1
|
Murphy M, Jones R, dos Santos A, Adeyemi M, Caulfield C. A Novel Method to Sterilize Isolators for the Housing of Germ-Free Birds and Production of Germ-Free Eggs. APPLIED BIOSAFETY 2025; 30:19-28. [PMID: 40151387 PMCID: PMC11937807 DOI: 10.1089/apb.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Introduction The effective sterilization of isolators prior to placement of germ-free birds/eggs is crucial to ensuring that the environment is free of potential contaminants. With the use of formaldehyde for sterilization becoming less popular owing to its carcinogenicity, the need for an alternative agent with the same efficacy is essential in the preparation of isolators. Chlorine dioxide dry gas has previously been shown to be a highly effective sterilization method, providing a promising alternative for germ-free avian egg facilities. Methods Polyvinyl chloride (PVC; n = 32) and stainless-steel production isolators (n = 7) were sterilized using approximately 4 h of exposure to chlorine dioxide (PVC isolator) and after approximately 6 h of exposure to chlorine dioxide (stainless-steel production isolator). Results Each isolator type was sterilized effectively using chlorine dioxide. Samples collected for microbiological analysis from the isolators after sterilization confirmed that the isolators were sterilized and remained sterile for at least 3 weeks after sterilization. Discussion The results of this study highlight the first use of chlorine dioxide dry gas for germ-free avian sterilization practices, augmenting on its use as a fogging agent seen in germ-free mice practices. As described in previous animal laboratory studies, values >1440 ppm-h cycle achieved in this study provided consistently adequate antimicrobial efficacy for the sterilization of germ-free egg facilities. Conclusion Chlorine dioxide dry gas is a highly effective sterilization solution for germ-free avian egg facilities, providing long-lasting sterility to isolators without the safety concerns associated with other fumigants such as formaldehyde.
Collapse
Affiliation(s)
| | - Rhys Jones
- Serosep UK Limited, Crawley, United Kingdom
| | | | | | | |
Collapse
|
2
|
Tancock-Jones R, Cole B, Martens J, Heckenberg A, Rattenbury S. Chlorine Dioxide Dry Gas: A Promising Solution for Effective Decontamination of Cephalosporin Compounds. APPLIED BIOSAFETY 2024; 29:232-240. [PMID: 39735405 PMCID: PMC11669758 DOI: 10.1089/apb.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Introduction Cephalosporins can trigger hypersensitivity reactions in certain individuals. Consequently, strict regulations restrict the production of non-beta-lactam substances during or after cephalosporin manufacturing. Dry chlorine dioxide gas (dClO2), together with ultra-performance liquid chromatography Mass spectrometry/mass spectrometry (UPLC-MS/MS) detection methods, has emerged as a promising method for decontaminating cephalosporin compounds. This study aimed to assess whether a standardized dClO2 and testing protocol could provide successful decontamination of a broad spectrum of cephalosporins while also providing an indicative assessment of degradants and their biological activity. Methods Chemical indicators (CIs) mimicking different surfaces (stainless steel, Perspex®, aluminum) were contaminated with 1 μg/cm2 of each cephalosporin and exposed to 9600 ppm-h of dClO2, followed by UPLC-MS/MS analysis (phase 1). Cephalosporins underwent degradation assessment after exposure to ClO2 in an aqueous solution (phase 2). In total, 100μg of each compound was subjected to 400 ppm of dClO2 for 24 h (9600 ppm-h), followed by UPLC-MS/MS analysis. Antimicrobial susceptibility disks (30 μg) of cefaclor underwent identical treatment cycles and UPLC-MS/MS analysis. Subsequently, these disks were placed in Escherichia coli cultures to evaluate the biological activities of the degradants. Results The 9600 ppm-h of ClO2 exposure effectively degraded all cephalosporin compounds to levels <0.002 μg/cm2 on surfaces (phase 1), <2 ppb in solution, and <0.02 μg/disk (phase 2). The antimicrobial efficacy of cefaclor was nullified after the same exposure, confirming complete inactivation of the degradants. Conclusion A decontamination protocol utilizing dClO2, combined with UPLC-MS/MS and biological activity testing, has significant potential to enable facility repurposing for the production of non-beta-lactam compounds.
