1
|
Anand PK. From fat to fire: The lipid-inflammasome connection. Immunol Rev 2025; 329:e13403. [PMID: 39327931 PMCID: PMC11744241 DOI: 10.1111/imr.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Inflammasomes are multiprotein complexes that play a crucial role in regulating immune responses by governing the activation of Caspase-1, the secretion of pro-inflammatory cytokines, and the induction of inflammatory cell death, pyroptosis. The inflammasomes are pivotal in effective host defense against a range of pathogens. Yet, overt activation of inflammasome signaling can be detrimental. The most well-studied NLRP3 inflammasome has the ability to detect a variety of stimuli including pathogen-associated molecular patterns, environmental irritants, and endogenous stimuli released from dying cells. Additionally, NLRP3 acts as a key sensor of cellular homeostasis and can be activated by disturbances in diverse metabolic pathways. Consequently, NLRP3 is considered a key player linking metabolic dysregulation to numerous inflammatory disorders such as gout, diabetes, and atherosclerosis. Recently, compelling studies have highlighted a connection between lipids and the regulation of NLRP3 inflammasome. Lipids are integral to cellular processes that serve not only in maintaining the structural integrity and subcellular compartmentalization, but also in contributing to physiological equilibrium. Certain lipid species are known to define NLRP3 subcellular localization, therefore directly influencing the site of inflammasome assembly and activation. For instance, phosphatidylinositol 4-phosphate plays a crucial role in NLRP3 localization to the trans Golgi network. Moreover, new evidence has demonstrated the roles of lipid biosynthesis and trafficking in activation of the NLRP3 inflammasome. This review summarizes and discusses these emerging and varied roles of lipid metabolism in inflammasome activation. A deeper understanding of lipid-inflammasome interactions may open new avenues for therapeutic interventions to prevent or treat chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Paras K. Anand
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
2
|
Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G, Pan Y. Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol 2024; 12:1413708. [PMID: 39563863 PMCID: PMC11573772 DOI: 10.3389/fcell.2024.1413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
S-Palmitoylation has been widely noticed and studied in a variety of diseases. Increasing evidence suggests that S-palmitoylation modification also plays a key role in Glioblastoma (GBM). The zDHHC family, as an important member of S-palmitoyltransferases, has received extensive attention for its function and mechanism in GBM which is one of the most common primary malignant tumors of the brain and has an adverse prognosis. This review focuses on the zDHHC family, essential S-palmitoyltransferases, and their involvement in GBM. By summarizing recent studies on zDHHC molecules in GBM, we highlight their significance in regulating critical processes such as cell proliferation, invasion, and apoptosis. Specifically, members of zDHHC3, zDHHC4, zDHHC5 and others affect key processes such as signal transduction and phenotypic transformation in GBM cells through different pathways, which in turn influence tumorigenesis and progression. This review systematically outlines the mechanism of zDHHC family-mediated S-palmitoylation modification in GBM, emphasizes its importance in the development of this disease, and provides potential targets and strategies for the treatment of GBM. It also offers theoretical foundations and insights for future research and clinical applications.
Collapse
Affiliation(s)
- Beiyan Tang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Kang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhenwei Qin
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lei Duan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianjun Zhao
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guoqiang Yuan
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Su KJ, Qiu C, Greenbaum J, Zhang X, Liu A, Liu Y, Luo Z, Mungasavalli Gnanesh SS, Tian Q, Zhao LJ, Shen H, Deng HW. Genomic structural variations link multiple genes to bone mineral density in a multi-ethnic cohort study: Louisiana osteoporosis study. J Bone Miner Res 2024; 39:1474-1485. [PMID: 39167757 PMCID: PMC11425707 DOI: 10.1093/jbmr/zjae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Osteoporosis, characterized by low BMD, is a highly heritable metabolic bone disorder. Although single nucleotide variations (SNVs) have been extensively studied, they explain only a fraction of BMD heritability. Although genomic structural variations (SVs) are large-scale genomic alterations that contribute to genetic diversity in shaping phenotypic variations, the role of SVs in osteoporosis susceptibility remains poorly understood. This study aims to identify and prioritize genes that harbor BMD-related SVs. We performed whole genome sequencing on 4982 subjects from the Louisiana Osteoporosis Study. To obtain high-confidence SVs, the detection of SVs was performed using an ensemble approach. The SVs were tested for association with BMD variation at the hip (HIP), femoral neck (FNK), and lumbar spine (SPN), respectively. Additionally, we conducted co-occurrence analysis using multi-omics approaches to prioritize the identified genes based on their functional importance. Stratification was employed to explore the sex- and ethnicity-specific effects. We identified significant SV-BMD associations: 125 for FNK-BMD, 99 for SPN-BMD, and 83 for HIP-BMD. We observed SVs that were commonly associated with both FNK and HIP BMDs in our combined and stratified analyses. These SVs explain 13.3% to 19.1% of BMD variation. Novel bone-related genes emerged, including LINC02370, ZNF family genes, and ZDHHC family genes. Additionally, FMN2, carrying BMD-related deletions, showed associations with FNK or HIP BMDs, with sex-specific effects. The co-occurrence analysis prioritized an RNA gene LINC00494 and ZNF family genes positively associated with BMDs at different skeletal sites. Two potential causal genes, IBSP and SPP1, for osteoporosis were also identified. Our study uncovers new insights into genetic factors influencing BMD through SV analysis. We highlight BMD-related SVs, revealing a mix of shared and specific genetic influences across skeletal sites and gender or ethnicity. These findings suggest potential roles in osteoporosis pathophysiology, opening avenues for further research and therapeutic targets.
