1
|
Cohen JD, You D, Sharma AK, Takai T, Hara H, Sales VT, Yukawa T, Cai B. In vitro human ion channel assays predictive of drug-induced seizure. Toxicol Sci 2025; 203:253-268. [PMID: 39661496 PMCID: PMC11775423 DOI: 10.1093/toxsci/kfae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Seizure is among the most severe FDA black box warnings of neurotoxicity reported on drug labels. Gaining a better mechanistic understanding of off-targets causative of seizure will improve the identification of potential seizure risks preclinically. In the present study, we evaluated an in vitro panel of 9 investigational (Cav2.1, Cav3.2, GlyRA1, AMPA, HCN1, Kv1.1, Kv7.2/7.3, NaV1.1, Nav1.2) and 2 standard (GABA-A, NMDA) ion channel targets with strong correlative links to seizure, using automated electrophysiology. Each target was assessed with a library of 34 preclinical compounds and 10 approved drugs with known effects of convulsion in vivo and/or in patients. Cav2.1 had the highest frequency of positive hits, 20 compounds with an EC30 or IC30 ≤ 30 µM, and the highest importance score relative to the 11 targets. An additional 35 approved drugs, with categorized low to frequent seizure risk in patients, were evaluated in the Cav2.1 assay. The Cav2.1 assay predicted preclinical compounds to cause convulsion in nonclinical species with a sensitivity of 52% and specificity of 78%, and approved drugs to cause seizure in nonclinical species or in patients with a sensitivity of 48% or 54% and specificity of 71% or 78%, respectively. The integrated panel of 11 ion channel targets predicted preclinical compounds to cause convulsion in nonclinical species with a sensitivity of 68%, specificity of 56%, and accuracy of 65%. This study highlights the utility of expanding the in vitro panel of targets evaluated for seizurogenic activity, in order to reduce compound attrition early on in drug discovery.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Dahea You
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Ashok K Sharma
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Takafumi Takai
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Hideto Hara
- Drug Safety Research & Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Vicencia T Sales
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Tomoya Yukawa
- Drug Safety Research & Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Beibei Cai
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| |
Collapse
|
2
|
Wang Y, Wang F, Liu W, Geng Y, Shi Y, Tian Y, Zhang B, Luo Y, Sun X. New drug discovery and development from natural products: Advances and strategies. Pharmacol Ther 2024; 264:108752. [PMID: 39557343 DOI: 10.1016/j.pharmthera.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Natural products (NPs) have a long history as sources for drug discovery, more than half of approved drugs are related to NPs, which also exhibit multifaceted advantages in the clinical treatment of complex diseases. However, bioactivity screening of NPs, target identification, and design optimization require continuously improved strategies, the complexity of drug mechanism of action and the limitations of technological strategies pose numerous challenges to the development of new drugs. This review begins with an overview of bioactivity- and target-based drug development patterns for NPs, advances in NP screening and derivatization, and the advantages and problems of major targets such as genes and proteins. Then, target-based drugs as well as identification and validation methods are further discussed to elucidate their mechanism of action. Subsequently, the current status and development trend of the application of traditional and emerging technologies in drug discovery and development of NPs are systematically described. Finally, the collaborative strategy of multi-technology integration and multi-disciplinary intersection is emphasized for the challenges faced in the identification, optimization, activity evaluation, and clinical application of NPs. It is hoped to provide a systematic overview and inspiration for exploring new drugs from natural resources in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
3
|
Sabnis G, Hession L, Mahoney JM, Mobley A, Santos M, Kumar V. Visual detection of seizures in mice using supervised machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596520. [PMID: 38868170 PMCID: PMC11167691 DOI: 10.1101/2024.05.29.596520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Seizures are caused by abnormally synchronous brain activity that can result in changes in muscle tone, such as twitching, stiffness, limpness, or rhythmic jerking. These behavioral manifestations are clear on visual inspection and the most widely used seizure scoring systems in preclinical models, such as the Racine scale in rodents, use these behavioral patterns in semiquantitative seizure intensity scores. However, visual inspection is time-consuming, low-throughput, and partially subjective, and there is a need for rigorously quantitative approaches that are scalable. In this study, we used supervised machine learning approaches to develop automated classifiers to predict seizure severity directly from noninvasive video data. Using the PTZ-induced seizure model in mice, we trained video-only classifiers to predict ictal events, combined these events to predict an univariate seizure intensity for a recording session, as well as time-varying seizure intensity scores. Our results show, for the first time, that seizure events and overall intensity can be rigorously quantified directly from overhead video of mice in a standard open field using supervised approaches. These results enable high-throughput, noninvasive, and standardized seizure scoring for downstream applications such as neurogenetics and therapeutic discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME USA
| |
Collapse
|
4
|
Sanghai N, Vuong B, Burak Berk A, Afridi MSK, Tranmer GK. Current Small Molecule-Based Medicinal Chemistry Approaches for Neurodegeneration Therapeutics. ChemMedChem 2024; 19:e202300705. [PMID: 38329887 DOI: 10.1002/cmdc.202300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS) possess multifactorial aetiologies. In recent years, our understanding of the biochemical and molecular pathways across NDDs has increased, however, new advances in small molecule-based therapeutic strategies targeting NDDs are obscure and scarce. Moreover, NDDs have been studied for more than five decades, however, there is a paucity of drugs that can treat NDDs. Further, the highly lipoidal blood-brain barrier (BBB) limits the uptake of many therapeutic molecules into the brain and is a complicating factor in the development of new agents to treat neurodegeneration. Considering the highly complex nature of NDDs, the association of multiple risk factors, and the challenges to overcome the BBB junction, medicinal chemists have developed small organic molecule-based novel approaches to target NDDs over the last few decades, such as designing lipophilic molecules and applying prodrug strategies. Attempts have been made to utilize a multitarget approach to modulate different biochemical molecular pathways involved in NDDs, in addition to, medicinal chemists making better decisions in identifying optimized drug candidates for the central nervous system (CNS) by using web-based computational tools. To increase the clinical success of these drug candidates, an in vitro assay modeling the BBB has been utilized by medicinal chemists in the pre-clinical phase as a further screening measure of small organic molecules. Herein, we examine some of the intriguing strategies taken by medicinal chemists to design small organic molecules to combat NDDs, with the intention of increasing our awareness of neurodegenerative therapeutics.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Billy Vuong
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Ahmet Burak Berk
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | | | - Geoffrey K Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
5
|
Baker TK, Van Vleet TR, Mahalingaiah PK, Grandhi TSP, Evers R, Ekert J, Gosset JR, Chacko SA, Kopec AK. The Current Status and Use of Microphysiological Systems by the Pharmaceutical Industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary. Drug Metab Dispos 2024; 52:198-209. [PMID: 38123948 DOI: 10.1124/dmd.123.001510] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.
