1
|
Singh P, Solanki R, Tasneem A, Suri S, Kaur H, Shah SR, Dohare R. Screening of miRNAs as prognostic biomarkers and their associated hub targets across Hepatocellular carcinoma using survival-based bioinformatics approach. J Genet Eng Biotechnol 2024; 22:100337. [PMID: 38494261 DOI: 10.1016/j.jgeb.2023.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND The hepatocellular carcinoma (HCC) incident rate is gradually increasing yearly despite all the research and efforts taken by scientific communities and governing bodies. Approximately 90% of all liver cancer cases belong to HCC. Usually, HCC patients approach the treatment in the late stages of this malignancy which becomes the primary cause of high mortality rate. The knowledge about molecular pathogenesis of HCC is limited and needs more attention from researchers to identify the driver genes and miRNAs, which causes to translate this information into clinical practice. Therefore, the key regulators identification of miRNA-mRNA regulatory network is essential to identify HCC-associated genes. METHODOLOGY We extracted microRNA (miRNA) and messenger RNA (mRNA) expression datasets of normal and tumor HCC patient samples from UCSC Xena followed by identifying differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs). Univariate and multivariate cox-proportional hazard models were utilized to identify DEMs having significant association with overall survival (OS). Kaplan-Meier (KM) plotter was used to validate the presence of prognostic DEMs. A risk-score model was used to evaluate the effectiveness of KM-plotter validated DEMs combination on risk of samples. Target DEGs of prognostic miRNAs were identified via sources such as miRTargetLink and miRWalk followed by their validation in an external microarray cohort and enrichment analysis. RESULTS 562 DEGs and 388 DEMs were identified followed by seven prognostic miRNAs (i.e., miR-19a, miR-19b, miR-30d-5p, miR-424-5p, miR-3677-5p, miR-3913-5p, miR-7705) post univariate, multivariate, risk-score model evaluation and KM-plotter analyses. ANLN, MRO, CPEB3 were their targets and were also validated in GSE84005 dataset. CONCLUSIONS The findings of this study decipher that most significant miRNAs and their identified target genes have association with apoptosis, inflammation, cell cycle regulation and cancer-related pathways, which appear to contribute to HCC pathogenesis and therefore, the discovery of new targets.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rubi Solanki
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Alvea Tasneem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Simran Suri
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Harleen Kaur
- Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sapna Ratan Shah
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
3
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
4
|
Zhou F, Kang Q, Ma J, Cai J, Chen Y, Qu K, Li F. Integrated analysis of RNA-seq in hepatocellular carcinoma reveals competing endogenous RNA network composed of circRNA, lncRNA, and mRNA. Medicine (Baltimore) 2023; 102:e32915. [PMID: 36827016 PMCID: PMC11309657 DOI: 10.1097/md.0000000000032915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) have been hypothesized to have important roles in the etiology of hepatocellular carcinoma (HCC). However, the synergistic effect of circRNA and lncRNA in the pathogenesis of HCC has rarely been studied. METHODS In this study, the Gene Expression Omnibus database was used to get the expression profiles of circRNAs, micro RNAs (miRNAs), lncRNAs, and messenger RNAs (mRNAs) in HCC tissues and normal tissues. The accession numbers for this database are GSE101728, GSE155949, and GSE108724. We found 291 differentially overexpressed lncRNAs and 541 differentially overexpressed mRNA in GSE101728, 30 differentially overexpressed circRNA in GSE155949, and 48 significantly downregulated miRNA in GSE198724. Meanwhile, based on Pearson correlation test, we established lncRNA-mRNA networks. We constructed lncRNA/circRNA-miRNA pairs through Starbase database prediction and identified the common miRNAs. The intersection of co-predicted miRNAs and the 48 significantly low expression miRNAs in GSE198724 were included in the following study. miRDB, Targetscan, miRwalk, and lncRNA-related mRNA jointly determined the miRNA-mRNA portion of the circRNA/lncRNA-miRNA-mRNA co-expression network. And, among 55 differentially expressed mRNA in circRNA/lncRNA-miRNA-mRNA network, CPEB3, EFNB3, FATA4, growth hormone receptor, GSTZ1, KLF8, MFAP4, PAIP2B, PHACTR3, PITPNM3, RPS6KA6, RSPO3, SLITRK6, SMOC1, STEAP4, SYT1, TMEM132E, TSPAN11, and ZFPM2 were intimately related to the prognosis of HCC patients in Kaplan-Meier plotter analysis (P < .05). CONCLUSION We have discovered that the prognosis-related lncRNAs/circRNAs-miRNA-mRNA network plays a significant role in the pathogenesis of HCC. These findings may offer fresh perspectives for further research into the pathogenesis of HCC and the search for novel treatments for HCC.
Collapse
Affiliation(s)
- Fuyin Zhou
- Department of General Surgery, People’s Hospital of Putuo District, Zhoushan, Zhejiang, China
| | - Qingsong Kang
- Department of General Surgery, People’s Hospital of Putuo District, Zhoushan, Zhejiang, China
| | - Junbo Ma
- Department of General Surgery, People’s Hospital of Putuo District, Zhoushan, Zhejiang, China
| | - Jie Cai
- Department of General Surgery, People’s Hospital of Putuo District, Zhoushan, Zhejiang, China
| | - Ying Chen
- Department of General Surgery, People’s Hospital of Putuo District, Zhoushan, Zhejiang, China
| | - Kai Qu
- Department of General Surgery, People’s Hospital of Putuo District, Zhoushan, Zhejiang, China
| | - Feibo Li
- Department of General Surgery, People’s Hospital of Putuo District, Zhoushan, Zhejiang, China
| |
Collapse
|
5
|
Karimi Dermani F, Datta I, Gholamzadeh Khoei S. MicroRNA-452: a double-edged sword in multiple human cancers. Clin Transl Oncol 2023; 25:1189-1206. [PMID: 36622551 DOI: 10.1007/s12094-022-03041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs with important functions in development, cell differentiation, and regulation of cell cycle and apoptosis. MiRNA expression is deregulated in various pathological processes including tumorigenesis and cancer progression through various mechanisms including amplification or deletion of miRNA genes, mutations, and epigenetic silencing and defects in the miRNA biogenesis machinery. Several studies have now shown abnormal miRNA profiles and proved their involvement in the initiation and progression of cancer. Since miR-452 has diverse roles (as suppressor or oncogene) in different cellular processes including epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion, in this review we highlight a brief overview of the biological function and regulatory mechanism of miR-452 and its involvement as a potential biomarker for diagnosis and treatment of various cancer types.