Collapse
Affiliation(s)
- Kuan-Jui Su
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Chuan Qiu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Jonathan Greenbaum
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Xiao Zhang
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Anqi Liu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Yong Liu
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Zhe Luo
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Shashank Sajjan Mungasavalli Gnanesh
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Qing Tian
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Lan-Juan Zhao
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Hui Shen
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| | - Hong-Wen Deng
- Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA 70112, United States
| |
Collapse
|
4
|
Zhang Q, Du Z, Zhou W, Li W, Yang Q, Yu H, Liu T. ZDHHC1 downregulates LIPG and inhibits colorectal cancer growth via IGF2BP1 Palmitoylation. Cancer Gene Ther 2024; 31:1427-1437. [PMID: 39069526 PMCID: PMC11405259 DOI: 10.1038/s41417-024-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Alteration in lipid metabolism is recognized as a hallmark feature of colorectal cancer (CRC). Protein S-palmitoylation plays a critical role in many different cellular processes including protein-lipid interaction. Zinc Finger DHHC-Type Containing 1 (ZDHHC1, also known as ZNF377) belongs to the palmitoyl-transferase ZDHHC family, and is a potential tumor suppressor. However, our knowledge of the functional roles of ZDHHC1 in CRC is limited. We discovered that ZDHHC1 expression was downregulated in CRC tissues and that low levels of ZDHHC1 were associated with unfavorable prognosis. Functional studies showed that ZDHHC1 inhibited CRC cell proliferation and invasion in vitro and in vivo. We also found that lipase G (LIPG) is negatively regulated by ZDHHC1 and plays a key role in CRC cell growth through lipid storage. Additionally, we demonstrated that ZDHHC1 functions as a IGF2BP1-palmitoylating enzyme that induces S-palmitoylation at IGF2BP1-C337, which results in downregulated LIPG expression via m6A modification. Mechanistic investigations revealed that the ZDHHC1/IGF2BP1/LIPG signaling axis is associated with inhibition of CRC cell growth. Our study uncovers the potential role of ZDHHC1 in CRC, including inhibition of CRC growth by reducing the stability of LIPG mRNA in an m6A dependent-manner by palmitoylation of IGF2BP1.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhouyuan Du
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhou
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinglin Yang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Leishman S, Aljadeed NM, Qian L, Cockcroft S, Behmoaras J, Anand PK. Fatty acid synthesis promotes inflammasome activation through NLRP3 palmitoylation. Cell Rep 2024; 43:114516. [PMID: 39024103 DOI: 10.1016/j.celrep.2024.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Despite its significance, the role of lipid metabolism in NLRP3 inflammasome remains elusive. Here, we reveal a critical role for fatty acid synthase (FASN) in NLRP3 inflammasome activation. We demonstrate that pharmacological or genetic depletion of FASN dampens NLRP3 activation in primary mouse and human macrophages and in mice. This disruption in NLRP3 activation is contingent upon FASN activity. Accordingly, abolishing cellular palmitoylation, a post-translational modification in which the FASN product palmitate is reversibly conjugated to cysteine residues of target proteins, blunts inflammasome signaling. Correspondingly, an acyl-biotin exchange assay corroborated NLRP3 palmitoylation. Mechanistically, Toll-like receptor (TLR) ligation introduces palmitoylation at NLRP3 Cys898, permitting NLRP3 translocation to dispersed trans-Golgi network (dTGN) vesicles, the site of inflammasome assembly, upon NLRP3 activation. Accordingly, the NLRP3 Cys898 mutant exhibits reduced palmitoylation, limited translocation to the dTGN compartment, and diminished inflammasome activation. These results underscore mechanistic insights through which lipid metabolism licenses NLRP3 inflammasome assembly and activation.
Collapse
Affiliation(s)
- Stuart Leishman
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Najd M Aljadeed
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Liyunhe Qian
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Jacques Behmoaras
- Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School Singapore, Singapore
| | - Paras K Anand
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
6
|
Leishman S, Aljadeed NM, Anand PK. Protocol for a semi-quantitative approach to identify protein S-palmitoylation in cultured cells by acyl biotin exchange assay. STAR Protoc 2024; 5:103054. [PMID: 38704832 PMCID: PMC11089391 DOI: 10.1016/j.xpro.2024.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Palmitoylation is a post-translational lipid modification in which palmitic acid is conjugated predominantly to cysteine residues of target proteins, allowing them to tether to cell membranes. Here, we describe a protocol to perform a stepwise acyl biotin exchange assay to identify protein S-palmitoylation. We describe steps for initial blocking of free thiols in protein lysates, subsequent replacement of thioester-linked palmitate groups with a biotin tag for affinity enrichment, and identification of palmitoylated proteins by SDS-PAGE. For complete details on the use and execution of this protocol, please refer to Leishman et al.1.
Collapse
Affiliation(s)
- Stuart Leishman
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK.
| | - Najd M Aljadeed
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Paras K Anand
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
7
|
Srivastava P, Bansal R, Madan E, Shoaib R, Singhal J, Kahlon AK, Gupta A, Garg S, Ranganathan A, Singh S. Identification of a De Novo Peptide against Palmitoyl Acyltransferase 6 to Block Survivability and Infectivity of Leishmania donovani. ACS Infect Dis 2024; 10:2074-2088. [PMID: 38717971 DOI: 10.1021/acsinfecdis.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Palmitoylation is an essential post-translational modification in Leishmania donovani, catalyzed by enzymes called palmitoyl acyl transferases (PATs) and has an essential role in virulence. Due to the toxicity and promiscuity of known PAT inhibitors, identification of new molecules is needed. Herein, we identified a specific novel de novo peptide inhibitor, PS1, against the PAT6 Leishmania donovani palmitoyl acyl transferase (LdPAT6). To demonstrate specific inhibition of LdPAT6 by PS1, we employed a bacterial orthologue system and metabolic labeling-coupled click chemistry where both LdPAT6 and PS1 were coexpressed and displayed palmitoylation suppression. Furthermore, strong binding of the LdPAT6-DHHC domain with PS1 was observed through analysis using microscale thermophoresis, ELISA, and dot blot assay. PS1 specific to LdPAT6 showed significant growth inhibition in promastigotes and amastigotes by expressing low cytokines levels and invasion. This study reveals discovery of a novel de novo peptide against LdPAT6-DHHC which has potential to block survivability and infectivity of L. donovani.
