1
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
3
|
Burtscher J, Samaja M. Healthy Aging at Moderate Altitudes: Hypoxia and Hormesis. Gerontology 2024:1-9. [PMID: 39348814 DOI: 10.1159/000541216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Aging is associated with cellular and tissue responses that collectively lead to functional and structural deterioration of tissues. Poor tissue oxygenation, or hypoxia, is involved in such responses and contributes to aging. Consequently, it could be speculated that living at higher altitude, and therefore in hypoxic conditions, accelerates aging. This assumption is indeed supported by evidence from populations residing at very high altitudes (>3,500 m). In contrast, accumulating evidence suggests that living at moderate altitudes (1,500-2,500 m) is protective rather than injurious, at least for some body systems. SUMMARY In this review, we critically evaluate the hypothesis that the physiological responses to mild hypoxic stress associated to life at moderate altitudes provide protection from many hypoxia-related diseases through hormesis. Hormesis means that a low dose of a stressor (here hypoxia) elicits beneficial outcomes, while a higher dose can be toxic and might explain at least in part the dose-dependent contrasting effects of hypoxia on the aging processes. The lack of well-designed longitudinal studies focusing on the role of the altitude of residence, and difficulties in accounting for potentially confounding factors such as migration, ethnicity/genetics, and socioeconomic and geoclimatic conditions, currently hampers translation of related research into uncontroversial paradigms. KEY MESSAGES Deeper investigations are required to understand the impact of altitude-related hypoxia on age-related diseases and to develop molecular markers of ageing/senescence in humans that are linked to hypoxia. However, the presented emerging evidence supports the view that hypoxia conditioning has the potential to improve life quality and expectancy.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Tregub PP, Komleva YK, Kulikov VP, Chekulaev PA, Tregub OF, Maltseva LD, Manasova ZS, Popova IA, Andriutsa NS, Samburova NV, Salmina AB, Litvitskiy PF. Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy. Int J Mol Sci 2024; 25:6512. [PMID: 38928217 PMCID: PMC11204369 DOI: 10.3390/ijms25126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
| | - Yulia K. Komleva
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia
| | - Pavel A. Chekulaev
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Larisa D. Maltseva
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Andriutsa
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia V. Samburova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Ravel-Godreuil C, Roy ER, Puttapaka SN, Li S, Wang Y, Yuan X, Eltzschig HK, Cao W. Transcriptional Responses of Different Brain Cell Types to Oxygen Decline. Brain Sci 2024; 14:341. [PMID: 38671993 PMCID: PMC11048388 DOI: 10.3390/brainsci14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain hypoxia is associated with a wide range of physiological and clinical conditions. Although oxygen is an essential constituent of maintaining brain functions, our understanding of how specific brain cell types globally respond and adapt to decreasing oxygen conditions is incomplete. In this study, we exposed mouse primary neurons, astrocytes, and microglia to normoxia and two hypoxic conditions and obtained genome-wide transcriptional profiles of the treated cells. Analysis of differentially expressed genes under conditions of reduced oxygen revealed a canonical hypoxic response shared among different brain cell types. In addition, we observed a higher sensitivity of neurons to oxygen decline, and dissected cell type-specific biological processes affected by hypoxia. Importantly, this study establishes novel gene modules associated with brain cells responding to oxygen deprivation and reveals a state of profound stress incurred by hypoxia.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Ethan R. Roy
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Srinivas N. Puttapaka
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| |
Collapse
|
6
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Boulares A, Pichon A, Faucher C, Bragazzi NL, Dupuy O. Effects of Intermittent Hypoxia Protocols on Cognitive Performance and Brain Health in Older Adults Across Cognitive States: A Systematic Literature Review. J Alzheimers Dis 2024; 101:13-30. [PMID: 39093075 DOI: 10.3233/jad-240711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background The rise in the aging population highlights the need to address cognitive decline and neurodegenerative diseases. Intermittent hypoxia (IH) protocols show promise in enhancing cognitive abilities and brain health. Objective This review evaluates IH protocols' benefits on cognition and brain health in older adults, regardless of cognitive status. Methods A systematic search following PRISMA guidelines was conducted across four databases (PubMed, Scopus, Web of Science, and Cochrane Library) and two registers, covering records from inception to May 2024 (PROSPERO: CRD42023462177). Inclusion criteria were: 1) original research with quantitative details; 2) studies involving older adults, with or without cognitive impairment; 3) studies including IH protocols; 4) articles analyzing cognition and brain health in older adults. Results Seven studies and five registered trials met the criteria. Findings indicate that Intermittent Hypoxia Training (IHT) and Intermittent Hypoxia-Hyperoxia Training (IHHT) improved cognitive functions and brain health. Intermittent Hypoxic Exposure (IHE) improved cerebral tissue oxygen saturation, middle cerebral arterial flow velocity, and cerebral vascular conductance, particularly in cognitively impaired populations. IHT and IHHT had no significant effect on BDNF levels. There is a lack of studies on IHHE in older adults with and without cognitive impairment. Conclusions IH protocols may benefit cognition regardless of cognitive status. IHT and IHE positively affect cerebral outcomes, with all protocols having limited effects on BDNF levels. Future research should standardize IH protocols, investigate long-term cognitive effects, and explore neuroprotective biomarkers. Combining these protocols with physical exercise across diverse populations could refine interventions and guide targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Corentin Faucher
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
| | - Nicola Luigi Bragazzi
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, ON, Canada
- Department of Food and Drugs, Medical School, Human Nutrition Unit (HNU), University of Parma, Parma, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair, Health Anthropology Biosphere and Healing Systems, University of Genoa, Genoa, Italy
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| | - Olivier Dupuy
- Laboratory Mobility, Aging & Exercise-ER20296 (MOVE), Faculty of Sport Sciences-STAPS, University of Poitiers, Poitiers, France
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
8
|
Reddy PM, Abdali K, Ross SE, Davis S, Mallet RT, Shi X. Impact of Age on Cognitive Testing Practice Effects and Cardiorespiratory Responses. Gerontol Geriatr Med 2024; 10:23337214241234737. [PMID: 38410616 PMCID: PMC10896047 DOI: 10.1177/23337214241234737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Objective: This study tested the hypothesis that healthy aging attenuates cognitive practice effects and, consequently, limits the familiarity-associated reductions in heart rate (HR) and breathing frequency (BF) responses during retesting. Methods: Twenty-one cognitively normal older and younger adults (65 ± 2 vs. 26 ± 1 years old) participated in the study. Mini-Mental State Examination (MMSE), Digit-Span-Test (DST), Trail Making Test (TMT-B), and California Verbal Learning Test (CVLT-II) were administered twice at 3-week intervals, while HR and BF were monitored by electrocardiography and plethysmography, respectively. Results: Cognitive performances were not affected by the age factor, and the retest factor only affected CVLT-II. HR and BF increased only in the younger adults (p < .01) during cognitive tests; retesting attenuated these responses (retest factor p < .01). Long-delay free-recall in CVLT-II was unchanged in cognitively normal older versus younger adults. Healthy aging did not diminish short-term memory assessed by DST and CVLT-II short-delay or long-delay free-recalls. Conclusions: Only CVLT-II, but not MMSE, DST or TMT-B, demonstrated cognitive retesting practice effects in the younger and older adults. Cognitive testing at 3-week intervals in cognitively normal older and younger subjects revealed divergent cardiorespiratory responses to MMSE, DST, and TMT-B cognitive testing, particularly HR, which increased only in younger adults and to a lesser extent during retesting despite the absence of practice effects.