Collapse
Affiliation(s)
| | - Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Saeideh Gholamzadeh Khoei
- Clinical Research Development Unit, Kowsar Hospital, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
6
|
Ishaq Y, Ikram A, Alzahrani B, Khurshid S. The Role of miRNAs, circRNAs and Their Interactions in Development and Progression of Hepatocellular Carcinoma: An Insilico Approach. Genes (Basel) 2022; 14:genes14010013. [PMID: 36672755 PMCID: PMC9858589 DOI: 10.3390/genes14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of malignant tumor. miRNAs are noncoding RNAs and their differential expression patterns are observed in HCC-induced by alcoholism, HBV and HCV infections. By acting as a competing endogenous RNA (ceRNA), circRNA regulates the miRNA function, indirectly controlling the gene expression and leading to HCC progression. In the present study, data mining was performed to screen out all miRNAs and circRNA involved in alcohol, HBV or HCV-induced HCC with statistically significant (≤0.05%) expression levels reported in various studies. Further, the interaction of miRNAs and circRNA was also investigated to explore their role in HCC due to various causative agents. Together, these study data provide a deeper understanding of the circRNA-miRNA regulatory mechanisms in HCC. These screened circRNA, miRNA and their interactions can be used as prognostic biomarkers or therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
- Correspondence:
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Sana Khurshid
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Cheng J, Ma H, Yan M, Zhang Z, Xing W. Circ_0007624 suppresses the development of esophageal squamous cell carcinoma via targeting miR-224-5p/CPEB3 to inactivate the EGFR/PI3K/AKT signaling. Cell Signal 2022; 99:110448. [PMID: 35998761 DOI: 10.1016/j.cellsig.2022.110448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Circular RNAs (circRNAs) have been confirmed to be involved in the regulation of esophageal squamous cell carcinoma (ESCC) progression. According to GEO datasets (GSE112496 and GSE150476), we identified that circ_0007624 was abnormally down-regulated in ESCC. However, there is still no reports regarding the function and mechanism of circ_0007624 in ESCC development. Here, we found that circ_0007624 was significantly underexpressed in ESCC tissues, and low expression of circ_0007624 was indicative of a poor prognosis. Overexpressing circ_0007624 or silencing miR-224-5p suppressed cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and promoted apoptosis in vitro. Also, circ_0007624 up-regulation slowed ESCC tumor growth in vivo. Mechanistically, circ_0007624 could serve as a competing endogenous RNA (ceRNA) by sponging miR-224-5p to antagonize its inhibitory effect on the target cytoplasmic polyadenylation element binding protein 3 (CPEB3). Rescue experiments showed that the anti-cancer properity role of circ_0007624 in ESCC is partly reversed by the restoration of miR-224-5p or down-regulation of CPEB3. Furthermore, EGFR/PI3K/AKT pathway was involved in the regulation of circ_0007624/miR-224-5p/CPEB3 axis in ESCC. Together, our findings demonstrate for the first time that circ_0007624/miR-224-5p/CPEB3 suppresses ESCC progression by inactivating EGFR/PI3K/AKT signaling, providing a basis for developing circ_0007624-targeted therapies for ESCC patients.
Collapse
Affiliation(s)
- Jiwei Cheng
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Haibo Ma
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ming Yan
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhen Zhang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.; Department of Anesthesiology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China..
| | - Wenqun Xing
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China..
| |
Collapse
|
8
|
Li Z, Wu L, Tan W, Zhang K, Lin Q, Zhu J, Tu C, Lv X, Jiang C. MiR-20b-5p promotes hepatocellular carcinoma cell proliferation, migration and invasion by down-regulating CPEB3. Ann Hepatol 2022; 23:100345. [PMID: 33812045 DOI: 10.1016/j.aohep.2021.100345] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES This study aimed to explore the functional mechanism of the miRNA-20b-5p/cytoplasmic polyadenylation element binding protein 3 (miR-20b-5p/CPEB3) axis in hepatocellular carcinoma (HCC) so as to provide a new idea for targeted therapy of HCC. MATERIALS AND METHODS Bioinformatics analysis was employed to obtain markedly differentially expressed miRNAs and mRNAs in The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset, so as to find target miRNA and its target mRNA. Real-time quantitative PCR was conducted to detect miR-20b-5p and CPEB3 mRNA expression. Western blot was performed to determine CPEB3 protein expression. Dual-luciferase reporter assay was carried out to verify the targeting relationship between miR-20b-5p and CPEB3. Cell counting kit-8 assay, wound healing assay, Transwell invasion assay and flow cytometry were conducted to evaluate the proliferation, migration, invasion and apoptosis of HCC cells. RESULTS Bioinformatics analysis suggested that miR-20b-5p and CPEB3 were markedly highly and lowly expressed, respectively, in HCC tissue in TCGA-LIHC dataset. Over-expressing miR-20b-5p facilitated the proliferation, migration and invasion, and suppressed the apoptosis of HCC cells. Dual-luciferase reporter assay validated that there was a targeting relationship between miR-20b-5p and CPEB3. The inhibitory effect of CPEB3 over-expression on HCC cell proliferation, migration and invasion was reversed by over-expressing miR-20b-5p. CONCLUSIONS The present study proved that miR-20b-5p promotes HCC cell proliferation, migration and invasion by inhibiting CPEB3 expression, which may provide a theoretical basis for the prognosis and treatment of HCC patients.
Collapse
Affiliation(s)
- Zhuokai Li
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Lvzhong Wu
- Department of General Surgery, Qingyuan County People's Hospital, Lishui, Zhejiang Province, China
| | - Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Lishui Hospital, Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Kun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Lishui Hospital, Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Qiaomei Lin
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Lishui Hospital, Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Jinde Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Lishui Hospital, Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Chaoyong Tu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Lishui Hospital, Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Xinliang Lv
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Lishui Hospital, Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China
| | - Chuan Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Lishui Hospital, Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang Province, China.
| |
Collapse
|
9
|
Zhang J, Miao X, Wu T, Jia J, Cheng X. Development and Validation of Ten-RNA Binding Protein Signature Predicts Overall Survival in Osteosarcoma. Front Mol Biosci 2021; 8:751842. [PMID: 34926575 PMCID: PMC8671810 DOI: 10.3389/fmolb.2021.751842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is a malignant tumor that originates in the bones with the characteristics of high malignancy, predisposition to metastasis, and poor prognosis. RNA binding proteins (RBPs) are closely related to various tumors, but their relationship with osteosarcoma remains unclear. Based on GTEx and TARGET RNA sequencing data, we applied differential analysis to obtain RBP genes that are differentially expressed in osteosarcoma, and analyzed the functions of these RBPs. After applying univariate and LASSO Cox regression analysis, 10 key prognostic RBPs (TDRD6, TLR8, NXT2, EIF4E3, RPS27L, CPEB3, RBM34, TERT, RPS29, and ZC3HAV1) were screened, and an RBP prognostic risk assessment model for patients with osteosarcoma was established. The independent cohort GSE21257 was used for external verification, and the results showed that the signature has an excellent ability to predict prognosis. In addition, a nomogram that can be used for clinical evaluation was constructed. Finally, the expression levels of 10 prognostic RBPs in osteosarcoma cells and tissues were confirmed through experiments. Our study identified a ten-gene prognostic marker related to RBP, which is of great significance for adjusting the treatment strategy of patients with osteosarcoma and exploring prognostic markers.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Lidocaine Inhibits Hepatocellular Carcinoma Development by Modulating circ_ITCH/miR-421/CPEB3 Axis. Dig Dis Sci 2021; 66:4384-4397. [PMID: 33433806 DOI: 10.1007/s10620-020-06787-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lidocaine plays an anticancer role in hepatocellular carcinoma. Nevertheless, the mechanism of lidocaine in hepatocellular carcinoma remains largely unclear. AIMS This study aims to assess the function of lidocaine and explore the potential regulatory mechanism. METHODS Hepatocellular carcinoma cells were challenged via lidocaine. Cell proliferation, apoptosis, migration, and invasion were detected via colony formation, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, flow cytometry, Western blot, and transwell analyses. Circular RNA itchy E3 ubiquitin protein ligase (circ_ITCH), microRNA-421 (miR-421), and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) abundances were detected via quantitative reverse transcription polymerase chain reaction or Western blot. The relationship between miR-421 and circ_ITCH or CPEB3 was tested via dual-luciferase reporter analysis. The role of circ_ITCH in lidocaine-challenged cell growth in vivo was assessed via xenograft model. RESULTS Lidocaine inhibited hepatocellular carcinoma cell proliferation by decreasing colony formation and cell viability. Lidocaine suppressed hepatocellular carcinoma cell migration and invasion and promoted apoptosis. circ_ITCH and CPEB3 levels were decreased in hepatocellular carcinoma tissues and cells, and were restored in cells via lidocaine treatment. circ_ITCH knockdown weakened the suppressive effect of lidocaine on hepatocellular carcinoma development, which was abolished via CPEB3 overexpression. circ_ITCH could modulate CPEB3 by competitively binding with miR-421. miR-421 knockdown mitigated the effect of circ_ITCH silence in lidocaine-challenged cells. circ_ITCH knockdown increased xenograft tumor growth. CONCLUSIONS Lidocaine represses hepatocellular carcinoma cell proliferation, migration, and invasion and promotes apoptosis via regulating circ_ITCH/miR-421/CPEB3 axis, indicating a new insight into the mechanism of lidocaine in hepatocellular carcinoma.