Collapse
Affiliation(s)
- Pallavi Srivastava
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ruby Bansal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
8
|
Koster KP, Fyke Z, Nguyen TTA, Niqula A, Noriega-González LY, Woolfrey KM, Dell’Acqua ML, Cologna SM, Yoshii A. Akap5 links synaptic dysfunction to neuroinflammatory signaling in a mouse model of infantile neuronal ceroid lipofuscinosis. Front Synaptic Neurosci 2024; 16:1384625. [PMID: 38798824 PMCID: PMC11116793 DOI: 10.3389/fnsyn.2024.1384625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.
Collapse
Affiliation(s)
- Kevin P. Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T. A. Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amanda Niqula
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Tsumagari K, Isobe Y, Imami K, Arita M. Exploring protein lipidation by mass spectrometry-based proteomics. J Biochem 2024; 175:225-233. [PMID: 38102731 PMCID: PMC10908362 DOI: 10.1093/jb/mvad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Protein lipidation is a common co- or post-translational modification that plays a crucial role in regulating the localization, interaction and function of cellular proteins. Dysregulation of lipid modifications can lead to various diseases, including cancer, neurodegenerative diseases and infectious diseases. Therefore, the identification of proteins undergoing lipidation and their lipidation sites should provide insights into many aspects of lipid biology, as well as providing potential targets for therapeutic strategies. Bottom-up proteomics using liquid chromatography/tandem mass spectrometry is a powerful technique for the global analysis of protein lipidation. Here, we review proteomic methods for profiling protein lipidation, focusing on the two major approaches: the use of chemical probes, such as lipid alkyne probes, and the use of enrichment techniques for endogenous lipid-modified peptides. The challenges facing these methods and the prospects for developing them further to achieve a comprehensive analysis of lipid modifications are discussed.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol 2024; 15:1337478. [PMID: 38415253 PMCID: PMC10896991 DOI: 10.3389/fimmu.2024.1337478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.
Collapse
Affiliation(s)
- Yijiao Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Kvergelidze E, Barbakadze T, Bátor J, Kalandadze I, Mikeladze D. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Transl Neurosci 2024; 15:20220347. [PMID: 39118829 PMCID: PMC11306964 DOI: 10.1515/tnsci-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvβ3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvβ3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvβ3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.
Collapse
Affiliation(s)
- Elisabed Kvergelidze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
| | - Tamar Barbakadze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - Judit Bátor
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, 7624, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Irine Kalandadze
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - David Mikeladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| |
Collapse
|
12
|
Shen ZC, Liu JM, Zheng JY, Li MD, Tian D, Pan Y, Tao WC, Gao SQ, Xia ZX. Regulation of anxiety-like behaviors by S-palmitoylation and S-nitrosylation in basolateral amygdala. Biomed Pharmacother 2023; 169:115859. [PMID: 37948993 DOI: 10.1016/j.biopha.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.
Collapse
Affiliation(s)
- Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China.
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China
| | - Shuang-Qi Gao
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
13
|
Zheng S, Que X, Wang S, Zhou Q, Xing X, Chen L, Hou C, Ma J, An P, Peng Y, Yao Y, Song Q, Li J, Zhang P, Pei H. ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3-NEK7 interaction and inflammasome activation. Mol Cell 2023; 83:4570-4585.e7. [PMID: 38092000 DOI: 10.1016/j.molcel.2023.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/04/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1β/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.
Collapse
Affiliation(s)
- Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunyan Hou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ping An
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yihan Peng
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
14
|
Koster KP, Flores-Barrera E, Artur de la Villarmois E, Caballero A, Tseng KY, Yoshii A. Loss of Depalmitoylation Disrupts Homeostatic Plasticity of AMPARs in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. J Neurosci 2023; 43:8317-8335. [PMID: 37884348 PMCID: PMC10711723 DOI: 10.1523/jneurosci.1113-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | - Adriana Caballero
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Neurology, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
15
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Li Y, Ye Y, Li S, Feng J, Liu X, Che X, Jiang Q, Chen X. Transcriptomic analysis of the antioxidant responses and immunomodulatory effects of dietary melatonin in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109173. [PMID: 37879512 DOI: 10.1016/j.fsi.2023.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to investigate the effects of dietary melatonin (MT) levels on the antioxidant capacity, immunomodulatory, and transcriptional regulation of red swamp crayfish. Six experimental diets with different levels of MT (0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg diet) were fed to juvenile crayfish for 60 d. The transcriptome data of the control group and the group supplemented with dietary MT at 165.1 mg/kg were obtained using RNA-seq. In total, 3653 differentially expressed genes (2082 up-regulated and 1571 down-regulated) were identified. Pathways and genes related to antioxidant immune and growth performance were verified by qRT-PCR. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (165.1 mg/kg) group compared to the control group. Analysis of antioxidant immune-related enzymes in the hepatopancreas demonstrated that dietary MT (165.1 mg/kg) significantly increased activities of catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase and significantly decreased aspartate aminotransferase and alanine aminotransferase activity. At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immune and development, which included toll-like receptors, Crustin, C-type lectin, and so on. To conclude, MT could be used as a supplement in crayfish feed to increase immunity and antioxidant capacity and according to the broken line regression, the ideal MT concentration was the 159.02 mg/kg. Overall, this study demonstrates the role of melatonin in the antioxidant responses and immunomodulatory of Procambarus clarkii, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Xiaolong Chen
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| |
Collapse
|
17
|
Patil PR, Burroughs AM, Misra M, Cerullo F, Costas-Insua C, Hung HC, Dikic I, Aravind L, Joazeiro CAP. Mechanism and evolutionary origins of alanine-tail C-degron recognition by E3 ligases Pirh2 and CRL2-KLHDC10. Cell Rep 2023; 42:113100. [PMID: 37676773 PMCID: PMC10591846 DOI: 10.1016/j.celrep.2023.113100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
In ribosome-associated quality control (RQC), nascent polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ("Ala-tails") that function outside ribosomes to induce ubiquitylation by E3 ligases Pirh2 (p53-induced RING-H2 domain-containing) or CRL2 (Cullin-2 RING ligase2)-KLHDC10. Here, we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails and that structural predictions identify candidate Ala-tail-binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail-binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron-recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.