Collapse
Affiliation(s)
- Thomas K Baker
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.) baker_thomas_k@lilly
| | - Terry R Van Vleet
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Prathap Kumar Mahalingaiah
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Taraka Sai Pavan Grandhi
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Raymond Evers
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Jason Ekert
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - James R Gosset
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Silvi A Chacko
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Anna K Kopec
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| |
Collapse
|
6
|
Largeau B, Bergeron S, Auger F, Salmon Gandonnière C, Jonville-Béra AP, Ehrmann S, Gautier S, Bordet R. Experimental Models of Posterior Reversible Encephalopathy Syndrome: A Review From Pathophysiology to Therapeutic Targets. Stroke 2024; 55:484-493. [PMID: 38126184 DOI: 10.1161/strokeaha.123.044533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a clinical and radiological entity characterized by nonspecific symptomatology (eg, headache, visual disturbances, encephalopathy, and seizures) and classically cortical and subcortical vasogenic edema predominantly affecting the parietooccipital region. PRES etiologies are usually dichotomized into toxic PRES (eg, antineoplastic drugs, illicit drugs) and clinical condition-associated PRES (eg, acute hypertension, dysimmune disorders). Although the pathophysiology of PRES remains elusive, 2 main pathogenic hypotheses have been suggested: cerebral hyperperfusion due to acute hypertension and cerebral hypoperfusion related to endothelial dysfunction. Research into the pathogenesis of PRES has emerged through the development of animal models in the last decade. The motivation for developing a suitable PRES model is 2-fold: to fill in knowledge gaps of the pathophysiological mechanisms involved, and to open new perspectives for clinical assessment of pharmacological targets to improve therapeutic management of PRES. All current models of PRES have a hypertensive background, on which other triggers (acute hypertension, inflammatory, drug toxicity) have been added to address specific facets of PRES (eg, seizures). The initial model consisted in inducing a reduced uterine perfusion pressure that mimics preeclampsia, a leading cause of PRES. More recently, a model of stroke-prone spontaneously hypertensive rats on high-salt diet, originally developed for hypertensive small vessel disease and vascular cognitive impairment, has been studied in PRES. This review aims to discuss, depending on the research objective, the benefits and limitations of current experimental approaches and thus to define the desirable characteristics for studying the pathophysiology of PRES and developing new therapies.
Collapse
Affiliation(s)
- Bérenger Largeau
- CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France (B.L.)
| | - Sandrine Bergeron
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| | - Florent Auger
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, CHU Lille, Institut Pasteur de Lille, US 41, Unités Mixtes de Service 2014, Plateformes Lilloises en Biologie et Santé, Lille, France (F.A.)
| | - Charlotte Salmon Gandonnière
- CHRU de Tours, Service de Médecine Intensive Réanimation, réseau CRICS-TRIGGERSEP F-CRIN (Clinical Research in Intensive Care Sepsis Trial Group for Global Evaluation Research in Sepsis, a French Clinical Research Infrastructure Network) Research Network, Tours, France (C.S.G.)
| | - Annie-Pierre Jonville-Béra
- Université de Tours, Université de Nantes, INSERM, Methods in Patients-Centered Outcomes and Health Research (SPHERE), UMR 1246, CHRU de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France (A.-P.J.-B.)
| | - Stephan Ehrmann
- Université de Tours, INSERM, Centre d'étude des Pathologies Respiratoires (CEPR), UMR 1100, CHRU de Tours, Service de Médecine Intensive Réanimation, CIC 1415, réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France (S.E.)
| | - Sophie Gautier
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| | - Régis Bordet
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille Neuroscience & Cognition, Unité Mixte de Recherche (UMR) 1172, équipe Troubles Cognitifs Dégénératifs et Vasculaires, Centre Hospitalier Universitaire (CHU) de Lille, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance, France (S.B., S.G., R.B.)
| |
Collapse
|
7
|
Coltman NJ, Roberts RA, Sidaway JE. Data science in drug discovery safety: Challenges and opportunities. Exp Biol Med (Maywood) 2023; 248:1993-2000. [PMID: 38062553 PMCID: PMC10798188 DOI: 10.1177/15353702231215890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Early de-risking of drug targets and chemistry is essential to provide drug projects with the best chance of success. Target safety assessments (TSAs) use target biology, gene and protein expression data, genetic information from humans and animals, and competitor compound intelligence to understand the potential safety risks associated with modulating a drug target. However, there is a vast amount of information, updated daily that must be considered for each TSA. We have developed a data science-based approach that allows acquisition of relevant evidence for an optimal TSA. This is built on expert-led conventional and artificial intelligence-based mining of literature and other bioinformatics databases. Potential safety risks are identified according to an evidence framework, adjusted to the degree of target novelty. Expert knowledge is necessary to interpret the evidence and to take account of the nuances of drug safety, the modality, and the intended patient population for each TSA within each project. Overall, TSAs take full advantage of the most recent developments in data science and can be used within drug projects to identify and mitigate risks, helping with informed decision-making and resource management. These approaches should be used in the earliest stages of a drug project to guide decisions such as target selection, discovery chemistry options, in vitro assay choice, and end points for investigative in vivo studies.
