1
|
Lebwohl MG, Armstrong AW, Alexis AF, Lain EL, Jacobson AA. Efficacy of Brodalumab in Patients with Psoriasis and Risk Factors for Treatment Failure: A Review of Post Hoc Analyses. Dermatol Ther (Heidelb) 2024; 14:2709-2726. [PMID: 39264399 PMCID: PMC11480272 DOI: 10.1007/s13555-024-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Factors such as obesity, alcohol consumption, and tobacco use are associated with both increased psoriasis severity and inadequate response to systemic and biologic therapies. Obesity is linked to chronic inflammation, which can contribute to psoriasis pathogenesis. Fixed-dose therapies may have reduced efficacy in patients with a higher body mass index, while weight-based dosing can increase the burden of drug-specific side effects. Alcohol and nicotine from tobacco have also been shown to stimulate keratinocyte and immune cell proliferation and production of proinflammatory cytokines. While these risk factors are prevalent among patients with moderate-to-severe psoriasis, their influence on treatment outcomes may be overlooked when evaluating therapeutic options. Brodalumab is a fully human interleukin-17 receptor A antagonist approved for the treatment of moderate-to-severe psoriasis. In this review, we describe the lifestyle-related risk factors associated with decreased response to treatment. We further summarize the post hoc analyses of brodalumab in participant subgroups with moderate-to-severe psoriasis and a history of prior biologic failure, obesity, and alcohol or tobacco use from two phase 3 clinical trials (AMAGINE-2 and AMAGINE-3; ClinicalTrials.gov identifiers: NCT01708603 and NCT01708629, respectively). Our review of clinical trial and real-world data suggests that brodalumab is an efficacious and safe treatment option for patients with lifestyle factors that increase the likelihood of treatment failure, allowing them to achieve skin clearance and improve quality of life.
Collapse
Affiliation(s)
- Mark G Lebwohl
- Icahn School of Medicine at Mount Sinai, 5 East 98 Street, 5 Floor, New York, NY, 10029, USA.
| | | | - Andrew F Alexis
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Edward L Lain
- Austin Institute for Clinical Research, Austin, TX, USA
| | | |
Collapse
|
2
|
van Hilten A, van Rooij J, Ikram MA, Niessen WJ, van Meurs JBJ, Roshchupkin GV. Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data. NPJ Syst Biol Appl 2024; 10:81. [PMID: 39095438 PMCID: PMC11297229 DOI: 10.1038/s41540-024-00405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is essential for precision medicine. In this study, we developed interpretable predictive models for multi-omics data by employing neural networks informed by prior biological knowledge, referred to as visible networks. These neural networks offer insights into the decision-making process and can unveil novel perspectives on the underlying biological mechanisms associated with traits and complex diseases. We tested the performance, interpretability and generalizability for inferring smoking status, subject age and LDL levels using genome-wide RNA expression and CpG methylation data from the blood of the BIOS consortium (four population cohorts, Ntotal = 2940). In a cohort-wise cross-validation setting, the consistency of the diagnostic performance and interpretation was assessed. Performance was consistently high for predicting smoking status with an overall mean AUC of 0.95 (95% CI: 0.90-1.00) and interpretation revealed the involvement of well-replicated genes such as AHRR, GPR15 and LRRN3. LDL-level predictions were only generalized in a single cohort with an R2 of 0.07 (95% CI: 0.05-0.08). Age was inferred with a mean error of 5.16 (95% CI: 3.97-6.35) years with the genes COL11A2, AFAP1, OTUD7A, PTPRN2, ADARB2 and CD34 consistently predictive. For both regression tasks, we found that using multi-omics networks improved performance, stability and generalizability compared to interpretable single omic networks. We believe that visible neural networks have great potential for multi-omics analysis; they combine multi-omic data elegantly, are interpretable, and generalize well to data from different cohorts.
Collapse
Affiliation(s)
- Arno van Hilten
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Orthopaedics and Sports Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Gennady V Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Liu Y, Lu L, Yang H, Wu X, Luo X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Deng S, Cho CH, Li Q, Li X, Li W, Wang F, Sun Y, Gu L, Chen M, Li M. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122730. [PMID: 37838314 DOI: 10.1016/j.envpol.2023.122730] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Smoking is a serious global health issue. Cigarette smoking contains over 7000 different chemicals. The main harmful components include nicotine, acrolein, aromatic hydrocarbons and heavy metals, which play the key role for cigarette-induced inflammation and carcinogenesis. Growing evidences show that cigarette smoking and its components exert a remarkable impact on regulation of immunity and dysregulated immunity promotes inflammation and cancer. Therefore, this comprehensive and up-to-date review covers four interrelated topics, including cigarette smoking, inflammation, cancer and immune system. The known harmful chemicals from cigarette smoking were summarized. Importantly, we discussed in depth the impact of cigarette smoking on the formation of inflammatory or tumor microenvironment, primarily by affecting immune effector cells, such as macrophages, neutrophils, and T lymphocytes. Furthermore, the main molecular mechanisms by which cigarette smoking induces inflammation and cancer, including changes in epigenetics, DNA damage and others were further summarized. This article will contribute to a better understanding of the impact of cigarette smoking on inducing inflammation and cancer.