Collapse
Affiliation(s)
- Pratik Rajendra Patil
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mohit Misra
- Institute of Biochemistry II, Goethe University Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Federico Cerullo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Carlos Costas-Insua
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Hao-Chih Hung
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Faculty of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
18
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
19
|
Ramzan F, Abrar F, Mishra GG, Liao LMQ, Martin DDO. Lost in traffic: consequences of altered palmitoylation in neurodegeneration. Front Physiol 2023; 14:1166125. [PMID: 37324388 PMCID: PMC10268010 DOI: 10.3389/fphys.2023.1166125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
One of the first molecular events in neurodegenerative diseases, regardless of etiology, is protein mislocalization. Protein mislocalization in neurons is often linked to proteostasis deficiencies leading to the build-up of misfolded proteins and/or organelles that contributes to cellular toxicity and cell death. By understanding how proteins mislocalize in neurons, we can develop novel therapeutics that target the earliest stages of neurodegeneration. A critical mechanism regulating protein localization and proteostasis in neurons is the protein-lipid modification S-acylation, the reversible addition of fatty acids to cysteine residues. S-acylation is more commonly referred to as S-palmitoylation or simply palmitoylation, which is the addition of the 16-carbon fatty acid palmitate to proteins. Like phosphorylation, palmitoylation is highly dynamic and tightly regulated by writers (i.e., palmitoyl acyltransferases) and erasers (i.e., depalmitoylating enzymes). The hydrophobic fatty acid anchors proteins to membranes; thus, the reversibility allows proteins to be re-directed to and from membranes based on local signaling factors. This is particularly important in the nervous system, where axons (output projections) can be meters long. Any disturbance in protein trafficking can have dire consequences. Indeed, many proteins involved in neurodegenerative diseases are palmitoylated, and many more have been identified in palmitoyl-proteomic studies. It follows that palmitoyl acyl transferase enzymes have also been implicated in numerous diseases. In addition, palmitoylation can work in concert with cellular mechanisms, like autophagy, to affect cell health and protein modifications, such as acetylation, nitrosylation, and ubiquitination, to affect protein function and turnover. Limited studies have further revealed a sexually dimorphic pattern of protein palmitoylation. Therefore, palmitoylation can have wide-reaching consequences in neurodegenerative diseases.
Collapse
|
20
|
Patil PR, Burroughs AM, Misra M, Cerullo F, Dikic I, Aravind L, Joazeiro CAP. Mechanism and evolutionary origins of Alanine-tail C-degron recognition by E3 ligases Pirh2 and CRL2-KLHDC10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539038. [PMID: 37205381 PMCID: PMC10187211 DOI: 10.1101/2023.05.03.539038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Ribosome-associated Quality Control (RQC), nascent-polypeptides produced by interrupted translation are modified with C-terminal polyalanine tails ('Ala-tails') that function outside ribosomes to induce ubiquitylation by Pirh2 or CRL2-KLHDC10 E3 ligases. Here we investigate the molecular basis of Ala-tail function using biochemical and in silico approaches. We show that Pirh2 and KLHDC10 directly bind to Ala-tails, and structural predictions identify candidate Ala-tail binding sites, which we experimentally validate. The degron-binding pockets and specific pocket residues implicated in Ala-tail recognition are conserved among Pirh2 and KLHDC10 homologs, suggesting that an important function of these ligases across eukaryotes is in targeting Ala-tailed substrates. Moreover, we establish that the two Ala-tail binding pockets have convergently evolved, either from an ancient module of bacterial provenance (Pirh2) or via tinkering of a widespread C-degron recognition element (KLHDC10). These results shed light on the recognition of a simple degron sequence and the evolution of Ala-tail proteolytic signaling.
Collapse
|
21
|
Kumari G, Rex DAB, Goswami S, Mukherjee S, Biswas S, Maurya P, Jain R, Garg S, Prasad TSK, Pati S, Ramalingam S, Mohandas N, Singh S. Dynamic Palmitoylation of Red Cell Membrane Proteins Governs Susceptibility to Invasion by the Malaria Parasite, Plasmodium falciparum. ACS Infect Dis 2022; 8:2106-2118. [PMID: 36044540 DOI: 10.1021/acsinfecdis.2c00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphorylation and other post-translational modifications of red blood cell (RBC) proteins govern membrane function and have a role in the invasion of RBCs by the malaria parasite, Plasmodium falciparum. Furthermore, a percentage of RBC proteins are palmitoylated, although the functional consequences are unknown. We establish dynamic palmitoylation of 118 RBC membrane proteins using click chemistry and acyl biotin exchange (ABE)-coupled LC-MS/MS and characterize their involvement in controlling membrane organization and parasite invasion. RBCs were treated with a generic palmitoylation inhibitor, 2-bromopalmitate (2-BMP), and then analyzed using ABE-coupled LC-MS/MS. Only 42 of the 118 palmitoylated proteins detected were palmitoylated in the 2-BMP-treated sample, indicating that palmitoylation is dynamically regulated. Interestingly, membrane receptors such as semaphorin 7A, CR1, and ABCB6, which are known to be involved in merozoite interaction with RBCs and parasite invasion, were found to be dynamically palmitoylated, including the blood group antigen, Kell, whose antigenic abundance was significantly reduced following 2-BMP treatment. To investigate the involvement of Kell in merozoite invasion of RBCs, a specific antibody to its extracellular domain was used. The antibody targeting Kell inhibited merozoite invasion of RBCs by 50%, implying a role of Kell, a dynamically palmitoylated potent host-derived receptor, in parasite invasion. Furthermore, a significant reduction in merozoite contact with the RBC membrane and a consequent decrease in parasite invasion following 2-BMP treatment demonstrated that palmitoylation does indeed regulate RBC susceptibility to parasite invasion. Taken together, our findings revealed the dynamic palmitoylome of RBC membrane proteins and its role in P. falciparum invasion.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore 575018, India.,Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore 575018, India
| | - Sangam Goswami
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Sivaprakash Ramalingam
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, 310 E 67th Street, New York, New York 10065, United States
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
22
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
23
