1
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Martinotti S, Bonsignore G, Ranzato E. Understanding the Anticancer Properties of Honey. Int J Mol Sci 2024; 25:11724. [PMID: 39519281 PMCID: PMC11547017 DOI: 10.3390/ijms252111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Uncontrolled cell growth that possesses the capacity to exhibit malignant behavior is referred to as cancer. The cytotoxic drugs used to fight cancer are associated with several adverse effects and are not always readily available or affordable, especially in developing countries. These issues are in addition to the shortcomings of the current cancer treatment regimen. According to growing research, honey is not cytotoxic to normal cells but is highly and particularly cytotoxic to tumor cells, suggesting that honey may display anticancer effects. Research has shown that honey affects a number of cell signaling pathways; however, at the moment, the precise method is not completely known.
Collapse
Affiliation(s)
| | | | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (S.M.); (G.B.)
| |
Collapse
|
3
|
Tian Y, Liu X, Wang J, Zhang C, Yang W. Antitumor Effects and the Potential Mechanism of 10-HDA against SU-DHL-2 Cells. Pharmaceuticals (Basel) 2024; 17:1088. [PMID: 39204193 PMCID: PMC11357620 DOI: 10.3390/ph17081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects on numerous tumor cell lines, including colon cancer cells, A549 human lung cancer cells, and human hepatoma cells. The present study extends this inquiry to lymphoma, specifically evaluating the impact of 10-HDA on the SU-DHL-2 cell line. Our findings revealed dose-dependent suppression of SU-DHL-2 cell survival, with an IC50 of 496.8 μg/mL at a density of 3 × 106 cells/well after 24 h. For normal liver LO2 cells and human fibroblasts (HSFs), the IC50 values were approximately 1000 μg/mL and over 1000 μg/mL, respectively. The results of label-free proteomics revealed 147 upregulated and 347 downregulated differentially expressed proteins that were significantly enriched in the complement and coagulation cascades pathway (adjusted p-value = 0.012), including the differentially expressed proteins prothrombin, plasminogen, plasminogen, carboxypeptidase B2, fibrinogen beta chain, fibrinogen gamma chain, and coagulation factor V. The top three hub proteins, ribosomal protein L5, tumor protein p53, and ribosomal protein L24, were identified via protein-protein interaction (PPI) analysis. This result showed that the complement and coagulation cascade pathways might play a key role in the antitumor process of 10-HDA, suggesting a potential therapeutic avenue for lymphoma treatment. However, the specificity of the effect of 10-HDA on SU-DHL-2 cells warrants further investigation.
Collapse
Affiliation(s)
- Yuanyuan Tian
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqing Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Jie Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Chuang Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Wenchao Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| |
Collapse
|
4
|
Wang H, Li L, Lin X, Bai W, Xiao G, Liu G. Composition, functional properties and safety of honey: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6767-6779. [PMID: 37209396 DOI: 10.1002/jsfa.12720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Honey has been used not only as a food source but also for medicinal purposes. Recent studies have indicated that honey exhibits antioxidant, hepatoprotective, hypolipidemic, hypoglycemic and anti-obesity properties, as well as anticancer, anti-atherosclerotic, hypotensive, neuroprotective and immunomodulatory activities. These health benefits of honey could be attributed to its wide range of nutritional components, including polysaccharides and polyphenols, which have been proven to possess various beneficial properties. It is notable that the composition of honey can also be affected by nectar, season, geography and storage condition. Moreover, the safety of honey requires caution to avoid any potential safety incidents. Therefore, this review aims to provide recent research regarding the chemical composition, biological activities and safety of honey, which might be attributed to comprehensive utilization of honey. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lantao Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaohui Lin
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Ireland
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
5
|
Sánchez-Martín V, Morales P, Iriondo-DeHond A, Hospital XF, Fernández M, Hierro E, Haza AI. Differential Apoptotic Effects of Bee Product Mixtures on Normal and Cancer Hepatic Cells. Antioxidants (Basel) 2023; 12:615. [PMID: 36978864 PMCID: PMC10045410 DOI: 10.3390/antiox12030615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Most effective anticancer drugs normally generate considerable cytotoxicity in normal cells; therefore, the preferential activation of apoptosis in cancer cells and the reduction of toxicity in normal cells is a great challenge in cancer research. Natural products with selective anticancer properties used as complementary medicine can help to achieve this goal. The aim of the present study was to analyze the effect of the addition of bee products [propolis (PR) or royal jelly (RJ) or propolis and royal jelly (PR+RJ), 2-10%] to thyme (TH) and chestnut honeys (CH) on the differential anticancer properties, mainly the cytotoxic and pro-apoptotic effects, in normal and cancer hepatic cells. The cytotoxic effects of samples were analyzed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (0-250 mg/mL) and the effects on apoptosis were analyzed using cell cycle analysis, TdT-dUTP terminal nick-end labeling (TUNEL) assay, DR5 (Death Receptor 5) and BAX (BCL-2-Associated X) activation, and caspases 8, 9, and 3 activities. Both honey samples alone and honey mixtures had no or very little apoptotic effect on normal cells. Antioxidant honey mixtures enhanced the apoptotic capacity of the corresponding honey alone via both extrinsic and intrinsic pathways. Of all the samples, chestnut honey enriched with 10% royal jelly and 10% propolis (sample 14, CH+10RJ+10PR) showed the highest apoptotic effect on tumor liver cells. The enrichment of monofloral honey with bee products could be used together with conventional anticancer treatments as a dietary supplement without side effects. On the other hand, it could be included in the diet as a natural sweetener with high added value.