Collapse
Affiliation(s)
| | - Kulsum Abdali
- University of North Texas Health Science Center, Fort Worth, USA
| | - Sarah E. Ross
- University of North Texas Health Science Center, Fort Worth, USA
| | - Sandra Davis
- University of North Texas Health Science Center, Fort Worth, USA
| | - Robert T. Mallet
- University of North Texas Health Science Center, Fort Worth, USA
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, USA
| |
Collapse
|
9
|
Panza GS, Burtscher J, Zhao F. Intermittent hypoxia: a call for harmonization in terminology. J Appl Physiol (1985) 2023; 135:886-890. [PMID: 37560767 PMCID: PMC10642510 DOI: 10.1152/japplphysiol.00458.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Mild intermittent hypoxia may be a potent novel strategy to improve cardiovascular function, motor and cognitive function, and altitude acclimatization. However, there is still a stigma surrounding the field of intermittent hypoxia (IH). Major contributors to this stigma may be due to the overlapping terminology, heterogeneous methodological approaches, and an almost dogmatic focus on different mechanistic underpinnings in different fields of research. Many clinicians and investigators explore the pathophysiological outcomes following long-term exposure to IH in an attempt to improve our understanding of sleep apnea (SA) and develop new treatment plans. However, others use IH as a tool to improve physiological outcomes such as blood pressure, motor function, and altitude acclimatization. Unfortunately, studies investigating the pathophysiology of SA or the potential benefit of IH use similar, unstandardized terminologies facilitating a confusion surrounding IH protocols and the intentions of various studies. In this perspective paper, we aim to highlight IH terminology-related issues with the aim of spurring harmonization of the terminology used in the field of IH research to account for distinct outcomes of hypoxia exposure depending on protocol and individuum.
Collapse
Affiliation(s)
- Gino S Panza
- Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, Michigan, United States
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fei Zhao
- Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
10
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Carvalho C, Moreira PI. Metabolic defects shared by Alzheimer's disease and diabetes: A focus on mitochondria. Curr Opin Neurobiol 2023; 79:102694. [PMID: 36842275 DOI: 10.1016/j.conb.2023.102694] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/26/2023]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two global epidemics that share several metabolic defects, such as insulin resistance, impaired glucose metabolism, and mitochondrial defects. Importantly, strong evidence demonstrates that T2D significantly increases the risk of cognitive decline and dementia, particularly AD. Here, we provide an overview of the metabolic defects that characterize and link both pathologies putting the focus on mitochondria. The biomarker potential of mitochondrial components and the therapeutic potential of some drugs that target and modulate mitochondria are also briefly discussed.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Timon R, Martinez-Guardado I, Brocherie F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:19. [PMID: 36843041 PMCID: PMC9968673 DOI: 10.1186/s40798-023-00560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Aging is a degenerative process that is associated with an increased risk of diseases. Intermittent hypoxia has been investigated in reference to performance and health-related functions enhancement. This systematic review aimed to summarize the effect of either passive or active intermittent normobaric hypoxic interventions compared with normoxia on health-related outcomes in healthy older adults. METHODS Relevant studies were searched from PubMed and Web of Science databases in accordance with PRISMA guidelines (since their inceptions up until August 9, 2022) using the following inclusion criteria: (1) randomized controlled trials, clinical trials and pilot studies; (2) Studies involving humans aged > 50 years old and without any chronic diseases diagnosed; (3) interventions based on in vivo intermittent systemic normobaric hypoxia exposure; (4) articles focusing on the analysis of health-related outcomes (body composition, metabolic, bone, cardiovascular, functional fitness or quality of life). Cochrane Collaboration recommendations were used to assess the risk of bias. RESULTS From 509 articles initially found, 17 studies were included. All interventions were performed in moderate normobaric hypoxia, with three studies using passive exposure, and the others combining intermittent hypoxia with training protocols (i.e., using resistance-, whole body vibration- or aerobic-based exercise). CONCLUSIONS Computed results indicate a limited effect of passive/active intermittent hypoxia (ranging 4-24 weeks, 2-4 days/week, 16-120 min/session, 13-16% of fraction of inspired oxygen or 75-85% of peripheral oxygen saturation) compared to similar intervention in normoxia on body composition, functional fitness, cardiovascular and bone health in healthy older (50-75 years old) adults. Only in specific settings (i.e., intermediate- or long-term interventions with high intensity/volume training sessions repeated at least 3 days per week), may intermittent hypoxia elicit beneficial effects. Further research is needed to determine the dose-response of passive/active intermittent hypoxia in the elderly. TRIAL REGISTRATION SYSTEMATIC REVIEW REGISTRATION PROSPERO 2022 CRD42022338648.
