1
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
2
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2024:10.1007/s12015-024-10806-3. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Peng J, Zhu H, Ruan B, Duan Z, Cao M. miR-155 promotes m6A modification of SOX2 mRNA through targeted regulation of HIF-1α and delays wound healing in diabetic foot ulcer in vitro models. J Diabetes Investig 2024. [PMID: 39509294 DOI: 10.1111/jdi.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Diabetic foot ulcers (DFU) are one of the most destructive complications of diabetes mellitus. The aim of this study was to link miR-155 and SOX2 with DFU to explore the regulation of wound healing by DFU and its potential mechanism. METHODS Human keratinocytes (HaCaT) were induced with advanced glycation end products (AGEs) to construct DFU models in vitro. AGE-induced HaCaT cells were subjected to CCK-8 assays, flow cytometry, and wound healing assays to evaluate cell proliferation, apoptosis, and migration capacity, respectively. RT-qPCR and Western blotting were used to determine gene and protein expression levels, respectively. N6-methyladenosine (M6A) levels in total RNA were assessed using an M6A methylation quantification kit. RESULTS Our results suggested that the inhibition of miR-155 promoted wound healing in an in vitro DFU model, while the knockdown of HIF-1α reversed this process, and that HIF-1α was a target protein of miR-155. In addition, knockdown of HIF-1α promoted the m6A level of SOX2 mRNA, inhibited the expression of SOX2, and inhibited the activation of the EGFR/MEK/ERK signaling pathway, thus inhibiting the proliferation and migration of HaCaT cells and promoting the apoptosis of HaCaT cells, while overexpression of SOX2 reversed this effect. We also found that METTL3 knockdown had the opposite effect of HIF-1α knockdown. CONCLUSIONS Inhibition of miR-155 promoted the expression of HIF-1α and attenuated the m6A modification of SOX2 mRNA, thereby promoting the expression of SOX2 and activating the downstream EGFR/MEK/ERK signaling pathway to promote wound healing in an in vitro DFU model.
Collapse
Affiliation(s)
- Jiarui Peng
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhu
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Bin Ruan
- Department of Occupational Disease, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Zhisheng Duan
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Mei Cao
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
4
|
Soheilifar MH, Masoudi-Khoram N, Hassani M, Hajialiasgary Najafabadi A, Khojasteh M, Keshmiri Neghab H, Jalili Z. Angio-microRNAs in diabetic foot ulcer-: Mechanistic insights and clinical perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:1-10. [PMID: 39069213 DOI: 10.1016/j.pbiomolbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Diabetic foot ulcers, as one of the chronic wounds, are a serious challenge in the global healthcare system which have shown notable growth in recent years. DFU is associated with impairment in various stages of wound healing, including angiogenesis. Aberrant expression of microRNAs (miRNAs) involved in the disruption of the balance between angiogenic and anti-angiogenic factors, plays a crucial role in angiogenesis dysfunction. Alteration in the expression of angiomiRNAs (angiomiRs) have the potential to function as biomarkers in chronic wounds. Additionally, considering the rising importance of therapeutic RNAs, there is potential for utilizing angiomiRs in wound healing to induce angiogenesis. This review aims to explore angiogenesis in chronic wounds and investigate the mechanisms mediated by pro- and anti-angiomiRs in the context of diabetic foot ulcers.
Collapse
Affiliation(s)
| | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Hassani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, 37077, Germany; Research Group Translational Epigenetics, Department of Pathology, University of Goettingen, Goettingen, 37075, Germany
| | - Mahdieh Khojasteh
- Heart Center of Goettingen, University Medicine Goettingen, Goettingen, Germany
| | - Hoda Keshmiri Neghab
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Zahra Jalili
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Li Y, Lv Y, Li J, Ling P, Guo X, Zhang L, Ni J, Long Y. Dexamethasone relieves the inflammatory response caused by inguinal hernia meshes through miR-155. Hernia 2024; 28:1113-1119. [PMID: 38492053 DOI: 10.1007/s10029-024-02985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Inguinal hernia is a relatively common condition. Most patients with inguinal hernia require surgery. At present, mesh repair is one of the most effective methods to treat inguinal hernia, but insertion of the mesh can cause inflammation. Dexamethasone (DEX) can treat inflammation, but the mechanism by which DEX alleviates inflammation caused by inguinal hernia mesh placement remains unclear. METHOD We randomly divided rats into groups: negative control (NC), inguinal hernia (IH), polypropylene mesh (PM), DEX treatment, and miR-155 treatment groups. RT-qPCR was performed to determine the expression of miR-155. ELISA was implemented to determine the secretion of IL-1β, IL-6, and IL-18. Western blotting was used to detect caspase-1, JAK1, p-JAK1, STAT3, and p-STAT3 expression. A dual-luciferase reporter gene array identified a connection between miR-155 and JAK1. RESULTS The results revealed that the expression of miR-155, IL-1β, IL-6, and IL-18 was upregulated in the PM group. After DEX treatment, the secretion of miR-155, caspase-1, IL-1β, IL-6, and IL-18 decreased. Dual luciferase results confirmed that miR-155 induced the targeted downregulation of JAK1, while a miR-155 mimic reversed the therapeutic effect of DEX, and the expression levels of p-JAK1 and p-STAT3 increased. CONCLUSION DEX regulates the JAK1/STAT3 signaling pathway through miR-155 to relieve inflammation caused by inguinal hernia meshes.