Collapse
Affiliation(s)
| | - Ruth A Roberts
- ApconiX, Alderley Edge, Cheshire SK10 4TG, UK
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
8
|
Rockley K, Roberts R, Jennings H, Jones K, Davis M, Levesque P, Morton M. An integrated approach for early in vitro seizure prediction utilizing hiPSC neurons and human ion channel assays. Toxicol Sci 2023; 196:126-140. [PMID: 37632788 DOI: 10.1093/toxsci/kfad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.1, Nav1.2, Nav1.6, Kv7.2/7.3, Kv7.3/7.5, Kv1.1, Kv4.2, KCa4.1, Kv2.1, Kv3.1, KCa1.1, GABA α1β2γ2, nicotinic α4β2, NMDA 1/2A). These were selected based on linkage to seizure in genetic/pharmacological studies. Fourteen compounds demonstrated at least one "hit" against the seizure panel and 11 compounds inhibited 2 or more ion channels. Next, we assessed the impact of the 15 compounds on electrical signaling using human-induced pluripotent stem cell neurons in microelectrode array (MEA). The CNS active therapies (amoxapine, bupropion, chlorpromazine, clozapine, diphenhydramine, paroxetine, quetiapine) all caused characteristic changes to electrical activity in key parameters indicative of seizure such as network burst frequency and duration. The GABA antagonist picrotoxin increased all parameters, but the antibiotics amoxicillin and enoxacin only showed minimal changes. Acetaminophen, included as a negative control, caused no changes in any of the parameters assessed. Overall, pro-seizurogenic compounds showed a distinct fingerprint in the ion channel/MEA panel. These studies highlight the potential utility of an integrated in vitro approach for early seizure prediction to provide mechanistic information and to support optimal drug design in early development, saving time and resources.
Collapse
Affiliation(s)
| | - Ruth Roberts
- ApconiX, Macclesfield SK10 4TG, UK
- Department of Biosciences, University of Birmingham, Edgbaston B15 1TT, UK
| | | | | | - Myrtle Davis
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | |
Collapse
|
9
|
Sharlow ER, Llaneza DC, Tewari BP, Mingledorff GA, Mendelson AJ, Sontheimer H, Bloom GS, Lazo JS. Pharmacological profiling identifies divergent chemosensitivities of differentiating and maturing iPSC-derived human cortical neuron populations. FEBS J 2023; 290:4950-4965. [PMID: 37428551 PMCID: PMC10592385 DOI: 10.1111/febs.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Neuronal differentiation and maturation are extended developmental processes. To determine whether neurons at different developmental stages have divergent chemosensitivities, we screened differentiating and maturing neuronal populations using a small compound library comprising FDA-approved and investigational drugs. Using a neurotoxicity assay format, both respective neuronal population-based screening campaigns performed robustly (Z-factors = 0.7-0.8), although the hit rate for the differentiating neurons (2.8%) was slightly higher than for maturing neurons (1.9%). While the majority of hits were toxic to both neuronal populations, these hits predominantly represented promiscuous drugs. Other drugs were selectively neurotoxic, with receptor tyrosine kinase inhibitors disproportionally represented after confirmation. Ponatinib and amuvatinib were neuroinhibitory for differentiating and maturing neurons, respectively. Chemoinformatic analyses confirmed differences in potential drug targets that may be differentially expressed during neuronal development. Subsequent studies demonstrated neuronal expression of AXL, an amuvatinib target, in both neuronal populations. However, functional AXL activity was confirmed only in the maturing neuronal population as determined by AXL phosphorylation in response to GAS6, the cognate ligand of AXL, and concurrent STAT3Y705 phosphorylation. Differentiating neurons were unresponsive to the effects of GAS6 suggesting that the AXL-STAT3 signaling axis was nonfunctional. Amuvatinib treatment of maturing neuronal cultures significantly reduced pAXL levels. These studies indicate that neuronal developmental states may exhibit unique chemosensitivities and that drugs may have different neuro-inhibitory effects depending upon the developmental stage of the neuronal population.
Collapse
Affiliation(s)
| | - Danielle C. Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| | - Bhanu P. Tewari
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | | | - Anna J. Mendelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - George S. Bloom
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
- Department of Biology, University of Virginia, Charlottesville, VA 22904
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
10
|
Sano T, Masuda Y, Yasuno H, Shinozawa T, Watanabe T. Plasma neurofilament light chain as a potential biomarker of neurodegeneration in murine brain. Toxicol Res (Camb) 2023; 12:751-755. [PMID: 37915470 PMCID: PMC10615829 DOI: 10.1093/toxres/tfad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 11/03/2023] Open
Abstract
Reliable fluid biomarkers for evaluating neurotoxicity have yet to be established. However, recent studies have reported neurofilament light chain as a fluid biomarker of several neurodegenerative disorders. In this study, we investigated changes in the cerebrospinal fluid and plasma levels of neurofilament light chain in mice treated with trimethyltin as a neurotoxicant. Trimethyltin diluted with saline was administered by intraperitoneal injection to mice at dose levels of 0 (vehicle control), 1.0, and 2.6 mg/kg body weight (dosage volume: 10 mL/kg). At 3 or 7 days after administration, animals were euthanized by exsanguination under 2-3% isoflurane inhalation anesthesia. Increased neurofilament light chain levels in both the cerebrospinal fluid and plasma were observed in animals from the trimethyltin 2.6 mg/kg body weight group, which indicated the brain lesions including neuronal cell death. Animals from the trimethyltin 1.0 mg/kg body weight group exhibited changes neither in neurofilament light chain levels in the cerebrospinal fluid and plasma nor in the histopathology of the brain at any time point. These data indicate that plasma neurofilament light chain can serve as a useful peripheral biomarker for detecting brain lesions such as neuronal necrosis in mice.
