelsea, London SW3 6JJ, United Kingdom
| |
Collapse
|
18
|
Wang T, Inubushi S, Ikeo N, Mukai T, Okumura K, Akasaka H, Yada R, Yoshida K, Miyawaki D, Ishihara T, Nakaoka A, Sasaki R. Novel artifact-robust and highly visible zinc solid fiducial marker for kilovoltage x-ray image-guided radiation therapy. Med Phys 2020; 47:4703-4710. [PMID: 32696571 DOI: 10.1002/mp.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To develop a novel biocompatible solid fiducial marker that prevents radiopaque imaging artifacts and also maintains high imaging contrast for kilovoltage x-ray image-guided radiation therapy. METHODS The fiducial marker was made of pure zinc. An in-house water-equivalent phantom was designed to evaluate artifacts and visibility under various simulated treatment scenarios. Image artifacts were quantitatively assessed in terms of the metal artifact index (MAI) on kilovoltage computed tomography (CT) and cone-beam CT (CBCT) scans. Marker visibility was evaluated on two types of kilovoltage planar x-ray images in terms of the contrast-to-background ratio (CBR). Comparisons with a conventional gold fiducial marker were conducted. RESULTS The use of zinc rather than a gold marker mitigates imaging artifacts. The MAI near the zinc marker decreased by 76, 79, and 77 % in CT, and by 77 (81), 74 (80), and 79 (85) % in CBCT full-fan (half-fan) scans, when using one-, two-, and three-marker phantom settings, respectively. The high-contrast part of the zinc marker exhibited CBRs above 2.00 for 28/32 exposures under four (lung, tissue, low-density bone, and high-density bone) different simulation scenarios, making its visibility comparable to that of the gold marker (30/32 exposures with CBRs > 2.00). CONCLUSIONS We developed a biocompatible, artifact-robust, and highly visible solid zinc fiducial marker. Although further evaluation is needed in clinical settings, our findings suggest its feasibility and benefits for kilovoltage x-ray image-guided radiation therapy.
Collapse
Affiliation(s)
- Tianyuan Wang
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Sachiko Inubushi
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Naoko Ikeo
- Department of Mechanical Engineering, Kobe University Graduate School of Engineering Faculty of Engineering, 1-1 Rokkodai-cho, Kobe, Hyogo, 657-8501, Japan
| | - Toshiji Mukai
- Department of Mechanical Engineering, Kobe University Graduate School of Engineering Faculty of Engineering, 1-1 Rokkodai-cho, Kobe, Hyogo, 657-8501, Japan
| | - Keisuke Okumura
- Centre for Radiology and Radiation Oncology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Ryuichi Yada
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
19
|
Evaluation of a Novel Liquid Fiducial Marker, BioXmark ®, for Small Animal Image-Guided Radiotherapy Applications. Cancers (Basel) 2020; 12:cancers12051276. [PMID: 32443537 PMCID: PMC7280978 DOI: 10.3390/cancers12051276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
BioXmark® (Nanovi A/S, Denmark) is a novel fiducial marker based on a liquid, iodine-based and non-metallic formulation. BioXmark® has been clinically validated and reverse translated to preclinical models to improve cone-beam CT (CBCT) target delineation in small animal image-guided radiotherapy (SAIGRT). However, in phantom image analysis and in vivo evaluation of radiobiological response after the injection of BioXmark® are yet to be reported. In phantom measurements were performed to compare CBCT imaging artefacts with solid fiducials and determine optimum imaging parameters for BioXmark®. In vivo stability of BioXmark® was assessed over a 5-month period, and the impact of BioXmark® on in vivo tumour response from single-fraction and fractionated X-ray exposures was investigated in a subcutaneous syngeneic tumour model. BioXmark® was stable, well tolerated and detectable on CBCT at volumes ≤10 µL. Our data showed imaging artefacts reduced by up to 84% and 89% compared to polymer and gold fiducial markers, respectively. BioXmark® was shown to have no significant impact on tumour growth in control animals, but changes were observed in irradiated animals injected with BioXmark® due to alterations in dose calculations induced by the sharp contrast enhancement. BioXmark® is superior to solid fiducials with reduced imaging artefacts on CBCT. With minimal impact on the tumour growth delay, BioXmark® can be implemented in SAIGRT to improve target delineation and reduce set-up errors.