Collapse
Affiliation(s)
- Y Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China
| | - Y Lv
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China
| | - J Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China
| | - P Ling
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China
| | - X Guo
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China
| | - L Zhang
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China
| | - J Ni
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China
| | - Y Long
- Department of General Surgery, The First People's Hospital of Yunnan Province, Xishan District, No. 157, Jinbi Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
7
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
8
|
Aljamal D, Iyengar PS, Nguyen TT. Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics 2024; 16:750. [PMID: 38931872 PMCID: PMC11207742 DOI: 10.3390/pharmaceutics16060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design.
Collapse
Affiliation(s)
- Danny Aljamal
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Priya S. Iyengar
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Tammy T. Nguyen
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Massachusetts, Worcester, MA 01655, USA
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
9
|
Geara P, Dilworth FJ. Epigenetic integration of signaling from the regenerative environment. Curr Top Dev Biol 2024; 158:341-374. [PMID: 38670712 DOI: 10.1016/bs.ctdb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.
Collapse
Affiliation(s)
- Perla Geara
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - F Jeffrey Dilworth
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
10
|
Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the behavior of macrophages in wound healing. Biomed Pharmacother 2023; 165:115199. [PMID: 37517288 DOI: 10.1016/j.biopha.2023.115199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Chronic wounds and scar formation are widespread due to limited suitable remedies. The macrophage is a crucial regulator in wound healing, controlling the onset and termination of inflammation and regulating other processes related to wound healing. The current breakthroughs in developing new medications and drug delivery methods have enabled the accurate targeting of macrophages in oncology and rheumatic disease therapies through clinical trials. These successes have cleared the way to utilize drugs targeting macrophages in various disorders. This review thus summarizes macrophage involvement in normal and pathologic wound healing. It further details the targets available for macrophage intervention and therapeutic strategies for targeting the behavior of macrophages in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Kabir A, Sarkar A, Barui A. Acute and Chronic Wound Management: Assessment, Therapy and Monitoring Strategies. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Tang YB, Uwimana MMP, Zhu SQ, Zhang LX, Wu Q, Liang ZX. Non-coding RNAs: Role in diabetic foot and wound healing. World J Diabetes 2022; 13:1001-1013. [PMID: 36578864 PMCID: PMC9791568 DOI: 10.4239/wjd.v13.i12.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcer (DFU) and poor wound healing are chronic complications in patients with diabetes. The increasing incidence of DFU has resulted in huge pressure worldwide. Diagnosing and treating this condition are therefore of great importance to control morbidity and improve prognosis. Finding new markers with potential diagnostic and therapeutic utility in DFU has gathered increasing interest. Wound healing is a process divided into three stages: Inflammation, proliferation, and regeneration. Non-coding RNAs (ncRNAs), which are small protected molecules transcribed from the genome without protein translation function, have emerged as important regulators of diabetes complications. The deregulation of ncRNAs may be linked to accelerated DFU development and delayed wound healing. Moreover, ncRNAs can be used for therapeutic purposes in diabetic wound healing. Herein, we summarize the role of microRNAs, long ncRNAs, and circular RNAs in diverse stages of DFU wound healing and their potential use as novel therapeutic targets.
Collapse
Affiliation(s)
- Yi-Bo Tang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Muhuza Marie Parfaite Uwimana
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Shu-Qi Zhu
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Li-Xia Zhang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Qi Wu
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Zhao-Xia Liang
- Department of Obstetrics, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
13
|
Lin CW, Hung CM, Chen WJ, Chen JC, Huang WY, Lu CS, Kuo ML, Chen SG. New Horizons of Macrophage Immunomodulation in the Healing of Diabetic Foot Ulcers. Pharmaceutics 2022; 14:pharmaceutics14102065. [PMID: 36297499 PMCID: PMC9606988 DOI: 10.3390/pharmaceutics14102065] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the most costly and troublesome complications of diabetes mellitus. The wound chronicity of DFUs remains the main challenge in the current and future treatment of this condition. Persistent inflammation results in chronic wounds characterized by dysregulation of immune cells, such as M1 macrophages, and impairs the polarization of M2 macrophages and the subsequent healing process of DFUs. The interactive regulation of M1 and M2 macrophages during DFU healing is critical and seems manageable. This review details how cytokines and signalling pathways are co-ordinately regulated to control the functions of M1 and M2 macrophages in normal wound repair. DFUs are defective in the M1-to-M2 transition, which halts the whole wound-healing machinery. Many pre-clinical and clinical innovative approaches, including the application of topical insulin, CCL chemokines, micro RNAs, stem cells, stem-cell-derived exosomes, skin substitutes, antioxidants, and the most recent Phase III-approved ON101 topical cream, have been shown to modulate the activity of M1 and M2 macrophages in DFUs. ON101, the newest clinically approved product in this setting, is designed specifically to down-regulate M1 macrophages and further modulate the wound microenvironment to favour M2 emergence and expansion. Finally, the recent evolution of macrophage modulation therapies and techniques will improve the effectiveness of the treatment of diverse DFUs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Liang Kuo
- Microbio Co., Ltd., Taipei 115, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| | - Shyi-Gen Chen
- Oneness Biotech Co., Ltd., Taipei 106, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (M.-L.K.); or (S.-G.C.); Tel.: +886-2-27031298 (ext. 550) (M.-L.K.); +886-2-27031098 (ext. 551) (S.-G.C.)