Collapse
Affiliation(s)
- Tomoya Sano
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasushi Masuda
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironobu Yasuno
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Watanabe
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
11
|
Wang Y, Gao Y, Pan Y, Zhou D, Liu Y, Yin Y, Yang J, Wang Y, Song Y. Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharm Sin B 2023; 13:2483-2509. [PMID: 37425038 PMCID: PMC10326261 DOI: 10.1016/j.apsb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
New drug discovery is under growing pressure to satisfy the demand from a wide range of domains, especially from the pharmaceutical industry and healthcare services. Assessment of drug efficacy and safety prior to human clinical trials is a crucial part of drug development, which deserves greater emphasis to reduce the cost and time in drug discovery. Recent advances in microfabrication and tissue engineering have given rise to organ-on-a-chip, an in vitro model capable of recapitulating human organ functions in vivo and providing insight into disease pathophysiology, which offers a potential alternative to animal models for more efficient pre-clinical screening of drug candidates. In this review, we first give a snapshot of general considerations for organ-on-a-chip device design. Then, we comprehensively review the recent advances in organ-on-a-chip for drug screening. Finally, we summarize some key challenges of the progress in this field and discuss future prospects of organ-on-a-chip development. Overall, this review highlights the new avenue that organ-on-a-chip opens for drug development, therapeutic innovation, and precision medicine.
Collapse
Affiliation(s)
- Yanping Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yi Yin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Heider J, Kilian J, Garifulina A, Hering S, Langer T, Seidel T. Apo2ph4: A Versatile Workflow for the Generation of Receptor-based Pharmacophore Models for Virtual Screening. J Chem Inf Model 2023; 63:101-110. [PMID: 36526584 PMCID: PMC9832483 DOI: 10.1021/acs.jcim.2c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Pharmacophore models are widely used as efficient virtual screening (VS) filters for the target-directed enrichment of large compound libraries. However, the generation of pharmacophore models that have the power to discriminate between active and inactive molecules traditionally requires structural information about ligand-target complexes or at the very least knowledge of one active ligand. The fact that the discovery of the first known active ligand of a newly investigated target represents a major hurdle at the beginning of every drug discovery project underscores the need for methods that are able to derive high-quality pharmacophore models even without the prior knowledge of any active ligand structures. In this work, we introduce a novel workflow, called apo2ph4, that enables the rapid derivation of pharmacophore models solely from the three-dimensional structure of the target receptor. The utility of this workflow is demonstrated retrospectively for the generation of a pharmacophore model for the M2 muscarinic acetylcholine receptor. Furthermore, in order to show the general applicability of apo2ph4, the workflow was employed for all 15 targets of the recently published LIT-PCBA dataset. Pharmacophore-based VS runs using the apo2ph4-derived models achieved a significant enrichment of actives for 13 targets. In the last presented example, a pharmacophore model derived from the etomidate site of the α1β2γ2 GABAA receptor was used in VS campaigns. Subsequent in vitro testing of selected hits revealed that 19 out of 20 (95%) tested compounds were able to significantly enhance GABA currents, which impressively demonstrates the applicability of apo2ph4 for real-world drug design projects.
Collapse
Affiliation(s)
- Jörg Heider
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz
2, 1090Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090Vienna, Austria
| | - Jonas Kilian
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090Vienna, Austria
- Department
of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear
Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090Vienna, Austria
| | - Aleksandra Garifulina
- Division
of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090Vienna, Austria
| | - Steffen Hering
- Division
of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090Vienna, Austria
| | - Thierry Langer
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz
2, 1090Vienna, Austria
| | - Thomas Seidel
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz
2, 1090Vienna, Austria
| |
Collapse
|
13
|
Wang X, Kong F, Lin Z. Cromolyn prevents cerebral vasospasm and dementia by targeting WDR43. Front Aging Neurosci 2023; 15:1132733. [PMID: 37122373 PMCID: PMC10133528 DOI: 10.3389/fnagi.2023.1132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background Cerebral vasospasm (CV) can cause inflammation and damage to neuronal cells in the elderly, leading to dementia. Purpose This study aimed to investigate the genetic mechanisms underlying dementia caused by CV in the elderly, identify preventive and therapeutic drugs, and evaluate their efficacy in treating neurodegenerative diseases. Methods Genes associated with subarachnoid hemorrhage and CV were acquired and screened for differentially expressed miRNAs (DEmiRNAs) associated with aneurysm rupture. A regulatory network of DEmiRNAs and mRNAs was constructed, and virtual screening was performed to evaluate possible binding patterns between Food and Drug Administration (FDA)-approved drugs and core proteins. Molecular dynamics simulations were performed on the optimal docked complexes. Optimally docked drugs were evaluated for efficacy in the treatment of neurodegenerative diseases through cellular experiments. Results The study found upregulated genes (including WDR43 and THBS1) and one downregulated gene associated with aneurysm rupture. Differences in the expression of these genes indicate greater disease risk. DEmiRNAs associated with ruptured aortic aneurysm were identified, of which two could bind to THBS1 and WDR43. Cromolyn and lanoxin formed the best docking complexes with WDR43 and THBS1, respectively. Cellular experiments showed that cromolyn improved BV2 cell viability and enhanced Aβ42 uptake, suggesting its potential as a therapeutic agent for inflammation-related disorders. Conclusion The findings suggest that WDR43 and THBS1 are potential targets for preventing and treating CV-induced dementia in the elderly. Cromolyn may have therapeutic value in the treatment of Alzheimer's disease and dementia.