|
Jia Z, Long D, Yu Y. Dynamic Expression of Palmitoylation Regulators across Human Organ Development and Cancers Based on Bioinformatics. Curr Issues Mol Biol 2022; 44:4472-4489. [PMID: 36286021 PMCID: PMC9600046 DOI: 10.3390/cimb44100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein palmitoylation is a reversible modification process that links palmitate to cysteine residues via a reversible thioester bond. Palmitoylation exerts an important role in human organ development and tumor progression. However, a comprehensive landscape regarding the dynamic expression of palmitoylation regulators in human organ development remains unclear. In this study, we analyzed the dynamic expression of palmitoylation regulators in seven organ development and eight cancer types based on bioinformatics. We found that the expression levels of most palmitoylation regulators were altered after birth. In particular, ZDHHC7/20/21 exhibited converse expression patterns in multiple cancer types. Survival analysis showed that the poor prognosis in patients with kidney renal clear carcinoma (KIRC) is related to low expression of ZDHHC7/20/21, and a high expression of ZDHHC7/20/21 is related to worse survival in patients with liver hepatocellular carcinoma (LIHC). Furthermore, we found that the expression of ZDHHC7 is associated with infiltration levels of some types of immune cells in the tumor microenvironment (TME), and we explored the relationship between ZDHHC7 expression and immune checkpoint (ICP) genes across 33 cancer types. In addition, gene set enrichment analysis (GSEA) results indicated that ZDHHC7 might regulate different genes to mediate the same pathway in different organs. In summary, the comprehensive analysis of palmitoylation regulators reveals their functions in human organ development and cancer, which may provide new insights for developing new tumor markers.
Collapse
Affiliation(s)
- Zixian Jia
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Deyu Long
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yingcui Yu
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
24
|
Gao J, Li W, Zhang Z, Gao W, Kong E. Proteome-wide identification of palmitoylated proteins in mouse testis. Reprod Sci 2022; 29:2299-2309. [PMID: 35477839 DOI: 10.1007/s43032-022-00919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
The reversible lipid modification, S-palmitoylation, plays regulatory roles in various physiological processes, e.g., neuronal plasticity and organs development; however, the roles of palmitoylation engaged in testis have yet remained unexplored. Here, we used combined approaches of palm-proteomics, informatics and quantitative PCR to systematically analyze the expression of key enzymes related to protein palmitoylation and identify proteome-wide palmitoylated proteins during the processes of spermatogenesis. Specifically, different timepoints were chosen to collect samples to cover the initiation of meiosis (postnatal, P12), the appearance of the first batch of sperm (P36) and fully fertile status (P60) in mouse. Interestingly, our results showed that only a few enzymes related to protein palmitoylation are highly expressed at later stages (from P36 to P60), rather than in the earlier phase of testis development (P12). To focus on the molecular event of spermatogenesis, we examined the palm-proteomics of testes in P36 and P60 mouse. In total, we identified 4,883 palmitoylated proteins, among which 3,310 proteins match the published palmitoyl-proteome datasets and 1,573 proteins were firstly identified as palmitoylated proteins in this study. Informatics analysis suggested that palmitoylation is involved in events of protein transport, metabolic process, protein folding and cell adhesion, etc. Importantly, further analysis revealed that several networks of palmitoylated proteins are closely associated with sperm morphology and motility. Together, our study laid a solid ground for understanding the roles of protein palmitoylation in spermatogenesis for future studies.
Collapse
Affiliation(s)
- Jun Gao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453000, China.,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenchao Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenshan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Eryan Kong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453000, China. .,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
25
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
26
|
Guns J, Vanherle S, Hendriks JJA, Bogie JFJ. Protein Lipidation by Palmitate Controls Macrophage Function. Cells 2022; 11:cells11030565. [PMID: 35159374 PMCID: PMC8834383 DOI: 10.3390/cells11030565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging evidence indicates that S-palmitoylation, a reversible post-translational modification that involves the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of macrophage physiology in health and disease. By controlling protein activity, stability, trafficking, and protein–protein interactions, studies identified a key role of S-palmitoylation in endocytosis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth overview of the impact of S-palmitoylation on these cellular processes in macrophages in health and disease. Findings discussed in this review highlight the therapeutic potential of modulators of S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders to metabolic conditions.
Collapse
Affiliation(s)
- Jeroen Guns
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
- Correspondence: ; Tel.: +32-1126-9261
| |
Collapse
|
27
|
Membrane-associated cytoplasmic granules carrying the Argonaute protein WAGO-3 enable paternal epigenetic inheritance in Caenorhabditis elegans. Nat Cell Biol 2022; 24:217-229. [PMID: 35132225 PMCID: PMC9973253 DOI: 10.1038/s41556-021-00827-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Epigenetic inheritance describes the transmission of gene regulatory information across generations without altering DNA sequences, enabling offspring to adapt to environmental conditions. Small RNAs have been implicated in this, through both the oocyte and the sperm. However, as much of the cellular content is extruded during spermatogenesis, it is unclear whether cytoplasmic small RNAs can contribute to epigenetic inheritance through sperm. Here we identify a sperm-specific germ granule, termed the paternal epigenetic inheritance (PEI) granule, that mediates paternal epigenetic inheritance by retaining the cytoplasmic Argonaute protein WAGO-3 during spermatogenesis in Caenorhabditis elegans. We identify the PEI granule proteins PEI-1 and PEI-2, which have distinct functions in this process: granule formation, Argonaute selectivity and subcellular localization. We show that PEI granule segregation is coupled to the transport of sperm-specific secretory vesicles through PEI-2 in an S-palmitoylation-dependent manner. PEI-like proteins are found in humans, suggesting that the identified mechanism may be conserved.