| |
Collapse
|
14
|
Yu H, Wang Y, Wang D, Yi Y, Liu Z, Wu M, Wu Y, Zhang Q. Landscape of the epigenetic regulation in wound healing. Front Physiol 2022; 13:949498. [PMID: 36035490 PMCID: PMC9403478 DOI: 10.3389/fphys.2022.949498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Wound healing after skin injury is a dynamic and highly coordinated process involving a well-orchestrated series of phases, including hemostasis, inflammation, proliferation, and tissue remodeling. Epigenetic regulation refers to genome-wide molecular events, including DNA methylation, histone modification, and non-coding RNA regulation, represented by microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Epigenetic regulation is pervasively occurred in the genome and emerges as a new role in gene expression at the post-transcriptional level. Currently, it is well-recognized that epigenetic factors are determinants in regulating gene expression patterns, and may provide evolutionary mechanisms that influence the wound microenvironments and the entire healing course. Therefore, this review aims to comprehensively summarize the emerging roles and mechanisms of epigenetic remodeling in wound healing. Moreover, we also pose the challenges and future perspectives related to epigenetic modifications in wound healing, which would bring novel insights to accelerated wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|
15
|
Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Awasthi A, Gulati M, Kumar B, Kaur J, Vishwas S, Khursheed R, Porwal O, Alam A, KR A, Corrie L, Kumar R, Kumar A, Kaushik M, Jha NK, Gupta PK, Chellappan DK, Gupta G, Dua K, Gupta S, Gundamaraju R, Rao PV, Singh SK. Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1659338. [PMID: 35832856 PMCID: PMC9273440 DOI: 10.1155/2022/1659338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942 KSA, Saudi Arabia
| | - Arya KR
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia 7248
| | - Pasupuleti Visweswara Rao
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064, , Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
17
|
Long Noncoding RNA CASC2 Facilitated Wound Healing through miRNA-155/HIF-1α in Diabetic Foot Ulcers. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6291497. [PMID: 35845734 PMCID: PMC9249493 DOI: 10.1155/2022/6291497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcers (DFU) are among the serious complications which are closely linked to diabetes mellitus. However, there is still a lack of accurate and effective standard prevention and treatment programs for DFU. In this manuscript, we have investigated the function of lncRNA cancer susceptibility candidate 2 (CASC2)/miR-155/hypoxia-inducible factor 1-alpha (HIF-1α) in the wound healing of DFU. We have analyzed lncRNA CASC2`s expression in the marginal tissues of ulcers in patients and mice with DFU. Additionally, the interaction relationship and mechanism between lncRNA CASC2, miR-155, and HIF-1α were determined, which proved the effects of lncRNA CASC2/miR-155/HIF-1α on fibroblasts apoptosis, proliferation, and migration. According to our study, the lncRNA CASC2's expression was low in the tissues of ulcers of DFU mice and patients. lncRNA CASC2's overexpression promoted fibroblasts migration, proliferation, and inhibited apoptosis and was beneficial for the healing of wounds, preferably in the DFU mice. In addition, lncRNA CASC2 directly targets miR-155 and HIF-1α functions as miR-155's target gene. Overexpression of miR-155 abrogated the function of lncRNA CASC2. Similarly, HIF-1α's inhibition has reversed the effect of miR-155 downregulation on fibroblasts. In general, overexpression of lncRNA CASC2 facilitated wound healing through miR-155/HIF-1α in DFU.