Collapse
|
11
|
Cui M, Qu F, Wang L, Cheng D, Liu X. MiR-18a-5p Facilitates Progression of Hepatocellular Carcinoma by Targeting CPEB3. Technol Cancer Res Treat 2021; 20:15330338211043976. [PMID: 34738854 PMCID: PMC8573499 DOI: 10.1177/15330338211043976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: To explore the function of the miR-18a-5p/CPEB3 axis in regulating the occurrence of hepatocellular carcinoma (HCC). Methods: Differentially expressed miRNAs and mRNAs were acquired by bioinformatics analysis. qRT-PCR was used for miR-18a-5p and CPEB3 mRNA expression detection. Cell functional assays were implemented to examine the biological functions of HCC cells. The binding relationship between miR-18a-5p and CPEB3 was verified by a dual luciferase assay. Results: In HCC, miR-18a-5p was remarkably highly expressed, while CPEB3 was markedly lowly expressed. HCC cell progression was facilitated after cells transfecting miR-18a-5p mimic, whereas silencing miR-18a-5p caused the opposite result. Overexpressing CPEB3 could restore promoting effect of miR-18a-5p on the growth of HCC cells. Conclusion: Oncogene miR-18a-5p accelerates malignant phenotype by suppressing CPEB3. MiR-18a-5p/CPEB3 axis in HCC identified in this study provides a new target for HCC treatment.
Collapse
Affiliation(s)
- Mingxin Cui
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Fengzhi Qu
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Libing Wang
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Daming Cheng
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Xiaogang Liu
- 159363Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
12
|
TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2100784118. [PMID: 34433666 DOI: 10.1073/pnas.2100784118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increasing attention has been paid to roles of tripartite motif-containing (TRIM) family proteins in cancer biology, often functioning as E3 ubiquitin ligases. In the present study, we focus on a contribution of TRIM47 to breast cancer biology, particularly to endocrine therapy resistance, which is a major clinical problem in breast cancer treatment. We performed immunohistochemical analysis of TRIM47 protein expression in 116 clinical samples of breast cancer patients with postoperative endocrine therapy using tamoxifen. Our clinicopathological study showed that higher immunoreactivity scores of TRIM47 were significantly associated with higher relapse rate of breast cancer patients (P = 0.012). As functional analyses, we manipulated TRIM47 expression in estrogen receptor-positive breast cancer cells MCF-7 and its 4-hydroxytamoxifen (OHT)-resistant derivative OHTR, which was established in a long-term culture with OHT. TRIM47 promoted both MCF-7 and OHTR cell proliferation. MCF-7 cells acquired tamoxifen resistance by overexpressing exogenous TRIM47. We found that TRIM47 enhances nuclear factor kappa-B (NF-κB) signaling, which further up-regulates TRIM47. We showed that protein kinase C epsilon (PKC-ε) and protein kinase D3 (PKD3), known as NF-κB-activating protein kinases, are directly associated with TRIM47 and stabilized in the presence of TRIM47. As an underlying mechanism, we showed TRIM47-dependent lysine 27-linked polyubiquitination of PKC-ε. These results indicate that TRIM47 facilitates breast cancer proliferation and endocrine therapy resistance by forming a ternary complex with PKC-ε and PKD3. TRIM47 and its associated kinases can be a potential diagnostic and therapeutic target for breast cancer refractory to endocrine therapy.
Collapse
|
13
|
Grimes JA, Robinson KR, Bullington ACM, Schmiedt JM. Identification of serum microRNAs with differential expression between dogs with splenic masses and healthy dogs with histologically normal spleens. Am J Vet Res 2021; 82:659-666. [PMID: 34296940 DOI: 10.2460/ajvr.82.8.659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify differential microRNA (miRNA) expression in dogs with splenic hemangiosarcoma, splenic hematoma, and histologically normal spleens. ANIMALS Dogs with splenic hemangiosarcoma (n = 10), splenic hematoma (n = 5), and histologically normal spleens (n = 5). PROCEDURES Splenic tissue and serum samples were collected from dogs with splenic masses (ie, hemangiosarcoma or hematoma samples) and healthy control dogs (ie, control samples), and total RNA was extracted. Reverse transcription quantitative real-time PCR was performed with 28 miRNAs associated with hemangiosarcoma, angiosarcoma, or associated genes. Differential expression analysis was performed. RESULTS Control tissue and serum samples had similar miRNA expression patterns, and hemangiosarcoma tissue and serum samples did not. Hemangiosarcoma serum samples had higher expression than hemangiosarcoma tissue for 13 miRNAs and lower expression for 1 miRNA. Control tissue and hemangiosarcoma tissue had varying expressions for 12 miRNAs, with 10 more highly expressed in control samples and 2 more highly expressed in hemangiosarcoma samples. Five miRNAs (miR-214-3p, miR-452, miR-494-3p, miR-497-5p, miR-543) had significantly different expression in serum between dogs with splenic masses (ie, hemangiosarcoma or hematoma) and serum of dogs with histologically normal spleens, with higher expression in the serum of dogs with splenic masses for all 5 miRNAs. CONCLUSIONS AND CLINICAL RELEVANCE 5 circulating miRNAs were identified that distinguished dogs with splenic hemangiosarcoma or hematoma from those with histologically normal spleens. These 5 miRNAs had higher expression in dogs with splenic masses, indicating upregulation of these circulating miRNAs occurs in these splenic disease states. These miRNAs may be useful as a noninvasive screening tool that uses serum to identify dogs with splenic masses.
Collapse
Affiliation(s)
- Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Kelsey R Robinson
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Anna-Claire M Bullington
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jennifer M Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
14
|
Qin S, Xu J, Yi Y, Jiang S, Jin P, Xia X, Ma F. Transcription Factors and Methylation Drive Prognostic miRNA Dysregulation in Hepatocellular Carcinoma. Front Oncol 2021; 11:691115. [PMID: 34307154 PMCID: PMC8297977 DOI: 10.3389/fonc.2021.691115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Many dysregulated microRNAs (miRNAs) have been suggested to serve as oncogenes or tumor suppressors to act as diagnostic and prognostic factors for HCC patients. However, the dysregulated mechanisms of miRNAs in HCC remain largely unknown. Herein, we firstly identify 114 disordered mature miRNAs in HCC, 93 of them are caused by dysregulated transcription factors, and 10 of them are driven by the DNA methylation of their promoter regions. Secondly, we find that seven up-regulated miRNAs (miR-9-5p, miR-452-5p, miR-452-3p, miR-1180-3p, miR-4746-5p, miR-3677-3 and miR-4661-5p) can promote tumorigenesis via inhibiting multiple tumor suppressor genes participated in metabolism, which may act as oncogenes, and seven down-regulated miRNAs (miR-99-5p, miR-5589-5p, miR-5589-3p, miR-139-5p, miR-139-3p, miR-101-3p and miR-125b-5p) can suppress abnormal cell proliferation via suppressing a number of oncogenes involved in cancer-related pathways, which may serve as tumor suppressors. Thirdly, our findings reveal a mechanism that transcription factor and miRNA interplay can form various regulatory loops to synergistically control the occurrence and development of HCC. Finally, our results demonstrate that this key transcription factor FOXO1 can activate a certain number of tumor suppressor miRNAs to improve the survival of HCC patients, suggesting FOXO1 as an effective therapeutic target for HCC patients. Overall, our study not only reveals the dysregulated mechanisms of miRNAs in HCC, but provides several novel prognostic biomarkers and potential therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Shijie Qin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jieyun Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yunmeng Yi
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Sizhu Jiang
- College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Nong W, Ma L, Lan B, Liu N, Yang H, Lao X, Deng Q, Huang Z. Comprehensive Identification of Bridge Genes to Explain the Progression from Chronic Hepatitis B Virus Infection to Hepatocellular Carcinoma. J Inflamm Res 2021; 14:1613-1624. [PMID: 33907440 PMCID: PMC8071210 DOI: 10.2147/jir.s298977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Hepatitis B virus infection co-occurs in 33% of individuals with hepatocellular carcinoma worldwide. However, the molecular link between hepatitis B virus and hepatocellular carcinoma is unknown. Thus, we aimed to elucidate molecular linkages underlying pathogenesis through in-depth data mining analysis. Materials and Methods Differentially expressed genes were identified from patients with chronic hepatitis B virus infection, hepatocellular carcinoma, or both. Gene set enrichment analysis revealed signaling pathways involving differentially expressed genes. Protein-protein interaction networks, protein crosstalk, and enrichment were analyzed to determine whether differentially expressed gene products might serve as a bridge from hepatitis B virus infection to hepatocellular carcinoma pathogenesis. Prognostic potential and transcriptional and post-transcriptional regulators of bridge genes were also examined. Results We identified vital bridge factors in hepatitis B virus infection-associated hepatocellular carcinoma. Differentially expressed genes were clustered into modules based on relative protein function. Signaling pathways associated with cancer, inflammation, immune system, and microenvironment showed significant crosstalk between modules. Thirty-two genes were dysregulated in hepatitis B virus infection-mediated hepatocellular carcinoma. CPEB3, RAB26, SLCO1B1, ST3GAL6 and XK had higher connectivity in the modular network, suggesting significant associations with survival. CDC20 and NUP107 were identified as driver genes as well as markers of poor prognosis. Conclusion Our results suggest that the sustained inflammatory environment created by hepatitis B virus infection is a risk factor for hepatocellular carcinoma. The identification of hepatitis B virus infection-related hepatocellular carcinoma bridge genes provides testable hypotheses about the pathogenesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wenwei Nong