Collapse
Affiliation(s)
- Yubin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xinyue Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Okamoto Y, Shikano S. Emerging roles of a chemoattractant receptor GPR15 and ligands in pathophysiology. Front Immunol 2023; 14:1179456. [PMID: 37457732 PMCID: PMC10348422 DOI: 10.3389/fimmu.2023.1179456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Chemokine receptors play a central role in the maintenance of immune homeostasis and development of inflammation by directing leukocyte migration to tissues. GPR15 is a G protein-coupled receptor (GPCR) that was initially known as a co-receptor for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), with structural similarity to other members of the chemoattractant receptor family. Since the discovery of its novel function as a colon-homing receptor of T cells in mice a decade ago, GPR15 has been rapidly gaining attention for its involvement in a variety of inflammatory and immune disorders. The recent identification of its natural ligand C10orf99, a chemokine-like polypeptide strongly expressed in gastrointestinal tissues, has established that GPR15-C10orf99 is a novel signaling axis that controls intestinal homeostasis and inflammation through the migration of immune cells. In addition, it has been demonstrated that C10orf99-independent functions of GPR15 and GPR15-independent activities of C10orf99 also play significant roles in the pathophysiology. Therefore, GPR15 and its ligands are potential therapeutic targets. To provide a basis for the future development of GPR15- or GPR15 ligand-targeted therapeutics, we have summarized the latest advances in the role of GPR15 and its ligands in human diseases as well as the molecular mechanisms that regulate GPR15 expression and functions.
Collapse
Affiliation(s)
| | - Sojin Shikano
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Amgalan B, Wojtowicz D, Kim YA, Przytycka TM. Influence network model uncovers relations between biological processes and mutational signatures. Genome Med 2023; 15:15. [PMID: 36879282 PMCID: PMC9987115 DOI: 10.1186/s13073-023-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND There has been a growing appreciation recently that mutagenic processes can be studied through the lenses of mutational signatures, which represent characteristic mutation patterns attributed to individual mutagens. However, the causal links between mutagens and observed mutation patterns as well as other types of interactions between mutagenic processes and molecular pathways are not fully understood, limiting the utility of mutational signatures. METHODS To gain insights into these relationships, we developed a network-based method, named GENESIGNET that constructs an influence network among genes and mutational signatures. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes. RESULTS Applying GENESIGNET to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast cancer. The network identified by GENESIGNET also suggest an interaction between APOBEC hypermutation and activation of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. GENESIGNET also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway. CONCLUSIONS GENESIGNET provides a new and powerful method to reveal the relation between mutational signatures and gene expression. The GENESIGNET method was implemented in python, and installable package, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/GeneSigNet.
Collapse
Affiliation(s)
- Bayarbaatar Amgalan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA.,Current address: Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, ul. Banacha 2, 02-097, Warszawa, Poland
| | - Yoo-Ah Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA.
| |
Collapse
|
6
|
de Klerk JA, Beulens JWJ, Mei H, Bijkerk R, van Zonneveld AJ, Koivula RW, Elders PJM, 't Hart LM, Slieker RC. Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism: a Mendelian randomisation study. Diabetologia 2023; 66:1057-1070. [PMID: 36826505 PMCID: PMC10163084 DOI: 10.1007/s00125-023-05886-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative clusters of type 2 diabetes. METHODS Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA1c, C-peptide and HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian randomisation analysis was performed using public genome-wide association study (GWAS) data. RESULTS Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthropometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol levels (p = 2×10-15), without evidence for reverse causality. CONCLUSIONS/INTERPRETATION Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and particularly in the MOD cluster. mRNAs in the MOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of genes that have a suggested causal role on multiple diabetes-relevant traits.
Collapse
Affiliation(s)
- Juliette A de Klerk
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Joline W J Beulens
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - Robert W Koivula
- Department of Clinical Sciences, Lund University, Genetic and Molecular Epidemiology, CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Petra J M Elders
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Amsterdam Public Health Institute, Amsterdam UMC, Amsterdam, the Netherlands.
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Deng Y, Moo EV, Almería CVP, Gentry PR, Vedel L, Mathiesen JM, Bräuner-Osborne H. Delineation of the GPR15 receptor-mediated Gα protein signalling profile in recombinant mammalian cells. Basic Clin Pharmacol Toxicol 2022; 131:104-113. [PMID: 35510660 PMCID: PMC9539578 DOI: 10.1111/bcpt.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
The GPR15 receptor is a G protein‐coupled receptor (GPCR), which is activated by an endogenous peptide GPR15L(25–81) and a C‐terminal peptide fragment GPR15L(71–81). GPR15 signals through the Gi/o pathway to decrease intracellular cyclic adenosine 3′,5′‐monophosphate (cAMP). However, the activation profiles of the GPR15 receptor within Gi/o subtypes have not been examined. Moreover, whether the receptor can also couple to Gs, Gq/11 and G12/13 is unclear. Here, GPR15L(25–81) and GPR15L(71–81) are used as pharmacological tool compounds to delineate the GPR15 receptor‐mediated Gα protein signalling using a G protein activation assay and second messenger assay conducted on living cells. The results show that the GPR15 receptor preferentially couples to Gi/o rather than other pathways in both assays. Within the Gi/o family, the GPR15 receptor activates all the subtypes (Gi1, Gi2, Gi3, GoA, GoB and Gz). The Emax and activation rates of Gi1, Gi2, Gi3, GoA and GoB are similar, whilst the Emax of Gz is smaller and the activation rate is significantly slower. The potencies of both peptides toward each Gi/o subtype have been determined. Furthermore, the GPR15 receptor signals through Gi/o to inhibit cAMP accumulation, which could be blocked by the application of the Gi/o inhibitor pertussis toxin.