Collapse
|
14
|
Hussein M, Oberrauch S, Allobawi R, Cornthwaite-Duncan L, Lu J, Sharma R, Baker M, Li J, Rao GG, Velkov T. Untargeted Metabolomics to Evaluate Polymyxin B Toxicodynamics following Direct Intracerebroventricular Administration into the Rat Brain. Comput Struct Biotechnol J 2022; 20:6067-6077. [DOI: 10.1016/j.csbj.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
|
15
|
Chunduri V, Maddi S. Role of in vitro two-dimensional (2D) and three-dimensional (3D) cell culture systems for ADME-Tox screening in drug discovery and development: a comprehensive review. ADMET & DMPK 2022; 11:1-32. [PMID: 36778905 PMCID: PMC9909725 DOI: 10.5599/admet.1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Drug discovery and development have become a very time-consuming and expensive process. Preclinical animal models have become the gold standard for studying drug pharmacokinetic and toxicity parameters. However, the involvement of a huge number of animal subjects and inter-species pathophysiological variations between animals and humans has provoked a lot of debate, particularly because of ethical concerns. Although many efforts are being established by biotech and pharmaceutical companies for screening new chemical entities in vitro before preclinical trials, failures during clinical trials are still involved. Currently, a large number of two- dimensional (2D) in vitro assays have been developed and are being developed by researchers for the screening of compounds. Although these assays are helpful in screening a huge library of compounds and have shown perception, there is a significant lack in predicting human Absorption, Distribution, Metabolism, Excretion and Toxicology (ADME-Tox). As a result, these assays cannot completely replace animal models. The recent inventions in three-dimensional (3D) cell culture-based assays like organoids and micro-physiological systems have shown great potential alternative tools for predicting the compound pharmacokinetic and pharmacodynamic fate in humans. In this comprehensive review, we have summarized some of the most commonly used 2D in vitro assays and emphasized the achievements in next-generation 3D cell culture-based systems for predicting the compound ADME-Tox.
Collapse
|
16
|
Affiliation(s)
| | - Jennifer D Cohen
- Jennifer D. Cohen, Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121-1964, USA. E-mail:
| | | | - Lauren Lewis
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Lei Shen
- Data Science Institute, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
High-content analysis and Kinetic Image Cytometry identify toxicity and epigenetic effects of HIV antiretrovirals on human iPSC-neurons and primary neural precursor cells. J Pharmacol Toxicol Methods 2022; 114:107157. [PMID: 35143957 PMCID: PMC9103414 DOI: 10.1016/j.vascn.2022.107157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite viral suppression due to combination antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) continue to affect half of people with HIV, suggesting that certain antiretrovirals (ARVs) may contribute to HAND. METHODS We examined the effects of nucleoside/nucleotide reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) and the integrase inhibitors dolutegravir (DTG) and elvitegravir (EVG) on viability, structure, and function of glutamatergic neurons (a subtype of CNS neuron involved in cognition) derived from human induced pluripotent stem cells (hiPSC-neurons), and primary human neural precursor cells (hNPCs), which are responsible for neurogenesis. RESULTS Using automated digital microscopy and image analysis (high content analysis, HCA), we found that DTG, EVG, and TDF decreased hiPSC-neuron viability, neurites, and synapses after 7 days of treatment. Analysis of hiPSC-neuron calcium activity using Kinetic Image Cytometry (KIC) demonstrated that DTG and EVG also decreased the frequency and magnitude of intracellular calcium transients. Longer ARV exposures and simultaneous exposure to multiple ARVs increased the magnitude of these neurotoxic effects. Using the Microscopic Imaging of Epigenetic Landscapes (MIEL) assay, we found that TDF decreased hNPC viability and changed the distribution of histone modifications that regulate chromatin packing, suggesting that TDF may reduce neuroprogenitor pools important for CNS development and maintenance of cognition in adults. CONCLUSION This study establishes human preclinical assays that can screen potential ARVs for CNS toxicity to develop safer cART regimens and HAND therapeutics.
Collapse
|
18
|
Any behavioral change may have physiological significance: Benign neglect in tier I neurotoxicity testing. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Matsui T, Shinozawa T. Human Organoids for Predictive Toxicology Research and Drug Development. Front Genet 2021; 12:767621. [PMID: 34790228 PMCID: PMC8591288 DOI: 10.3389/fgene.2021.767621] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organoids are three-dimensional structures fabricated in vitro from pluripotent stem cells or adult tissue stem cells via a process of self-organization that results in the formation of organ-specific cell types. Human organoids are expected to mimic complex microenvironments and many of the in vivo physiological functions of relevant tissues, thus filling the translational gap between animals and humans and increasing our understanding of the mechanisms underlying disease and developmental processes. In the last decade, organoid research has attracted increasing attention in areas such as disease modeling, drug development, regenerative medicine, toxicology research, and personalized medicine. In particular, in the field of toxicology, where there are various traditional models, human organoids are expected to blaze a new path in future research by overcoming the current limitations, such as those related to differences in drug responses among species. Here, we discuss the potential usefulness, limitations, and future prospects of human liver, heart, kidney, gut, and brain organoids from the viewpoints of predictive toxicology research and drug development, providing cutting edge information on their fabrication methods and functional characteristics.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
20
|
Whole brain in vivo neuropathology: Imaging site-specific changes in brain structure over time following trimethyltin exposure in rats. Toxicol Lett 2021; 352:54-60. [PMID: 34600096 DOI: 10.1016/j.toxlet.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
Presented is a diffusion weighted imaging protocol with measures of apparent diffusion coefficient which when registered to a 3D MRI rat brain atlas provides site-specific information on 173 different brain areas. This protocol coined "in vivo neuropathology" was used to follow the progressive neurotoxic effects of trimethyltin on global gray matter microarchitecture. Four rats were given an IP injection of 7 mg/kg of the neurotoxin trimethyltin and imaged for changes in water diffusivity at 3- and 7-days post injections. At 3 days, there was a significant decrease in apparent diffusion coefficient, a proxy for cytotoxic edema, in several cortical areas and cerebellum. At 7 days the level of injury expanded to include most of the cerebral cortex, hippocampus, olfactory system, and cerebellum/brainstem corroborating much of the work done with traditional histopathology. Analysis is achieved with a minimum number of rats adhering to the laws and regulations around the humane care and use of laboratory animals, providing an alternative to the traditional tests for assessing drug neurotoxicity. "In vivo neuropathology" can minimize the cost, expedite the process, and identify subtle changes in site-specific brain microarchitecture across the entire brain.