Collapse
|
18
|
Jiang Y, Xu X, Xiao L, Wang L, Qiang S. The Role of microRNA in the Inflammatory Response of Wound Healing. Front Immunol 2022; 13:852419. [PMID: 35386721 PMCID: PMC8977525 DOI: 10.3389/fimmu.2022.852419] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Wound healing, a highly complex pathophysiological response to injury, includes four overlapping phases of hemostasis, inflammation, proliferation, and remodeling. Initiation and resolution of the inflammatory response are the primary requirements for wound healing, and are also key events that determines wound quality and healing time. Currently, the number of patients with persistent chronic wounds has generally increased, which imposes health and economic burden on patients and society. Recent studies have found that microRNA(miRNA) plays an essential role in the inflammation involved in wound healing and may provide a new therapeutic direction for wound treatment. Therefore, this review focused on the role and significance of miRNA in the inflammation phase of wound healing.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Xiang Xu
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Long Xiao
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lihong Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Sheng Qiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
19
|
Gondaliya P, Sayyed AA, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-155 Inhibitor Ameliorate Diabetic Wound Healing. Mol Pharm 2022; 19:1294-1308. [PMID: 35294195 DOI: 10.1021/acs.molpharmaceut.1c00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic wounds are one of the debilitating complications that affect up to 20% of diabetic patients. Despite the advent of extensive therapies, the recovery rate is unsatisfactory, and approximately, 25% of patients undergo amputation, thereby demanding alternative therapeutic strategies. On the basis of the individual therapeutic roles of the miR-155 inhibitor and mesenchymal stem cells (MSC)-derived exosomes, we conjectured that the combination of the miR-155 inhibitor and MSC-derived exosomes would have synergy in diabetic wound healing. Herein, miR-155-inhibitor-loaded MSC-derived exosomes showed synergistic effects in keratinocyte migration, restoration of FGF-7 levels, and anti-inflammatory action, leading to accelerated wound healing mediated by negative regulation of miR-155, using an in vitro co-culture model and in vivo mouse model of the diabetic wound. Furthermore, treatment with miR-155-inhibitor-loaded MSC-derived exosomes led to enhanced collagen deposition, angiogenesis, and re-epithelialization in diabetic wounds. This study revealed the therapeutic potential of miR-155-inhibitor-loaded MSC-derived exosomes in diabetic wound healing and opened the doors for encapsulating miRNAs along with antibiotics within the MSC-derived exosomes toward improved management of chronic, nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Adil Ali Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Palak Bhat
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Mukund Mali
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| |
Collapse
|
20
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
21
|
Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing. J Mol Med (Berl) 2022; 100:485-498. [PMID: 34997250 DOI: 10.1007/s00109-021-02172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Collapse
|
22
|
Xu M, Li Y, Tang Y, Zhao X, Xie D, Chen M. Increased Expression of miR-155 in Peripheral Blood and Wound Margin Tissue of Type 2 Diabetes Mellitus Patients Associated with Diabetic Foot Ulcer. Diabetes Metab Syndr Obes 2022; 15:3415-3428. [PMID: 36353665 PMCID: PMC9639392 DOI: 10.2147/dmso.s376292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To investigate the correlations of miR-155 expression in the peripheral blood and wound margin tissue of patients with diabetic foot ulcer (DFU) and explore the clinical value of miR-155 as a potential biomarker for the diagnosis and treatment outcomes of DFU. METHODS Sixty newly diagnosed T2DM patients without DFU (T2DM group), 112 T2DM patients with DFU (DFU group), and 60 healthy controls (NC group) were included. MiR-155 levels in the peripheral blood and wound margin tissue were determined by quantitative real-time PCR, while clinical features and risk factors of DFU were explored. Multiple stepwise logistic regression analysis was used to determine whether miR-155 expression was an independent risk factor for DFU. The diagnostic effectiveness of miR-155 level on DFU was evaluated using ROC curve analysis. RESULTS A significant decrease in the expression level of miR-155 was observed in T2DM group compared with NC group (P < 0.05), while a markedly increased miR-155 expression level was noted in DFU group compared with T2DM group (P < 0.01). Moreover, there was a negative correlation between the expression levels of miR-155 with healing rate of DFU. Kaplan-Meier survival curve analysis showed that the cumulative rate of unhealed DFU in miR-155 high expression group is higher than that in miR-155 low expression group, both in peripheral blood and wound margin tissue (log rank, P = 0.004, P < 0.001, respectively). The multivariate logistic regression analysis confirmed that a high expression of miR-155 was an independent risk factor for DFU. The ROC curve analysis indicated that the AUC of miR-155 for the diagnosis of DFU was 0.794, with the optimum sensitivity being 96.82% and the optimum specificity of 95.93%. CONCLUSION The increased expression of miR-155 in peripheral blood of T2DM patients is closely related to the occurrence of DFU. MiR-155 is a potentially valuable biomarker for diagnosis and prognosis of DFU.
Collapse
Affiliation(s)
- Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Yutong Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Dandan Xie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- Correspondence: Mingwei Chen, Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230032, People’s Republic of China, Tel +86-551-2923631, Fax +86-551-2922160, Email
| |
Collapse
|
23
|
Li X, Li N, Li B, Feng Y, Zhou D, Chen G. Noncoding RNAs and RNA-binding proteins in diabetic wound healing. Bioorg Med Chem Lett 2021; 50:128311. [PMID: 34438011 DOI: 10.1016/j.bmcl.2021.128311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Poor wound healing is a common complication in diabetic patients. It often leads to intractable infections and lower limb amputations and is associated with cardiovascular morbidity and mortality. NcRNAs, which can regulate gene expression, have emerged as important regulators of various physiological processes. Herein, we summarize the diverse roles of ncRNAs in the key stages of diabetic wound healing, including inflammation, angiogenesis, re-epithelialization, and extracellular matrix remodeling. Meanwhile, the potential use of ncRNAs as novel therapeutic targets for wound healing in diabetic patients is also discussed. In addition, we summarize the role of RNA-binding proteins (RBPs) in the regulation of gene expression and signaling pathways during skin repair, which may provide opportunities for therapeutic intervention for this potentially devastating disease. However, so far, research on the modulated drug based on ncRNAs that lead to significantly altered gene expression in diabetic patients is scarce. We have compiled some drugs that may be able to modulate ncRNAs, which significantly regulate the gene expression in diabetic patients.