Collapse
Affiliation(s)
- Vanesa Sánchez-Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Paloma Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Xavier F. Hospital
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Manuela Fernández
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Eva Hierro
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Ana I. Haza
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
6
|
Zammit Young GW, Blundell R. A review on the phytochemical composition and health applications of honey. Heliyon 2023; 9:e12507. [PMID: 36755588 PMCID: PMC9900486 DOI: 10.1016/j.heliyon.2022.e12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Though honey has long been used as medicine, there is a scarcity of knowledge on how it interacts with the body. Scope and approach While different types of honey have different chemical and medicinal properties according to their origin, this narrative review seeks to analyse the current knowledge on the chemical composition and therapeutic use of honey. With numerous chemical components, honey has a range of health benefits in multiple disciplines of medicine, and provides an interesting prospect in chemical analysis with regards to identification of its origin. Key findings and conclusions There is a great potential for the use of honey in medicine, primarily due to its antioxidant and antimicrobial properties. Recent studies on the phenolic and enzymatic components of honey have made honey's therapeutic method of action in relation to the above properties clearer, still more research needs to be conducted and more innovations need to be tested, for the full potential of honey to be understood.
Collapse
Affiliation(s)
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Malta
| |
Collapse
|
7
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Patouna A, Vardakas P, Skaperda Z, Spandidos DA, Kouretas D. Evaluation of the antioxidant potency of Greek honey from the Taygetos and Pindos mountains using a combination of cellular and molecular methods. Mol Med Rep 2023; 27:54. [PMID: 36660937 PMCID: PMC9879079 DOI: 10.3892/mmr.2023.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Honey is a complex mixture, containing ~180 compounds, produced by the Apis melifera bees, with promising antimicrobial and antioxidant properties. Nevertheless, the mechanisms through which honey exerts its effects remain under investigation. Plant antioxidants are found in honey and other bee products exhibiting a high bioactivity and molecular diversity. The aim of the present study was to estimate the antioxidant capacity of honey collected from areas in Greece by small‑scale producers by i) using in vitro cell free assays; and ii) by investigating the effects of honey varieties on the redox status of a liver cancer cell line (HepG2) using non‑cytotoxic concentrations. The findings of the present study will allow for the identification of Greek honeys with promising antioxidant capacity. For this purpose, six types of honey with various floral origins were examined in cell‑free assays followed by cell‑based techniques using flow cytometric analysis and redox biomarker level determination in order to evaluate the potential alterations in the intracellular redox system. The results indicated various mechanisms of action that are dependent on the honey type, concentration dependency and high antioxidant capacity. The extended findings from the literature confirm the ability of raw honey to influence the redox status of HepG2 cells. Nevertheless additional investigations are required to elucidate their mechanisms of action in cell line models.
Collapse
Affiliation(s)
- Anastasia Patouna
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Periklis Vardakas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece,Correspondence to: Professor Demetrios Kouretas, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece, E-mail:
| |
Collapse
|
9
|
Abdualmjid RJ, Sergi CM. Mitochondrial Dysfunction and Induction of Apoptosis in Hepatocellular Carcinoma and Cholangiocarcinoma Cell Lines by Thymoquinone. Int J Mol Sci 2022; 23:ijms232314669. [PMID: 36498999 PMCID: PMC9737800 DOI: 10.3390/ijms232314669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Thymoquinone (TQ), a plant-based bioactive constituent derived from the volatile oil of Nigella sativa, has been shown to possess some anti-neoplastic activities. The present study aimed to investigate the mitochondria and apoptosis observed when TQ is applied against hepatocellular carcinoma (HepG2) and cholangiocarcinoma (HuCCT1) cells, two of the most common primary tumors of the liver. All cell lines were treated with increasing concentrations of TQ for varying durations. The anti-proliferative effect of TQ was measured using the methoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and resulted in dose- and time-dependent growth inhibition in both cell lines. Cell cycle, apoptosis, and assessment of mitochondria viability by morphology assessment and evaluation of the mitochondrial membrane potential were investigated. The present study confirms that TQ caused cell cycle arrest at different phases and induced apoptosis in both cell lines. A systematic review of rodent animal models was also carried out. Overall, our data seem to represent the most robust results, suggesting that TQ possesses promising therapeutic potential as an anti-tumor agent for the treatment of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Reem J. Abdualmjid
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Consolato M. Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: ; Tel.: +1-613-737-7600 (ext. 2427); Fax: +1-613-738-4837
| |
Collapse
|
10
|
The phenolic composition, aroma compounds, physicochemical and antimicrobial properties of Nigella sativa L. (black cumin) honey. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Comparison between the Efficacy of Nigella sativa-Honey and Clotrimazole on Vulvovaginal Candidiasis: A Randomized Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1739729. [PMID: 36276860 PMCID: PMC9586731 DOI: 10.1155/2022/1739729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Abstract
MATERIALS AND METHODS This triple-blind, randomized controlled trial was conducted on eighty-four 18 to 49-year-old nonpregnant women from August 2019 to February 2020. The subjects were randomly divided into two groups after confirming the diagnosis of VVC infection through fungal culture. Clinical signs and symptoms and lab tests were recorded at baseline and 6-10 days after treatment. The treatment time for each group was seven nights. RESULTS There were no significant differences in clinical and laboratory evaluations between the two groups at the beginning of the study (P > 0.05). After treatment, secretion, redness, itching, and fungal culture improved in the two groups (P < 0.001), while pruritus (p = 0.013) and secretion (p = 0.025) in the control group significantly improved. In this trial, no patients showed drug-specific side effects. CONCLUSION The results of this study show that the N. sativa-honey significantly improves the symptoms of VVC; thus, the application of N. sativa-honey can be considered as a complementary therapy in the treatment of VVC. This trial is registered with IRCT20190711044176N1.