Collapse
Affiliation(s)
| | - Brett Cole
- Association for Biosafety for Australia and New Zealand (ABSANZ), Victoria, Australia
| | | | - Allan Heckenberg
- Association for Biosafety for Australia and New Zealand (ABSANZ), Victoria, Australia
| | | |
Collapse
|
3
|
Ly YT, Leuko S, Moeller R. An overview of the bacterial microbiome of public transportation systems-risks, detection, and countermeasures. Front Public Health 2024; 12:1367324. [PMID: 38528857 PMCID: PMC10961368 DOI: 10.3389/fpubh.2024.1367324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
When we humans travel, our microorganisms come along. These can be harmless but also pathogenic, and are spread by touching surfaces or breathing aerosols in the passenger cabins. As the pandemic with SARS-CoV-2 has shown, those environments display a risk for infection transmission. For a risk reduction, countermeasures such as wearing face masks and distancing were applied in many places, yet had a significant social impact. Nevertheless, the next pandemic will come and additional countermeasures that contribute to the risk reduction are needed to keep commuters safe and reduce the spread of microorganisms and pathogens, but also have as little impact as possible on the daily lives of commuters. This review describes the bacterial microbiome of subways around the world, which is mainly characterized by human-associated genera. We emphasize on healthcare-associated ESKAPE pathogens within public transport, introduce state-of-the art methods to detect common microbes and potential pathogens such as LAMP and next-generation sequencing. Further, we describe and discuss possible countermeasures that could be deployed in public transportation systems, as antimicrobial surfaces or air sterilization using plasma. Commuting in public transport can harbor risks of infection. Improving the safety of travelers can be achieved by effective detection methods, microbial reduction systems, but importantly by hand hygiene and common-sense hygiene guidelines.
Collapse
Affiliation(s)
| | | | - Ralf Moeller
- Department of Radiation Biology, Institute for Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
4
|
van der Starre CM, Cremers-Pijpers SAJ, van Rossum C, Bowles EC, Tostmann A. The in situ efficacy of whole room disinfection devices: a literature review with practical recommendations for implementation. Antimicrob Resist Infect Control 2022; 11:149. [PMID: 36471395 PMCID: PMC9724435 DOI: 10.1186/s13756-022-01183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Terminal cleaning and disinfection of hospital patient rooms must be performed after discharge of a patient with a multidrug resistant micro-organism to eliminate pathogens from the environment. Terminal disinfection is often performed manually, which is prone to human errors and therefore poses an increased infection risk for the next patients. Automated whole room disinfection (WRD) replaces or adds on to the manual process of disinfection and can contribute to the quality of terminal disinfection. While the in vitro efficacy of WRD devices has been extensively investigated and reviewed, little is known about the in situ efficacy in a real-life hospital setting. In this review, we summarize available literature on the in situ efficacy of WRD devices in a hospital setting and compare findings to the in vitro efficacy of WRD devices. Moreover, we offer practical recommendations for the implementation of WRD devices. METHODS The in situ efficacy was summarized for four commonly used types of WRD devices: aerosolized hydrogen peroxide, H2O2 vapour, ultraviolet C and pulsed xenon ultraviolet. The in situ efficacy was based on environmental and clinical outcome measures. A systematic literature search was performed in PubMed in September 2021 to identify available literature. For each disinfection system, we summarized the available devices, practical information, in vitro efficacy and in situ efficacy. RESULTS In total, 54 articles were included. Articles reporting environmental outcomes of WRD devices had large variation in methodology, reported outcome measures, preparation of the patient room prior to environmental sampling, the location of sampling within the room and the moment of sampling. For the clinical outcome measures, all included articles reported the infection rate. Overall, these studies consistently showed that automated disinfection using any of the four types of WRD is effective in reducing environmental and clinical outcomes. CONCLUSION Despite the large variation in the included studies, the four automated WRD systems are effective in reducing the amount of pathogens present in a hospital environment, which was also in line with conclusions from in vitro studies. Therefore, the assessment of what WRD device would be most suitable in a specific healthcare setting mostly depends on practical considerations.
Collapse
Affiliation(s)
- Caroline M. van der Starre
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Suzan A. J. Cremers-Pijpers
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Carsten van Rossum
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Edmée C. Bowles
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Alma Tostmann
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Aerosolized Hydrogen Peroxide Decontamination of N95 Respirators, with Fit-Testing and Viral Inactivation, Demonstrates Feasibility for Reuse during the COVID-19 Pandemic. mSphere 2022; 7:e0030322. [PMID: 36040048 PMCID: PMC9599425 DOI: 10.1128/msphere.00303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.