Collapse
Affiliation(s)
- Yufang Deng
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | - Claudia Victoria Pérez Almería
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen.,Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick R Gentry
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen.,Analytical Technology Department, FUJIFILM Diosynth Biotechnologies, Hillerød, Denmark
| | - Line Vedel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen.,Analytical Technology Department, FUJIFILM Diosynth Biotechnologies, Hillerød, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| |
Collapse
|
8
|
HIV-2 Neutralization Sensitivity in Relation to Co-Receptor Entry Pathways and Env Motifs. Int J Mol Sci 2022; 23:ijms23094766. [PMID: 35563157 PMCID: PMC9101540 DOI: 10.3390/ijms23094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
HIV-2, compared to HIV-1, elicits potent and broadly neutralizing antibodies, and uses a broad range of co-receptors. However, both sensitivity to neutralization and breadth of co-receptor use varies between HIV-2 isolates, and the molecular background is still not fully understood. Thus, in the current study, we have deciphered relationships between HIV-2 neutralization sensitivity, co-receptor use and viral envelope glycoprotein (Env) molecular motifs. A panel of primary HIV-2 isolates, with predefined use of co-receptors, was assessed for neutralization sensitivity using a set of HIV-2 Env-directed monoclonal antibodies and co-receptor indicator cell lines. Neutralization sensitivity of the isolates was analysed in relation target cell co-receptor expression, in addition to amino acid motifs and predicted structures of Env regions. Results showed that HIV-2 isolates were more resistant to neutralizing antibodies when entering target cells via the alternative co-receptor GPR15, as compared to CCR5. A similar pattern was noted for isolates using the alternative co-receptor CXCR6. Sensitivity to neutralizing antibodies appeared also to be linked to specific Env motifs in V1/V2 and C3 regions. Our findings suggest that HIV-2 sensitivity to neutralization depends both on which co-receptor is used for cell entry and on specific Env motifs. This study highlights the multifactorial mechanisms behind HIV-2 neutralization sensitivity.
Collapse
|
9
|
Song N, Sim JA, Dong Q, Zheng Y, Hou L, Li Z, Hsu CW, Pan H, Mulder H, Easton J, Walker E, Neale G, Wilson CL, Ness KK, Krull KR, Srivastava DK, Yasui Y, Zhang J, Hudson MM, Robison LL, Huang IC, Wang Z. Blood DNA methylation signatures are associated with social determinants of health among survivors of childhood cancer. Epigenetics 2022; 17:1389-1403. [PMID: 35109748 PMCID: PMC9586655 DOI: 10.1080/15592294.2022.2030883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Social epigenomics is an emerging field in which social scientist collaborate with computational biologists, especially epigeneticists, to address the underlying pathway for biological embedding of life experiences. This social epigenomics study included long-term childhood cancer survivors enrolled in the St. Jude Lifetime Cohort. DNA methylation (DNAm) data were generated using the Illumina EPIC BeadChip, and three social determinants of health (SDOH) factors were assessed: self-reported educational attainment, personal income, and an area deprivation index based on census track data. An epigenome-wide association study (EWAS) was performed to evaluate the relation between DNAm at each 5’-cytosine-phosphate-guanine-3’ (CpG) site and each SDOH factor based on multivariable linear regression models stratified by ancestry (European ancestry, n = 1,618; African ancestry, n = 258). EWAS among survivors of European ancestry identified 130 epigenome-wide significant SDOH–CpG associations (P < 9 × 10−8), 25 of which were validated in survivors of African ancestry (P < 0.05). Thirteen CpGs were associated with all three SDOH factors and resided at pleiotropic loci in cigarette smoking–related genes (e.g., CLDND1 and CPOX). After accounting for smoking and body mass index, these associations remained significant with attenuated effect sizes. Seven of 13 CpGs were associated with gene expression level based on 57 subsamples with blood RNA sequencing data available. In conclusion, DNAm signatures, many resembling the effect of tobacco use, were associated with SDOH factors among survivors of childhood cancer, thereby suggesting that biologically distal SDOH factors influence health behaviours or related factors, the epigenome, and subsequently survivors’ health.