Collapse
|
20
|
Singhrao K, Ruan D, Fu J, Gao Y, Chee G, Yang Y, King C, Hu P, Kishan AU, Lewis JH. Quantification of fiducial marker visibility for MRI-only prostate radiotherapy simulation. Phys Med Biol 2020; 65:035015. [PMID: 31881546 DOI: 10.1088/1361-6560/ab65db] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To objectively compare the suitability of MRI pulse sequences and commercially available fiducial markers (FMs) for MRI-only prostate radiotherapy simulation. Most FMs appear as small signal voids in MRI images making them difficult to differentiate from tissue heterogeneities such as calcifications. In this study we use quantitative metrics to objectively evaluate the visibility of FMs in 27 patients and an anthropomorphic phantom with a variety of standard clinical MRI pulse sequences and commercially available FMs. FM visibility was quantified using the local contrast-to-noise-ratio (lCNR), the difference between the 80th and 20th percentile iso-intensity FM volumes (V fall) and the largest iso-intensity volume that can be distinguished from background: apparent-marker-volume (AMV). A larger lCNR and AMV, and smaller V fall represents a more easily identifiable FM. The number of non-marker objects visualized by each pulse sequence was calculated using FM-derived template-matching. The FM-based target-registration-error (TRE) between each MRI and the planning-CT image was calculated. Fiducial marker visibility was rated by two medical physicists with over three years of experience examining MRI-only prostate simulation images. The rater's classification accuracy was quantified using the F 1 score, which is the harmonic mean of the rater's precision and recall. These quantitative metrics and human observer ratings were used to evaluate FM identifiability in images from nine subtypes of T 1-weighted, T 2-weighted and gradient echo (GRE) pulse sequences in a 27-patient study. A phantom study was conducted to quantify the visibility of 8 commercially available FMs. In the patient study, the largest mean lCNR and AMV and, smallest normalized V fall were produced by the 3.0 T multiple-echo GRE pulse sequence (T 1-VIBE, 2° flip angle, 1.23 ms and 2.45 ms echo-times). This pulse sequence produced no false marker detections and TREs less than 2 mm in the left-right, anterior-posterior and cranial-caudal directions, respectively. Human observers rated the 1.23 ms echo-time GRE images with the best average marker visibility score of 100% and an F 1 score of 1. In the phantom study, the Gold-Anchor GA-200X-20-B (deployed in a folded configuration) produced the largest sequence averaged lCNR and AMV measurements at 16.1 and 16.7 mm3, respectively. Using quantitative visibility and distinguishability metrics and human observer ratings, the patient study demonstrated that multiple-echo GRE images produced the best gold FM visibility and distinguishability. The phantom study demonstrated that markers manufactured from platinum or iron-doped gold quantitatively produced superior visibility compared to their pure gold counterparts.
Collapse
Affiliation(s)
- Kamal Singhrao
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Slagowski JM, Colbert LE, Cazacu IM, Singh BS, Martin R, Koay EJ, Taniguchi CM, Koong AC, Bhutani MS, Herman JM, Beddar S. Evaluation of the Visibility and Artifacts of 11 Common Fiducial Markers for Image Guided Stereotactic Body Radiation Therapy in the Abdomen. Pract Radiat Oncol 2020; 10:434-442. [PMID: 31988039 DOI: 10.1016/j.prro.2020.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of this study was to quantitatively evaluate the visibility and artifacts of commercially available fiducial markers to optimize their selection for image guided stereotactic body radiation therapy. METHODS AND MATERIALS From 6 different vendors, we selected 11 fiducials commonly used in image guided radiation therapy. The fiducials varied in material composition (e.g., gold, platinum, carbon), shape (e.g., cylindrical, notched/linear, coiled, ball-like, step), and size measured in terms of diameter (0.28-1.0 mm) and length (3.0-20.0 mm). Each fiducial was centered in 4-mm bolus within a 13-cm-thick water-equivalent phantom. Fiducials were imaged with the use of a simulation computed tomography (CT) scanner, a CT-on-rails system, and an onboard cone beam CT system. Acquisition parameters were set according to clinical protocols. Visibility was assessed in terms of contrast (Δ Hounsfield unit [HU]) and the Michelson visibility metric. Artifacts were quantified in terms of relative standard deviation and relative streak artifacts level (rSAL). Twelve radiation oncologists ranked each fiducial in terms of clinical usefulness. RESULTS Contrast and artifacts increased with fiducial size. For CT imaging, maximum contrast (2722 HU) and artifacts (rSAL = 2.69) occurred for the largest-diameter (0.75 mm) platinum fiducial. Minimum contrast (551 HU) and reduced artifacts (rSAL = 0.65) were observed for the smallest-diameter (0.28 mm) gold fiducial. Carbon produced the least severe artifacts (rSAL = 0.29). The survey indicated that physicians preferred gold fiducials with a 0.35- to 0.43-mm diameter, 5- to 10-mm length, and coiled or cylindrical shape that balanced contrast and artifacts. CONCLUSIONS We evaluated 11 different fiducials in terms of visibility and artifacts. The results of this study may assist radiation oncologists who seek to maximize contrast, minimize artifacts, or balance contrast versus artifacts by fiducial selection.
Collapse
Affiliation(s)
- Jordan M Slagowski
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Irina M Cazacu
- Department of Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ben S Singh
- Department of Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachael Martin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Manoop S Bhutani
- Department of Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph M Herman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
22
|
Osman SOS, Russell E, King RB, Crowther K, Jain S, McGrath C, Hounsell AR, Prise KM, McGarry CK. Fiducial markers visibility and artefacts in prostate cancer radiotherapy multi-modality imaging. Radiat Oncol 2019; 14:237. [PMID: 31878967 PMCID: PMC6933910 DOI: 10.1186/s13014-019-1447-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In this study, a novel pelvic phantom was developed and used to assess the visibility and presence of artefacts from different types of commercial fiducial markers (FMs) on multi-modality imaging relevant to prostate cancer. METHODS AND MATERIALS The phantom was designed with 3D printed hollow cubes in the centre. These cubes were filled with gel to mimic the prostate gland and two parallel PVC rods were used to mimic bones in the pelvic region. Each cube was filled with gelatine and three unique FMs were positioned with a clinically-relevant spatial distribution. The FMs investigated were; Gold Marker (GM) CIVCO, GM RiverPoint, GM Gold Anchor (GA) line and ball shape, and polymer marker (PM) from CIVCO. The phantom was scanned using several imaging modalities typically used to image prostate cancer patients; MRI, CT, CBCT, planar kV-pair, ExacTrac, 6MV, 2.5MV and integrated EPID imaging. The visibility of the markers and any observed artefacts in the phantom were compared to in-vivo scans of prostate cancer patients with FMs. RESULTS All GMs were visible in volumetric scans, however, they also had the most visible artefacts on CT and CBCT scans, with the magnitude of artefacts increasing with FM size. PM FMs had the least visible artefacts in volumetric scans but they were not visible on portal images and had poor visibility on lateral kV images. The smallest diameter GMs (GA) were the most difficult GMs to identify on lateral kV images. CONCLUSION The choice between different FMs is also dependent on the adopted IGRT strategy. PM was found to be superior to investigated gold markers in the most commonly used modalities in the management of prostate cancer; CT, CBCT and MRI imaging.