Collapse
|
28
|
Xu Y, Shi Z, Bao L. An expanding repertoire of protein acylations. Mol Cell Proteomics 2022; 21:100193. [PMID: 34999219 PMCID: PMC8933697 DOI: 10.1016/j.mcpro.2022.100193] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry–based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein–membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research. Provide a general overview of the 12 main protein acylations. Acylation of viral proteins promotes viral integration and infection. Hyperacylation of histone has antitumous and neuroprotective effects. MS is widely used in the identification of acylation but has its challenges.
Collapse
Affiliation(s)
- Yuxuan Xu
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Zhenyu Shi
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Li Bao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
29
|
The Signal Peptide and Chaperone UNC93B1 Both Influence TLR8 Ectodomain Intracellular Endosomal Localization. Vaccines (Basel) 2021; 10:vaccines10010014. [PMID: 35062674 PMCID: PMC8778924 DOI: 10.3390/vaccines10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor 8 (TLR8) is a single-stranded RNA sensing receptor and is localized in the cellular compartments, where it encounters foreign or self-nucleic acids and activates innate and adaptive immune responses. However, the mechanism controlling intracellular localization TLR8 is not completely resolved. We previously revealed the intracellular localization of TLR8 ectodomain (ECD), and in this study, we investigated the mechanism of the intracellular localization. Here we found that TLR8 ECDs from different species as well as ECDs from different TLRs are all intracellularly localized, similarly to the full-length porcine TLR8. Furthermore, porcine, bovine, and human TLR8 ECDs are all localized in cell endosomes, reflecting the cellular localization of TLR8. Intriguingly, none of post-translational modifications at single sites, including glycosylation, phosphorylation, ubiquitination, acetylation, and palmitoylation alter porcine TLR8-ECD endosomal localization. Nevertheless, the signal peptide of porcine TLR8-ECD determines its endosomal localization. On the other hand, signaling regulator UNC93B1 also decides the endosomal localization of porcine, bovine, and human TLR8 ECDs. The results from this study shed light on the mechanisms of not only TLR8 intracellular localization but also the TLR immune signaling.
Collapse
|
30
|
Carreras-Sureda A, Abrami L, Ji-Hee K, Wang WA, Henry C, Frieden M, Didier M, van der Goot FG, Demaurex N. S-acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca 2+ signaling by Jurkat T cell receptors at the immune synapse. eLife 2021; 10:72051. [PMID: 34913437 PMCID: PMC8683079 DOI: 10.7554/elife.72051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
Efficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 promotes TCR recruitment and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel remained in cholesterol-poor domains upon enforced ZDHHC20 expression and was recruited less efficiently to the IS along with actin and TCR. Our results establish S-acylation as a critical regulator of ORAI1 channel trafficking and function at the IS and reveal that ORAI1 S-acylation enhances TCR recruitment to the synapse.
Collapse
Affiliation(s)
| | - Laurence Abrami
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kim Ji-Hee
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Wen-An Wang
- Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | | | - Maud Frieden
- Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Monica Didier
- Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, Geneva, Switzerland
| |
Collapse
|
31
|
Hu L, Tao Z, Wu X. Insights into auto- S-fatty acylation: targets, druggability, and inhibitors. RSC Chem Biol 2021; 2:1567-1579. [PMID: 34977571 PMCID: PMC8637764 DOI: 10.1039/d1cb00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Posttranslational S-fatty acylation (or S-palmitoylation) modulates protein localization and functions, and has been implicated in neurological, metabolic, and infectious diseases, and cancers. Auto-S-fatty acylation involves reactive cysteine residues in the proteins which directly react with fatty acyl-CoA through thioester transfer reactions, and is the first step in some palmitoyl acyltransferase (PAT)-mediated catalysis reactions. In addition, many structural proteins, transcription factors and adaptor proteins might possess such "enzyme-like" activities and undergo auto-S-fatty acylation upon fatty acyl-CoA binding. Auto-S-fatty acylated proteins represent a new class of potential drug targets, which often harbor lipid-binding hydrophobic pockets and reactive cysteine residues, providing potential binding sites for covalent and non-covalent modulators. Therefore, targeting auto-S-fatty acylation could be a promising avenue to pharmacologically intervene in important cellular signaling pathways. Here, we summarize the recent progress in understanding the regulation and functions of auto-S-fatty acylation in cell signaling and diseases. We highlight the druggability of auto-S-fatty acylated proteins, including PATs and other proteins, with potential in silico and rationalized drug design approaches. We also highlight structural analysis and examples of currently known small molecules targeting auto-S-fatty acylation, to gain insights into targeting this class of proteins, and to expand the "druggable" proteome.
Collapse
Affiliation(s)
- Lu Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School 149, 13th St. Charlestown MA 02129 USA
| |
Collapse
|
32
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|
33
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
34
|
Lee JE, Kim N, Jung M, Mun JY, Yoo JY. SHISA5/SCOTIN restrains spontaneous autophagy induction by blocking contact between the ERES and phagophores. Autophagy 2021; 18:1613-1628. [PMID: 34720018 PMCID: PMC9298459 DOI: 10.1080/15548627.2021.1994297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The phagophore expands into autophagosomes in close proximity to endoplasmic reticulum (ER) exit sites (ERESs). Here, we propose that a single-pass ER transmembrane protein, SHISA5/SCOTIN, acts as an autophagy suppressor under basal condition by blocking the contact between the phagophore and ERES. HeLa cells lacking SHISA5 displayed higher levels of macroautophagy/autophagy. The enhanced autophagy in SHISA5 KO cells requires class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) activity and functional assembly of ERES, but not ULK1 activity. A proximity ligation assay (PLA) of SEC16A (Sec16 homolog A, endoplasmic reticulum export factor)-WIPI2 (WD repeat domain, phosphoinositide interacting 2) and SEC31A (Sec31 homolog A, COPII coat complex component)-MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) demonstrated that contact between the ERES and phagophore increased in SHISA5 KO cells, and the cytosolic domain of SHISA5 was sufficient to rescue this phenotype. Close proximity between ERES and phagophore in SHISA5 KO cells was also visualized by performing an ultrastructure correlative image analysis of SEC31A associated with LC3-positive membranes. Furthermore, we observed that SHISA5 was located near ERES under basal conditions, but displaced away from ERES under autophagy-inducing conditions. These data suggest that SHISA5 functions to block spontaneous contact between ERES and phagophore, and the blockage effect of SHISA5 should be relieved for the proper induction of autophagy.