Collapse
Affiliation(s)
- Xue Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bingxin Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China; Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, People's Republic of China.
| |
Collapse
|
24
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Li J, Wei M, Liu X, Xiao S, Cai Y, Li F, Tian J, Qi F, Xu G, Deng C. The progress, prospects, and challenges of the use of non-coding RNA for diabetic wounds. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:554-578. [PMID: 33981479 PMCID: PMC8063712 DOI: 10.1016/j.omtn.2021.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic diabetic wounds affect the quality of life of patients, resulting in significant social and economic burdens on both individuals and the health care system. Although treatment methods for chronic diabetic wounds have been explored, there remains a lack of effective treatment strategies; therefore, alternative strategies must be explored. Recently, the abnormal expression of non-coding RNA in diabetic wounds has received widespread attention since it is an important factor in the development of diabetic wounds. This article reviews the regulatory role of three common non-coding RNAs (microRNA [miRNA], long non-coding RNA [lncRNA], and circular RNA [circRNA]) in diabetic wounds and discusses the diagnosis, treatment potential, and challenges of non-coding RNA in diabetic wounds. This article provides insights into new strategies for diabetic wound diagnosis and treatment at the genetic and molecular levels.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Miaomiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Xin Liu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Shune Xiao
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Yuan Cai
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Fang Li
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Jiao Tian
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Fang Qi
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Guangchao Xu
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China.,Collaborative Innovation Center of Tissue Injury Repair and Regenerative Medicine Co-sponsored by Province and Ministry, Affiliated Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| |
Collapse
|
26
|
Wang X, Gao Y, Yi W, Qiao Y, Hu H, Wang Y, Hu Y, Wu S, Sun H, Zhang T. Inhibition of miRNA-155 Alleviates High Glucose-Induced Podocyte Inflammation by Targeting SIRT1 in Diabetic Mice. J Diabetes Res 2021; 2021:5597394. [PMID: 33748285 PMCID: PMC7960039 DOI: 10.1155/2021/5597394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Microinflammation plays a crucial role in podocyte dysfunction in diabetic nephropathy, but its regulatory mechanism is still unclear. This study is aimed at discussing the mechanisms underlying the effect of miRNA-155 on podocyte injury to determine its potential as a therapeutic target. METHODS Cultured immortalized mouse podocytes and diabetic KK-Ay mice models were treated with a miR-155 inhibitor. Western blotting, real-time PCR, ELISA, immunofluorescence, and Luciferase reporter assay were used to analyze markers of inflammation cytokines and podocyte injury. RESULTS miRNA-155 was found to be highly expressed in serum and kidney tissue of mice with diabetic nephropathy and in cultured podocytes, accompanied by elevated levels of inflammatory factors. Inhibition of miRNA-155 can reduce proteinuria and ACR levels, diminish the secretion of inflammatory molecules, improve kidney function, inhibit podocyte foot fusion, and reverse renal pathological changes in diabetic nephropathy mice. Overexpression of miRNA-155 in vitro can increase inflammatory molecule production in podocytes and aggravates podocyte injury, while miRNA-155 inhibition suppresses inflammatory molecule production in podocytes and reduces podocyte injury. A luciferase assay confirmed that miRNA-155 could selectively bind to 3'-UTR of SIRT1, resulting in decreased SIRT1 expression. In addition, SIRT1 siRNA could offset SIRT1 upregulation and enhance inflammatory factor secretion in podocytes, induced by the miRNA-155 inhibitor. CONCLUSIONS These findings strongly support the hypothesis that miRNA-155 inhibits podocyte inflammation and reduces podocyte injury through SIRT1 silencing. miRNA-155 suppression therapy may be useful for the management of diabetic nephropathy.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmenwai, Xitoutiao, Fengtai District, Beijing, China
- Beijing Key Lab of TCM Collateral Disease theory Research, 10 Youanmenwai, Xitoutiao, Fengtai District, Beijing, China
| | - Wenming Yi
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Yu Qiao
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Hao Hu
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Ying Wang
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Yan Hu
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Shuxin Wu
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Hongfeng Sun
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| | - Taojing Zhang
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, 6 Fangxingyuan, Fengtai District, Beijing, China
| |
Collapse
|
27
|
Serra F, Aielli L, Costantini E. The role of miRNAs in the inflammatory phase of skin wound healing. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