Collapse
Affiliation(s)
- Nan Song
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju, Chungcheongbuk-do, Korea
| | - Jin-Ah Sim
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,School of Ai Convergence, Hallym University, Chuncheon, Gangwon-do, Korea
| | - Qian Dong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Zhenghong Li
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chia-Wei Hsu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haitao Pan
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Mulder
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Walker
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,St. Jude Children's Research Hospital, Hartwell Center, Memphis, TN, USA
| | - Geoffrey Neale
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,St. Jude Children's Research Hospital, Hartwell Center, Memphis, TN, USA
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kevin R Krull
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Psychology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deo Kumar Srivastava
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - I-Chan Huang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
10
|
Bauer M. The Role of GPR15 Function in Blood and Vasculature. Int J Mol Sci 2021; 22:ijms221910824. [PMID: 34639163 PMCID: PMC8509764 DOI: 10.3390/ijms221910824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/28/2023] Open
Abstract
Since the first prominent description of the orphan G protein-coupled receptor 15 (GPR15) on lymphocytes as a co-receptor for the human immunodeficiency virus (HIV) type 1 and 2 and the first report about the GPR15-triggered cytoprotective effect on vascular endothelial cells by recombinant human thrombomodulin, several decades passed before the GPR15 has been recently deorphanized. Because of new findings on GPR15, this review will summarize the consequences of GPR15 signaling considering the variety of GPR15-expressing cell types and of GPR15 ligands, with a focus on blood and vasculature.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
11
|
Okamoto Y, Shikano S. Tyrosine sulfation and O-glycosylation of chemoattractant receptor GPR15 differentially regulate interaction with GPR15L. J Cell Sci 2021; 134:237784. [PMID: 33758080 DOI: 10.1242/jcs.247833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
GPR15 is a G-protein-coupled receptor (GPCR) that directs lymphocyte homing to the colon and skin. Recent studies have identified a chemokine-like protein GPR15L (also known as C10orf99) as a functional ligand of GPR15. In this study, we examined the structural elements that regulate the GPR15-GPR15L interaction with primary focus on post-translational modifications (PTMs) of receptor N-terminus and on the C-terminus of the ligand. Our findings reveal that the GPR15 receptor is sulfated on the N-terminal tyrosine residue(s) and disruption of tyrosine sulfation inhibits binding of GPR15L. In contrast, the disruption of O-glycosylation on the N-terminal threonine or serine residues, or the removal of α2,3-linked sialic acids from O-glycans, enhances the GPR15L binding. Thus, GPR15 represents a unique chemoattractant receptor in which different N-terminal PTMs regulate its ligand binding in a contrasting manner. We further demonstrate that, unlike canonical chemokines, GPR15L activity critically requires its extreme C-terminal residue and that its hydrophobicity may be a key attribute that facilitates an optimal interaction with the receptor. Our results reveal novel insights into chemoattractant receptor-ligand interaction and provide a valid footing for potential intervention targeting the GPR15-GPR15L axis.
Collapse
Affiliation(s)
- Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607-7170, USA
| | - Sojin Shikano
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607-7170, USA
| |
Collapse
|
12
|
Cornwell A, Palli R, Singh MV, Benoodt L, Tyrell A, Abe JI, Schifitto G, Maggirwar SB, Thakar J. Molecular characterization of atherosclerosis in HIV positive persons. Sci Rep 2021; 11:3232. [PMID: 33547350 PMCID: PMC7865026 DOI: 10.1038/s41598-021-82429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
People living with HIV are at higher risk of atherosclerosis (AS). The pathogenesis of this risk is not fully understood. To assess the regulatory networks involved in AS we sequenced mRNA of the peripheral blood mononuclear cells (PBMCs) and measured cytokine and chemokine levels in the plasma of 13 persons living with HIV and 12 matched HIV-negative persons with and without AS. microRNAs (miRNAs) are known to play a role in HIV infection and may modulate gene regulation to drive AS. Hence, we further assessed miRNA expression in PBMCs of a subset of 12 HIV+ people with and without atherosclerosis. We identified 12 miRNAs differentially expressed between HIV+ AS+ and HIV+ , and validated 5 of those by RT-qPCR. While a few of these miRNAs have been implicated in HIV and atherosclerosis, others are novel. Integrating miRNA measurements with mRNA, we identified 27 target genes including SLC4A7, a critical sodium and bicarbonate transporter, that are potentially dysregulated during atherosclerosis. Additionally, we uncovered that levels of plasma cytokines were associated with transcription factor activity and miRNA expression in PBMCs. For example, BACH2 activity was associated with IL-1β, IL-15, and MIP-1α. IP10 and TNFα levels were associated with miR-124-3p. Finally, integration of all data types into a single network revealed increased importance of miRNAs in network regulation of the HIV+ group in contrast with increased importance of cytokines in the HIV+ AS+ group.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester, Rochester, NY, USA
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Lauren Benoodt
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Alicia Tyrell
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology-Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, USA
| | - Giovanni Schifitto
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, George Washing University, Washington, DC, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
- Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, , Box 672, Rochester, NY, 14642, USA.