Collapse
Affiliation(s)
- Jee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ji-Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
35
|
Uzbekova S, Teixeira-Gomes AP, Marestaing A, Jarrier-Gaillard P, Papillier P, Shedova EN, Singina GN, Uzbekov R, Labas V. Protein Palmitoylation in Bovine Ovarian Follicle. Int J Mol Sci 2021; 22:ijms222111757. [PMID: 34769186 PMCID: PMC8583988 DOI: 10.3390/ijms222111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
- Correspondence: ; Tel.: +33-247-427-951
| | | | - Aurélie Marestaing
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| | - Peggy Jarrier-Gaillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| | - Ekaterina N. Shedova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitzy 60, 142132 Podolsk, Russia; (E.N.S.); (G.N.S.)
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitzy 60, 142132 Podolsk, Russia; (E.N.S.); (G.N.S.)
| | - Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Électronique, Faculté de Médecine, Université de Tours, 37032 Tours, France;
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (A.M.); (P.J.-G.); (P.P.); (V.L.)
| |
Collapse
|
36
|
Identification of ZDHHC17 as a Potential Drug Target for Swine Acute Diarrhea Syndrome Coronavirus Infection. mBio 2021; 12:e0234221. [PMID: 34700373 PMCID: PMC8546599 DOI: 10.1128/mbio.02342-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent emergence and spread of zoonotic viruses highlights that animal-sourced viruses are the biggest threat to global public health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an HKU2-related bat coronavirus that was spilled over from Rhinolophus bats to swine, causing large-scale outbreaks of severe diarrhea disease in piglets in China. Unlike other porcine coronaviruses, SADS-CoV possesses broad species tissue tropism, including primary human cells, implying a significant risk of cross-species spillover. To explore host dependency factors for SADS-CoV as therapeutic targets, we employed genome-wide CRISPR knockout library screening in HeLa cells. Consistent with two independent screens, we identified the zinc finger DHHC-type palmitoyltransferase 17 (ZDHHC17 or ZD17) as an important host factor for SADS-CoV infection. Through truncation mutagenesis, we demonstrated that the DHHC domain of ZD17 that is involved in palmitoylation is important for SADS-CoV infection. Mechanistic studies revealed that ZD17 is required for SADS-CoV genomic RNA replication. Treatment of infected cells with the palmitoylation inhibitor 2-bromopalmitate (2-BP) significantly suppressed SADS-CoV infection. Our findings provide insight on SADS-CoV-host interactions and a potential therapeutic application.
Collapse
|
37
|
Zheng S, Song Q, Zhang P. Metabolic Modifications, Inflammation, and Cancer Immunotherapy. Front Oncol 2021; 11:703681. [PMID: 34631531 PMCID: PMC8497755 DOI: 10.3389/fonc.2021.703681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has accomplished significant progresses on treatment of various cancers in the past decade; however, recent studies revealed more and more heterogeneity in tumor microenvironment which cause unneglectable therapy resistance. A central phenomenon in tumor malignancy is metabolic dysfunctionality; it reprograms metabolic homeostasis in tumor and stromal cells thus affecting metabolic modifications on specific proteins. These posttranslational modifications include glycosylation and palmitoylation, which usually alter the protein localization, stability, and function. Many of these proteins participate in acute or chronic inflammation and play critical roles in tumorigenesis and progression. Therefore, targeting these metabolic modifications in immune checkpoints and inflammation provides an attractive therapeutic strategy for certain cancers. In this review, we summarize the recent progresses on metabolic modifications in this field, focus on the mechanisms on how glycosylation and palmitoylation regulate innate immune and inflammation, and we further discuss designing new immunotherapy targeting metabolic modifications. We aim to improve immunotherapy or targeted-therapy response and achieve more accurate individual therapy.
Collapse
Affiliation(s)
- Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Tang J, Peng W, Feng Y, Le X, Wang K, Xiang Q, Li L, Wang Y, Xu C, Mu J, Xu K, Ji P, Tao Q, Huang A, Deng CX, Lin Y, Xiang T. Cancer cells escape p53's tumor suppression through ablation of ZDHHC1-mediated p53 palmitoylation. Oncogene 2021; 40:5416-5426. [PMID: 34282274 PMCID: PMC8413129 DOI: 10.1038/s41388-021-01949-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
The inactivation of tumor-suppressor genes contributes heavily to oncogenesis. The mutation of TP53 has been well-studied and recognized as a major factor in the development of tumors. Yet other means of p53 inactivation has not been well-elucidated. We previously identified a hypermethylated gene ZDHHC1 that suppresses tumor growth when the expression was restored, but the specific mechanism was yet to be found. The protein product of ZDHHC1 is an S-palmitoyltransferase and we have identified p53 as a substrate for ZDHHC1-mediated palmitoylation, specifically at the C135, C176, and C275 residues. The novel form of post-translational modification of p53 is required for the nuclear translocation of the tumor suppressor. p53 recruited DNMT3A to ZDHHC1 promoter and is responsible for the hypermethylation of ZDHHC1. The epigenetic feedback loop formed by ZDHHC1 and p53 sheds light on the inactivation of p53 without the presence of genetic mutations.