Collapse
|
21
|
Sano T, Masuda Y, Yasuno H, Shinozawa T, Watanabe T, Kakehi M. Blood Neurofilament Light Chain as a Potential Biomarker for Central and Peripheral Nervous Toxicity in Rats. Toxicol Sci 2021; 185:10-18. [PMID: 34677616 PMCID: PMC8714368 DOI: 10.1093/toxsci/kfab122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotoxicity is a principal concern in nonclinical drug development. However, standardized and universally accepted fluid biomarkers for evaluating neurotoxicity are lacking. Increasing clinical evidence supports the potential use of neurofilament light (NfL) chain as a biomarker of several neurodegenerative diseases; therefore, we investigated changes in the cerebrospinal fluid (CSF) and serum levels of NfL in Sprague Dawley rats treated with central nervous system (CNS) toxicants (trimethyltin [TMT, 10 mg/kg po, single dose], kainic acid [KA, 12 mg/kg sc, single dose], MK-801 [1 mg/kg sc, single dose]), and a peripheral nervous system (PNS) toxicant (pyridoxine, 1200 mg/kg/day for 3 days). Animals were euthanized 1 (day 2), 3 (day 4), or 7 days after administration (day 8). Increased serum NfL was observed in TMT- and KA-treated animals, which indicated neuronal cell death in the brain on days 2, 4, and/or 8. MK-801-treated animals exhibited no changes in the serum and CSF levels of NfL and no histopathological changes in the brain at any time point. Pyridoxine-induced chromatolysis of the dorsal root ganglion on day 2 and degeneration of peripheral nerve fiber on day 4; additionally, serum NfL was increased. A strong correlation was observed between the serum and CSF levels of NfL and brain lesions caused by TMT and KA, indicating that NfL could be a useful biomarker for detecting CNS toxicity. Additionally, PNS changes were correlated with serum NfL levels. Therefore, serum NfL could serve as a useful peripheral biomarker for detecting both CNS and PNS toxicity in rats.
Collapse
Affiliation(s)
- Tomoya Sano
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yasushi Masuda
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hironobu Yasuno
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takeshi Watanabe
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masaaki Kakehi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
22
|
Augusto-Oliveira M, Arrifano GDP, Lopes-Araújo A, Santos-Sacramento L, Lima RR, Lamers ML, Le Blond J, Crespo-Lopez ME. Salivary biomarkers and neuropsychological outcomes: A non-invasive approach to investigate pollutants-associated neurotoxicity and its effects on cognition in vulnerable populations. ENVIRONMENTAL RESEARCH 2021; 200:111432. [PMID: 34062204 DOI: 10.1016/j.envres.2021.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of neurotoxicity caused by xenobiotics such as pesticides (dichlorodiphenyltrichloroethane, organophosphates, pyrethroids, etc.) or metals (mercury, lead, aluminum, arsenic, etc.) is a growing concern around the world, particularly in vulnerable populations with difficulties on both detection and symptoms treatment, due to low economic status, remote access, poor infrastructure, and low educational level, among others features. Despite the numerous molecular markers and questionnaires/clinical evaluations, studying neurotoxicity and its effects on cognition in these populations faces problems with samples collection and processing, and information accuracy. Assessing cognitive changes caused by neurotoxicity, especially those that are subtle in the initial stages, is fundamentally challenging. Finding accurate, non-invasive, and low-cost strategies to detect the first signals of brain injury has the potential to support an accelerated development of the research with these populations. Saliva emerges as an ideal pool of biomarkers (with interleukins and neural damage-related proteins, among others) and potential alternative diagnostic fluid to molecularly investigate neurotoxicity. As a source of numerous neurological biomarkers, saliva has several advantages compared to blood, such as easier storage, requires less manipulation, and the procedure is cheaper, safer and well accepted by patients compared with drawing blood. Regarding cognitive dysfunction, neuropsychological batteries represent, with their friendly interface, a feasible and accurate method to evaluate the eventual cognitive deficits associated with neurotoxicity in people from diverse cultural and educational backgrounds. The association of these two tools, saliva and neuropsychological batteries, to cover the molecular and cognitive aspects of neurotoxicity in vulnerable populations, could potentially increase the prevalence of early intervention and successful treatment.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Letícia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Rafael Rodrigues Lima
- Laboratório de Biologia Estrutural e Funcional, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
| | | | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
23
|
Benn CL, Gibson KR, Reynolds DS. Drugging DNA Damage Repair Pathways for Trinucleotide Repeat Expansion Diseases. J Huntingtons Dis 2021; 10:203-220. [PMID: 32925081 PMCID: PMC7990437 DOI: 10.3233/jhd-200421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA damage repair (DDR) mechanisms have been implicated in a number of neurodegenerative diseases (both genetically determined and sporadic). Consistent with this, recent genome-wide association studies in Huntington’s disease (HD) and other trinucleotide repeat expansion diseases have highlighted genes involved in DDR mechanisms as modifiers for age of onset, rate of progression and somatic instability. At least some clinical genetic modifiers have been shown to have a role in modulating trinucleotide repeat expansion biology and could therefore provide new disease-modifying therapeutic targets. In this review, we focus on key considerations with respect to drug discovery and development using DDR mechanisms as a target for trinucleotide repeat expansion diseases. Six areas are covered with specific reference to DDR and HD: 1) Target identification and validation; 2) Candidate selection including therapeutic modality and delivery; 3) Target drug exposure with particular focus on blood-brain barrier penetration, engagement and expression of pharmacology; 4) Safety; 5) Preclinical models as predictors of therapeutic efficacy; 6) Clinical outcome measures including biomarkers.