Collapse
Affiliation(s)
- Rafael Timon
- Sport Sciences Faculty, Universidad de Extremadura, Av/ Universidad s/n, 10004, Cáceres, Spain.
| | - Ismael Martinez-Guardado
- grid.464701.00000 0001 0674 2310BRABE Group. Faculty of Life and Nature Sciences, Universidad de Nebrija, Madrid, Spain
| | - Franck Brocherie
- grid.418501.90000 0001 2163 2398Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
13
|
Yuan H, Liu J, Gu Y, Ji X, Nan G. Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 2022; 16:1067411. [PMID: 36507357 PMCID: PMC9732261 DOI: 10.3389/fnins.2022.1067411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke (IS) is the leading cause of disability and death worldwide. Owing to the aging population and unhealthy lifestyles, the incidence of cerebrovascular disease is high. Vascular risk factors include hypertension, diabetes, dyslipidemia, and obesity. Therefore, in addition to timely and effective reperfusion therapy for IS, it is crucial to actively control these risk factors to reduce the incidence and recurrence rates of IS. Evidence from human and animal studies suggests that moderate intermittent hypoxia (IH) exposure is a promising therapeutic strategy to ameliorate common vascular risk factors and comorbidities. Given the complex pathophysiological mechanisms underlying IS, effective treatment must focus on reducing injury in the acute phase and promoting repair in the recovery phase. Therefore, this review discusses the preclinical perspectives on IH conditioning as a potential treatment for neurovascular injury and highlights IH pre and postconditioning strategies for IS. Hypoxia conditioning reduces brain injury by increasing resistance to acute ischemic and hypoxic stress, exerting neuroprotective effects, and promoting post-injury repair and regeneration. However, whether IH produces beneficial effects depends not only on the hypoxic regimen but also on inter-subject differences. Therefore, we discuss the factors that may influence the effectiveness of IH treatment, including age, sex, comorbidities, and circadian rhythm, which can be used to help identify the optimal intervention population and treatment protocols for more accurate, individualized clinical translation. In conclusion, IH conditioning as a non-invasive, non-pharmacological, systemic, and multi-targeted intervention can not only reduce brain damage after stroke but can also be applied to the prevention and functional recovery of IS, providing brain protection at different stages of the disease. It represents a promising therapeutic strategy. For patients with IS and high-risk groups, IH conditioning is expected to develop as an adjunctive clinical treatment option to reduce the incidence, recurrence, disability, and mortality of IS and to reduce disease burden.
Collapse
Affiliation(s)
- Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Xunming Ji,
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China,Guangxian Nan,
| |
Collapse
|
14
|
Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid Redox Signal 2022; 37:887-912. [PMID: 35102747 DOI: 10.1089/ars.2021.0280] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Oxygen is indispensable for aerobic life, but its utilization exposes cells and tissues to oxidative stress; thus, tight regulation of cellular, tissue, and systemic oxygen concentrations is crucial. Here, we review the current understanding of how the human organism (mal-)adapts to low (hypoxia) and high (hyperoxia) oxygen levels and how these adaptations may be harnessed as therapeutic or performance enhancing strategies at the systemic level. Recent Advances: Hyperbaric oxygen therapy is already a cornerstone of modern medicine, and the application of mild hypoxia, that is, hypoxia conditioning (HC), to strengthen the resilience of organs or the whole body to severe hypoxic insults is an important preparation for high-altitude sojourns or to protect the cardiovascular system from hypoxic/ischemic damage. Many other applications of adaptations to hypo- and/or hyperoxia are only just emerging. HC-sometimes in combination with hyperoxic interventions-is gaining traction for the treatment of chronic diseases, including numerous neurological disorders, and for performance enhancement. Critical Issues: The dose- and intensity-dependent effects of varying oxygen concentrations render hypoxia- and/or hyperoxia-based interventions potentially highly beneficial, yet hazardous, although the risks versus benefits are as yet ill-defined. Future Directions: The field of low and high oxygen conditioning is expanding rapidly, and novel applications are increasingly recognized, for example, the modulation of aging processes, mood disorders, or metabolic diseases. To advance hypoxia/hyperoxia conditioning to clinical applications, more research on the effects of the intensity, duration, and frequency of altered oxygen concentrations, as well as on individual vulnerabilities to such interventions, is paramount. Antioxid. Redox Signal. 37, 887-912.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Grégoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Belmonte KCD, Holmgren EB, Wills TA, Gidday JM. Epigenetic conditioning induces intergenerational resilience to dementia in a mouse model of vascular cognitive impairment. Alzheimers Dement 2022; 18:1711-1720. [PMID: 35170835 PMCID: PMC9790554 DOI: 10.1002/alz.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Epigenetic stimuli induce beneficial or detrimental changes in gene expression, and consequently, phenotype. Some of these phenotypes can manifest across the lifespan-and even in subsequent generations. Here, we used a mouse model of vascular cognitive impairment and dementia (VCID) to determine whether epigenetically induced resilience to specific dementia-related phenotypes is heritable by first-generation progeny. METHODS Our systemic epigenetic therapy consisted of 2 months of repetitive hypoxic "conditioning" (RHC) prior to chronic cerebral hypoperfusion in adult C57BL/6J mice. Resultant changes in object recognition memory and hippocampal long-term potentiation (LTP) were assessed 3 and 4 months later, respectively. RESULTS Hypoperfusion-induced memory/plasticity deficits were abrogated by RHC. Moreover, similarly robust dementia resilience was documented in untreated cerebral hypoperfused animals derived from RHC-treated parents. CONCLUSIONS Our results in experimental VCID underscore the efficacy of epigenetics-based treatments to prevent memory loss, and demonstrate for the first time the heritability of an induced resilience to dementia.
Collapse
Affiliation(s)
- Krystal Courtney D. Belmonte
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Eleanor B. Holmgren
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Tiffany A. Wills
- Department of Cell Biology and AnatomyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| | - Jeff M. Gidday
- Department of OphthalmologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of PhysiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Neuroscience Center of ExcellenceLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA,Department of Biochemistry and Molecular BiologyLouisiana State University School of MedicineLSUHSCNew OrleansLouisianaUSA
| |
Collapse
|
16
|
Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA. Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci 2022; 16:941740. [PMID: 35801184 PMCID: PMC9254677 DOI: 10.3389/fnins.2022.941740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
This review is devoted to the phenomenon of intermittent hypoxic training and is aimed at drawing the attention of researchers to the necessity of studying the mechanisms mediating the positive, particularly neuroprotective, effects of hypoxic training at the molecular level. The review briefly describes the historical aspects of studying the beneficial effects of mild hypoxia, as well as the use of hypoxic training in medicine and sports. The physiological mechanisms of hypoxic adaptation, models of hypoxic training and their effectiveness are summarized, giving examples of their beneficial effects in various organs including the brain. The review emphasizes a high, far from being realized at present, potential of hypoxic training in preventive and clinical medicine especially in the area of neurodegeneration and age-related cognitive decline.