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Liping Ma
- Department of Clinical Laboratory, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Biyang Lan
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ning Liu
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hongzhi Yang
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiaoxia Lao
- Department of Clinical Laboratory, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiaomei Deng
- Department of Clinical Laboratory, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhihu Huang
- Department of Clinical Laboratory, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
16
|
Deng R, Cui X, Dong Y, Tang Y, Tao X, Wang S, Wang J, Chen L. Construction of circRNA-Based ceRNA Network to Reveal the Role of circRNAs in the Progression and Prognosis of Hepatocellular Carcinoma. Front Genet 2021; 12:626764. [PMID: 33719338 PMCID: PMC7953168 DOI: 10.3389/fgene.2021.626764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Circular RNAs (circRNAs) are now under hot discussion as novel promising biomarkers for patients with hepatocellular carcinoma (HCC). The purpose of our study is to identify several competing endogenous RNA (ceRNA) networks related to the prognosis and progression of HCC and to further investigate the mechanism of their influence on tumor progression. Methods First, we obtained gene expression data related to liver cancer from The Cancer Genome Atlas (TCGA) database (http://www.portal.gdc.cancer.gov/), including microRNA (miRNA) sequence, RNA sequence, and clinical information. A co-expression network was constructed through the Weighted Correlation Network Analysis (WGCNA) software package in R software. The differentially expressed messenger RNAs (DEmRNAs) in the key module were analyzed with the Database for Annotation Visualization and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/summary.jsp) to perform functional enrichment analysis including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The data of miRNA expression and clinical information downloaded from TCGA were utilized for survival analysis to detach the prognostic value of the DEmiRNAs of the key module. Results The 201 differentially expressed miRNAs (DEmiRNAs) and 3,783 DEmRNAs were preliminarily identified through differential expression analysis. The co-expression networks of DEmiRNAs and DEmRNAs were constructed with WGCNA. Further analysis confirmed four miRNAs in the most significant module (blue module) were associated with the overall survival (OS) of patients with liver cancer, including hsa-miR-92b-3p, hsa-miR-122-3p, hsa-miR-139-5p, and hsa-miR-7850-5p. DAVID was used for functional enrichment analysis of 286 co-expressed mRNAs. The GO analysis results showed that the top enriched GO terms were oxidation–reduction process, extracellular exosome, and iron ion binding. In KEGG pathway analysis, the top three enriched terms included metabolic pathways, fatty acid degradation, and valine, leucine, and isoleucine degradation. In addition, we intersected the miRNA–mRNA interaction prediction results with the differentially expressed and prognostic mRNAs. We found that hsa-miR-92b-3p can be related to CPEB3 and ACADL. By overlapping the data of predicted circRNAs by circBank and differentially expressed circRNAs of GSE94508, we screened has_circ_0077210 as the upstream regulatory molecule of hsa-miR-92b-3p. Hsa_circ_0077210/hsa-miR-92b-3p/cytoplasmic polyadenylation element binding protein-3 (CPEB3) and acyl-Coenzyme A dehydrogenase, long chain (ACADL) were validated in HCC tissue. Conclusion Our research provides a mechanistic elucidation of the unknown ceRNA regulatory network in HCC. Hsa_circ_0077210 might serve a momentous therapeutic role to restrain the occurrence and development of HCC.
Collapse
Affiliation(s)
- Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Cui
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuxiang Dong
- Department of General Surgery, First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yanqiu Tang
- Department of General Surgery, First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xuewen Tao
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Shuyu Wang
- Department of General Surgery, First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jincheng Wang
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zheng J, Cheng D, Wu D, Wang L, Qu F, Wu X, Cheng L, Wei Y, Liu X. MiR-452-5p mediates the proliferation, migration and invasion of hepatocellular carcinoma cells via targeting COLEC10. Per Med 2021; 18:97-106. [PMID: 33565325 DOI: 10.2217/pme-2020-0027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: This study explored the potential function of miR-452-5p in hepatocellular carcinoma (HCC) and clarified the mechanism underlying HCC progression. Materials & methods: Real-time quantitative PCR was used to detect miR-452-5p and COLEC10 mRNA expression in HCC, western blot was performed to test COLEC10 protein expression. The regulatory mechanism of miR-452-5p/COLEC10 in HCC cells was explored using CCK-8, wound healing assay, Transwell and dual-luciferase reporter assay. Results: MiR-452-5p was greatly upregulated in HCC cells, and it served as an oncogene playing an active role in HCC cell proliferation, migration and invasion. COLEC10 was identified as the target of miR-452-5p in HCC attenuating the promoting effect of miR-452-5p on HCC cells upon overexpression. Conclusion: MiR-452-5p can promote the progression of HCC via targeting COLEC10.
Collapse
Affiliation(s)
- Jianxing Zheng
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan 063000, PR China
| | - Daming Cheng
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan 063000, PR China
| | - Dongyang Wu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan 063000, PR China
| | - Libing Wang
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan 063000, PR China
| | - Fengzhi Qu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan 063000, PR China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 200231, PR China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 200231, PR China
| | - Yanbin Wei
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 200231, PR China
| | - Xiaogang Liu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan 063000, PR China
| |
Collapse
|
18
|
Decreased Expression of CPEB3 Predicts a Poor Prognosis in Patients with Melanoma: A Study Based on TCGA Data. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8197936. [PMID: 33506034 PMCID: PMC7815395 DOI: 10.1155/2021/8197936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Aim Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) has been acknowledged as a tumor-suppressive gene in several cancers; however, there are few reports on the clinical significance of CPEB3 in melanoma. The aim of this study was to investigate the role of CPEB3 in predicting the prognosis of melanoma patients. Methods The association of CPEB3 expression and clinical pathologic features was performed using The Cancer Genome Atlas (TCGA) data set. The role of CPEB3 expression in prognosis was also analyzed. In addition, CPEB3 expression-related pathways were enriched by gene set enrichment analysis (GSEA). Association analysis of CPEB3 gene expression and immune infiltration was performed by ssGSEA. Results The mRNA was significantly less in melanoma than in normal tissues (p < 0.001). The decrease in CPEB3 expression in melanoma was significantly correlated with T staging (p < 0.001), clinical staging (p = 0.029), melanoma Clark level (p = 0.014), and melanoma ulceration (p = 0.003), while it was marginally significant in N staging (p = 0.089). Melanoma with low CPEB3 expression was associated with worse OS (overall survival), progression-free survival (PFS), and disease-specific survival (DSS) than in that with high expression. In the univariate analysis, expression of CPEB3, melanoma ulceration, Clark level of melanoma, age, clinical stage, T stage, and N stage were correlated with OS (p < 0.05). Further analysis by multivariate Cox regression showed that N stage (p = 0.029), melanoma ulceration (p = 0.004), and CPEB3 expression (p < 0.001) were independent prognostic factors of OS in melanoma. Moreover, GSEA showed that several pathways were enriched in CPEB3, such as PD1 signaling, CTLA4 pathway, CTCF pathway, CHEMOKIN signaling, VEGF signaling, and JAK-STAT pathway. CPEB3 was significantly correlated with the infiltration level of B cells (p < 0.001), T cells (p < 0.001), T helper cells (p < 0.001), and central memory T (Tcm) cells (p < 0.001). Conclusion CPEB3 may be a potential prognostic marker in melanoma with poor survival. Moreover, PD1 signaling, CTLA4 pathway, CTCF pathway, CHEMOKIN signaling, VEGF signaling, and JAK-STAT pathway may be the key pathway regulated by CPEB3. Moreover, the expression of CPEB3 in melanoma is related to the level of immune infiltration.