Collapse
Affiliation(s)
- Sarah O. S. Osman
- Centre of Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN UK
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Emily Russell
- Centre of Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN UK
| | - Raymond B. King
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Karen Crowther
- Radiotherapy Department, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Suneil Jain
- Centre of Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN UK
- Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Cormac McGrath
- Radiological Sciences and Imaging, Belfast Health and Social Care Trust, Forster Green Hospital, Belfast, UK
| | - Alan R. Hounsell
- Centre of Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN UK
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Kevin M. Prise
- Centre of Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN UK
| | - Conor K. McGarry
- Centre of Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN UK
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
23
|
Morita R, Abo D, Sakuhara Y, Soyama T, Katoh N, Miyamoto N, Uchinami Y, Shimizu S, Shirato H, Kudo K. Percutaneous insertion of hepatic fiducial true-spherical markers for real-time adaptive radiotherapy. MINIM INVASIV THER 2019; 29:334-343. [DOI: 10.1080/13645706.2019.1663217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ryo Morita
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Sakuhara
- Department of Diagnostic Radiology, Tonan Hospital, Sapporo, Japan
| | - Takeshi Soyama
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Naoki Miyamoto
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Shimizu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroki Shirato
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Shcherbakova Y, Bartels LW, Mandija S, Beld E, Seevinck PR, van der Voort van Zyp JRN, Kerkmeijer LGW, Moonen CTW, Lagendijk JJW, van den Berg CAT. Visualization of gold fiducial markers in the prostate using phase-cycled bSSFP imaging for MRI-only radiotherapy. ACTA ACUST UNITED AC 2019; 64:185001. [DOI: 10.1088/1361-6560/ab35c3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Quantitative evaluation of image recognition performance of fiducial markers in real-time tumor-tracking radiation therapy. Phys Med 2019; 65:33-39. [DOI: 10.1016/j.ejmp.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/15/2022] Open
|
26
|
Izatt MT, Lees D, Mills S, Grant CA, Little JP. Determining a reliably visible and inexpensive surface fiducial marker for use in MRI: a research study in a busy Australian Radiology Department. BMJ Open 2019; 9:e027020. [PMID: 31375607 PMCID: PMC6688688 DOI: 10.1136/bmjopen-2018-027020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Single-use commercial surface fiducial markers are used in clinical imaging for a variety of applications. The current study sought to find a new, reliably visible, easily sourced and inexpensive fiducial marker alternative for use with MRI. DESIGN Five commonly requested MRI sequences were determined (three-dimensional (3D) T1-weighted, T1 coronal, 3D T2-weighted, T2 fat suppressed, proton density), to examine the visibility of 18 items (including a commercial fiducial marker). SETTING Clinical 3T MRI scanner in an Australian Tertiary Hospital and an Australian University Biomedical Engineering research group. INTERVENTIONS 18 marker alternatives were scanned using five common MRI sequences. Images were reformatted to obtain both an image through the mid-height of each marker and a maximum intensity z-projection image over the volume of the marker. Variations in marker intensity were profiled across each visible marker and a visibility rating defined. MAIN OUTCOME MEASURES Outcome measures were based on quantitative assessment of a clear intensity contrast ratio between the marker and the adjacent tissue and a qualitative assessment of visibility via a 3-point scale. RESULTS The fish oil capsule, vitamin D capsule, paint ball pellet, soy sauce sushi tube and commercial markers were typically visible to a high quality on all the imaging sequences and demonstrated a clear differential in intensity contrast against the adjacent tissue. Other common items, such as plasticine 'play doh' and a soft 'Jelly baby' sweet, were surprise candidates, demonstrating high-quality visibility and intensity contrast for the 3D T1-weighted sequence. CONCLUSIONS Depending on the basis for referral and MRI sequence chosen, four alternative fiducial markers were determined to be inexpensive, easily sourced and consistently visible. Of these, the vitamin D capsule provided an excellent balance between availability, size, cost, usability and quality of the visualised marker for all the commonly used MRI sequences analysed.