Collapse
|
12
|
Iftikhar A, Nausheen R, Muzaffar H, Naeem MA, Farooq M, Khurshid M, Almatroudi A, Alrumaihi F, Allemailem KS, Anwar H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103297. [PMID: 35630774 PMCID: PMC9143627 DOI: 10.3390/molecules27103297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Rimsha Nausheen
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Humaira Muzaffar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Muhammad Farooq
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
- Correspondence: (H.A.); (K.S.A.)
| | - Haseeb Anwar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
- Correspondence: (H.A.); (K.S.A.)
| |
Collapse
|
13
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
14
|
Battino M, Giampieri F, Cianciosi D, Ansary J, Chen X, Zhang D, Gil E, Forbes-Hernández T. The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153170. [PMID: 31980299 DOI: 10.1016/j.phymed.2020.153170] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Oxidative stress and inflammation contribute to the etiopathogenesis of several human chronic diseases, such as cancer, diabetes, cardiovascular diseases and metabolic syndrome. Besides classic stimuli, such as reactive oxidant species, endotoxins (i.e., bacteria lipopolysaccharide), cytokines or carcinogens, oxidative stress and inflammation can be triggered by a poor diet and an excess of body fat and energy intake. Strawberry and honey are common rich sources of nutrients and bioactive compounds, widely studied for their roles exerted in health maintenance and disease prevention. PURPOSE This review aims to summarize and update the effects of strawberry and honey against oxidative stress and inflammation, with emphasis on metabolism and on the main molecular mechanisms involved in these effects. METHODS A wide range of literature, published in the last 10 years, elucidating the effects of strawberry and honey in preventing oxidative stress and inflammation both in vitro (whole matrix and digested fractions) and in vivo was collected from online electronic databases (PubMed, Scopus and Web of Science) and reviewed. RESULTS Strawberry and honey polyphenols may potentially prevent the chronic diseases related to oxidative stress and inflammation. Several in vitro and in vivo studies reported the effects of these foods in suppressing the oxidative stress, by decreasing ROS production and oxidative biomarkers, restoring the antioxidant enzyme activities, ameliorating the mitochondrial antioxidant status and functionality, among others, and the inflammatory process, by modulating the mediators of acute and chronic inflammation essential for the onset of several human diseases. These beneficial properties are mediated in part through their ability to target multiple signaling pathways, such as p38 MAPK, AMPK, PI3K/Akt, NF-κB and Nrf2. CONCLUSIONS Available scientific literature show that strawberry and honey may be effective in preventing oxidative stress and inflammation. The deep evaluation of the factors that affect their metabolism as well as the assessment of the main molecular mechanisms involved are of extreme importance for the possible therapeutic and preventive benefit against the most common human diseases. However, published literature is still scarce so that deeper studies should be performed in order to evaluate the bioavailability of these food matrices and their effects after digestion.
Collapse
Affiliation(s)
- Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Johura Ansary
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Xiumin Chen
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Jiangsu Hengshun Group Co., Ltd., Zhenjiang 212000, China
| | - Emilio Gil
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Tamara Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| |
Collapse
|
15
|
Ghramh HA, Ibrahim EH, Ahmad Z. Antimicrobial, immunomodulatory and cytotoxic activities of green synthesized nanoparticles from Acacia honey and Calotropis procera. Saudi J Biol Sci 2021; 28:3367-3373. [PMID: 34121874 PMCID: PMC8175998 DOI: 10.1016/j.sjbs.2021.02.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
Calotropis procera and Somra (Acacia) honey are used in traditional medicine. The benefits of mixing 20% Somra honey and C. procera leaf water extract (CPLWExt) were aimed to be studied. Honey/CPLWExt were utilized to produce silver nanoparticles (AgNPs) separately. AgNPs were characterized via UV/Vis and electron microscope scanning. Bio-molecules in CPLWExt/honey were investigated utilizing FT-IR spectroscopy. Biological activities of CPLWExt and honey were tested. The outcomes showed that CPLWExt and honey have numerous functional groups and could produce AgNPs. CPLWExt, CPLWExt + AgNPs, honey and honey + AgNPs hindered the growth of rat splenocytes, while CPLWExt + honey invigorated it. Antimicrobial power was found in CPLWExt and honey, which increased in the presence of AgNPs. Honey/honey + AgNPs suppressed the proliferation of HeLa and HepG2 cells. In conclusion, honey/CPLWExt could produce AgNPs and showed immunomodulatory and antibacterial power. Somra honey/honey + AgNPs have anticancer power. Somra honey + CPLWExt reflected a good immunostimulatory powers that can be nominated as an immunostimulant.