Collapse
Affiliation(s)
- Elena A. Rybnikova
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
- *Correspondence: Elena A. Rybnikova,
| | - Natalia N. Nalivaeva
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail Y. Zenko
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| | - Ksenia A. Baranova
- Pavlov Institute Physiology of Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
17
|
Behrendt T, Bielitzki R, Behrens M, Herold F, Schega L. Effects of Intermittent Hypoxia-Hyperoxia on Performance- and Health-Related Outcomes in Humans: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:70. [PMID: 35639211 PMCID: PMC9156652 DOI: 10.1186/s40798-022-00450-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intermittent hypoxia applied at rest or in combination with exercise promotes multiple beneficial adaptations with regard to performance and health in humans. It was hypothesized that replacing normoxia by moderate hyperoxia can increase the adaptive response to the intermittent hypoxic stimulus. OBJECTIVE Our objective was to systematically review the current state of the literature on the effects of chronic intermittent hypoxia-hyperoxia (IHH) on performance- and health-related outcomes in humans. METHODS PubMed, Web of Science™, Scopus, and Cochrane Library databases were searched in accordance with PRISMA guidelines (January 2000 to September 2021) using the following inclusion criteria: (1) original research articles involving humans, (2) investigation of the chronic effect of IHH, (3) inclusion of a control group being not exposed to IHH, and (4) articles published in peer-reviewed journals written in English. RESULTS Of 1085 articles initially found, eight studies were included. IHH was solely performed at rest in different populations including geriatric patients (n = 1), older patients with cardiovascular (n = 3) and metabolic disease (n = 2) or cognitive impairment (n = 1), and young athletes with overtraining syndrome (n = 1). The included studies confirmed the beneficial effects of chronic exposure to IHH, showing improvements in exercise tolerance, peak oxygen uptake, and global cognitive functions, as well as lowered blood glucose levels. A trend was discernible that chronic exposure to IHH can trigger a reduction in systolic and diastolic blood pressure. The evidence of whether IHH exerts beneficial effects on blood lipid levels and haematological parameters is currently inconclusive. A meta-analysis was not possible because the reviewed studies had a considerable heterogeneity concerning the investigated populations and outcome parameters. CONCLUSION Based on the published literature, it can be suggested that chronic exposure to IHH might be a promising non-pharmacological intervention strategy for improving peak oxygen consumption, exercise tolerance, and cognitive performance as well as reducing blood glucose levels, and systolic and diastolic blood pressure in older patients with cardiovascular and metabolic diseases or cognitive impairment. However, further randomized controlled trials with adequate sample sizes are needed to confirm and extend the evidence. This systematic review was registered on the international prospective register of systematic reviews (PROSPERO-ID: CRD42021281248) ( https://www.crd.york.ac.uk/prospero/ ).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Fabian Herold
- Research Group Degenerative and Chronic Disease, Movement, Faculty of Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39104 Magdeburg, Germany
| |
Collapse
|
18
|
Behrendt T, Bielitzki R, Behrens M, Glazachev OS, Schega L. Effects of Intermittent Hypoxia-Hyperoxia Exposure Prior to Aerobic Cycling Exercise on Physical and Cognitive Performance in Geriatric Patients—A Randomized Controlled Trial. Front Physiol 2022; 13:899096. [PMID: 35694402 PMCID: PMC9178199 DOI: 10.3389/fphys.2022.899096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Background: It was recently shown that intermittent hypoxic-hyperoxic exposure (IHHE) applied prior to a multimodal training program promoted additional improvements in cognitive and physical performance in geriatric patients compared to physical training only. However, there is a gap in the literature to which extent the addition of IHHE can enhance the effects of an aerobic training. Therefore, the aim of this study was to investigate the efficacy of IHHE applied prior to aerobic cycling exercise on cognitive and physical performance in geriatric patients. Methods: In a randomized, two-armed, controlled, and single-blinded trial, 25 geriatric patients (77–94 years) were assigned to two groups: intervention group (IG) and sham control group (CG). Both groups completed 6 weeks of aerobic training using a motorized cycle ergometer, three times a week for 20 min per day. The IG was additionally exposed to intermittent hypoxic and hyperoxic periods for 30 min prior to exercise. The CG followed the similar procedure breathing sham hypoxia and hyperoxia (i.e., normoxia). Within 1 week before and after the interventions, cognitive performance was assessed with the Dementia-Detection Test (DemTect) and the Clock Drawing Test (CDT), while physical performance was measured using the Timed “Up and Go” Test (TUG) and the Short-Physical-Performance-Battery (SPPB). Results: No interaction effect was found with respect to the DemTect (ηp2 = 0.02). An interaction effect with medium effect size (ηp2 = 0.08) was found for CDT performance with a higher change over time for IG (d = 0.57) compared to CG (d = 0.05). The ANCOVA with baseline-adjustment indicated between-group differences with a large and medium effect size at post-test for the TUG (ηp2 = 0.29) and SPPB (ηp2 = 0.06) performance, respectively, in favour of the IG. Within-group post-hoc analysis showed that the TUG performance was worsened in the CG (d = 0.65) and remained unchanged in the IG (d = 0.19). Furthermore, SPPB performance was increased (d = 0.58) in IG, but no relevant change over time was found for CG (d = 0.00). Conclusion: The current study suggests that an additional IHHE prior to aerobic cycling exercise seems to be more effective to increase global cognitive functions as well as physical performance and to preserve functional mobility in geriatric patients in comparison to aerobic exercise alone after a 6-week intervention period.
Collapse
Affiliation(s)
- Tom Behrendt
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Tom Behrendt,
| | - Robert Bielitzki
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Oleg S. Glazachev
- Department Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lutz Schega
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
19
|
Panza GS, Puri S, Lin HS, Badr MS, Mateika JH. Daily Exposure to Mild Intermittent Hypoxia Reduces Blood Pressure in Male Patients with Obstructive Sleep Apnea and Hypertension. Am J Respir Crit Care Med 2022; 205:949-958. [PMID: 35015980 PMCID: PMC9838631 DOI: 10.1164/rccm.202108-1808oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Daily exposure to mild intermittent hypoxia (MIH) may elicit beneficial cardiovascular outcomes. Objectives: To determine the effect of 15 days of MIH and in-home continuous positive airway pressure treatment on blood pressure in participants with obstructive sleep apnea and hypertension. Methods: We administered MIH during wakefulness 5 days/week for 3 weeks. The protocol consisted of twelve 2-minute bouts of hypoxia interspersed with 2 minutes of normoxia. End-tidal carbon dioxide was maintained 2 mm Hg above baseline values throughout the protocol. Control participants were exposed to a sham protocol (i.e., compressed air). All participants were treated with continuous positive airway pressure over the 3-week period. Results are mean ± SD. Measurements and Main Results: Sixteen male participants completed the study (experimental n = 10; control n = 6). Systolic blood pressure at rest during wakefulness over 24 hours was reduced after 15 days of MIH (142.9 ± 8.6 vs. 132.0 ± 10.7 mm Hg; P < 0.001), but not following the sham protocol (149.9 ± 8.6 vs. 149.7 ± 10.8 mm Hg; P = 0.915). Thus, the reduction in blood pressure from baseline was greater in the experimental group compared with control (-10.91 ± 4.1 vs. -0.17 ± 3.6 mm Hg; P = 0.003). Modifications in blood pressure were accompanied by increased parasympathetic and reduced sympathetic activity in the experimental group, as estimated by blood pressure and heart rate variability analysis. No detrimental neurocognitive and metabolic outcomes were evident following MIH. Conclusions: MIH elicits beneficial cardiovascular and autonomic outcomes in males with OSA and concurrent hypertension. Clinical trial registered with www.clinicaltrials.gov (NCT03736382).