| |
Collapse
|
13
|
Chen Z, Wen W, Cai Q, Long J, Wang Y, Lin W, Shu XO, Zheng W, Guo X. From tobacco smoking to cancer mutational signature: a mediation analysis strategy to explore the role of epigenetic changes. BMC Cancer 2020; 20:880. [PMID: 32928150 PMCID: PMC7488848 DOI: 10.1186/s12885-020-07368-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Background Tobacco smoking is associated with a unique mutational signature in the human cancer genome. It is unclear whether tobacco smoking-altered DNA methylations and gene expressions affect smoking-related mutational signature. Methods We systematically analyzed the smoking-related DNA methylation sites reported from five previous casecontrol studies in peripheral blood cells to identify possible target genes. Using the mediation analysis approach, we evaluated whether the association of tobacco smoking with mutational signature is mediated through altered DNA methylation and expression of these target genes in lung adenocarcinoma tumor tissues. Results Based on data obtained from 21,108 blood samples, we identified 374 smoking-related DNA methylation sites, annotated to 248 target genes. Using data from DNA methylations, gene expressions and smoking-related mutational signature generated from ~ 7700 tumor tissue samples across 26 cancer types from The Cancer Genome Atlas (TCGA), we found 11 of the 248 target genes whose expressions were associated with smoking-related mutational signature at a Bonferroni-correction P < 0.001. This included four for head and neck cancer, and seven for lung adenocarcinoma. In lung adenocarcinoma, our results showed that smoking increased the expression of three genes, AHRR, GPR15, and HDGF, and decreased the expression of two genes, CAPN8, and RPS6KA1, which were consequently associated with increased smoking-related mutational signature. Additional evidence showed that the elevated expression of AHRR and GPR15 were associated with smoking-altered hypomethylations at cg14817490 and cg19859270, respectively, in lung adenocarcinoma tumor tissues. Lastly, we showed that decreased expression of RPS6KA1, were associated with poor survival of lung cancer patients. Conclusions Our findings provide novel insight into the contributions of tobacco smoking to carcinogenesis through the underlying mechanisms of the elevated mutational signature by altered DNA methylations and gene expressions.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Ying Wang
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Weiqiang Lin
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA. .,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| |
Collapse
|
14
|
Wang Y, Wang X, Xiong Y, Li CD, Xu Q, Shen L, Chandra Kaushik A, Wei DQ. An Integrated Pan-Cancer Analysis and Structure-Based Virtual Screening of GPR15. Int J Mol Sci 2019; 20:ijms20246226. [PMID: 31835584 PMCID: PMC6940937 DOI: 10.3390/ijms20246226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/19/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptor 15 (GPR15, also known as BOB) is an extensively studied orphan G protein-coupled receptors (GPCRs) involving human immunodeficiency virus (HIV) infection, colonic inflammation, and smoking-related diseases. Recently, GPR15 was deorphanized and its corresponding natural ligand demonstrated an ability to inhibit cancer cell growth. However, no study reported the potential role of GPR15 in a pan-cancer manner. Using large-scale publicly available data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, we found that GPR15 expression is significantly lower in colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) than in normal tissues. Among 33 cancer types, GPR15 expression was significantly positively correlated with the prognoses of COAD, neck squamous carcinoma (HNSC), and lung adenocarcinoma (LUAD) and significantly negatively correlated with stomach adenocarcinoma (STAD). This study also revealed that commonly upregulated gene sets in the high GPR15 expression group (stratified via median) of COAD, HNSC, LUAD, and STAD are enriched in immune systems, indicating that GPR15 might be considered as a potential target for cancer immunotherapy. Furthermore, we modelled the 3D structure of GPR15 and conducted structure-based virtual screening. The top eight hit compounds were screened and then subjected to molecular dynamics (MD) simulation for stability analysis. Our study provides novel insights into the role of GPR15 in a pan-cancer manner and discovered a potential hit compound for GPR15 antagonists.
Collapse
Affiliation(s)
- Yanjing Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (X.W.); (Y.X.); (C.-D.L.); (Q.X.)
| | - Xiangeng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (X.W.); (Y.X.); (C.-D.L.); (Q.X.)
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (X.W.); (Y.X.); (C.-D.L.); (Q.X.)
| | - Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (X.W.); (Y.X.); (C.-D.L.); (Q.X.)
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (X.W.); (Y.X.); (C.-D.L.); (Q.X.)
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence: (A.C.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (X.W.); (Y.X.); (C.-D.L.); (Q.X.)
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen 518055, China
- Correspondence: (A.C.K.); (D.-Q.W.)
| |
Collapse
|
15
|
Fantini D, Seiler R, Meeks JJ. Molecular footprints of muscle-invasive bladder cancer in smoking and nonsmoking patients. Urol Oncol 2019; 37:818-825. [PMID: 30446446 DOI: 10.1016/j.urolonc.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bladder cancer is the fifth most common cancer in the United States and smoking is the largest known risk factor. Tobacco-derived carcinogens may induce the accumulation of somatic mutations in urothelial cells, and likely promote tumorigenesis. However, it is still unknown whether smoking-induced bladder carcinogenesis results in tumors with distinctive molecular features that can be therapeutically exploited. METHODS We investigated the genomic alterations of human bladder cancer and examined their association with patient smoking history. We performed bioinformatic analyses and looked at differences in gene expression, somatic mutations, and DNA mutational signatures comparing nonsmokers, reformed smokers, and current smokers. RESULTS We detected a limited set of gene expression and gene mutation differences between smokers and nonsmokers. We also identified a specific mutational signature that is enriched in tumors from smokers. This mutational signature was described before and has been linked to specific DNA repair defects in human bladder tumors, as well as to the direct effect of nitrosamine carcinogens in the BBN murine model of bladder cancer. CONCLUSION We showed associations between smoking status and selected mutational signatures, which could provide insights in the biology of bladder carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Damiano Fantini
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Roland Seiler
- Department of Urology, University Hospital Bern, Bern, Switzerland
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL.
| |
Collapse
|
16
|
Cheng X, Ferino E, Hull H, Jickling GC, Ander BP, Stamova B, Sharp FR. Smoking affects gene expression in blood of patients with ischemic stroke. Ann Clin Transl Neurol 2019; 6:1748-1756. [PMID: 31436916 PMCID: PMC6764500 DOI: 10.1002/acn3.50876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Though cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients. METHODS We recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM. RESULTS One hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM. INTERPRETATION We propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers.