Collapse
Affiliation(s)
- Hamed A. Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Essam H. Ibrahim
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo 12611, Egypt
| | - Zubair Ahmad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
16
|
Ghramh HA, Ibrahim EH, Kilnay M. Majra Honey Abrogated the Normal and Cancer Cells Proliferation Inhibition by Juniperus procera Extract and Extract/Honey Generated AgNPs. Anticancer Agents Med Chem 2021; 20:970-981. [PMID: 32053084 DOI: 10.2174/1871520620666200213104224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/04/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Juniperus procera and Majra honey are well-known as a folk medicine in many countries. OBJECTIVES This work aimed to study the immunomodulatory effects after mixing Majra honey, J. procera water leaves extract and silver Nanoparticles (AgNPs) on immune or cancer cells. METHODS Juniperus procera water leaves extract and 20% Majra honey were prepared. Both the extract and honey were used separately to synthesize AgNPs. AgNPs were characterized using UV/Vis spectrophotometry and electron microscopy. Bioactive molecules in honey and the extract were explored using Fourier Transform Infrared (FT-IR) spectroscopy. Protein profile of honey was explored using Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS-PAGE) and honey sugar content was determined using High- Performance Liquid Chromatography (HPLC). Biological activities of honey and the extract were tested. RESULTS The results demonstrated the ability of the extract/honey to produce AgNPs in a spherical shape. The extract/honey contained many functional groups. SDS-PAGE of Majra honey showed many protein bands. HPLC revealed honey is of good quality and no external additives are added to it. The extract and extract+ AgNPs inhibited the growth of normal rat splenic cells while honey stimulated it. The extract+honey turned stimulatory to the splenic cells' growth and significantly diminished the inhibitory potential of the extract containing AgNPs. Both the extract and honey have antimicrobial activities, this potential increased in the presence of AgNPs. Honey and Honey+AgNPs inhibited HepG2 cancer cell proliferation while Hela cell growth inhibited only with honey+AgNPs. CONCLUSION Both honey and the extract have antibacterial and immunomodulatory potentials as well as the power to produce AgNPs. Majra honey alone showed anticancer activity against HepGe2 cells, but not against Hela cells, and when contained AgNPs had anticancer activity on both cell lines. Mixing of Majra honey with J. procera extract showed characterized immunomodulatory potentials that can be described as immunostimulant.
Collapse
Affiliation(s)
- Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Essam H Ibrahim
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mona Kilnay
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
17
|
Masad RJ, Haneefa SM, Mohamed YA, Al-Sbiei A, Bashir G, Fernandez-Cabezudo MJ, al-Ramadi BK. The Immunomodulatory Effects of Honey and Associated Flavonoids in Cancer. Nutrients 2021; 13:1269. [PMID: 33924384 PMCID: PMC8069364 DOI: 10.3390/nu13041269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Shoja M. Haneefa
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Ansary J, Giampieri F, Forbes-Hernandez TY, Regolo L, Quinzi D, Gracia Villar S, Garcia Villena E, Tutusaus Pifarre K, Alvarez-Suarez JM, Battino M, Cianciosi D. Nutritional Value and Preventive Role of Nigella sativa L. and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies. Molecules 2021; 26:molecules26082108. [PMID: 33916916 PMCID: PMC8067617 DOI: 10.3390/molecules26082108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
In recent times, scientific attention has been paid to different foods and their bioactive components for the ability to inhibit the onset and progress of different types of cancer. Nigella sativa extract, powder and seed oil and its main components, thymoquinone and α-hederin, have showed potent anticancer and chemosensitizing effects against various types of cancer, such as liver, colon, breast, renal, cervical, lung, ovarian, pancreatic, prostate and skin tumors, through the modulation of various molecular signaling pathways. Herein, the purpose of this review was to highlight the anticancer activity of Nigella sativa and it constitutes, focusing on different in vitro, in vivo and clinical studies and projects, in order to underline their antiproliferative, proapoptotic, cytotoxic and antimetastatic effects. Particular attention has been also given to the synergistic effect of Nigella sativa and it constitutes with chemotherapeutic drugs, and to the synthesized analogs of thymoquinone that seem to enhance the chemo-sensitizing potential. This review could be a useful step towards new research on N. sativa and cancer, to include this plant in the dietary treatments in support to conventional therapies, for the best achievement of therapeutic goals.
Collapse
Affiliation(s)
- Johura Ansary
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tamara Y. Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Denise Quinzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
| | - Santos Gracia Villar
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Eduardo Garcia Villena
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
| | - Kilian Tutusaus Pifarre
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (S.G.V.); (E.G.V.); (K.T.P.)
- Research Center for Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - José M. Alvarez-Suarez
- Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170157, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (J.A.); (F.G.); (L.R.); (D.Q.)
- Correspondence: (J.M.A.-S.); (M.B.); (D.C.); Tel.: +593-2-297-1700 (J.M.A.-S.); +339-071-220-4646 (M.B.); +339-071-220-4136 (D.C.)
| |
Collapse
|
19
|
Rathi B, Devanesan S, AlSalhi MS, Ranjith Singh AJ. In-vitro free radical scavenging effect and cytotoxic analysis of Black Cummins and Honey formulation. Saudi J Biol Sci 2021; 28:1576-1581. [PMID: 33732043 PMCID: PMC7938148 DOI: 10.1016/j.sjbs.2020.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The antioxidant potential and antiproliferative activity of the extracts of Nigella sativa seeds (Black Cummins) and honey formulations are to be explored. METHOD The gas chromatography-mass spectrum (GC-MS) and Thin Layer Chromatography (TLC) fingerprint of Black Cummins and Honey formulation revealed alkaloid, saponin, volatile oil, flavonoid, glycosides, sugar, and phenolic compound in the extract. GC-MS profiling of the cold extract of Nigella sativa seeds and honey formulation shows peaks for eleven fractions of compounds. Using TLC, the phenolic compounds of Nigella sativa seeds and honey formulations were separated. RESULTS The current study discovers the cytotoxic effect of black Cummins seeds and honey formulation on human ovarian cancer (PA-1) cell line as assessed by MTT assay. PA-1 cells were inhibited with the increasing concentration of Nigella sativa seeds extract and honey formulation. CONCLUSION The study validates the importance of the tested extracts in the treatment of cancer.