Collapse
|
19
|
Yu XH, Deng WY, Chen JJ, Xu XD, Liu XX, Chen L, Shi MW, Liu QX, Tao M, Ren K. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis 2020; 11:1043. [PMID: 33293505 PMCID: PMC7723992 DOI: 10.1038/s41419-020-03263-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Kcnq1 overlapping transcript 1 (kcnq1ot1), an imprinted antisense lncRNA in the kcnq1 locus, acts as a potential contributor to cardiovascular disease, but its role in atherosclerosis remains unknown. The aim of this study was to explore the effects of kcnq1ot1 on atherogenesis and the underlying mechanism. Our results showed that kcnq1ot1 expression was significantly increased in mouse aorta with atherosclerosis and lipid-loaded macrophages. Lentivirus-mediated kcnq1ot1 overexpression markedly increased atherosclerotic plaque area and decreased plasma HDL-C levels and RCT efficiency in apoE-/- mice fed a Western diet. Upregulation of kcnq1ot1 also reduced the expression of miR-452-3p and ABCA1 but increased HDAC3 levels in mouse aorta and THP-1 macrophages. Accordingly, kcnq1ot1 overexpression inhibited cholesterol efflux and promoted lipid accumulation in THP-1 macrophages. In contrast, kcnq1ot1 knockdown protected against atherosclerosis in apoE-/- mice and suppressed lipid accumulation in THP-1 macrophages. Mechanistically, kcnq1ot1 enhanced HDAC3 expression by competitively binding to miR-452-3p, thereby inhibiting ABCA1 expression and subsequent cholesterol efflux. Taken together, these findings suggest that kcnq1ot1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the miR-452-3p/HDAC3/ABCA1 pathway.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Jiao-Jiao Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xian-Xia Liu
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Meng-Wen Shi
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qi-Xian Liu
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Min Tao
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Kun Ren
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China. .,Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
20
|
CPEB3-mediated MTDH mRNA translational suppression restrains hepatocellular carcinoma progression. Cell Death Dis 2020; 11:792. [PMID: 32968053 PMCID: PMC7511356 DOI: 10.1038/s41419-020-02984-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein. We had reported that CPEB3 is involved in hepatocellular carcinoma (HCC) progression. However, the underlying mechanisms of CPEB3 in HCC remain unclear. In this study, we firstly performed RNA immunoprecipitation to uncover the transcriptome-wide CPEB3-bound mRNAs (CPEB3 binder) in HCC. Bioinformatic analysis indicates that CPEB3 binders are closely related to cancer progression, especially HCC metastasis. Further studies confirmed that metadherin (MTDH) is a direct target of CPEB3. CPEB3 can suppress the translation of MTDH mRNA in vivo and in vitro. Besides, luciferase assay demonstrated that CPEB3 interacted with 3'-untranslated region of MTDH mRNA and inhibited its translation. Subsequently, CPEB3 inhibited the epithelial-mesenchymal transition and metastasis of HCC cells through post-transcriptional regulation of MTDH. In addition, cpeb3 knockout mice are more susceptible to carcinogen-induced hepatocarcinogenesis and subsequent lung metastasis. Our results also indicated that CPEB3 was a good prognosis marker, which is downregulated in HCC tissue. In conclusion, our results demonstrated that CPEB3 played an important role in HCC progression and targeting CPEB3-mediated mRNA translation might be a favorable therapeutic approach.
Collapse
|
21
|
Wang Y, Chen CZ, Fu XH, Liu JB, Peng YX, Wang YJ, Han DX, Zhang Z, Yuan B, Gao Y, Jiang H, Zhang JB. CPEB3 regulates the proliferation and apoptosis of bovine cumulus cells. Anim Sci J 2020; 91:e13416. [PMID: 32648330 DOI: 10.1111/asj.13416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022]
Abstract
Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a member of the Cytoplasmic polyadenylation element-binding family, which has been found to regulate the translation of dormant and masked mRNA in Xenopus oocytes and plays potential roles in regulating biological functions in cells and tissues. However, its role in cumulus cells is not clear. In this study, the mRNA expression of CPEB3 in bovine cumulus cells was inhibited with small interfering RNA. Cell cycle progression, proliferation, and apoptosis were measured after inhibition of CPEB3. Subsequently, changes in intracellular Reactive oxygen species content, mitochondrial membrane potential and expansion-related gene expression were examined. The results showed that after CPEB3 inhibition, cumulus cells had an abnormal cell cycle, the numbers of cells in the S and G2/M phases were significantly increased, cell proliferation was increased and apoptosis rates were decreased. These effects were likely due CPEB3 inhibition-induced decreases in intracellular Reactive oxygen species levels; increases in mitochondrial membrane potential; decreases in apoptosis; downregulation of CCNA, CCND, CCNE, CDK2, CDK4, CDK6, p21, and p27 mRNA expression; and upregulation of CCNB, CDK1, HAS2, PTGS2, PTX3, and CEBPB mRNA expression. Therefore, CPEB3 plays potential roles in regulating the biological and physiological functions of bovine cumulus cell.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Cheng-Zhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Xu-Huang Fu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Jian-Bo Liu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yan-Xia Peng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yi-Jie Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Dong-Xu Han
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Zhe Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
23
|
Guo X, Xi L, Li L, Guo J, Jin W, Chang C, Zhang J, Xu C, Chen G. circRNA-14723 promotes hepatocytes proliferation in rat liver regeneration by sponging rno-miR-16-5p. J Cell Physiol 2020; 235:8176-8186. [PMID: 31960969 DOI: 10.1002/jcp.29473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/03/2020] [Indexed: 01/04/2023]
Abstract
Circular RNA (circRNA) is a subclass of noncoding RNA (ncRNA) detected within mammalian tissues and cells. However, its regulatory role during the proliferation phase of rat liver regeneration (LR) remains unreported. This study was designed to explore their regulatory mechanisms in cell proliferation of LR. The circRNA expression profile was detected by high-throughput sequencing. It was indicated that 260 circRNAs were differentially expressed during the proliferation phase of rat LR. Among them, circ-14723 displayed a significantly differential expression. We further explored its regulatory mechanism in rat hepatocytes (BRL-3A cells). First, EdU, flow cytometry and western blot (WB) indicated that knocking down circ-14723 inhibited BRL-3A cells proliferation. Second, RNA-Pulldown and dual-luciferase report assay showed that circ-14723 could sponge rno-miR-16-5p. At last, WB showed that the reported target genes of rno-miR-16-5p, CCND1, and CCNE1 were downregulated after knocking down circ-14723. In conclusion, we found that circ-14723 exerted a critical role in G1/S arrest to promote cell proliferation via rno-miR-16-5p/CCND1 and CCNE1 axis in rat LR. This finding further revealed the regulatory mechanisms of circRNA on cell proliferation of LR, and might provide a potential target for clinical problems.