Collapse
Affiliation(s)
- Caroline L Benn
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House, Discovery Park, Sandwich, Kent, UK
| | - David S Reynolds
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
24
|
Roberts R, Authier S, Mellon RD, Morton M, Suzuki I, Tjalkens RB, Valentin JP, Pierson JB. Can We Panelize Seizure? Toxicol Sci 2021; 179:3-13. [PMID: 33165543 DOI: 10.1093/toxsci/kfaa167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seizure liability remains a significant cause of attrition in drug discovery and development, leading to loss of competitiveness, delays, and increased costs. Current detection methods rely on observations made in in vivo studies intended to support clinical trials, such as tremors or other abnormal movements. These signs could be missed or misinterpreted; thus, definitive confirmation of drug-induced seizure requires a follow-up electroencephalogram study. There has been progress in in vivo detection of seizure using automated video systems that record and analyze animal movements. Nonetheless, it would be preferable to have earlier prediction of seizurogenic risk that could be used to eliminate liabilities early in discovery while there are options for medicinal chemists making potential new drugs. Attrition due to cardiac adverse events has benefited from routine early screening; could we reduce attrition due to seizure using a similar approach? Specifically, microelectrode arrays could be used to detect potential seizurogenic signals in stem-cell-derived neurons. In addition, there is clear evidence implicating neuronal voltage-gated and ligand-gated ion channels, GPCRs and transporters in seizure. Interactions with surrounding glial cells during states of stress or inflammation can also modulate ion channel function in neurons, adding to the challenge of seizure prediction. It is timely to evaluate the opportunity to develop an in vitro assessment of seizure linked to a panel of ion channel assays that predict seizure, with the aim of influencing structure-activity relationship at the design stage and eliminating compounds predicted to be associated with pro-seizurogenic state.
Collapse
Affiliation(s)
- Ruth Roberts
- ApconiX, Alderley Park, SK10 4TG, UK.,University of Birmingham, B15 2SD, UK
| | | | - R Daniel Mellon
- US Food and Drug Administration, Silver Spring, Maryland 20993
| | | | - Ikuro Suzuki
- Tohoku Institute of Technology, Sendai, 980-8577, Japan
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Early Solutions, Development Science, Investigative Toxicology, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005
| |
Collapse
|
25
|
Loser D, Schaefer J, Danker T, Möller C, Brüll M, Suciu I, Ückert AK, Klima S, Leist M, Kraushaar U. Human neuronal signaling and communication assays to assess functional neurotoxicity. Arch Toxicol 2021; 95:229-252. [PMID: 33269408 PMCID: PMC7811517 DOI: 10.1007/s00204-020-02956-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Prediction of drug toxicity on the human nervous system still relies mainly on animal experiments. Here, we developed an alternative system allowing assessment of complex signaling in both individual human neurons and on the network level. The LUHMES cultures used for our approach can be cultured in 384-well plates with high reproducibility. We established here high-throughput quantification of free intracellular Ca2+ concentrations [Ca2+]i as broadly applicable surrogate of neuronal activity and verified the main processes by patch clamp recordings. Initially, we characterized the expression pattern of many neuronal signaling components and selected the purinergic receptors to demonstrate the applicability of the [Ca2+]i signals for quantitative characterization of agonist and antagonist responses on classical ionotropic neurotransmitter receptors. This included receptor sub-typing and the characterization of the anti-parasitic drug suramin as modulator of the cellular response to ATP. To exemplify potential studies on ion channels, we characterized voltage-gated sodium channels and their inhibition by tetrodotoxin, saxitoxin and lidocaine, as well as their opening by the plant alkaloid veratridine and the food-relevant marine biotoxin ciguatoxin. Even broader applicability of [Ca2+]i quantification as an end point was demonstrated by measurements of dopamine transporter activity based on the membrane potential-changing activity of this neurotransmitter carrier. The substrates dopamine or amphetamine triggered [Ca2+]i oscillations that were synchronized over the entire culture dish. We identified compounds that modified these oscillations by interfering with various ion channels. Thus, this new test system allows multiple types of neuronal signaling, within and between cells, to be assessed, quantified and characterized for their potential disturbance.
Collapse
Affiliation(s)
- Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Jasmin Schaefer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
| | | | - Clemens Möller
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Anna-Katharina Ückert
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Stefanie Klima
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany.