Collapse
Affiliation(s)
- Bharathi Rathi
- Department of Biochemistry, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Saudi Arabia
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
20
|
Ranneh Y, Akim AM, Hamid HA, Khazaai H, Fadel A, Zakaria ZA, Albujja M, Bakar MFA. Honey and its nutritional and anti-inflammatory value. BMC Complement Med Ther 2021; 21:30. [PMID: 33441127 PMCID: PMC7807510 DOI: 10.1186/s12906-020-03170-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammation is the main key role in developing chronic diseases including cancer, cardiovascular diseases, diabetes, arthritis, and neurodegenerative diseases which possess a huge challenge for treatment. With massively compelling evidence of the role played by nutritional modulation in preventing inflammation-related diseases, there is a growing interest into the search for natural functional foods with therapeutic and preventive actions. Honey, a nutritional healthy product, is produced mainly by two types of bees: honeybee and stingless bee. Since both types of honey possess distinctive phenolic and flavonoid compounds, there is recently an intensive interest in their biological and clinical actions against inflammation-mediated chronic diseases. This review shed the light specifically on the bioavailability and bioaccessibility of honey polyphenols and highlight their roles in targeting inflammatory pathways in gastrointestinal tract disorders, edema, cancer, metabolic and cardiovascular diseases and gut microbiota.
Collapse
Affiliation(s)
- Yazan Ranneh
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 86400, Pagoh, Johor, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Huzwah Khazaai
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Abdulmannan Fadel
- Sport and Exercises Sciences School, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohammed Albujja
- Department of Forensic Biology, Faculty of Forensic Sciences, Naif Arab University of Security Sciences, Riyadh, 14812, Saudi Arabia
| | - Mohd Fadzelly Abu Bakar
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 86400, Pagoh, Johor, Malaysia
| |
Collapse
|
21
|
Kocyigit A, Aydogdu G, Balkan E, Yenigun VB, Guler EM, Bulut H, Koktasoglu F, Gören AC, Atayoglu AT. Quercus pyrenaica Honeydew Honey With High Phenolic Contents Cause DNA Damage, Apoptosis, and Cell Death Through Generation of Reactive Oxygen Species in Gastric Adenocarcinoma Cells. Integr Cancer Ther 2020; 18:1534735419876334. [PMID: 31556752 PMCID: PMC6764044 DOI: 10.1177/1534735419876334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Many studies have shown that honey with high phenolic contents prevents cancer
formation. Furthermore, recent studies have demonstrated that honey can be used
for the treatment of cancer as well as cancer prevention. Antineoplastic effects
of honey are often associated with their antioxidant phenolic contents. However,
very few studies have dealt with the association of phenolic contents of honeys
in terms of antiproliferative effects. The aim of this study was, therefore, to
elucidate the cytotoxic, genotoxic, apoptotic, and reactive oxygen species (ROS)
generating effects of honey samples on the basis of their phenolic and flavonoid
contents. Fourteen different honey varieties were collected from various parts
of Turkey, and their characteristics regarding total phenols, flavonoids, and
antioxidant contents were determined to test their effects on gastric cancer
cells (AGS). For convenience, 2 honey varieties were selected, namely, Ida
Mountains Quercus pyrenaica honeydew honey (QPHH-IM) having the
highest phenolic and antioxidant content and Canakkale multifloral honey (MFH-C)
with the lowest phenolic and antioxidant content. Levels of 11 different
phenolic compounds in QPHH-IM and MFH-C samples were determined by LC-MS/MS. AGS
cells were incubated with different concentrations of QPHH-IM and MFH-C for 24
hours, then the cell viability, DNA damage, apoptosis, and generation of ROS
were determined. We found that QPHH-IM had more cytotoxic, genotoxic, and
apoptotic effects than that of MFH-C. We think that these effects are probably
related to pro-oxidant activities due to the high phenolic contents present.
Therefore, further research on high-phenolic honey may contribute to the future
development of cancer therapeutics.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Bezmialem Vakif University, Istanbul, Turkey.,Advanced Research and Application Center of Traditional and Complementary Medicine, Istanbul, Turkey
| | | | - Ezgi Balkan
- Bezmialem Vakif University, Istanbul, Turkey
| | | | | | - Huri Bulut
- Bezmialem Vakif University, Istanbul, Turkey
| | | | | | | |
Collapse
|
22
|
Therapeutic and preventive properties of honey and its bioactive compounds in cancer: an evidence-based review. Nutr Res Rev 2019; 33:50-76. [PMID: 31791437 DOI: 10.1017/s0954422419000192] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the much improved therapeutic approaches for cancer treatment that have been developed over the past 50 years, cancer remains a major cause of mortality globally. Considerable epidemiological and experimental evidence has demonstrated an association between ingestion of food and nutrients with either an increased risk for cancer or its prevention. There is rising interest in exploring agents derived from natural products for chemoprevention or for therapeutic purposes. Honey is rich in nutritional and non-nutritional bioactive compounds, as well as in natural antioxidants, and its potential beneficial function in human health is becoming more evident. A large number of studies have addressed the anti-cancer effects of different types of honey and their phenolic compounds using in vitro and in vivo cancer models. The reported findings affirm that honey is an agent able to modulate oxidative stress and has anti-proliferative, pro-apoptotic, anti-inflammatory, immune-modulatory and anti-metastatic properties. However, despite its reported anti-cancer activities, very few clinical studies have been undertaken. In the present review, we summarise the findings from different experimental approaches, including in vitro cell cultures, preclinical animal models and clinical studies, and provide an overview of the bioactive profile and bioavailability of the most commonly studied honey types, with special emphasis on the chemopreventive and therapeutic properties of honey and its major phenolic compounds in cancer. The implications of these findings as well as the future prospects of utilising honey to fight cancer will be discussed.