Collapse
Affiliation(s)
- Xiyuan Cheng
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| | - Eva Ferino
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Heather Hull
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California.,Department of Neurology, University of Alberta, Edmonton, California
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| |
Collapse
|
17
|
Xu W, Li R, Sun Y. Increased IFN-γ-producing Th17/Th1 cells and their association with lung function and current smoking status in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2019; 19:137. [PMID: 31349846 PMCID: PMC6660926 DOI: 10.1186/s12890-019-0899-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Th17 cells are believed to be important proinflammatory cells in the pathogenesis of chronic obstructive pulmonary disease (COPD). Recent evidence demonstrates that Th17 cells display substantial developmental plasticity, giving rise to Th17/Th1 cells that secret both IL-17 and IFN-γ and are more pathogenic in inflammatory diseases. The aim of this study was to examine the distribution of circulating Th17/Th1 subpopulation and its association with disease severity in patients with COPD. Methods Blood samples were obtained from 21 never-smokers, 31 smokers with normal lung function and 83 patients with COPD. The frequencies of Th17 cells and the Th17/Th1 subset were measured using flow cytometry. Plasma concentrations of IL-6, transforming growth factor (TGF)-β1 and IL-12 were determined by ELISA. The associations of Th17/Th1 cells with lung function and smoking were evaluated. Results In peripheral blood, significantly increased proportions of Th17/Th1 cells among CD4 cells and Th17 cells were found in COPD patients compared with never-smokers and smokers with normal lung function. The percentages of Th17/Th1 cells showed correlations with forced expiratory volume in 1 (FEV1) % predicted value (r = − 0.244, p < 0.05), and higher proportions of Th17/Th1 cells in GOLD stage IV patients compared with stage I patients. The percentages of Th17/Th1 cells were significantly higher in current smokers compared with ex-smoker COPD patients, and positively correlated with pack-years of smoking (r = 0.352, p < 0.01). The plasma concentrations of IL-6, TGF-β1 and IL-12 were significantly increased in patients with COPD compared with never-smokers and smokers with normal lung function. Conclusion Our results revealed correlations of proportions of IFN-γ-producing Th17/Th1 cells with lung function and smoking, suggesting that increased Th17/Th1 cells may play a role in COPD progression.
Collapse
Affiliation(s)
- Weihan Xu
- Department 2 of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ruimin Li
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Department of Respiratory Medicine, Beijing Daxing Teaching Hospital, Capital Medical University, Beijing, China
| | - Yongchang Sun
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China. .,Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
18
|
Jordahl KM, Phipps AI, Randolph TW, Tindle HA, Liu S, Tinker LF, Kelsey KT, White E, Bhatti P. Differential DNA methylation in blood as a mediator of the association between cigarette smoking and bladder cancer risk among postmenopausal women. Epigenetics 2019; 14:1065-1073. [PMID: 31232174 DOI: 10.1080/15592294.2019.1631112] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Smoking accounts for approximately 52% of bladder cancer incidence among postmenopausal women, but the underlying mechanism is poorly understood. Our study investigates whether changes in DNA methylation, as measured in blood, mediate the impact of smoking on bladder cancer risk among postmenopausal women. We conducted analyses among 206 cases and 251 controls that were current or never smokers at baseline from a previous case-control study of bladder cancer and genome-wide DNA methylation nested within the Women's Health Initiative. Separate mediation analyses were conducted for three CpG sites demonstrating robust associations with smoking in prior methylome-wide association studies: cg05575921 (AhRR), cg03636183 (F2RL3), and cg19859270 (GPR15). We estimated causal effects using the regression-based, four-way decomposition approach, which addresses the interaction between smoking and each CpG site. The overall proportion of the excess relative risk mediated by cg05575921 was 92% (p-value = 0.004) and by cg19859270 was 79% (p-value = 0.02). The largest component of the excess relative risk of bladder cancer due to 30 pack-years of smoking history in current smokers was the mediated interaction for both cg05575921 (72%, p = 0.02) and cg19859270 (72%, p-value = 0.04), where the mediated interaction is the effect of smoking on bladder cancer that both acts through differential methylation and depends on smoking history. There was little evidence that smoking was mediated through cg03636183. Our results suggest that differential methylation of cg05575921 and cg19859270 mediate the effects of smoking on bladder cancer, potentially revealing downstream effects of smoking relevant for carcinogenesis.