Collapse
Affiliation(s)
- Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Lingling Xi
- College of Life Science, Henan Normal University, Xinxiang, China.,Henan Engineering Key Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, China
| | - Lifei Li
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, China.,Henan Engineering Key Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Jingbo Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
24
|
Yang J, Zhu D, Liu S, Shao M, Liu Y, Li A, Lv Y, Huang M, Lou D, Fan Q. Curcumin enhances radiosensitization of nasopharyngeal carcinoma by regulating circRNA network. Mol Carcinog 2019; 59:202-214. [PMID: 31793078 DOI: 10.1002/mc.23143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 01/02/2023]
Abstract
Circular RNAs (circRNAs) are involved in the regulation of gene expression in different physiological and pathological processes. These macromolecules can act as microRNA (miRNA) sponges and play an important role as gene regulators throughout the circRNA-miRNA pathway. In this study, we established a radioresistance model with the nasopharyngeal carcinoma cell line CNE-2, and then analyzed the differences in the circRNAs between radioresistant and normal nasopharyngeal carcinoma cell lines using a high-throughput microarray. Tested circRNAs included 1042 upregulated and 1558 downregulated circRNAs. Relevant signaling pathways associated with the circRNAs and their target miRNAs were analyzed using bioinformatics analysis to determine the radioresistance of the differentially expressed circRNAs. Curcumin was used to treat irradiated cell lines, and changes in the circRNA before and after curcumin treatment were analyzed to investigate the radiosensitization effects of curcumin. The results showed that curcumin could regulate the circRNA-miRNA-messenger RNA network and inhibit the epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3), and growth factor receptor-bound protein 2 (GRB2) to achieve radiosensitization. Thus, circRNA acted as a miRNA sponge and regulated the expression of miRNA, thereby affecting EGFR, STAT3, and GRB2 expression and radiosensitization.
Collapse
Affiliation(s)
- Jiabin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shiya Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Shao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Liu
- NanFang Hospital, Guangzhou, Guangdong, China
| | - Aiwu Li
- NanFang Hospital, Guangzhou, Guangdong, China
| | - Ying Lv
- NanFang Hospital, Guangzhou, Guangdong, China
| | - Mu Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Lou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Kugler N, Klein K, Zanger UM. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation. Biochem Pharmacol 2019; 171:113725. [PMID: 31758923 DOI: 10.1016/j.bcp.2019.113725] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
In conditions of acute and chronic inflammation hepatic detoxification capacity is severely impaired due to coordinated downregulation of drug metabolizing enzymes and transporters. Using global transcriptome analysis of liver tissue from donors with pathologically elevated C-reactive protein (CRP), we observed comparable extent of positive and negative acute phase response, where the top upregulated gene sets included immune response and defense pathways while downregulation occurred mostly in metabolic and catabolic pathways including many important drug metabolizing enzymes and transporters. We hypothesized that microRNAs (miRNA), which usually act as negative regulators of gene expression, contribute to this process. Microarray and quantitative real-time PCR analyses identified differentially expressed miRNAs in liver tissues from donors with elevated CRP, cholestasis, steatosis, or non-alcoholic steatohepatitis. Using luciferase reporter constructs harboring native and mutated 3'-untranslated gene regions, several predicted miRNA binding sites on RXRα (miR-130b-3p), CYP2C8 (miR-452-5p), CYP2C9 (miR-155-5p), CYP2C19 (miR-155-5p, miR-6807-5p), and CYP3A4 (miR-224-5p) were validated. HepaRG cells transfected with miRNA mimics showed coordinate reductions in mRNA levels and several cytochrome P450 enzyme activities particularly for miR-155-5p, miR-452-5p, and miR-6807-5p, the only miRNA that was deregulated in all four pathological conditions. Furthermore we observed strong negative correlations between liver tissue miRNA levels and hepatic CYP phenotypes. Since miR-155 is well known for its multifunctional roles in immunity, inflammation, and cancer, our data suggest that this and other miRNAs contribute to coordinated downregulation of drug metabolizing enzymes and transporters in inflammatory conditions.
Collapse
Affiliation(s)
- Nicole Kugler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Eberhard Karls University, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Eberhard Karls University, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Eberhard Karls University, Tuebingen, Germany.
| |
Collapse
|
26
|
Rong MH, Cai KT, Lu HP, Guo YN, Huang XY, Zhu ZH, Tang W, Huang SN. Overexpression of MiR-452-5p in hepatocellular carcinoma tissues and its prospective signaling pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4041-4056. [PMID: 31933800 PMCID: PMC6949781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The implication of miR-452-5p and its prospective machinery in hepatocellular carcinoma (HCC) remains largely unknown. For this reason, this study aimed to inspect the clinical implication of miR-452-5p expression in HCC tissues with multiple detection approaches, to analyze its potential function via in silico methods, and to validate this using a dual-luciferase reporter assay. METHODS The assessment of the expression level of miR-452-5p in HCC was conducted via four methods: 1) in-house real-time quantitative PCR (RT-qPCR), 2) miRNA-sequencing (miRNA-seq) from The Cancer Genome Atlas (TCGA), 3) miRNA microarrays from the Gene Expression Omnibus (GEO), and 4) comprehensive meta-analyses calculating the standard mean difference (SMD) and summary of receiver operator characteristic (sROC). Following the target prediction, one of the potential targets of miR-452-5p was validated through a dual-luciferase reporter assay. RESULTS MiR-452-5p was consistently elevated in HCC tissues via various detection methods, including in-house RT-qPCR, miRNA-seq, and miRNA microarrays. The final SMD was 0.842 for 820 cases of HCC samples. Simultaneously, the area under curve (AUC) of the sROC was 0.80 (0.76-0.83). The 1,135 predicted targets of miR-452-5p were enriched in the pathways of cytokine-cytokine receptor interaction, carbon metabolism, and complement and coagulation cascades. Among these predicted targets, CDKN1B was verified to be a real target of miR-452-5p. CONCLUSION The overexpression of miR-452-5p may play a pivotal role in the carcinogenesis of HCC via targeting multiple signaling pathways and genes. The function and molecular machinery of miR-452-5p in HCC requires further in-depth exploration.