Collapse
|
23
|
Waheed M, Hussain MB, Javed A, Mushtaq Z, Hassan S, Shariati MA, Khan MU, Majeed M, Nigam M, Mishra AP, Heydari M. Honey and cancer: A mechanistic review. Clin Nutr 2018; 38:2499-2503. [PMID: 30639116 DOI: 10.1016/j.clnu.2018.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Globally, cancer ranks among the most common causes of death. Multiple experimental and clinical studies have investigated anticancer effects of honey with promising results. This study focused on potential background mechanisms of this effect. METHODS The current literature was reviewed for potential anticancer pathways which are suggested for honey and its ingredients. RESULTS Flavonoids (kaempferol, catechin, and quercetin) and phenolic acids (caffeic acid and gallic acid) are the most important ingredients of honey with known anti-cancer activity. The main suggested mechanisms for anti-cancer activity of honey and its ingredients are antioxidant, apoptotic, tumor necrosis factor inhibiting, antiproliferative, immunomodulatory, anti-inflammatory and estrogenic effects. CONCLUSION This review collates the current scientific understanding on the mechanism of anti-cancer activity of honey.
Collapse
Affiliation(s)
- Marwa Waheed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ahsan Javed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Sadia Hassan
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026, Orel, Russia
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, 99354, WA, USA; Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Majid Majeed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, India.
| | - Mojtaba Heydari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Therapeutic Properties of Stingless Bee Honey in Comparison with European Bee Honey. Adv Pharmacol Sci 2018; 2018:6179596. [PMID: 30687402 PMCID: PMC6327266 DOI: 10.1155/2018/6179596] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022] Open
Abstract
Both honeybees (Apis spp.) and stingless bees (Trigona spp.) produce honeys with high nutritional and therapeutics value. Until recently, the information regarding potential health benefits of stingless bee honey (SBH) in medical databases is still scarce as compared to the common European bee honey (EBH) which is well known for their properties as therapeutic agents. Although there have been very few reports on SBH, empirically these products would have similar therapeutic quality as the EBH. In addition, due to the structure of the nest, few studies reported that the antimicrobial activity of SBH is a little bit stronger than EBH. Therefore, the composition of both the types of honey as well as the traditional uses and clinical applications were compared. The results of various studies on EBH and SBH from tissue culture research to randomised control clinical trials were collated in this review. Interestingly, there are many therapeutic properties that are unique to SBH. Therefore, SBH has a great potential to be developed for modern medicinal uses.
Collapse
|
25
|
Battino M, Forbes-Hernández TY, Gasparrini M, Afrin S, Cianciosi D, Zhang J, Manna PP, Reboredo-Rodríguez P, Varela Lopez A, Quiles JL, Mezzetti B, Bompadre S, Xiao J, Giampieri F. Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Crit Rev Food Sci Nutr 2018; 59:893-920. [PMID: 30421983 DOI: 10.1080/10408398.2018.1526165] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The traditional Mediterranean diet (MedDiet) is a well-known dietary pattern associated with longevity and improvement of life quality as it reduces the risk of the most common chronic pathologies, such as cancer and cardiovascular diseases (CVDs), that represent the principal cause of death worldwide. One of the most characteristic foods of MedDiet is olive oil, a very complex matrix, which constitutes the main source of fats and is used in the preparation of foods, both raw as an ingredient in recipes, and in cooking. Similarly, strawberries and raspberries are tasty and powerful foods which are commonly consumed in the Mediterranean area in fresh and processed forms and have attracted the scientific and consumer attention worldwide for their beneficial properties for human health. Besides olive oil and berries, honey has lately been introduced in the MedDiet thanks to its relevant nutritional, phytochemical and antioxidant profile. It is a sweet substance that has recently been classified as a functional food. The aim of this review is to present and discuss the recent evidence, obtained from in vitro, in vivo and epidemiological studies, on the potential roles exerted by these foods in the prevention and progression of different types of cancer and CVDs.
Collapse
Affiliation(s)
- Maurizio Battino
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Tamara Y Forbes-Hernández
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Massimiliano Gasparrini
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Sadia Afrin
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Danila Cianciosi
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Jiaojiao Zhang
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Piera P Manna
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Patricia Reboredo-Rodríguez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,b Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science , University of Vigo, Ourense Campus , Ourense , Spain
| | - Alfonso Varela Lopez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Josè L Quiles
- c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Bruno Mezzetti
- d Dipartimento di Scienze Agrarie, Alimentari e Ambientali , Università Politecnica delle Marche , Ancona , Italy
| | - Stefano Bompadre
- e Dipartimento di Scienze Biomediche e Sanità Pubblica , Università Politecnica delle Marche , Ancona , Italy
| | - Jianbo Xiao
- f Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau , China
| | - Francesca Giampieri
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| |
Collapse
|
26
|
Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, Zhang J, Bravo Lamas L, Martínez Flórez S, Agudo Toyos P, Quiles JL, Giampieri F, Battino M. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018; 23:E2322. [PMID: 30208664 PMCID: PMC6225430 DOI: 10.3390/molecules23092322] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Honey is a natural substance appreciated for its therapeutic abilities since ancient times. Its content in flavonoids and phenolic acids plays a key role on human health, thanks to the high antioxidant and anti-inflammatory properties that they exert. Honey possesses antimicrobial capacity and anticancer activity against different types of tumors, acting on different molecular pathways that are involved on cellular proliferation. In addition, an antidiabetic activity has also been highlighted, with the reduction of glucose, fructosamine, and glycosylated hemoglobin serum concentration. Honey exerts also a protective effect in the cardiovascular system, where it mainly prevents the oxidation of low-density lipoproteins, in the nervous system, in the respiratory system against asthma and bacterial infections, and in the gastrointestinal system. A beneficial effect of honey can also be demonstrated in athletes. The purpose of this review is to summarize and update the current information regarding the role of honey in health and diseases.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Tamara Yuliett Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Patricia Reboredo-Rodriguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Departamento de Química Analítica y Alimentaria, Grupo de Nutrición y Bromatología, Universidade de Vigo, 32004 Ourense, Spain.