Collapse
Affiliation(s)
- Gino S. Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology
| | - Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology
| | - Ho-Sheng Lin
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Otolaryngology, and
| | - M. Safwan Badr
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology,,Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan
| | - Jason H. Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology,,Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
20
|
Zhao J, Ding Y, Kline GP, Zhou Z, Mallet RT, Shi X. Hypoxic breathing produces more intense hypoxemia in elderly women than in elderly men. Front Physiol 2022; 13:989635. [PMID: 36388125 PMCID: PMC9644051 DOI: 10.3389/fphys.2022.989635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Brief hypoxic exposures are increasingly applied as interventions for aging-related conditions. To optimize the therapeutic impact of hypoxia, knowledge of the sex-related differences in physiological responses to hypoxia is essential. This study compared hypoxia-induced hypoxemic responses in elderly men and women. Methods: Seven elderly men (70.3 ± 6.0 years old) and nine women (69.4 ± 5.5 years old) breathed 10% O2 for 5 min while arterial (SaO2; transcutaneous photoplethysmography) and cerebral tissue O2 saturation (ScO2; near-infrared spectroscopy), ventilatory frequency, tidal volume, minute-ventilation, and partial pressures of end-tidal O2 (PETO2) and CO2 (mass spectrometry) were continuously monitored. Cerebral tissue oxygen extraction fraction (OEF) equaled (SaO2-ScO2)/SaO2. Results: During 5 min hypoxia SaO2 fell from 97.0 ± 0.8% to 80.6 ± 4.6% in the men and from 96.3 ± 1.4% to 72.6 ± 4.0% in the women. The slope ΔSaO2/min was steeper in the women than the men (-4.71 ± 0.96 vs. -3.24 ± 0.76%/min; p = 0.005). Although SaO2 fell twice as sharply per unit decrease in PETO2 in the women than the men (-1.13 ± 0.11 vs. -0.54 ± 0.06%/mmHg; p = 0.003), minute-ventilation per unit hypoxemia increased less appreciably in the women (-0.092 ± 0.014 vs. -0.160 ± 0.021 L/min/%; p = 0.023). OEF fell with hypoxia duration in the women, but remained stable in the men. Conclusion: During 5 min hypoxic breathing, elderly women experience more intense hypoxemia and reduced chemoreflex sensitivity vs. their male counterparts, which may lower OEF stability in women despite augmented O2 dissociation from hemoglobin during hypoxia. These sex-related differences merit attention when implementing brief hypoxic exposures for therapeutic purposes.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Departments of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States.,School of Physical Education, Shanxi University, Taiyuan, China
| | - Yanfeng Ding
- Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Geoffrey P Kline
- Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Zhengyang Zhou
- Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robert T Mallet
- Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Xiangrong Shi
- Departments of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
21
|
Yue X, Zhou Y, Qiao M, Zhao X, Huang X, Zhao T, Cheng X, Fan M, Zhao Y, Chen R, Zhu L. Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain. Alzheimers Res Ther 2021; 13:194. [PMID: 34844651 PMCID: PMC8630860 DOI: 10.1186/s13195-021-00935-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Background Alzheimer’s disease (AD) is a progressive, degenerative, and terminal disease without cure. There is an urgent need for a new strategy to treat AD. The aim of this study was to investigate the effects of intermittent hypoxic treatment (IHT) on cognitive functions in a mouse model of AD and unravel the mechanism of action of IHT. Methods Six-month-old APPswe/PS1dE9 (APP/PS1) male mice were exposed to hypoxic environment (14.3% O2) 4 h/day for 14 days or 28 days. Cognitive functions were measured by Morris water maze test after either 14 days or 42 days of interval. Thereafter the distribution of amyloid plaque and microglial activation were determined by mouse brain immunohistochemistry, while the amyloid beta (Aβ) and inflammatory cytokines were measured by ELISA and Western Blot. Microarray was used for studying gene expressions in the hippocampus. Results IHT for 14 days or 28 days significantly improved the spatial memory ability of the 6-month-old APP/PS1 mice. The memory improvement by 14 days IHT lasted to 14 days, but not to 42 days. The level of Aβ plaques and neurofilament accumulations was reduced markedly after the IHT exposure. IHT reduced the pro-inflammatory cytokines IL-1β, IL-6 levels, and β-secretase cleavage of APP processing which implies reduced Aβ production. Microarray analysis revealed a large number of genes in the hippocampus were significantly altered which are known to be metabolism-regulated genes. Conclusions This study provides evidence of the beneficial effect of IHT on the progression of AD by alleviating memory impairment, reducing Aβ accumulation and inflammation in the brain. IHT can be developed as a novel measure to relieve the progression of AD by targeting multiple pathways in the AD pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00935-z.
Collapse
Affiliation(s)
- Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yanzhao Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Meng Qiao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xingnan Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ming Fan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruoli Chen
- Institute for Science and Technology in Medicine, School of Pharmacy, Keele University, Kelle, UK.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China. .,Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
22
|
Wahl D, Cavalier AN, LaRocca TJ. Response. Exerc Sport Sci Rev 2021; 49:293. [PMID: 34547763 PMCID: PMC8485757 DOI: 10.1249/jes.0000000000000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Devin Wahl
- Department of Health an Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, CO
| | | | | |
Collapse
|
23
|
Correia SC, Moreira PI. Oxygen Sensing and Signaling in Alzheimer's Disease: A Breathtaking Story! Cell Mol Neurobiol 2021; 42:3-21. [PMID: 34510330 DOI: 10.1007/s10571-021-01148-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Oxygen sensing and homeostasis is indispensable for the maintenance of brain structural and functional integrity. Under low-oxygen tension, the non-diseased brain has the ability to cope with hypoxia by triggering a homeostatic response governed by the highly conserved hypoxia-inducible family (HIF) of transcription factors. With the advent of advanced neuroimaging tools, it is now recognized that cerebral hypoperfusion, and consequently hypoxia, is a consistent feature along the Alzheimer's disease (AD) continuum. Of note, the reduction in cerebral blood flow and tissue oxygenation detected during the prodromal phases of AD, drastically aggravates as disease progresses. Within this scenario a fundamental question arises: How HIF-driven homeostatic brain response to hypoxia "behaves" during the AD continuum? In this sense, the present review is aimed to critically discuss and summarize the current knowledge regarding the involvement of hypoxia and HIF signaling in the onset and progression of AD pathology. Importantly, the promises and challenges of non-pharmacological and pharmacological strategies aimed to target hypoxia will be discussed as a new "hope" to prevent and/or postpone the neurodegenerative events that occur in the AD brain.