Collapse
Affiliation(s)
- Min-Hua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Kai-Teng Cai
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yi-Nan Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiong-Yan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhan-Hui Zhu
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Su-Ning Huang
- Department of Radiotherapy, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
27
|
Tang H, Zhao H, Yu ZY, Feng X, Fu BS, Qiu CH, Zhang JW. MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/β-catenin signaling pathway. Dig Liver Dis 2019; 51:1314-1322. [PMID: 30948333 DOI: 10.1016/j.dld.2019.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a commonly occurring malignancy accompanied by significant mortality rates. More recently, extensive investigations into microRNA (miRNA) expression profiles have been conducted to identify their ability to inhibit tumors. Thus, this study explored the role of miR-194 in epithelial-mesenchymal transition (EMT), cell invasion and migration through Wnt/β-catenin signaling pathway by binding to protein regulator of cytokinesis 1 (PRC1) in HCC. METHODS Initially, HCC related microarray data were retrieved and analyzed, and regulatory miRNAs of PRC1 were predicted accordingly. Next, the roles of miR-194, PRC1, and Wnt/β-catenin signaling pathway in HCC were determined, with relationship between PRC1 and miR-194 being verified subsequently. The role of miR-194 in cell EMT, migration, proliferation and invasion was evaluated through gain- and loss- function studies. Finally, tumor xenograft in nude mice was induced to assess tumor growth of HCC. RESULTS miR-194 affected HCC development in Wnt/β-catenin signaling pathway with putative binding sites to PRC1. MiR-194 could target PRC1. MiR-194 was downregulated while PRC1 was upregulated in HCC tissues. Additionally, miR-194 elevation and PRC1 silencing could suppress EMT, growth, proliferation, invasion, and migration in HCC cells by inactivating Wnt/β-catenin signaling pathway. CONCLUSION Taken together, this study demonstrated that miR-194 inhibited EMT, cell invasion and migration through inactivation of PRC1-dependent Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hui Tang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Hui Zhao
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Zhen-Yu Yu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xiao Feng
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Bin-Sheng Fu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Chun-Hui Qiu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| | - Jian-Wen Zhang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
28
|
Lambrecht J, Verhulst S, Reynaert H, van Grunsven LA. The miRFIB-Score: A Serological miRNA-Based Scoring Algorithm for the Diagnosis of Significant Liver Fibrosis. Cells 2019; 8:cells8091003. [PMID: 31470644 PMCID: PMC6770498 DOI: 10.3390/cells8091003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The current diagnosis of early-stage liver fibrosis often relies on a serological or imaging-based evaluation of the stage of fibrosis, sometimes followed by an invasive liver biopsy procedure. Novel non-invasive experimental diagnostic tools are often based on markers of hepatocyte damage, or changes in liver stiffness and architecture, which are late-stage characteristics of fibrosis progression, making them unsuitable for the diagnosis of early-stage liver fibrosis. miRNAs control hepatic stellate cell (HSC) activation and are proposed as relevant diagnostic markers. Methods: We investigated the possibility of circulating miRNAs, which we found to be dysregulated upon HSC activation, to mark the presence of significant liver fibrosis (F ≥ 2) in patients with chronic alcohol abuse, chronic viral infection (HBV/HCV), and non-alcoholic fatty liver disease (NAFLD). Results: miRNA-profiling identified miRNA-451a, miRNA-142-5p, Let-7f-5p, and miRNA-378a-3p to be significantly dysregulated upon in vitro HSC activation, and to be highly enriched in their extracellular vesicles, suggesting their potential use as biomarkers. Analysis of the plasma of patients with significant liver fibrosis (F ≥ 2) and no or mild fibrosis (F = 0–1), using miRNA-122-5p and miRNA-29a-3p as positive control, found miRNA-451a, miRNA-142-5p, and Let-7f-5p, but not miRNA-378a-3p, able to distinguish between the two patient populations. Using logistic regression analysis, combining all five dysregulated circulating miRNAs, we created the miRFIB-score with a predictive value superior to the clinical scores Fibrosis-4 (Fib-4), aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, and AST to platelet ratio index (APRI). The combination of the miRFIB-score with circulating PDGFRβ-levels further increased the predictive capacity for the diagnosis of significant liver fibrosis. Conclusions: The miRFIB- and miRFIBp-scores are accurate tools for the diagnosis of significant liver fibrosis in a heterogeneous patient population.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Stefaan Verhulst
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Hendrik Reynaert
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Department of Gastroenterology and Hepatology, University Hospital Brussels (UZ Brussel), B-1090 Brussels, Belgium
| | - Leo A van Grunsven
- Department of Basic (Bio-)Medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
29
|
Pillay P, Vatish M, Duarte R, Moodley J, Mackraj I. Exosomal microRNA profiling in early and late onset preeclamptic pregnant women reflects pathophysiology. Int J Nanomedicine 2019; 14:5637-5657. [PMID: 31413567 PMCID: PMC6661992 DOI: 10.2147/ijn.s208865] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Preeclampsia is the leading cause of maternal and fetal mortality due to the inability to diagnose and treat the disorder early in pregnancy. This is attributed to the complex pathophysiology and unknown etiology of the disorder, which is modulated by several known and unknown factors. Exosomes have recently been implicated as possible mediators of the pathogenesis of preeclampsia, with, however, no evidence linking these nanovesicles to the pathophysiology of preeclampsia and its subtypes. Methods: To better understand the pathophysiological role of exosomes in preeclampsia, we have analyzed the exosomal microRNA in early and late onset preeclamptic women in comparison to their gestationally matched normotensive controls using Digital Direct Detection (NanoString Technologies). Results: For the first time, distinct exosomal microRNA signatures in early and late onset preeclampsia have been identified. Moreover, these signatures indicate that exosomes are involved in key pathological features associated with preeclampsia and differentiate between the subtypes. Conclusion: This study forms the basis for the diagnostic and functional validation of the identified signatures as biomarkers of preeclampsia and its subtypes.
Collapse
Affiliation(s)
- Preenan Pillay
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jack Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, University of Kwazulu-Natal, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
30
|
Liu F, Guo L, Xin G, Wang Z. miR-452 promotes cell metastasis and the epithelial to mesenchymal by targeting SOX7 in clear-cell renal-cell carcinoma. J Cell Biochem 2019; 120:8401-8408. [PMID: 30506716 DOI: 10.1002/jcb.28125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Clear-cell renal-cell carcinoma (ccRCC) is the most common renal cell carcinoma (RCC), representing 75%-80% of the cases of RCC, and characterized by a high recurrence rate and poor prognosis. miR-452 acts as a tumor promoter in several tumors, including ccRCC. The purpose of this study was to determine the role of miR-452 in ccRCC. miR-452 and SOX7 messenger RNA and protein levels were calculated by quantitative reverse transcription polymerase chain reaction and Western blot analysis. MTT and Transwell assays were utilized to measure proliferative and invasive abilities. The Kaplan-Meier method was used to evaluate the association between the expression of miR-452 or SOX7 and the overall survival of ccRCC patients. Our results showed that miR-452 was overexpressed in ccRCC tissues and cells, and upregulation of miR-452 predicted a poor 5-year survival in ccRCC patients. In contrast, expression of SOX7 was low and downregulation of SOX7 predicted poor prognosis in ccRCC. In addition, miR-452 promoted cell proliferation, invasion, and the EMT, while SOX7 reversed the function of miR-452 on cell proliferation and invasion in 786-O cells. In conclusion, miR-452 was shown to inhibit cell proliferation, invasion, and the EMT through SOX7 in ccRCC, and the newly identified miR-452/SOX7 axis provided novel insight into the pathogenesis of ccRCC.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lihua Guo
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhixin Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Liu F, Zhang G, Lv S, Wen X, Liu P. miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. J Cell Biochem 2019; 120:12618-12627. [PMID: 30834603 DOI: 10.1002/jcb.28528] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 01/02/2023]
Abstract
High-grade ovarian serous carcinoma (HGS-OvCa), a type of ovarian cancer with poor prognosis due to distant metastasis, is urgently in need of new therapeutic targets. microRNAs (miRNAs), a class of small noncoding RNAs, perform significant roles in tumor progression. Mounting evidence has revealed the aberrant expression of miRNA in various cancers, one of which is HGS-OvCa. Present study planned to investigate that miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. Upregulation of miR-301b-3p was uncovered in HGS-OvCa tissues and cell lines, and was identified to be associated with metastasis. The Kaplan-Meier analysis confirmed the association of miR-301b-3p with poor prognosis of HGS-OvCa patients. Transwell assay validated the oncogenic effect of miR-301b-3p on migration and invasion of HGS-OvCa cells. Cytoplasmic polyadenylation element binding protein 3 (CPEB3) was then identified as a target of miR-301b-3p. It was also discovered that CPEB3 was downregulated in HGS-OvCa tissues and cell lines. The Spearman correlation curve presented the negative correlation of CPEB3 expression with miR-301b-3p. Furthermore, rescue assays proved that miRNA-301b-3p regulated the invasion and migration through CPEB3. Western blot and qRT-PCR analysis showed that miRNA-301b-3p induced epidermal growth factor receptor and downstream metastasis-related proteins, p38, and extracellular signal-regulated kinase 1/2 (ERK1/2), through CPEB3. To be concluded, these results indicated that miRNA-301b-3p accelerated migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis.