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Leire Bravo Lamas
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - Susana Martínez Flórez
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - Pablo Agudo Toyos
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - José Luis Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Centre, University of Granada, Armilla, 18100 Granada, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
27
|
Abel SDA, Dadhwal S, Gamble AB, Baird SK. Honey reduces the metastatic characteristics of prostate cancer cell lines by promoting a loss of adhesion. PeerJ 2018; 6:e5115. [PMID: 30002964 PMCID: PMC6034594 DOI: 10.7717/peerj.5115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
Honey has been shown to have a range of therapeutic effects in humans, with anti-inflammatory and anti-bacterial effects among those previously characterised. Here, we examine the possibility of New Zealand thyme, manuka and honeydew honeys, and their major sugar and phenolic components, reducing the development of metastatic cancer. Their activity was examined in vitro, in PC3 and DU145 prostate cancer cell lines, through measuring the compounds’ effects on the metastatic characteristics of migration, invasion and adhesion. First, the phenolic compounds gallic acid, caffeic acid, quercetin, kaempferol and chrysin were quantified in the honeys using high performance liquid chromatography, and found in nanomolar concentrations. In a Boyden chamber-based migration assay, non-toxic concentrations of thyme and honeydew honeys reduced cell migration by 20%, and all phenolic compounds except caffeic acid also lowered migration, although a mixture of only the sugars found in honey had no effect. All of the honeys, phenolics and the sugar-only mixture reduced invasive movement of cells through extracellular matrix by up to 75%. Most notably, each of the three honeys and the sugar-only mixture reduced cell adhesion to collagen I by 90%. With the exception of quercetin, phenolic compounds did not reduce adhesion. Therefore, honey and its sugar and phenolic components can lower the metastatic properties of cancer cells, and may do this by preventing effective cell adhesion to the extracellular matrix. The sugars and phenol compounds of honey are much more effective in combination than individually.
Collapse
Affiliation(s)
- Sean D A Abel
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Sumit Dadhwal
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah K Baird
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Javadi B. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine. Nutr Cancer 2018. [DOI: 10.1080/01635581.2018.1446095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Badolato M, Carullo G, Cione E, Aiello F, Caroleo MC. From the hive: Honey, a novel weapon against cancer. Eur J Med Chem 2017; 142:290-299. [DOI: 10.1016/j.ejmech.2017.07.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022]
|
30
|
Prophetic medicine as potential functional food elements in the intervention of cancer: A review. Biomed Pharmacother 2017; 95:614-648. [DOI: 10.1016/j.biopha.2017.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
31
|
Aryappalli P, Al-Qubaisi SS, Attoub S, George JA, Arafat K, Ramadi KB, Mohamed YA, Al-Dhaheri MM, Al-Sbiei A, Fernandez-Cabezudo MJ, Al-Ramadi BK. The IL-6/STAT3 Signaling Pathway Is an Early Target of Manuka Honey-Induced Suppression of Human Breast Cancer Cells. Front Oncol 2017; 7:167. [PMID: 28856117 PMCID: PMC5557744 DOI: 10.3389/fonc.2017.00167] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
There is renewed interest in the potential use of natural compounds in cancer therapy. Previously, we demonstrated the anti-tumor properties of manuka honey (MH) against several cancers. However, the underlying mechanism and molecular targets of this activity remain unknown. For this study, the early targets of MH and its modulatory effects on proliferation, invasiveness, and angiogenic potential were investigated using two human breast cancer cell lines, the triple-negative MDA-MB-231 cells and estrogen receptor-positive MCF-7 cells, and the non-neoplastic breast epithelial MCF-10A cell line. Exposure to MH at concentrations of 0.3-1.25% (w/v) induced a dose-dependent inhibition of the proliferation of MDA-MB-231 and MCF-7, but not MCF-10A, cells. This inhibition was independent of the sugar content of MH as a solution containing equivalent concentrations of its three major sugars failed to inhibit cell proliferation. At higher concentrations (>2.5%), MH was found to be generally deleterious to the growth of all three cell lines. MH induced apoptosis of MDA-MB-231 cells through activation of caspases 8, 9, 6, and 3/7 and this correlated with a loss of Bcl-2 and increased Bax protein expression in MH-treated cells. Incubation with MH induced a time-dependent translocation of cytochrome c from mitochondria to the cytosol and Bax translocation from the cytosol into the mitochondria. MH also induced apoptosis of MCF-7 cells via the activation of caspases 9 and 6. Low concentrations of MH (0.03-1.25% w/v) induced a rapid reduction in tyrosine-phosphorylated STAT3 (pY-STAT3) in MDA-MB-231 and MCF-7 cells. Maximum inhibition of pY-STAT3 was observed at 1 h with a loss of >80% and coincided with decreased interleukin-6 (IL-6) production. Moreover, MH inhibited the migration and invasion of MDA-MB-231 cells as well as the angiogenic capacity of human umbilical vein endothelial cells. Our findings identify multiple functional pathways affected by MH in human breast cancer and highlight the IL-6/STAT3 signaling pathway as one of the earliest potential targets in this process.