<abstract>
<p>Wound healing (WH) is a fundamental physiological process to keep the integrity of the skin, therefore impaired and chronic WH is a common and severe medical problem and represent one of the biggest challenges of public health. The resolution of the WH inflammatory phase is characterized by a complex series of events that involves many cellular types, especially neutrophils, macrophages and inflammatory mediators, which are crucial for a correct wound closure. MicroRNAs (miRNAs) play essential roles in wound repair. In fact, miR-142 is linked to inflammation modulating neutrophils' chemotaxis and polarization, while the polarization of M1 toward the M2 phenotype is driven by miR-223 and miR-132 is linked to chemokines and cytokines that activate endothelial cells and attract leukocytes and peripheral cells to the damage site. Thus, understanding the dysregulation of miRNAs in WH will be decisive for the development of new and more effective therapies for the management of chronic wounds.</p>
</abstract>
Collapse
|
28
|
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells 2020; 9:E2228. [PMID: 33023156 PMCID: PMC7601058 DOI: 10.3390/cells9102228] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed. microRNAs (miRNAs), a class of 18-25 nucleotide long RNAs, are important regulatory molecules involved in gene expression regulation and in the repression of translation, controlling protein expression in health and disease. Recently, miRNAs have emerged as critical players in impaired wound healing and could be targets for potential therapies for non-healing wounds. Here, we review and discuss the mechanistic background of miRNA actions in chronic wounds that can shed the light on their utilization as specific wound healing biomarkers.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| | - Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| |
Collapse
|
29
|
Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biol 2020; 37:101704. [PMID: 32942144 PMCID: PMC7498944 DOI: 10.1016/j.redox.2020.101704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is one of the most prevalent metabolic disorders and is estimated to affect 400 million of 4.4% of population worldwide in the next 20 year. In diabetes, risk to develop vascular diseases is two-to four-fold increased. Ischemic tissue injury, such as refractory wounds and critical ischemic limb (CLI) are major ischemic vascular complications in diabetic patients where oxygen supplement is insufficient due to impaired angiogenesis/neovascularization. In spite of intensive studies, the underlying mechanisms of diabetes-impaired ischemic tissue injury remain incompletely understood. Hydrogen sulfide (H2S) has been considered as a third gasotransmitter regulating angiogenesis under physiological and ischemic conditions. Here, the underlying mechanisms of insufficient H2S-impaired angiogenesis and ischemic tissue repair in diabetes are discussed. We will primarily focuses on the signaling pathways of H2S in controlling endothelial function/biology, angiogenesis and ischemic tissue repair in diabetic animal models. We summarized that H2S plays an important role in maintaining endothelial function/biology and angiogenic property in diabetes. We demonstrated that exogenous H2S may be a theraputic agent for endothelial dysfunction and impaired ischemic tissue repair in diabetes.
Collapse
|
30
|
Seraphim PM, Leal EC, Moura J, Gonçalves P, Gonçalves JP, Carvalho E. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing. Life Sci 2020; 254:117813. [PMID: 32428597 DOI: 10.1016/j.lfs.2020.117813] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/09/2023]
Abstract
AIMS This study aimed to investigate the effect of lymphocytes in wound healing and the underlying mechanisms, in diabetic and non-diabetic mice, using Balb/c recombination activating gene (Rag)-2 and interleukin 2 receptor gamma (IL-2Rγ) double knockout (KO) (RAG2-/- IL-2Rγ-/-) mice. MAIN METHODS Wound healing in vivo was performed in control and STZ-induced diabetic mice, in both KO and WT mice. Inflammation and ROS production were evaluated by immunofluorescence microscopy analysis, antioxidant enzymes and angiogenesis were evaluated by quantitative PCR and immunofluorescence microscopy analysis, and wound closure kinetics evolution was evaluated by measurement of acetate tracing of the wound area. KEY FINDINGS Wound closure was significantly delayed in KO mice, where the M1/M2 macrophage ratio and basal ROS levels were significantly increased, while antioxidant defenses and angiogenesis were significantly decreased. Moreover, the expected increase in matrix metallopeptidase (MMP)-9 protein levels in diabetic conditions was not observed in KO mice, suggesting that the mechanisms leading to the increase in MMP-9 observed in diabetic wounds may in part be lymphocyte-dependent. SIGNIFICANCE Our results indicate that lack of lymphocytes compromises wound healing independent of diabetes. The lack of these cells, even in non-diabetic mice, mimics the phenotype observed in wounds under diabetic conditions. Moreover, the combination of diabetes and the lack of lymphocytes, further impair the wound healing conditions, indicating that when the innate regulatory function is lost in these KO mice, excessive M1 polarization, poor angiogenesis and impaired wound healing are worsen.