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| |
Collapse
|
26
|
Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR. Blood-Brain Barrier Permeability of Asiaticoside, Madecassoside and Asiatic Acid in Porcine Brain Endothelial Cell Model. J Pharm Sci 2020; 110:698-706. [PMID: 32949562 DOI: 10.1016/j.xphs.2020.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10-6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Jafri Malin Abdullah
- Brain and Behaviour Cluster, Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | | | - Siti R Yusof
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
27
|
Ballesteros C, Pouliot M, Froment R, Maghezzi MS, St-Jean C, Li C, Paquette D, Authier S. Cerebrospinal Fluid Characterization in Cynomolgus Monkeys, Beagle Dogs, and Göttingen Minipigs. Int J Toxicol 2020; 39:124-130. [PMID: 32066300 PMCID: PMC7079291 DOI: 10.1177/1091581820905092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrathecal administration is an important route for drug delivery, and in pharmacology and toxicology studies, cerebrospinal fluid (CSF) collection and analysis is required for evaluating blood–brain barrier penetration and central nervous system exposure. The characteristics of CSF in commonly used nonrodent models are lacking. The purpose of this study is to evaluate and provide some insights into normal cellular and biochemical composition of CSF as well as diffusion potential following intrathecal injection across several nonrodent species. Cerebrospinal fluid samples were collected from the cerebellomedullary cistern of beagle dogs, cynomolgus monkeys, and Göttingen minipigs and analyzed for clinical chemistry and cytological evaluation. Diffusion into the intrathecal space following intrathecal injection was assessed following administration of a contrast agent using fluoroscopy. The predominant cell types identified in CSF samples were lymphocytes and monocytoid cells; however, lymphocytes were represented in a higher percentage in dogs and monkeys as opposed to monocytoid cells in minipigs. Clinical chemistry parameters in CSF revealed higher Cl− concentrations than plasma, but lower K+, Ca2+, phosphorus, glucose, creatinine, and total protein levels consistent across all 3 species. Diffusion rates following intrathecal injection of iodixanol showed some variability with dogs, showing the greatest diffusion distance; however, the longest diffusion time through the intervertebral space, followed by monkeys and minipigs. Minimal diffusion was observed in minipigs, which could have been attributed to anatomical spinal constraints that have been previously identified in this species.
Collapse
Affiliation(s)
| | | | - Rémi Froment
- Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| | | | - Camille St-Jean
- Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| | - Christian Li
- Charles River Laboratories Laval, Quebec, Canada
| | | | - Simon Authier
- Charles River Laboratories Laval, Quebec, Canada.,Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
28
|
Mina SG, Alaybeyoglu B, Murphy WL, Thomson JA, Stokes CL, Cirit M. Assessment of Drug-Induced Toxicity Biomarkers in the Brain Microphysiological System (MPS) Using Targeted and Untargeted Molecular Profiling. Front Big Data 2019; 2:23. [PMID: 33693346 PMCID: PMC7931859 DOI: 10.3389/fdata.2019.00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Early assessment of adverse drug effects in humans is critical to avoid long-lasting harm. However, current approaches for early detection of adverse effects still lack predictive and organ-specific biomarkers to evaluate undesired responses in humans. Microphysiological systems (MPSs) are in vitro representations of human tissues and provide organ-specific translational insights for physiological processes. In this study, a brain MPS was utilized to assess molecular signatures of neurotoxic and non-neurotoxic compounds using targeted and untargeted molecular approaches. The brain MPS comprising of human embryonic stem (ES) cell-derived neural progenitor cells seeded on three-dimensional (3D), chemically defined, polyethylene glycol hydrogels was treated with the neurotoxic drug, bortezomib and the non-neurotoxic drug, tamoxifen over 14-days. Possible toxic effects were monitored with human N-acetylaspartic acid (NAA) kinetics, which correlates the neuronal function/health and DJ-1/PARK7, an oxidative stress biomarker. Changes in NAA levels were observed as early as 2-days post-bortezomib treatment, while onset detection of oxidative stress (DJ-1) was delayed until 4-days post-treatment. Separately, the untargeted extracellular metabolomics approach revealed distinct fingerprints 2-days post-bortezomib treatment as perturbations in cysteine and glycerophospholipid metabolic pathways. These results suggest accumulation of reactive oxygen species associated with oxidative stress, and disruption of membrane structure and integrity. The NAA response was strongly correlated with changes in a subset of the detected metabolites at the same time point 2-days post-treatment. Moreover, these metabolite changes correlated strongly with DJ-1 levels measured at the later time point (4-days post-treatment). This suggests that early cellular metabolic dysfunction leads to later DJ-1 leakage and cell death, and that early measurement of this subset of metabolites could predict the later occurrence of cell death. While the approach demonstrated here provides an individual case study for proof of concept, we suggest that this approach can be extended for preclinical toxicity screening and biomarker discovery studies.
Collapse
Affiliation(s)
- Sara G. Mina
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Begum Alaybeyoglu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - James A. Thomson
- Regenerative Biology, The Morgridge Institute for Research, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | | | - Murat Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
29
|
Kwan TOC, Reis R, Siligardi G, Hussain R, Cheruvara H, Moraes I. Selection of Biophysical Methods for Characterisation of Membrane Proteins. Int J Mol Sci 2019; 20:E2605. [PMID: 31137900 PMCID: PMC6566885 DOI: 10.3390/ijms20102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Abstract
Over the years, there have been many developments and advances in the field of integral membrane protein research. As important pharmaceutical targets, it is paramount to understand the mechanisms of action that govern their structure-function relationships. However, the study of integral membrane proteins is still incredibly challenging, mostly due to their low expression and instability once extracted from the native biological membrane. Nevertheless, milligrams of pure, stable, and functional protein are always required for biochemical and structural studies. Many modern biophysical tools are available today that provide critical information regarding to the characterisation and behaviour of integral membrane proteins in solution. These biophysical approaches play an important role in both basic research and in early-stage drug discovery processes. In this review, it is not our objective to present a comprehensive list of all existing biophysical methods, but a selection of the most useful and easily applied to basic integral membrane protein research.
Collapse
Affiliation(s)
- Tristan O C Kwan
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Rosana Reis
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Harish Cheruvara
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
30
|
Çakır M, Sabah-Özcan S, Saçmacı H. Increased level of plasma salusin-α and salusin-β in patients with multiple sclerosis. Mult Scler Relat Disord 2019; 30:76-80. [DOI: 10.1016/j.msard.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 11/16/2022]
|