Collapse
Affiliation(s)
- Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal. .,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
24
|
Arias-Cavieres A, Fonteh A, Castro-Rivera CI, Garcia AJ. Intermittent Hypoxia causes targeted disruption to NMDA receptor dependent synaptic plasticity in area CA1 of the hippocampus. Exp Neurol 2021; 344:113808. [PMID: 34256046 DOI: 10.1016/j.expneurol.2021.113808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022]
Abstract
Changed NMDA receptor (NMDAr) physiology is implicated with cognitive deficit resulting from conditions ranging from normal aging to neurological disease. Using intermittent hypoxia (IH) to experimentally model untreated sleep apnea, a clinical condition whose comorbidities include neurocognitive impairment, we recently demonstrated that IH causes a pro-oxidant condition that contributes to deficits in spatial memory and in NMDAr-dependent long-term potentiation (LTP). However, the impact of IH on additional forms of synaptic plasticity remains ill-defined. Here we show that IH prevents the induction of NMDAr-dependent LTP and long-term depression (LTD) in hippocampal brain slices from mice exposed to ten days of IH (IH10) yet spares NMDAr-independent forms of synaptic plasticity. Deficits in synaptic plasticity were accompanied by a reduction in hippocampal GluN1 expression. Acute manipulation of redox state using the reducing agent, Dithiothreitol (DTT) stimulated the NMDAr-dependent fEPSP following IH10. However, acute use of either DTT or MnTMPyP did not restore NMDAr-dependent synaptic plasticity after IH10 or prevent the IH-dependent reduction in GluN1, the obligatory subunit of the NMDAr. In contrast, MnTMPyP during IH10 (10-MnTMPyP), prevented the suppressive effects of IH on both NMDAr-dependent synaptic plasticity and GluN1 expression. These findings indicate that while the IH-dependent pro-oxidant state causes reversible oxidative neuromodulation of NMDAr activity, acute manipulation of redox state is ineffective in rescuing two key effects of IH related to the NMDAr within the hippocampus. These IH-dependent changes associated with the NMDAr may be a primary avenue by which IH enhances the vulnerability to impaired learning and memory when sleep apnea is left untreated in normal aging and in disease.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago, USA; Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA
| | - Ateh Fonteh
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA
| | - Carolina I Castro-Rivera
- Institute for Integrative Physiology, The University of Chicago, USA; Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago, USA
| | - Alfredo J Garcia
- Institute for Integrative Physiology, The University of Chicago, USA; Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago, USA; Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA.
| |
Collapse
|
25
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
26
|
Ryou MG, Chen X, Cai M, Wang H, Jung ME, Metzger DB, Mallet RT, Shi X. Intermittent Hypoxia Training Prevents Deficient Learning-Memory Behavior in Mice Modeling Alzheimer's Disease: A Pilot Study. Front Aging Neurosci 2021; 13:674688. [PMID: 34276338 PMCID: PMC8282412 DOI: 10.3389/fnagi.2021.674688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
In mouse models of Alzheimer's disease (AD), normobaric intermittent hypoxia training (IHT) can preserve neurobehavioral function when applied before deficits develop, but IHT's effectiveness after onset of amyloid-β (Aβ) accumulation is unclear. This study tested the hypothesis that IHT improves learning-memory behavior, diminishes Aβ accumulation in cerebral cortex and hippocampus, and enhances cerebrocortical contents of the neuroprotective trophic factors erythropoietin and brain-derived neurotrophic factor (BDNF) in mice manifesting AD traits. Twelve-month-old female 3xTg-AD mice were assigned to untreated 3xTg-AD (n = 6), AD+IHT (n = 6), and AD+sham-IHT (n = 6) groups; 8 untreated wild-type (WT) mice also were studied. AD+IHT mice alternately breathed 10% O2 for 6 min and room air for 4 min, 10 cycles/day for 21 days; AD+sham-IHT mice breathed room air. Spatial learning-memory was assessed by Morris water maze. Cerebrocortical and hippocampal Aβ40 and Aβ42 contents were determined by ELISA, and cerebrocortical erythropoietin and BDNF were analyzed by immunoblotting and ELISA. The significance of time (12 vs. 12 months + 21 days) and treatment (IHT vs. sham-IHT) was evaluated by two-factor ANOVA. The change in swimming distance to find the water maze platform after 21 d IHT (-1.6 ± 1.8 m) differed from that after sham-IHT (+5.8 ± 2.6 m). Cerebrocortical and hippocampal Aβ42 contents were greater in 3xTg-AD than WT mice, but neither time nor treatment significantly affected Aβ40 or Aβ42 contents in the 3xTg-AD mice. Cerebrocortical erythropoietin and BDNF contents increased appreciably after IHT as compared to untreated 3xTg-AD and AD+sham-IHT mice. In conclusion, moderate, normobaric IHT prevented spatial learning-memory decline and restored cerebrocortical erythropoietin and BDNF contents despite ongoing Aβ accumulation in 3xTg-AD mice.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Medical Laboratory Science and Public Health, Tarleton State University, Texas A&M University System, Stephenville, TX, United States
| | - Xiaoan Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- College of Sports Science, Jishou University, Jishou, China
| | - Ming Cai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hong Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Marianna E. Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Daniel B. Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robert T. Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Xiangrong Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
27
|
Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc Health Risk Manag 2021; 17:317-335. [PMID: 34135590 PMCID: PMC8197622 DOI: 10.2147/vhrm.s294121] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, about 400 million people reside at terrestrial altitudes above 1500 m, and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The interactions between the low barometric pressure and partial pressure of O2, climate, individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclimatization processes at high elevations are extremely complex. It is challenging to decipher the effects of these myriad factors on the cardiovascular health in high altitude residents, and even more so in those ascending to high altitudes with or without preexisting diseases. This review aims to interpret epidemiological observations in high-altitude populations; present and discuss cardiovascular responses to acute and subacute high-altitude exposure in general and more specifically in people with preexisting cardiovascular diseases; the relations between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric hypoxia.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Jean-Paul Richalet
- Laboratoire Hypoxie & Poumon, UMR Inserm U1272, Université Sorbonne Paris Nord 13, Bobigny Cedex, F-93017, France
| | - Gregoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria
- Austrian Society for Alpine and High-Altitude Medicine, Mieming, Austria
| |
Collapse
|
28
|
Han R, Liang J, Zhou B. Glucose Metabolic Dysfunction in Neurodegenerative Diseases-New Mechanistic Insights and the Potential of Hypoxia as a Prospective Therapy Targeting Metabolic Reprogramming. Int J Mol Sci 2021; 22:5887. [PMID: 34072616 PMCID: PMC8198281 DOI: 10.3390/ijms22115887] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Glucose is the main circulating energy substrate for the adult brain. Owing to the high energy demand of nerve cells, glucose is actively oxidized to produce ATP and has a synergistic effect with mitochondria in metabolic pathways. The dysfunction of glucose metabolism inevitably disturbs the normal functioning of neurons, which is widely observed in neurodegenerative disease. Understanding the mechanisms of metabolic adaptation during disease progression has become a major focus of research, and interventions in these processes may relieve the neurons from degenerative stress. In this review, we highlight evidence of mitochondrial dysfunction, decreased glucose uptake, and diminished glucose metabolism in different neurodegeneration models such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss how hypoxia, a metabolic reprogramming strategy linked to glucose metabolism in tumor cells and normal brain cells, and summarize the evidence for hypoxia as a putative therapy for general neurodegenerative disease.