Collapse
Affiliation(s)
- Patricia M Seraphim
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Department of Physiotherapy, School of Sciences and Technology, Sao Paulo State University - UNESP, Campus Presidente Prudente, Brazil
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Pedro Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Innate Immunity Unit, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - Jenifer P Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Cell Biology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, 3030-789 Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| |
Collapse
|
31
|
Kline KT, Lian H, Zhong XS, Luo X, Winston JH, Cong Y, Savidge TC, Dashwood RH, Powell DW, Li Q. Neonatal Injury Increases Gut Permeability by Epigenetically Suppressing E-Cadherin in Adulthood. THE JOURNAL OF IMMUNOLOGY 2019; 204:980-989. [PMID: 31889022 DOI: 10.4049/jimmunol.1900639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
Abstract
Altered intestinal epithelial integrity is an important susceptibility trait in inflammatory bowel disease (IBD), and early life stressors are reported to contribute to this disease susceptibility in adulthood. To identify disease mechanisms associated with early-life trauma that exacerbate IBD in adulthood, we used a "double-hit" neonatal inflammation (NI) and adult inflammation (AI) model that exhibits more severe mucosal injury in the colon later in life. In this study, we explore the underlying mechanisms of this aggravated injury. In rats exposed to both NI and AI, we found sustained increases in colonic permeability accompanied by significantly attenuated expression of the epithelial junction protein E-cadherin. Quantitative RT-PCR revealed a decreased Cdh1 (gene of E-cadherin) mRNA expression in NI + AI rats compared with NI or AI rats. Next, we performed microRNA microarrays to identify potential regulators of E-cadherin in NI + AI rats. We confirmed the overexpression of miR-155, a predicted regulator of E-cadherin, and selected it for further analysis based on reported significance in human IBD. Using ingenuity pathway analysis software, the targets and related canonical pathway of miR-155 were analyzed. Mechanistic studies identified histone hyperacetylation at the Mir155 promoter in NI + AI rats, concomitant with elevated RNA polymerase II binding. In vitro, E-cadherin knockdown markedly increased epithelial cell permeability, as did overexpression of miR-155 mimics, which significantly suppressed E-cadherin protein. In vivo, NI + AI colonic permeability was significantly reversed with administration of miR-155 inhibitor rectally. Our collective findings indicate that early-life inflammatory stressors trigger a significant and sustained epithelial injury by suppressing E-cadherin through epigenetic mechanisms.
Collapse
Affiliation(s)
- Kevin T Kline
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Haifeng Lian
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555.,Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Xiaoying S Zhong
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Xiuju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - John H Winston
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Tor C Savidge
- Texas Children's Microbiome Center, Baylor College of Medicine, Houston, TX 77030; and
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M College of Medicine, Houston, TX 77807
| | - Don W Powell
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555;
| |
Collapse
|
32
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Molecular Changes in Diabetic Wound Healing following Administration of Vitamin D and Ginger Supplements: Biochemical and Molecular Experimental Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4352470. [PMID: 31428171 PMCID: PMC6679851 DOI: 10.1155/2019/4352470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. AIM In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. METHODS Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT-PCR and immunoassay analysis. RESULTS Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P < 0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. CONCLUSION Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Moura J, Sørensen A, Leal EC, Svendsen R, Carvalho L, Willemoes RJ, Jørgensen PT, Jenssen H, Wengel J, Dalgaard LT, Carvalho E. microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Sci Rep 2019; 9:5836. [PMID: 30967591 PMCID: PMC6456606 DOI: 10.1038/s41598-019-42309-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Treatment for chronic diabetic foot ulcers is limited by the inability to simultaneously address the excessive inflammation and impaired re-epithelization and remodeling. Impaired re-epithelization leads to significantly delayed wound closure and excessive inflammation causes tissue destruction, both enhancing wound pathogen colonization. Among many differentially expressed microRNAs, miR-155 is significantly upregulated and fibroblast growth factor 7 (FGF7) mRNA (target of miR-155) and protein are suppressed in diabetic skin, when compared to controls, leading us to hypothesize that topical miR-155 inhibition would improve diabetic wound healing by restoring FGF7 expression. In vitro inhibition of miR-155 increased human keratinocyte scratch closure and topical inhibition of miR-155 in vivo in wounds increased murine FGF7 protein expression and significantly enhanced diabetic wound healing. Moreover, we show that miR-155 inhibition leads to a reduction in wound inflammation, in accordance with known pro-inflammatory actions of miR-155. Our results demonstrate, for the first time, that topical miR-155 inhibition increases diabetic wound fibroblast growth factor 7 expression in diabetic wounds, which, in turn, increases re-epithelization and, consequently, accelerates wound closure. Topical miR-155 inhibition targets both excessive inflammation and impaired re-epithelization and remodeling, being a potentially new and effective treatment for chronic diabetic foot ulcers.
Collapse
Affiliation(s)
- João Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Anja Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rikke Svendsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lina Carvalho
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rie Juul Willemoes
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Per Trolle Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States. .,Arkansas Children's Research Institute, Little Rock, Arkansas, United States.
| |
Collapse
|
34
|
The MicroRNA miR-155 Is Essential in Fibrosis. Noncoding RNA 2019; 5:ncrna5010023. [PMID: 30871125 PMCID: PMC6468348 DOI: 10.3390/ncrna5010023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
The function of microRNAs (miRNAs) during fibrosis and the downstream regulation of gene expression by these miRNAs have become of great biological interest. miR-155 is consistently upregulated in fibrotic disorders, and its ablation downregulates collagen synthesis. Studies demonstrate the integral role of miR-155 in fibrosis, as it mediates TGF-β1 signaling to drive collagen synthesis. In this review, we summarize recent findings on the association between miR-155 and fibrotic disorders. We discuss the cross-signaling between macrophages and fibroblasts that orchestrates the upregulation of collagen synthesis mediated by miR-155. As miR-155 is involved in the activation of the innate and adaptive immune systems, specific targeting of miR-155 in pathologic cells that make excessive collagen could be a viable option before the depletion of miR-155 becomes an attractive antifibrotic approach.