Collapse
Affiliation(s)
- Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington , Seattle , WA , USA.,Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Amanda I Phipps
- Department of Epidemiology, School of Public Health, University of Washington , Seattle , WA , USA.,Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Timothy W Randolph
- Program in Biostatistics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Simin Liu
- Departments of Epidemiology, Medicine, and Surgery, Brown University , Providence , RI , USA
| | - Lesley F Tinker
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University , Providence , RI , USA
| | - Emily White
- Department of Epidemiology, School of Public Health, University of Washington , Seattle , WA , USA.,Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Parveen Bhatti
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,Cancer Control Research, BC Cancer , Vancouver , BC , Canada
| |
Collapse
|
19
|
Poźniak J, Nsengimana J, Laye JP, O'Shea SJ, Diaz JMS, Droop AP, Filia A, Harland M, Davies JR, Mell T, Randerson-Moor JA, Muralidhar S, Hogan SA, Freiberger SN, Levesque MP, Cook GP, Bishop DT, Newton-Bishop J. Genetic and Environmental Determinants of Immune Response to Cutaneous Melanoma. Cancer Res 2019; 79:2684-2696. [PMID: 30773503 PMCID: PMC6544535 DOI: 10.1158/0008-5472.can-18-2864] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/16/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
The immune response to melanoma improves the survival in untreated patients and predicts the response to immune checkpoint blockade. Here, we report genetic and environmental predictors of the immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration and to categorize tumors into immune subgroups, which were then investigated for association with biological pathways, clinicopathologic factors, and copy number alterations. Three subgroups, with "low", "intermediate", and "high" immune signals, were identified in primary tumors and replicated in metastatic tumors. Genes in the low subgroup were enriched for cell-cycle and metabolic pathways, whereas genes in the high subgroup were enriched for IFN and NF-κB signaling. We identified high MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFNγ and NF-κB pathway genes as the regulators of immune suppression. Furthermore, we showed that cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing the survival primarily in patients with a strong immune response. Together, these analyses identify a set of factors that can be easily assessed that may serve as predictors of response to immunotherapy in patients with melanoma. SIGNIFICANCE: These findings identify novel genetic and environmental modulators of the immune response against primary cutaneous melanoma and predict their impact on patient survival.See related commentary by Anichini, p. 2457.
Collapse
Affiliation(s)
- Joanna Poźniak
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Jonathan P Laye
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Sally J O'Shea
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Faculty of Medicine and Health, University College Cork, Cork, Ireland
- Mater Private Hospital Cork, Citygate, Mahon, Cork, Ireland
| | - Joey Mark S Diaz
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Alastair P Droop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Medical Research Council (MRC) Medical Bioinformatics Centre, University of Leeds, Leeds, United Kingdom
| | - Anastasia Filia
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Centre for Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - John R Davies
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Tracey Mell
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | | | - Sathya Muralidhar
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Sabrina A Hogan
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Sandra Nicole Freiberger
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Graham P Cook
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Julia Newton-Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Liu J, Zhao W, Ammous F, Turner ST, Mosley TH, Zhou X, Smith JA. Longitudinal analysis of epigenome-wide DNA methylation reveals novel smoking-related loci in African Americans. Epigenetics 2019; 14:171-184. [PMID: 30764717 PMCID: PMC6557606 DOI: 10.1080/15592294.2019.1581589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022] Open
Abstract
Changes in DNA methylation may be a potential mechanism that mediates the effects of smoking on physiological function and subsequent disease risk. Given the dynamic nature of the epigenome, longitudinal studies are indispensable for investigating smoking-induced methylation changes over time. Using blood samples collected approximately five years apart in 380 African Americans (mean age 60.7 years) from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, we measured DNA methylation levels using Illumina HumanMethylation BeadChips. We evaluated the association between Phase 1 smoking status and rate of methylation change, using generalized estimating equation models. Among the 6958 CpG sites examined, smoking status was associated with methylation change for 22 CpGs (false discovery rate q < 0.1), with the majority (91%) becoming less methylated over time. Methylation change was greater in ever smokers than never smokers, and the absolute differences in rates of change ranged from 0.18 to 0.77 per decade in M value, equivalent to a β value change of 0.013 to 0.047 per decade. Significant enrichment was observed for CpG islands, enhancers, and DNAse hypersensitivity sites (p < 0.05). Although biological pathway analyses were not significant, most of the 22 CpGs were within genes known to be associated with cardiovascular disease, cancers, and aging. In conclusion, we identified epigenetic signatures for cigarette smoking that may have been missed in cross-sectional analyses, providing insight into the epigenetic effect of smoking and highlighting the importance of longitudinal analysis in understanding the dynamic human epigenome.
Collapse
Affiliation(s)
- Jiaxuan Liu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Ammitzbøll C, von Essen MR, Börnsen L, Petersen ER, McWilliam O, Ratzer R, Romme Christensen J, Oturai AB, Søndergaard HB, Sellebjerg F. GPR15 + T cells are Th17 like, increased in smokers and associated with multiple sclerosis. J Autoimmun 2018; 97:114-121. [PMID: 30245027 DOI: 10.1016/j.jaut.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023]
Abstract
Smoking is a risk factor for the development and progression of multiple sclerosis (MS); however, the pathogenic effects of smoking are poorly understood. We studied the smoking-associated chemokine receptor-like molecule GPR15 in relation to relapsing-remitting MS (RRMS). Using microarray analyses and qPCR we found elevated GPR15 in blood cells from smokers, and increased GPR15 expression in RRMS. By flow cytometry we detected increased frequencies of GPR15 expressing T and B cells in smokers, but no difference between patients with RRMS and healthy controls. However, after cell culture with the autoantigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein, frequencies of MBP-reactive and non-proliferating GPR15+CD4+ T cells were increased in patients with RRMS compared with healthy controls. GPR15+CD4+ T cells produced IL-17 and were enriched in the cerebrospinal fluid (CSF). Furthermore, in the CSF of patients with RRMS, GPR15+ T cells were associated with CCR6+CXCR3+/CCR6-CXCR3+ phenotypes and correlated positively with concentrations of the newly identified GPR15-ligand (GPR15L), myelin degradation and disability. In conclusion, we have identified a proinflammatory cell type linking smoking with pathogenic immune cell functions in RRMS.