Collapse
Affiliation(s)
- Priyanka Aryappalli
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sarah S Al-Qubaisi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Junu A George
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khalil B Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mezoon M Al-Dhaheri
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
32
|
Abdel-Latif MMM. Chemoprevention of gastrointestinal cancers by natural honey. World J Pharmacol 2015; 4:160-167. [DOI: 10.5497/wjp.v4.i1.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/03/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancers are the most common human cancers in both men and women worldwide. Several epidemiological and experimental studies suggest a relationship between gastrointestinal cancers risk and dietary factors. Natural honey has been widely used in traditional medicine for many centuries to treat a wide range of ailments and complaints. Honey contains various components that exhibit wide activities including antibacterial, anti-inflammatory, antioxidant and anticancer properties. The anticancer effects of honey are mediated via diverse mechanisms, including inhibition of proliferation, induction of apoptosis, suppression of free radicals and modulation of inflammatory signalling pathways. The present review assesses the chemopreventive effects of natural honey and its components in the modulation of gastrointestinal cancers and its modes of action in the prevention of the development of gastrointestinal tumors. Honey can be an approach as a cancer-preventive strategy which merits further experimental and clinical research in the near future.
Collapse
|
33
|
Erejuwa OO, Sulaiman SA, Wahab MSA. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules 2014; 19:2497-522. [PMID: 24566317 PMCID: PMC6270987 DOI: 10.3390/molecules19022497] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Honey is a natural product known for its varied biological or pharmacological activities-ranging from anti-inflammatory, antioxidant, antibacterial, antihypertensive to hypoglycemic effects. This review article focuses on the role of honey in modulating the development and progression of tumors or cancers. It reviews available evidence (some of which is very recent) with regards to the antimetastatic, antiproliferative and anticancer effects of honey in various forms of cancer. These effects of honey have been thoroughly investigated in certain cancers such as breast, liver and colorectal cancer cell lines. In contrast, limited but promising data are available for other forms of cancers including prostate, bladder, endometrial, kidney, skin, cervical, oral and bone cancer cells. The article also underscores the various possible mechanisms by which honey may inhibit growth and proliferation of tumors or cancers. These include regulation of cell cycle, activation of mitochondrial pathway, induction of mitochondrial outer membrane permeabilization, induction of apoptosis, modulation of oxidative stress, amelioration of inflammation, modulation of insulin signaling and inhibition of angiogenesis. Honey is highly cytotoxic against tumor or cancer cells while it is non-cytotoxic to normal cells. The data indicate that honey can inhibit carcinogenesis by modulating the molecular processes of initiation, promotion, and progression stages. Thus, it may serve as a potential and promising anticancer agent which warrants further experimental and clinical studies.
Collapse
Affiliation(s)
- Omotayo O Erejuwa
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Siti A Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd S Ab Wahab
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
34
|
Tabasi N, Mahmoudi M, Rastin M, Sadeghnia HR, HosseinPour Mashhadi M, Zamani Taghizade Rabe S, Khajavi Rad A. Cytotoxic and apoptogenic properties ofNigella sativaand thymoquinone, its constituent, in human renal cell carcinoma are comparable with cisplatin. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2013.878899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
35
|
Honey as a potential natural anticancer agent: a review of its mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:829070. [PMID: 24363771 PMCID: PMC3865795 DOI: 10.1155/2013/829070] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 12/16/2022]
Abstract
The main treatment for cancer is by using chemotherapy and radiotherapy which themselves are toxic to other viable cells of the body. Recently, there are many studies focusing on the use of natural products for cancer prevention and treatment. Of these natural products, honey has been extensively researched. The mechanism of the anti-cancer activity of honey as chemopreventive and therapeutic agent has not been completely understood. The possible mechanisms are due to its apoptotic, antiproliferative, antitumor necrosis factor (anti-TNF), antioxidant, anti-inflammatory, estrogenic and immunomodulatory activities. We collate the findings of several studies published in the literature in order to understand the mechanism of its action.
Collapse
|
36
|
Saleh EM, El-awady RA, Eissa NA, Abdel-Rahman WM. Antagonism between curcumin and the topoisomerase II inhibitor etoposide: a study of DNA damage, cell cycle regulation and death pathways. Cancer Biol Ther 2012; 13:1058-71. [PMID: 22895066 DOI: 10.4161/cbt.21078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms. CUR alone showed potent antitumor activity, but surprisingly, its interaction with ETP was antagonistic in four out of five cancer cell lines. Neither taurine nor Nigella sativa affect the sensitivity of cancer cells to ETP. Examination of the DNA damage response machinery (DDR) showed that both ETP and CUR elicited DNA double-strand breaks (DSB) and evoked γ-H2AX foci formation at doses as low as 1 µg/ml. Cell cycle analysis revealed S phase arrest after ETP or CUR application, whereas co-treatment with ETP and CUR led to increased arrest of the cell cycle in S phase (MCF-7 cells) or the accumulation of cells in G 2/M phases (HCT116, and HeLa cells). Furthermore, cotreatment with ETP and CUR resulted in modulation of the level of DNA damage induction and repair compared with either agent alone. Electron microscopic examination demonstrated that different modalities of cell death occurred with each treatment. CUR alone induced autophagy, apoptosis and necrosis, whereas ETP alone or in combination with CUR led to apoptosis and necrosis. CONCLUSIONS Cotreatment with ETP and CUR resulted in an antagonistic interaction. This antagonism is related, in part, to the enhanced arrest of tumor cells in both S and G 2/M phases, which prevents the cells from entering M-phase with damaged DNA and, consequently, prevents cell death from occurring. This arrest allows time for the cells to repair DNA damage so that cell cycle -arrested cells can eventually resume cell cycle progression and continue their physiological program.
Collapse
Affiliation(s)
- Ekram M Saleh
- Clinical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | | | | | | |
Collapse
|