Collapse
Affiliation(s)
- Rongrong Han
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
| | - Jing Liang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (R.H.); (J.L.)
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
29
|
Richardson NL, O'Malley LJ, Weissberger D, Tumber A, Schofield CJ, Griffith R, Jones NM, Hunter L. Discovery of neuroprotective agents that inhibit human prolyl hydroxylase PHD2. Bioorg Med Chem 2021; 38:116115. [PMID: 33862469 DOI: 10.1016/j.bmc.2021.116115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Prolyl hydroxylase (PHD) enzymes play a critical role in the cellular responses to hypoxia through their regulation of the hypoxia inducible factor α (HIF-α) transcription factors. PHD inhibitors show promise for the treatment of diseases including anaemia, cardiovascular disease and stroke. In this work, a pharmacophore-based virtual high throughput screen was used to identify novel potential inhibitors of human PHD2. Two moderately potent new inhibitors were discovered, with IC50 values of 4 μM and 23 μM respectively. Cell-based studies demonstrate that these compounds exhibit protective activity in neuroblastoma cells, suggesting that they have the potential to be developed into clinically useful neuroprotective agents.
Collapse
Affiliation(s)
- Nicole L Richardson
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Laura J O'Malley
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Renate Griffith
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Nicole M Jones
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia.
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia.
| |
Collapse
|
30
|
Kamat SM, Mendelsohn AR, Larrick JW. Rejuvenation Through Oxygen, More or Less. Rejuvenation Res 2021; 24:158-163. [PMID: 33784834 DOI: 10.1089/rej.2021.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modest modulation of oxygen intake, either by inducing mild intermittent hypoxia or hyperoxia appears to induce modest rejuvenative changes in mammals, in part, by activating key regulator hypoxia-induced factor 1a (HIF-1a). Interestingly both lower oxygen and transient higher oxygen levels induce this hypoxia regulator. Hyperbaric oxygen induces HIF-1a by the hyperoxic-hypoxic paradox that results from an overinduction of protective factors under intermittent hyperoxic conditions, leading to a state somewhat similar to that induced by hypoxia. A key difference being that SIRT1 is induced by hyperoxia, whereas it is reduced during hypoxia by the activity of HIF-1a. In a recent report, a small clinical trial employing 60 sessions of intermittent hyperbaric oxygen therapy (HBOT) studying old humans resulted in increased mean telomere length of immune cells including B cells, natural killer cells, T helper, and cytotoxic T lymphocytes. Moreover, there was a reduction in CD28null senescent T helper and cytotoxic T cells. In a parallel report, HBOT has been reported to enhance cognition in older adults, especially attention and information processing speed through increased cerebral blood flow (CBF) in brain regions where CBF tends to decline with age. The durability of these beneficial changes is yet to be determined. These preliminary results require follow-up, including more extensive characterization of changes in aging-associated biomarkers. An interesting avenue of potential work is to elucidate potential connections between hypoxia and epigenetics, especially the induction of the master pluripotent regulatory factors, which when expressed transiently have been reported to ameliorate some aging biomarkers and pathologies.
Collapse
|
31
|
Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol 2021; 341:113709. [PMID: 33781731 PMCID: PMC8527806 DOI: 10.1016/j.expneurol.2021.113709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
This review explores forms of respiratory and autonomic plasticity, and associated outcome measures, that are initiated by exposure to intermittent hypoxia. The review focuses primarily on studies that have been completed in humans and primarily explores the impact of mild intermittent hypoxia on outcome measures. Studies that have explored two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of ventilation and upper airway muscle activity, are initially reviewed. The role these forms of plasticity might have in sleep disordered breathing are also explored. Thereafter, the role of intermittent hypoxia in the initiation of autonomic plasticity is reviewed and the role this form of plasticity has in cardiovascular and hemodynamic responses during and following intermittent hypoxia is addressed. The role of these responses in individuals with sleep disordered breathing and spinal cord injury are subsequently addressed. Ultimately an integrated picture of the respiratory, autonomic and cardiovascular responses to intermittent hypoxia is presented. The goal of the integrated picture is to address the types of responses that one might expect in humans exposed to one-time and repeated daily exposure to mild intermittent hypoxia. This form of intermittent hypoxia is highlighted because of its potential therapeutic impact in promoting functional improvement and recovery in several physiological systems.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States of America.