Collapse
Affiliation(s)
- Maree T Izatt
- Biomechanics and Spine Research Group, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Deborah Lees
- Biomechanics and Spine Research Group, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan Mills
- Mater Medical Imaging, Mater Misericordiae Brisbane Ltd, South Brisbane, Queensland, Australia
| | - Caroline A Grant
- Biomechanics and Spine Research Group, Queensland University of Technology, Brisbane, Queensland, Australia
| | - J Paige Little
- Biomechanics and Spine Research Group, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Lin T, Ma CMC. Positioning errors of metal localization devices with motion artifacts on kV and MV cone beam CT. BJR Open 2019; 1:20190013. [PMID: 33178943 PMCID: PMC7592481 DOI: 10.1259/bjro.20190013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate motion artifacts on kV CBCT and MV CBCT images with metal localization devices for image-guided radiation therapy. METHODS The 8 μ pelvis CBCT template for the Siemens Artiste MVision and Pelvis template for the Varian IX on-board Exact Arms kV were used to acquire CBCT images in this study. Images from both CBCT modalities were compared in CNRs, metal landmark absolute positions, and image volume distortion on three different planes of view. The images were taken on a breathing-simulated thoracic phantom in which several typical metal localization devices were implanted, including clips and wires for breast patients, gold seeds for prostate patients, and BBs as skin markers. To magnify the artifacts, a 4 cm diameter metal ball was also implanted into the thoracic phantom to mimic the metal artifacts. RESULTS For MV CBCT, the CNR at a 4 sec breathing cycle with 1 cm breathing amplitude was 5.0, 3.4 and 4.6 for clips, gold seeds and BBs, respectively while it was 1.5, 2.0 and 1.6 for the kV CBCT. On the images, the kV CBCT showed symmetric streaking artifacts both in the transverse and longitudinal directions relative to the motion direction. The kV CBCT images predicted 89 % of the expected volume, while the MV CBCT images predicted 95 % of the expected volume. The simulated soft tissue observed in the MVCT could not be detected in the kV CBCT. CONCLUSION The MV CBCT images showed better volume prediction, less streaking effects and better CNRs of a moving metal target, i.e. clips, BBs, gold seeds and metal balls than on the kV CBCT images. The MV CBCT was more advantageous compared to the kV CBCT with less motion artifacts for metal localization devices. ADVANCES IN KNOWLEDGE This study would benefit clinicians to prescribe MV CBCT as localization modality for radiation treatment with moving target when metal markers are implanted.
Collapse
Affiliation(s)
- Teh Lin
- Department of Radiation Oncology Fox Chase Cancer Center, Temple University, Philadelphia, USA
| | - Chang-Ming Charlie Ma
- Department of Radiation Oncology Fox Chase Cancer Center, Temple University, Philadelphia, USA
| |
Collapse
|
28
|
Miura H, Ozawa S, Enosaki T, Hosono F, Yamada K, Nagata Y. Effect of image quality on correlation modeling error using a fiducial marker in a gimbaled linear accelerator. Rep Pract Oncol Radiother 2019; 24:233-238. [DOI: 10.1016/j.rpor.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022] Open
|
29
|
van den Ende RPJ, Rigter LS, Kerkhof EM, van Persijn van Meerten EL, Rijkmans EC, Lambregts DMJ, van Triest B, van Leerdam ME, Staring M, Marijnen CAM, van der Heide UA. MRI visibility of gold fiducial markers for image-guided radiotherapy of rectal cancer. Radiother Oncol 2018; 132:93-99. [PMID: 30825976 DOI: 10.1016/j.radonc.2018.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/29/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE A GTV boost is suggested to result in higher complete response rates in rectal cancer patients, which is attractive for organ preservation. Fiducials may offer GTV position verification on (CB)CT, if the fiducial-GTV spatial relationship can be accurately defined on MRI. The study aim was to evaluate the MRI visibility of fiducials inserted in the rectum. MATERIALS AND METHODS We tested four fiducial types (two Visicoil types, Cook and Gold Anchor), inserted in five patients each. Four observers identified fiducial locations on two MRI exams per patient in two scenarios: without (scenario A) and with (scenario B) (CB)CT available. A fiducial was defined to be consistently identified if 3 out of 4 observers labeled that fiducial at the same position on MRI. Fiducial visibility was scored on an axial and sagittal T2-TSE sequence and a T1 3D GRE sequence. RESULTS Fiducial identification was poor in scenario A for all fiducial types. The Visicoil 0.75 and Gold Anchor were the most consistently identified fiducials in scenario B with 7 out of 9 and 8 out of 11 consistently identified fiducials in the first MRI exam and 2 out of 7 and 5 out of 10 in the second MRI exam, respectively. The consistently identified Visicoil 0.75 and Gold Anchor fiducials were best visible on the T1 3D GRE sequence. CONCLUSION The Visicoil 0.75 and Gold Anchor fiducials were the most visible fiducials on MRI as they were most consistently identified. The use of a registered (CB)CT and a T1 3D GRE MRI sequence is recommended.