Collapse
Affiliation(s)
- Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Le
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yan Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ailong Huang
- MOE Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Disease, Chongqing Medical University, Chongqing, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Yong Lin
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
39
|
Hong JY, Malgapo MIP, Liu Y, Yang M, Zhu C, Zhang X, Tolbert P, Linder ME, Lin H. High-Throughput Enzyme Assay for Screening Inhibitors of the ZDHHC3/7/20 Acyltransferases. ACS Chem Biol 2021; 16:1318-1324. [PMID: 34374518 DOI: 10.1021/acschembio.1c00258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As enzymes that mediate the attachment of long-chain fatty acids to cysteine residues, ZDHHC proteins have been reported to be promising therapeutic targets for treating cancer and autoimmune diseases. Yet, due to the lack of potent selective inhibitors, scrutiny of the biological functions of ZDHHCs has been limited. The main hindrance for developing ZDHHC inhibitors is the lack of a facile high-throughput assay. Here, we developed a ZDHHC3/7/20 high-throughput assay based on the acylation-coupled lipophilic induction of polarization (Acyl-cLIP) method and screened several potential ZDHHC inhibitors. Furthermore, we demonstrated that in vitro results from the Acyl-cLIP assay are supported by the results from cell-based assays. We envision that this new ZDHHC3/7/20 Acyl-cLIP assay will accelerate the high-throughput screening of large compound libraries for improved ZDHHC inhibitors and provide therapeutic benefits for cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Martin Ian P. Malgapo
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Yinong Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Chengliang Zhu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Patricia Tolbert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Maurine E. Linder
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
40
|
Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells 2021; 10:cells10081990. [PMID: 34440759 PMCID: PMC8393718 DOI: 10.3390/cells10081990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.
Collapse
|
41
|
Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He QJ, Yang B, Lu JJ, Zhu H. Post-translational modification of KRAS: potential targets for cancer therapy. Acta Pharmacol Sin 2021; 42:1201-1211. [PMID: 33087838 PMCID: PMC8285426 DOI: 10.1038/s41401-020-00542-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023] Open
Abstract
Aberrant activation of the RAS superfamily is one of the critical factors in carcinogenesis. Among them, KRAS is the most frequently mutated one which has inspired extensive studies for developing approaches to intervention. Although the cognition toward KRAS remains far from complete, mounting evidence suggests that a variety of post-translational modifications regulate its activation and localization. In this review, we summarize the regulatory mode of post-translational modifications on KRAS including prenylation, post-prenylation, palmitoylation, ubiquitination, phosphorylation, SUMOylation, acetylation, nitrosylation, etc. We also highlight the recent studies targeting these modifications having exhibited potent anti-tumor activities.
Collapse
Affiliation(s)
- Wei-Hua Wang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Jia Qian
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang-Jie Yan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
43
|
Yang X, Zheng E, Ma Y, Chatterjee V, Villalba N, Breslin JW, Liu R, Wu MH, Yuan SY. DHHC21 deficiency attenuates renal dysfunction during septic injury. Sci Rep 2021; 11:11146. [PMID: 34045489 PMCID: PMC8159935 DOI: 10.1038/s41598-021-89983-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Renal dysfunction is one of the most common complications of septic injury. One critical contributor to septic injury-induced renal dysfunction is renal vascular dysfunction. Protein palmitoylation serves as a novel regulator of vascular function. Here, we examined whether palmitoyl acyltransferase (PAT)-DHHC21 contributes to septic injury-induced renal dysfunction through regulating renal hemodynamics. Multispectral optoacoustic imaging showed that cecal ligation and puncture (CLP)-induced septic injury caused impaired renal excretion, which was improved in DHHC21 functional deficient (Zdhhc21dep/dep) mice. DHHC21 deficiency attenuated CLP-induced renal pathology, characterized by tissue structural damage and circulating injury markers. Importantly, DHHC21 loss-of-function led to better-preserved renal perfusion and oxygen saturation after CLP. The CLP-caused reduction in renal blood flow was also ameliorated in Zdhhc21dep/dep mice. Next, CLP promoted the palmitoylation of vascular α1-adrenergic receptor (α1AR) and the activation of its downstream effector ERK, which were blunted in Zdhhc21dep/dep mice. Vasoreactivity analysis revealed that renal arteries from Zdhhc21dep/dep mice displayed reduced constriction response to α1AR agonist phenylephrine compared to those from wild-type mice. Consistently, inhibiting PATs with 2-bromopalmitate caused a blunted vasoconstriction response to phenylephrine in small arteries isolated from human kidneys. Therefore, DHHC21 contributes to impaired renal perfusion and function during septic injury via promoting α1AR palmitoylation-associated vasoconstriction.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA. .,Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA.
| |
Collapse
|
44
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
45
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
46
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
47
|
Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Transl Psychiatry 2021; 11:65. [PMID: 33462194 PMCID: PMC7813841 DOI: 10.1038/s41398-020-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.
Collapse
|
48
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
49
|
Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol 2020; 47:34-43. [PMID: 33100085 DOI: 10.1080/1040841x.2020.1835821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) play a pivotal role in expanding functional protein diversity. During viral infection, pathogen-associated molecular patterns derived from viruses are recognized by pattern recognition receptors present in the membrane surface and the cytoplasm of infected cells, which subsequently induces the antiviral innate immunity to protect the host from the invading viruses. Fatty acylation modification is identified as a post-translation lipid modification process. Mounting evidence is presented that lipid modification functions as a novel regulatory mechanism of antiviral innate immunity. In mammalian cells, DHHC (Asp-His-His-Cys) domain is indispensable for most of the palmitoylation modification, which belongs to fatty acylation. ZDHHC family proteins are composed of 23 members in human cells. In this review, we will summarize the recent findings of the regulatory mechanism of the palmitoylation in the process of host antiviral innate immunity against viruses.
Collapse
Affiliation(s)
- Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|