| |
Collapse
|
32
|
Zhao Z, Hood RJ, Ong LK, Pietrogrande G, Sanchez Bezanilla S, Warren KE, Ilicic M, Kluge MG, TeBay C, Ottersen OP, Johnson SJ, Nilsson M, Walker FR. Exploring How Low Oxygen Post Conditioning Improves Stroke-Induced Cognitive Impairment: A Consideration of Amyloid-Beta Loading and Other Mechanisms. Front Neurol 2021; 12:585189. [PMID: 33841293 PMCID: PMC8024636 DOI: 10.3389/fneur.2021.585189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Cognitive impairment is a common and disruptive outcome for stroke survivors, which is recognized to be notoriously difficult to treat. Previously, we have shown that low oxygen post-conditioning (LOPC) improves motor function and limits secondary neuronal loss in the thalamus after experimental stroke. There is also emerging evidence that LOPC may improve cognitive function post-stroke. In the current study we aimed to explore how exposure to LOPC may improve cognition post-stroke. Experimental stroke was induced using photothrombotic occlusion in adult, male C57BL/6 mice. At 72 h post-stroke animals were randomly assigned to either normal atmospheric air or to one of two low oxygen (11% O2) exposure groups (either 8 or 24 h/day for 14 days). Cognition was assessed during the treatment phase using a touchscreen based paired-associate learning assessment. At the end of treatment (17 days post-stroke) mice were euthanized and tissue was collected for subsequent histology and biochemical analysis. LOPC (both 8 and 24 h) enhanced learning and memory in the 2nd week post-stroke when compared with stroke animals exposed to atmospheric air. Additionally we observed LOPC was associated with lower levels of neuronal loss, the restoration of several vascular deficits, as well as a reduction in the severity of the amyloid-beta (Aβ) burden. These findings provide further insight into the pro-cognitive benefits of LOPC.
Collapse
Affiliation(s)
- Zidan Zhao
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J. Hood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sonia Sanchez Bezanilla
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kirby E. Warren
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Marina Ilicic
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murielle G. Kluge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ole P. Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Office of the President, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Johnson
- School of Electrical Engineering and Computing, University of Newcastle, Newcastle, NSW, Australia
- Centre for Rehab Innovations, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Nilsson
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
- Centre for Rehab Innovations, University of Newcastle, Newcastle, NSW, Australia
| | - Frederick R. Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
- Centre for Rehab Innovations, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
33
|
Burtscher J, Syed MMK, Lashuel HA, Millet GP. Hypoxia Conditioning as a Promising Therapeutic Target in Parkinson's Disease? Mov Disord 2021; 36:857-861. [DOI: 10.1002/mds.28544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| |
Collapse
|
34
|
A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22020582. [PMID: 33430140 PMCID: PMC7826574 DOI: 10.3390/ijms22020582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington’s disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington’s disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington’s disease from this knowledge base.
Collapse
|
35
|
Intermittent Hypoxic Conditioning Rescues Cognition and Mitochondrial Bioenergetic Profile in the Triple Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22010461. [PMID: 33466445 PMCID: PMC7796478 DOI: 10.3390/ijms22010461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
The lack of effective disease-modifying therapeutics to tackle Alzheimer’s disease (AD) is unsettling considering the actual prevalence of this devastating neurodegenerative disorder worldwide. Intermittent hypoxic conditioning (IHC) is a powerful non-pharmacological procedure known to enhance brain resilience. In this context, the aim of the present study was to investigate the potential long-term protective impact of IHC against AD-related phenotype, putting a special focus on cognition and mitochondrial bioenergetics and dynamics. For this purpose, six-month-old male triple transgenic AD mice (3×Tg-AD) were submitted to an IHC protocol for two weeks and the behavioral assessment was performed at 8.5 months of age, while the sacrifice of mice occurred at nine months of age and their brains were removed for the remaining analyses. Interestingly, IHC was able to prevent anxiety-like behavior and memory and learning deficits and significantly reduced brain cortical levels of amyloid-β (Aβ) in 3×Tg-AD mice. Concerning brain energy metabolism, IHC caused a significant increase in brain cortical levels of glucose and a robust improvement of the mitochondrial bioenergetic profile in 3×Tg-AD mice, as mirrored by the significant increase in mitochondrial membrane potential (ΔΨm) and respiratory control ratio (RCR). Notably, the improvement of mitochondrial bioenergetics seems to result from an adaptative coordination of the distinct but intertwined aspects of the mitochondrial quality control axis. Particularly, our results indicate that IHC favors mitochondrial fusion and promotes mitochondrial biogenesis and transport and mitophagy in the brain cortex of 3×Tg-AD mice. Lastly, IHC also induced a marked reduction in synaptosomal-associated protein 25 kDa (SNAP-25) levels and a significant increase in both glutamate and GABA levels in the brain cortex of 3×Tg-AD mice, suggesting a remodeling of the synaptic microenvironment. Overall, these results demonstrate the effectiveness of the IHC paradigm in forestalling the AD-related phenotype in the 3×Tg-AD mouse model, offering new insights to AD therapy and forcing a rethink concerning the potential value of non-pharmacological interventions in clinical practice.
Collapse
|
36
|
Ryan S, Cummins EP, Farre R, Gileles-Hillel A, Jun JC, Oster H, Pepin JL, Ray DW, Reutrakul S, Sanchez-de-la-Torre M, Tamisier R, Almendros I. Understanding the pathophysiological mechanisms of cardiometabolic complications in obstructive sleep apnoea: towards personalised treatment approaches. Eur Respir J 2020; 56:13993003.02295-2019. [PMID: 32265303 DOI: 10.1183/13993003.02295-2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
In January 2019, a European Respiratory Society research seminar entitled "Targeting the detrimental effects of sleep disturbances and disorders" was held in Dublin, Ireland. It provided the opportunity to critically review the current evidence of pathophysiological responses of sleep disturbances, such as sleep deprivation, sleep fragmentation or circadian misalignment and of abnormalities in physiological gases such as oxygen and carbon dioxide, which occur frequently in respiratory conditions during sleep. A specific emphasis of the seminar was placed on the evaluation of the current state of knowledge of the pathophysiology of cardiovascular and metabolic diseases in obstructive sleep apnoea (OSA). Identification of the detailed mechanisms of these processes is of major importance to the field and this seminar offered an ideal platform to exchange knowledge, and to discuss pitfalls of current models and the design of future collaborative studies. In addition, we debated the limitations of current treatment strategies for cardiometabolic complications in OSA and discussed potentially valuable alternative approaches.
Collapse
Affiliation(s)
- Silke Ryan
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland .,School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ramon Farre
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBAPS, and CIBER Enfermedades Respiratorias, Barcelona, Spain
| | - Alex Gileles-Hillel
- Pediatric Pulmonology and Sleep Unit, Dept of Pediatrics, and The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jonathan C Jun
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | | | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes, and Metabolism, Dept of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Manuel Sanchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Hospital Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Renaud Tamisier
- HP2 INSERM U1042, Université Grenoble Alpes, Grenoble, France
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona-IDIBAPS, and CIBER Enfermedades Respiratorias, Barcelona, Spain
| |
Collapse
|