Collapse
Affiliation(s)
- Roy P J van den Ende
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands.
| | - Lisanne S Rigter
- Department of Gastroenterology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ellen M Kerkhof
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | | | - Eva C Rijkmans
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Baukelien van Triest
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marius Staring
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands; Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Corrie A M Marijnen
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Spin-Neto R, Matzen LH, Schropp LW, Sørensen TS, Wenzel A. An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability. Dentomaxillofac Radiol 2018; 47:20180013. [PMID: 29537303 PMCID: PMC6196041 DOI: 10.1259/dmfr.20180013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess the impact of head motion artefacts and an automated artefact-correction system on cone beam CT (CBCT) image quality and interpretability for simulated diagnostic tasks. METHODS A partially dentate human skull was mounted on a robot simulating four types of head movement (anteroposterior translation, nodding, lateral rotation, and tremor), at three distances (0.75, 1.5, and 3 mm) based on two movement patterns (skull returning/not returning to the initial position). Two diagnostic tasks were simulated: dental implant planning and detection of a periapical lesion. Three CBCT units were used to examine the skull during the movements and no-motion (control): Cranex 3Dx (CRA), Orthophos SL 3D (ORT), and X1 without (X1wo) and with (X1wi) an automated motion artefact-correction system. For each diagnostic task, 88 examinations were performed. Three observers, blinded to unit and movement, scored image quality: presence of stripe artefacts (present/absent), overall unsharpness (present/absent), and image interpretability (interpretable/non-interpretable). κ statistics assessed interobserver agreement, and descriptive statistics summarized the findings. RESULTS Interobserver agreement for image interpretability was good (average κ = 0.68). Regarding dental implant planning, X1wi images were interpretable by all observers, while for the other units mainly the cases with tremor were non-interpretable. Regarding detection of a periapical lesion, besides tremor, most of the 3 mm movements based on the "not returning" pattern were also non-interpretable for CRA, ORT, and X1wo. For X1wi, two observers scored 1.5 mm tremor and one observer scored 3 mm tremor as non-interpretable. CONCLUSIONS The automated motion artefact-correction system significantly enhanced CBCT image quality and interpretability.
Collapse
Affiliation(s)
- Rubens Spin-Neto
- Oral Radiology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Louise H Matzen
- Oral Radiology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Lars W Schropp
- Oral Radiology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | | | - Ann Wenzel
- Oral Radiology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Quantifying esophageal motion during free-breathing and breath-hold using fiducial markers in patients with early-stage esophageal cancer. PLoS One 2018; 13:e0198844. [PMID: 29889910 PMCID: PMC5995399 DOI: 10.1371/journal.pone.0198844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/25/2018] [Indexed: 11/19/2022] Open
Abstract
Introduction Cardiac toxicity after definitive chemoradiotherapy for esophageal cancer is a critical issue. To reduce irradiation doses to organs at risk, individual internal margins need to be identified and minimized. The purpose of this study was to quantify esophageal motion using fiducial makers based on four-dimensional computed tomography, and to evaluate the inter-CBCT session marker displacement using breath-hold. Materials and methods Sixteen patients with early stage esophageal cancer, who received endoscopy-guided metallic marker placement for treatment planning, were included; there were 35 markers in total, with 9, 15, and 11 markers in the upper thoracic, middle thoracic, and lower thoracic/esophagogastric junction regions, respectively. We defined fiducial marker motion as motion of the centroidal point of the markers. Respiratory esophageal motion during free-breathing was defined as the amplitude of individual marker motion between the consecutive breathing and end-expiration phases, derived from four-dimensional computed tomography. The inter-CBCT session marker displacement using breath-hold was defined as the amplitudes of marker motion between the first and each cone beam computed tomography image. Marker motion was analyzed in the three regions (upper thoracic, middle thoracic, and lower thoracic/esophagogastric junction) and in three orthogonal directions (right-left; anterior-posterior; and superior-inferior). Results Respiratory esophageal motion during free-breathing resulted in median absolute maximum amplitudes (interquartile range), in right-left, anterior-posterior, and superior-inferior directions, of 1.7 (1.4) mm, 2.0 (1.5) mm, and 3.6 (4.1) mm, respectively, in the upper thoracic region, 0.8 (1.1) mm, 1.4 (1.2) mm, and 4.8 (3.6) mm, respectively, in the middle thoracic region, and 1.8 (0.8) mm, 1.9 (2.0) mm, and 8.0 (4.5) mm, respectively, in the lower thoracic/esophagogastric region. The inter-CBCT session marker displacement using breath-hold resulted in median absolute maximum amplitudes (interquartile range), in right-left, anterior–posterior, and superior-inferior directions, of 1.3 (1.0) mm, 1.1 (0.7) mm, and 3.3 (1.8) mm, respectively, in the upper thoracic region, 0.7 (0.7) mm, 1.1 (0.4) mm, and 3.4 (1.4) mm, respectively, in the middle thoracic region, and 2.0 (0.8) mm, 2.6 (2.2) mm, and 3.5 (1.8) mm, respectively, in the lower thoracic/esophagogastric region. Conclusions During free-breathing, esophageal motion in the superior-inferior direction in all sites was large, compared to the other directions, and amplitudes showed substantial inter-individual variability. The breath-hold technique is feasible for minimizing esophageal displacement during radiotherapy in patients with esophageal cancer.