Collapse
|
35
|
Dehaini H, Awada H, El-Yazbi A, Zouein FA, Issa K, Eid AA, Ibrahim M, Badran A, Baydoun E, Pintus G, Eid AH. MicroRNAs as Potential Pharmaco-targets in Ischemia-Reperfusion Injury Compounded by Diabetes. Cells 2019; 8:E152. [PMID: 30759843 PMCID: PMC6406262 DOI: 10.3390/cells8020152] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ischemia-Reperfusion (I/R) injury is the tissue damage that results from re-oxygenation of ischemic tissues. There are many players that contribute to I/R injury. One of these factors is the family of microRNAs (miRNAs), which are currently being heavily studied. This review aims to critically summarize the latest papers that attributed roles of certain miRNAs in I/R injury, particularly in diabetic conditions and dissect their potential as novel pharmacologic targets in the treatment and management of diabetes. METHODS PubMed was searched for publications containing microRNA and I/R, in the absence or presence of diabetes. All papers that provided sufficient evidence linking miRNA with I/R, especially in the context of diabetes, were selected. Several miRNAs are found to be either pro-apoptotic, as in the case of miR-34a, miR-144, miR-155, and miR-200, or anti-apoptotic, as in the case of miR-210, miR-21, and miR-146a. Here, we further dissect the evidence that shows diverse cell-context dependent effects of these miRNAs, particularly in cardiomyocytes, endothelial, or leukocytes. We also provide insight into cases where the possibility of having two miRNAs working together to intensify a given response is noted. CONCLUSIONS This review arrives at the conclusion that the utilization of miRNAs as translational agents or pharmaco-targets in treating I/R injury in diabetic patients is promising and becoming increasingly clearer.
Collapse
Affiliation(s)
- Hassan Dehaini
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Hussein Awada
- Department of Biology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria P.O. Box 21521, El-Mesallah, Egypt.
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Khodr Issa
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Maryam Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O Box 961343 Amman, Jordan.
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon.
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| |
Collapse
|
36
|
Ozdemir D, Feinberg MW. MicroRNAs in diabetic wound healing: Pathophysiology and therapeutic opportunities. Trends Cardiovasc Med 2018; 29:131-137. [PMID: 30143275 DOI: 10.1016/j.tcm.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 01/11/2023]
Abstract
Diabetic wound healing is an incompletely understood pathophysiological state. It comprises a range of potentially devastating and common complications of diabetes mellitus (DM) leading to intractable infections, lower extremity amputations, and associated cardiovascular morbidity and mortality. MicroRNAs (miRNAs) have emerged as important regulators in various physiological processes in health and disease through their ability to fine-tune cellular responses. Herein, we summarize the versatile roles of miRNAs implicated in diabetic wound healing in key stages including inflammation, angiogenesis, re-epithelialization, and remodeling. Furthermore, we highlight current evidence through which miRNAs exert control of gene expression and signaling pathways in the reparative response that may provide opportunities for therapeutic intervention for this potentially devastating disease state.
Collapse
Affiliation(s)
- Denizhan Ozdemir
- Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
37
|
Gao J, Zhao G, Li W, Zhang J, Che Y, Song M, Gao S, Zeng B, Wang Y. MiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucose. Exp Cell Res 2018; 366:55-62. [PMID: 29545091 DOI: 10.1016/j.yexcr.2018.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/31/2022]
Abstract
Endothelial progenitor cells (EPCs) are involved in diabetes-associated complications, including diabetic foot ulcer (DFU). Recent reports showed that miR-155 downregulation promotes wound healing in diabetic rats and ameliorates endothelial injury induced by high glucose, but its role in DFU is unknown. We found that miR-155 was overexpressed in EPCs from patients with DFU and in high glucose-induced EPCs from healthy people. Reductions in cell viability, migration, tube formation and nitric oxide production, as well as increases in lactated hydrogenase, cell apoptosis, and reactive oxygen species induced by high glucose, were enhanced by miR-155 overexpression and restrained by miR-155 inhibition. Additionally, dual-luciferase reporter assay demonstrated that miR-155 directly targeted the 3' untranslated region of patched-1 (PTCH1), a receptor of the sonic hedgehog signaling pathway, and downregulated the mRNA and protein expression of PTCH1. qRT-PCR and Western blot results revealed that the PTCH1 was downregulated in EPCs treated with high glucose. Silencing PTCH1 by PTCH1 siRNA alleviated the protective effect of anti-miR-155 on high glucose-induced EPC dysfunction. Our results indicate that miR-155 worsened high glucose-induced EPC function by downregulating PTCH1. These findings suggest that miR-155 may be a potential therapeutic target for DFU.
Collapse
Affiliation(s)
- Jie Gao
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Gang Zhao
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Wei Li
- Heilongjiang fire hospital, Harbin, Heilongjiang 150026, China
| | - Jiayuan Zhang
- Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yanling Che
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Meiyu Song
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Shan Gao
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Bin Zeng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yuanhong Wang
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|