Collapse
Affiliation(s)
- Fengying Liu
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Guilian Zhang
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Shiming Lv
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Xinmian Wen
- Department of Laboratory Medicine, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Peishu Liu
- Department of Gynecology and obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Lin H, Guo Q, Lu S, Chen J, Li X, Gong M, Tang L, Wen J. LncRNA SUMO1P3 promotes proliferation and inhibits apoptosis in colorectal cancer by epigenetically silencing CPEB3. Biochem Biophys Res Commun 2019; 511:239-245. [PMID: 30799082 DOI: 10.1016/j.bbrc.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy characterized with high morbidity and death rate. Due to late diagnosis, most CRC patients missed the proper timing for radical operation, which led to the high mortality in CRC. Therefore, identifying new prognostic and therapeutic targets is important. Long non-coding RNAs are reported as essential regulators for tumor progression, including in CRC. LncRNA SUMO1P3 has been documented as an oncogene promoting proliferation, cell cycle, and metastasis in several cancers, but its role in CRC has never been unveiled. The purpose of our study is to interrogate the functions and mechanism of SUMO1P3 in colorectal cancer. We validated the upregulation and the prognostic significance of SUMO1P3 in CRC. The loss-of-function assays suggested that SUMO1P3 provoked CRC cell proliferative ability, and retarded apoptotic ability. Cytoplasmic polyadenylation element binding protein 3 (CPEB3) has been newly acknowledged as a tumor suppressive gene in several cancers, and has been revealed to present low expression in CRC. We predicted through UCSC database and validated by ChIP assay that EZH2, a crucial regulator of trimethylation of histone H3 at lysine 27 (H3K27me3), bound to CPEB3 promoter. Further, we validated that SUMO1P3 epigenetically repressed CPEB3 through EZH2. Finally, rescue assays indicated that SUMO1P3 provoked proliferation, cell cycle, and retarded apoptosis through CPEB3. Consequently, current study showed that lncRNA SUMO1P3 promoted cell proliferative ability and inhibited apoptotic ability in CRC by epigenetically silencing CPEB3, providing a novel prognostic marker for CRC patients.
Collapse
Affiliation(s)
- Hao Lin
- The First School of Clinical Medicine, Southern Medical University, No. 1023 shatai south Road, Baiyun District, Guangzhou, Guangdong, 510080, China; Department of Gastroenterology, Affiliated PingXiang Hospital, Southern Medical University, No. 8, Wugong Mountain Avenue, Development Zone, Pingxiang, Jiangxi, 337055, China
| | - Qingqing Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, Fujian, 350005, China
| | - Shiyun Lu
- Department of Gastroenterology, Fujian Provincial Hospital, N.134 East street, Gulou District, Fuzhou, Fujian, 3530001, China
| | - Jie Chen
- Department of Science and Education, Affiliated PingXiang Hospital, Southern Medical University, No. 8, Wugong Mountain Avenue, Development Zone, Pingxiang, Jiangxi, 337055, China
| | - Xing Li
- The First School of Clinical Medicine, Southern Medical University, No. 1023 shatai south Road, Baiyun District, Guangzhou, Guangdong, 510080, China; Department of Gastroenterology, Affiliated PingXiang Hospital, Southern Medical University, No. 8, Wugong Mountain Avenue, Development Zone, Pingxiang, Jiangxi, 337055, China
| | - Min Gong
- The First School of Clinical Medicine, Southern Medical University, No. 1023 shatai south Road, Baiyun District, Guangzhou, Guangdong, 510080, China; Department of Gastroenterology, Affiliated PingXiang Hospital, Southern Medical University, No. 8, Wugong Mountain Avenue, Development Zone, Pingxiang, Jiangxi, 337055, China
| | - Lin Tang
- The First School of Clinical Medicine, Southern Medical University, No. 1023 shatai south Road, Baiyun District, Guangzhou, Guangdong, 510080, China; Department of Gastroenterology, Affiliated PingXiang Hospital, Southern Medical University, No. 8, Wugong Mountain Avenue, Development Zone, Pingxiang, Jiangxi, 337055, China
| | - Jianbo Wen
- The First School of Clinical Medicine, Southern Medical University, No. 1023 shatai south Road, Baiyun District, Guangzhou, Guangdong, 510080, China; Department of Gastroenterology, Affiliated PingXiang Hospital, Southern Medical University, No. 8, Wugong Mountain Avenue, Development Zone, Pingxiang, Jiangxi, 337055, China.
| |
Collapse
|
33
|
Chen Y, Guo Y, Li Y, Yang J, Liu J, Wu Q, Wang R. miR‑300 regulates tumor proliferation and metastasis by targeting lymphoid enhancer‑binding factor 1 in hepatocellular carcinoma. Int J Oncol 2019; 54:1282-1294. [PMID: 30968150 PMCID: PMC6411350 DOI: 10.3892/ijo.2019.4715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) have a critical role in cell proliferation and metastasis in hepatocellular carcinoma (HCC). However, the effect of miR-300 on the development and progression of HCC remains unclear. In the present study, it was observed that miRNA (miR)-300 expression was significantly decreased in HCC cell lines compared with normal liver cells. Furthermore, we detected the effects of miR-300 on cell proliferation and apoptosis, cell cycle, migration and invasion by using MTT, colony formation assay, wound healing, Transwell assay and flow cytometry methods, respectively. The results demonstrated that miR-300 overexpression inhibited proliferation, induced apoptosis and G1/S cell cycle arrest, and suppressed migration and invasion in Huh-7 cells, whereas miR-300 silencing promoted the proliferation, migration and invasion of Hep3B cells. Mechanistically, the transcription factor lymphoid enhancer-binding factor 1 (LEF-1), which was verified as a direct target gene of miR-300, promoted cell proliferation, migration and invasion and mediates the effects of miR-300 on HCC cells. In addition, low expression of miR-300 and high expression of LEF-1 in HCC tissues were found to be associated with poor prognosis of patients with HCC. These findings indicate that miR-300 may be a potential prognostic predictor and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Yufo Chen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yuanyuan Guo
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yawei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jingwen Yang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jing Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Rui Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
34
|
Effects of Lidocaine-Mediated CPEB3 Upregulation in Human Hepatocellular Carcinoma Cell Proliferation In Vitro. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8403157. [PMID: 29850575 PMCID: PMC5932519 DOI: 10.1155/2018/8403157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 03/06/2018] [Indexed: 01/23/2023]
Abstract
Lidocaine displays antitumor activity by inducing apoptosis and suppressing tumor growth in human hepatocellular carcinoma (HepG2) cells in vitro. However, the molecular mechanism underlying lidocaine-mediated antitumor activity is unclear. In this study, HepG2 cells were treated with lidocaine, and cell proliferation and colony-forming ability were assessed. The expression level of cytoplasmic polyadenylation element binding protein 3 (CPEB3) was detected by real-time quantitative PCR and western blot. Lidocaine treatment resulted in decreased HepG2 cell viability and colony formation in a dose-dependent manner. In hepatocellular carcinoma patient samples, CPEB3 was downregulated and was associated with poor prognosis and high-grade malignancy. Additionally, CPEB3 was a critical mediator of lidocaine-induced repression of HepG2 cell proliferation. These results demonstrated that lidocaine decreased cell viability and colony-forming ability of HepG2 cells by upregulating CPEB3 expression.
Collapse
|
35
|
Abstract
Molecular pathological epidemiology (MPE) is a new discipline which emerged as an integrated approach of molecular pathology and epidemiology and was introduced for the first time by Professor Shuji Ogino and Professor Meir Stampfer in the year of 2010. MPE studies in hepatocellular carcinoma (HCC) investigate the relationship among risk factors, molecular biomarkers, and initiation, progression, and prognosis of HCC, which can be used for exploring the molecular mechanisms of HCC and for the molecular classification of the high risk population. Type 2 diabetes mellitus (DM) has been confirmed as an established risk factor for HCC, and MPE can be helpful to better understand the underlying molecular mechanisms. On December 20, 2017, the first China-Japan Symposium on HCC-MPE was held successfully in Beijing. HCC-MPE provides the opportunities and challenges to solve some problems of HCC, and I believe that it can be helpful to improve the early diagnosis, molecular typing, personalized prevention and treatment, and prognosis of HCC.
Collapse
|