Collapse
|
32
|
Hirose K, Sato M, Hatayama Y, Kawaguchi H, Komai F, Sohma M, Obara H, Suzuki M, Tanaka M, Fujioka I, Ichise K, Takai Y, Aoki M. The potential failure risk of the cone-beam computed tomography-based planning target volume margin definition for prostate image-guided radiotherapy based on a prospective single-institutional hybrid analysis. Radiat Oncol 2018; 13:106. [PMID: 29880006 PMCID: PMC5992771 DOI: 10.1186/s13014-018-1043-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study was to evaluate the impact of markerless on-board kilovoltage (kV) cone-beam computed tomography (CBCT)-based positioning uncertainty on determination of the planning target volume (PTV) margin by comparison with kV on-board imaging (OBI) with gold fiducial markers (FMs), and to validate a methodology for the evaluation of PTV margins for markerless kV-CBCT in prostate image-guided radiotherapy (IGRT). Methods A total of 1177 pre- and 1177 post-treatment kV-OBI and 1177 pre- and 206 post-treatment kV-CBCT images were analyzed in 25 patients who received prostate IGRT with daily localization by implanted FMs. Intrafractional motion of the prostate was evaluated between each pre- and post-treatment image with these two different techniques. The differences in prostate deviations and intrafractional motions between matching by FM in kV-OBI (OBI-FM) and matching by soft tissues in kV-CBCT (CBCT-ST) were compared by Bland-Altman limits of agreement. Compensated PTV margins were determined and compensated by references. Results Mean differences between OBI-FM and CBCT-ST in the anterior to posterior (AP), superior to inferior (SI), and left to right (LR) directions were − 0.43 ± 1.45, − 0.09 ± 1.65, and − 0.12 ± 0.80 mm, respectively, with R2 = 0.85, 0.88, and 0.83, respectively. Intrafractional motions obtained from CBCT-ST were 0.00 ± 1.46, 0.02 ± 1.49, and 0.15 ± 0.64 mm, respectively, which were smaller than the results from OBI-FM, with 0.43 ± 1.90, 0.12 ± 1.98, and 0.26 ± 0.80 mm, respectively, with R2 = 0.42, 0.33, and 0.16, respectively. Bland-Altman analysis showed a significant proportional bias. PTV margins of 1.5 mm, 1.4 mm, and 0.9 mm for CBCT-ST were calculated from the values of CBCT-ST, which were also smaller than the values of 3.15 mm, 3.66 mm, and 1.60 mm from OBI-FM. The practical PTV margin for CBCT-ST was compensated with the values from OBI-FM as 4.1 mm, 4.8 mm, and 2.2 mm. Conclusions PTV margins calculated from CBCT-ST might be underestimated compared to the true PTV margins. To determine a reliable CBCT-ST-based PTV margin, at least the systemic error Σ and the random error σ for on-line matching errors need to be investigated by supportive preliminary FM evaluation at least once.
Collapse
Affiliation(s)
- Katsumi Hirose
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan. .,Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10, Yatsuyamada, Koriyama, Fukushima, 963-8052, Japan.
| | - Mariko Sato
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshiomi Hatayama
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hideo Kawaguchi
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Fumio Komai
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Makoto Sohma
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Hideki Obara
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Masashi Suzuki
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Mitsuki Tanaka
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Ichitaro Fujioka
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Koji Ichise
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yoshihiro Takai
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.,Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10, Yatsuyamada, Koriyama, Fukushima, 963-8052, Japan
| | - Masahiko Aoki
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
33
|
Miura H, Ozawa S, Matsuura T, Kawakubo A, Hosono F, Yamada K, Nagata Y. 4D modeling in a gimbaled linear accelerator by using gold anchor markers. Rep Pract Oncol Radiother 2018; 23:183-188. [PMID: 29760592 DOI: 10.1016/j.rpor.2018.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/20/2017] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose The purpose of this study was to verify whether the dynamic tumor tracking (DTT) feature of a Vero4DRT system performs with 10-mm-long and 0.28 mm diameter gold anchor markers. Methods Gold anchor markers with a length of 10 mm and a diameter of 0.28 mm were used. Gold anchor markers were injected with short and long types into bolus material. These markers were sandwiched by a Tough Water (TW) phantom in the bolus material. For the investigation of 4-dimensional (4D) modeling feasibility under various phantom thicknesses, the TW phantom was added at 2 cm intervals (in upper and lower each by 1 cm). A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of 30 mm and a breathing cycle of 3 s. X-ray imaging parameters of 80 kV and 125 kV (320 mA and 5 ms) were used. The least detection error of the fiducial marker was defined as the 4D-modeling limitation. Results The 4D modeling process was attempted using short and long marker types and its limitation with the short and long types was with phantom thicknesses of 6 and 10 cm at 80 kV and 125 kV, respectively. However, the loss in detectability of the gold anchor because of 4D-modeling errors was found to be approximately 6% (2/31) with a phantom thickness of 2 cm under 125 kV. 4D-modeling could be performed except under the described conditions. Conclusions This work showed that a 10-mm-long gold anchor marker in short and long types can be used with DTT for short water equivalent path length site, such as lung cancer patients, in the Vero4DRT system.