Collapse
Affiliation(s)
- Cecilie Ammitzbøll
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Marina R von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Lars Börnsen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Eva Rosa Petersen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Oskar McWilliam
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Rikke Ratzer
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Annette B Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Helle B Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Denmark.
| |
Collapse
|
22
|
Ocakli B, Acarturk E, Aksoy E, Gungor S, Ciyiltepe F, Oztas S, Ozmen I, Agca MC, Salturk C, Adiguzel N, Karakurt Z. The impact of exposure to biomass smoke versus cigarette smoke on inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure. Int J Chron Obstruct Pulmon Dis 2018; 13:1261-1267. [PMID: 29713159 PMCID: PMC5912365 DOI: 10.2147/copd.s162658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to evaluate the impact of exposure to biomass smoke vs cigarette smoke on serum inflammatory markers and pulmonary function parameters in patients with chronic respiratory failure (CRF). Patients and methods A total of 106 patients with CRF divided into age and gender-matched groups of cigarette-smoke exposure (n=55, mean [SD] age: 71.0 [12.0] years, 92.7% were females) and biomass smoke exposure (n=51, mean [SD] age: 73.0 [11.0] years, 94.1% were females) were included in this retrospective study. Data on patient demographics (age and gender), inflammatory markers, including neutrophil-to-lymphocyte ratio, C-reactive protein, platelet/mean platelet volume ratio, arterial blood gas analysis, and pulmonary function test findings, including forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC were obtained from medical records. Results Carbon dioxide partial pressure levels were significantly higher in the biomass smoke exposure than in the cigarette smoke exposure group (mean [SD] 51.0 [8.0] vs 47.0 [8.0] mmHg, p=0.026, respectively). Spirometry revealed similarly low levels for FEV1 (%) (38.0 [16.0] vs 40.0 [12.0]%) and FVC (%) (45.0 [19.0] vs 39.0 [19.0]%) in cigarette-smoke and biomass smoke exposure groups, whereas biomass smoke exposure was associated with significantly higher FEV1/FVC (75.0 [14.0] vs 58.0 [12.0]%, p=0.001), lower FVC (mL) (mean [SD] 744.0 [410.0] vs 1,063.0 [592.0] mL, p=0.035) and lower percentage of patients with FEV1/FVC <70% (36.8% vs 82.0%, p<0.001) than cigarette smoke exposure. Conclusion Our findings indicate similarly increased inflammatory markers and abnormally low pulmonary function test findings in both biomass smoke exposure and cigarette smoke exposure groups, emphasizing the adverse effects of biomass smoke exposure on lungs to be as significant as cigarette smoke exposure. Association of biomass smoke exposure with higher likelihood of FEV1/FVC ratio of >70% and more prominent loss of vital capacity than cigarette smoke exposure seems to indicate the likelihood of at least 18 years of biomass exposure to be sufficiently high to be responsible for both obstructive and restrictive pulmonary diseases.
Collapse
Affiliation(s)
- Birsen Ocakli
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Eylem Acarturk
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Emine Aksoy
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Sinem Gungor
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Fulya Ciyiltepe
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Selahattin Oztas
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Ipek Ozmen
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Meltem Coban Agca
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Cuneyt Salturk
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Nalan Adiguzel
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Zuhal Karakurt
- Department of Chest Diseases, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
23
|
Bauer M, Fink B, Seyfarth HJ, Wirtz H, Frille A. Tobacco-smoking induced GPR15-expressing T cells in blood do not indicate pulmonary damage. BMC Pulm Med 2017; 17:159. [PMID: 29183299 PMCID: PMC5706341 DOI: 10.1186/s12890-017-0509-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Background Recently, it was shown that chronic tobacco smoking evokes specific cellular and molecular changes in white blood cells by an excess of G protein-coupled receptor 15 (GPR15)-expressing T cells as well as a hypomethylation at DNA CpG site cg05575921 in granulocytes. In the present study, we aimed to clarify the general usefulness of these two biomarkers as putative signs of non-cancerous change in homeostasis of the lungs. Methods In a clinical cohort consisting of 42 patients with chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and pneumonia and a control cohort of 123 volunteers, the content of GPR15-expressing blood cells as well as the degree of methylation at cg05575921 were analysed by flow-cytometry and pyrosequencing, respectively. Smoking behaviour was estimated by questionnaire and cotinine level in plasma. Results Never-smoking patients could be distinguished from former and current smokers by both the proportion of GPR15-expressing T cells as well as cg05575921 methylation in granulocytes, with 100% and 97% specificity and 100% sensitivity, respectively. However, both parameters were not affected by lung diseases. The degrees of both parameters were not changed neither in non-smoking nor smoking patients, compared to appropriate control cohorts of volunteers. Conclusions The degree of GPR15-expressing cells among T cells as well as the methylation at cg05575921 in granulocytes in blood are both rather signs of tobacco-smoking induced systemic inflammation because they don’t indicate specifically non-cancerous pathological changes in the lungs.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | - Hubert Wirtz
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Armin Frille
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany.,Leipzig University Medical Center, IFB AdiposityDiseases, Leipzig, Germany
| |
Collapse
|