Collapse
Affiliation(s)
- Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Takaaki Matsuura
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Atsushi Kawakubo
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Fumika Hosono
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Kiyoshi Yamada
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
34
|
Tanaka O, Komeda H, Hirose S, Taniguchi T, Ono K, Matsuo M. Visibility of an iron-containing fiducial marker in magnetic resonance imaging for high-precision external beam prostate radiotherapy. Asia Pac J Clin Oncol 2017; 14:e405-e411. [DOI: 10.1111/ajco.12830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Osamu Tanaka
- Department of Radiation Oncology; Murakami Memorial Hospital; 3-23 Hashimoto-cho Gifu City Gifu Japan
| | - Hisao Komeda
- Department of Urology; Gifu Municipal Hospital; Gifu City Gifu Japan
| | - Shigeki Hirose
- Division of Radiation Service; Gifu Municipal Hospital; Gifu City Gifu Japan
| | - Takuya Taniguchi
- Department of Radiation Oncology; Murakami Memorial Hospital; 3-23 Hashimoto-cho Gifu City Gifu Japan
| | - Kousei Ono
- Department of Radiation Oncology; Murakami Memorial Hospital; 3-23 Hashimoto-cho Gifu City Gifu Japan
| | - Masayuki Matsuo
- Department of Radiology; Gifu University School of Medicine; Gifu City Gifu Japan
| |
Collapse
|
35
|
Tanaka O, Komeda H, Tamaki M, Seike K, Fujimoto S, Yama E, Hirose S, Matsuo M. Comparison of MRI visualization between linearly placed iron-containing and non-iron-containing fiducial markers for prostate radiotherapy. Br J Radiol 2017; 91:20170612. [PMID: 29120662 DOI: 10.1259/bjr.20170612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Visualizing the gold marker (GM) in CT and MRI is critical, especially for registration in high-precision radiotherapy. GM sizes vary. Large markers are easily visualized in MRI. Small GMs show fewer artefacts in CT but are harder to detect in MRI because the signal is influenced by metal in MRI. Therefore, we compared MRI visualization between linearly placed new iron-containing marker and non-iron containing marker. METHODS 27 patients underwent CT/MRI fusion-based intensity-modulated radiotherapy. The gold markers were placed by urologists. An iron-containing Gold Anchor™ (GA) marker (diameter, 0.28 mm; length, 10 mm) was placed by using a 22 G needle on one side of the prostate linearly. A non-iron-containing VISICOIL™ (VIS) marker (diameter, 0.35 mm; length, 10 mm) was placed by using a 19 G needle on the opposite side linearly. T2* weighted MRI was mostly performed. Two Radiation Oncologists and one Radiation Technologist evaluated and assigned visual quality scores (GA shape, CT artefacts, MRI signal voids). RESULTS The mean visualization scores of artefacts were similar between GA and VIS in planning CT. GM visualization in MRI of the prostate was better for GA than for VIS. The visibility of the linear shape of the GA was 3.4-4.1 points when the VIS was 5 points (1 is worst and 5 is best). CONCLUSION Visualization quality was similar between GA (iron-containing marker) and VIS (non-iron-containing marker) in planning CT, but was better for GA than for VIS in MRI. To achieve high-precision radiotherapy, an iron-containing gold marker was useful for CT and MRI registration. Advances in knowledge: An iron-containing fiducial marker was useful for CT and MRI registration, especially in high-precision radiotherapy, such as stereotactic body radiotherapy and intensity-modulated radiotherapy.
Collapse
Affiliation(s)
- Osamu Tanaka
- 1 Department of Radiation Oncology, Murakami Memorial Hospital , Murakami Memorial Hospital , Gifu city, Gifu , Japan
| | - Hisao Komeda
- 2 Department of Urology, Gifu Municipal Hospital , Gifu Municipal Hospital , Gifu city , Japan
| | - Masayoshi Tamaki
- 2 Department of Urology, Gifu Municipal Hospital , Gifu Municipal Hospital , Gifu city , Japan
| | - Kensaku Seike
- 2 Department of Urology, Gifu Municipal Hospital , Gifu Municipal Hospital , Gifu city , Japan
| | - Shota Fujimoto
- 2 Department of Urology, Gifu Municipal Hospital , Gifu Municipal Hospital , Gifu city , Japan
| | - Eiichi Yama
- 3 Division of Radiation Service, Gifu Municipal Hospital , Gifu Municipal Hospital , Gifu city , Japan
| | - Shigeki Hirose
- 3 Division of Radiation Service, Gifu Municipal Hospital , Gifu Municipal Hospital , Gifu city , Japan
| | - Masayuki Matsuo
- 4 Department of Radiology, Gifu University School of Medicine , Gifu University School of Medicine , Gifu City , Japan
| |
Collapse
|
36
|
Maspero M, van den Berg CAT, Zijlstra F, Sikkes GG, de Boer HCJ, Meijer GJ, Kerkmeijer LGW, Viergever MA, Lagendijk JJW, Seevinck PR. Evaluation of an automatic MR-based gold fiducial marker localisation method for MR-only prostate radiotherapy. ACTA ACUST UNITED AC 2017; 62:7981-8002. [DOI: 10.1088/1361-6560/aa875f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Harris K, Puchalski J, Sterman D. Recent Advances in Bronchoscopic Treatment of Peripheral Lung Cancers. Chest 2017; 151:674-685. [DOI: 10.1016/j.chest.2016.05.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 02/04/2023] Open
|
38
|
Tanaka O, Iida T, Komeda H, Tamaki M, Seike K, Kato D, Yokoyama T, Hirose S, Kawaguchi D. Initial experience of using an iron-containing fiducial marker for radiotherapy of prostate cancer: Advantages in the visualization of markers in Computed Tomography and Magnetic Resonance Imaging. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2016. [DOI: 10.1515/pjmpe-2016-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Visualization of markers is critical for imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). However, the size of the marker varies according to the imaging technique. While a large-sized marker is more useful for visualization in MRI, it results in artifacts on CT and causes substantial pain on administration. In contrast, a small-sized marker reduces the artifacts on CT but hampers MRI detection. Herein, we report a new ironcontaining marker and compare its utility with that of non-iron-containing markers. Five patients underwent CT/MRI fusion-based intensity-modulated radiotherapy, and the markers were placed by urologists. A Gold Anchor™ (GA; diameter, 0.28 mm; length, 10 mm) was placed using a 22G needle on the right side of the prostate. A VISICOIL™ (VIS; diameter, 0.35 mm; length, 10 mm) was placed using a 19G needle on the left side. MRI was performed using T2*-weighted imaging. Three observers evaluated and scored the visual qualities of the acquired images. The mean score of visualization was almost identical between the GA and VIS in radiography and cone-beam CT (Novalis Tx). The artifacts in planning CT were slightly larger using the GA than using the VIS. The visualization of the marker on MRI using the GA was superior to that using the VIS. In conclusion, the visualization quality of radiography, conebeam CT, and planning CT was roughly equal between the GA and VIS. However, the GA was more strongly visualized than was the VIS on MRI due to iron containing.
Collapse
Affiliation(s)
- Osamu Tanaka
- Department of Radiation Oncology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Takayoshi Iida
- Department of Radiation Oncology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Hisao Komeda
- Department of Urology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Masayoshi Tamaki
- Department of Urology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Kensaku Seike
- Department of Urology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Daiki Kato
- Department of Urology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Takamasa Yokoyama
- Department of Radiation Oncology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Shigeki Hirose
- Department of Radiation Oncology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| | - Daisuke Kawaguchi
- Department of Radiation Oncology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City Gifu, 500-8513, Japan
| |
Collapse
|
39
|
Georgiou PS, Jaros J, Payne H, Allen C, Shah TT, Ahmed HU, Gibson E, Barratt D, Treeby BE. Beam distortion due to gold fiducial markers during salvage high-intensity focused ultrasound in the prostate. Med Phys 2016; 44:679-693. [PMID: 28032342 DOI: 10.1002/mp.12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/21/2016] [Accepted: 11/17/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High intensity focused ultrasound (HIFU) provides a non-invasive salvage treatment option for patients with recurrence after external beam radiation therapy (EBRT). As part of EBRT the prostate is frequently implanted with permanent fiducial markers. To date, the impact of these markers on subsequent HIFU treatment is unknown. The objective of this work was to systematically investigate, using computational simulations, how these fiducial markers affect the delivery of HIFU treatment. METHODS A series of simulations was performed modelling the propagation of ultrasound pressure waves in the prostate with a single spherical or cylindrical gold marker at different positions and orientations. For each marker configuration, a set of metrics (spatial-peak temporal-average intensity, focus shift, focal volume) was evaluated to quantify the distortion introduced at the focus. An analytical model was also developed describing the marker effect on the intensity at the focus. The model was used to examine the marker's impact in a clinical setting through case studies. RESULTS The simulations show that the presence of the marker in the pre-focal region causes reflections which induce a decrease in the focal intensity and focal volume, and a shift of the maximum pressure point away from the transducer's focus. These effects depend on the shape and orientation of the marker and become more pronounced as its distance from the transducer's focus decreases, with the distortion introduced by the marker greatly increasing when placed within 5 mm of the focus. The analytical model approximates the marker's effect and can be used as an alternative method to the computationally intensive and time consuming simulations for quickly estimating the intensity at the focus. A retrospective review of a small patient cohort selected for focal HIFU after failed EBRT indicates that the presence of the marker may affect HIFU treatment delivery. CONCLUSIONS The distortion introduced by the marker to the HIFU beam when positioned close to the focus may result in an undertreated region beyond the marker due to less energy arriving at the focus, and an overtreated region due to reflections. Further work is necessary to investigate whether the results presented here justify the revision of the patient selection criteria or the markers' placement protocol.
Collapse
Affiliation(s)
- P S Georgiou
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - J Jaros
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - H Payne
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Department of Oncology, University College London Hospitals, London, UK
| | - C Allen
- Department of Oncology, University College London Hospitals, London, UK
| | - T T Shah
- Division of Surgery and Interventional Science, University College London, London, UK
| | - H U Ahmed
- Division of Surgery and Interventional Science, University College London, London, UK
| | - E Gibson
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - D Barratt
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - B E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
40
|
Fiducial marker for prostate radiotherapy: comparison of 0.35- and 0.5-mm-diameter computed tomography and magnetic resonance images. Radiol Med 2016; 122:204-207. [DOI: 10.1007/s11547-016-0715-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
|
41
|
Tanaka O, Komeda H, Iida T, Tamaki M, Seike K, Kato D, Yokoyama T, Hirose S, Kawaguchi D, Yama E. RETRACTED: <i>Usefulness of Iron-Containing Fiducial Marker for Prostate Radiotherapy</i>. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijmpcero.2016.54033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Gurney-Champion OJ, Lens E, van der Horst A, Houweling AC, Klaassen R, van Hooft JE, Stoker J, van Tienhoven G, Nederveen AJ, Bel A. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Med Phys 2015; 42:2638-47. [DOI: 10.1118/1.4918753] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|