Collapse
|
6
|
Falaise C, Bouvattier C, Larigauderie G, Lafontaine V, Berchebru L, Marangon A, Vaude-Lauthier V, Raynaud F, Taysse L. Hydrogen Peroxide Vapor Decontamination of Hazard Group 3 Bacteria and Viruses in a Biosafety Level 3 Laboratory. APPLIED BIOSAFETY 2022; 27:15-22. [PMID: 36032319 PMCID: PMC9402245 DOI: 10.1089/apb.2021.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aim This study aimed to validate the efficacy of hydrogen peroxide vapor (HPV) decontamination technology set up in a biosafety level 3 (BSL-3) laboratory on surrogates and hazard group 3 (HG3) agents. Methods and Results The HPV decontamination system (Bioquell) was assessed with both qualitative and quantitative methods on (1) spore surrogates (Geobacillus stearothermophilus, Bacillus atrophaeus, and Bacillus thuringiensis) in the BSL-3 laboratory and in the material airlock and on (2) HG3 agents (Bacillus anthracis; SARS-CoV-2, Venezuelan equine encephalitis virus [VEE], and Vaccinia virus) in the BSL-3 laboratory. Other HG3 bacteria likely to be handled in the BSL-3 laboratory (Yersinia pestis, Burkholderia mallei, Brucella melitensis, and Francisella tularensis) were excluded from the HPV decontamination assays as preliminary viability tests demonstrated the total inactivation of these agents after 48 h drying on different materials. Conclusions The efficacy of HPV decontamination was validated with a reduction in viability of 5-7 log10 for the spores (surrogates and B. anthracis), and for the enveloped RNA viruses. Vaccinia showed a higher resistance to the decontamination process, being dependent on the biological indicator location in the BSL-3 laboratory.
Collapse
Affiliation(s)
- Charlotte Falaise
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Cécile Bouvattier
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Guilhem Larigauderie
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Valérie Lafontaine
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Laurent Berchebru
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Audrey Marangon
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Valérie Vaude-Lauthier
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Françoise Raynaud
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| | - Laurent Taysse
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, Vert-le-Petit, France
| |
Collapse
|
7
|
Henneman JR, McQuade EA, Sullivan RR, Downard J, Thackrah A, Hislop M. Analysis of Range and Use of a Hybrid Hydrogen Peroxide System for Biosafety Level 3 and Animal Biosafety Level 3 Agriculture Laboratory Decontamination. APPLIED BIOSAFETY 2022; 27:7-14. [PMID: 36032318 PMCID: PMC9402250 DOI: 10.1089/apb.2021.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Introduction The applications of fumigation and the challenges that high-containment facilities face in achieving effective large volume decontamination are well understood. The Biosecurity Research Institute at Kansas State University sought to evaluate a novel system within their biosafety level 3 (BSL-3) and animal biosafety level 3 agriculture (ABSL-3Ag) facility. Methods The system chosen for this study is the CURIS® Hybrid Hydrogen PeroxideTM (HHPTM) system, comprising a mobile 36-pound (16 kg) device delivering a proprietary 7% hydrogen peroxide (H2O2) solution. To examine the system's efficacy in multiple laboratory settings, two BSL-3 laboratories (2,281 [65 m3] and 4,668 ft3 [132 m3]) with dropped ceiling interstitial spaces and an ABSL-3Ag necropsy suite (44,212 ft3 [1,252 m3]) with 21-foot (6.4 m) ceilings were selected. Biological indicators (BIs) of Geobacillus stearothermophilus (1.7 × 106 organisms) on steel spore carriers and H2O2 chemical indicators (CIs) were used to provide validation. Results After cycle optimization, the smaller laboratory had a total of 60 BIs over two treatments that demonstrated a greater than 6-log reduction of bacterial spores. The larger laboratory (192 BIs) and the necropsy suite (206 BIs) had no BIs positive for spore growth when incubated at 60°C for 24 h per manufacturer's specifications. Conclusion Overall successful results through multiple components of this study demonstrate that the HHP device, paired with the pulsed 7% H2O2 solution, achieved efficacy regardless of variables in laboratory size and layout. Perceived challenges such as 21-ft (6.4 m) ceiling heights, active equipment, and difficult to access ceiling interstitial spaces proved unfounded. Given the successful sterilization of all challenged BIs, the HHP system presents a useful alternative for high level decontamination within BSL-3 and ABSL-3Ag facilities.
Collapse
Affiliation(s)
- John R. Henneman
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | | | - Rachael R. Sullivan
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Jen Downard
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Ashley Thackrah
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Meaghan Hislop
- Department of Science and Research, CURIS System, Oviedo, Florida, USA
| |
Collapse
|
8
|
Automated room decontamination: report of a Healthcare Infection Society Working Party. J Hosp Infect 2022; 124:97-120. [DOI: 10.1016/j.jhin.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/24/2023]
|
9
|
Bailey C, Makison-Booth C, Farrant J, Beswick A, Chewins J, Eimstad M, Heyerdahl F, Crook B. Validation of the Decontamination of a Specialist Transport System for Patients with High Consequence Infectious Diseases. Microorganisms 2021; 9:2575. [PMID: 34946176 PMCID: PMC8705707 DOI: 10.3390/microorganisms9122575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
When transferring highly infective patients to specialist hospitals, safe systems of work minimise the risk to healthcare staff. The EpiShuttle is a patient transport system that was developed to fit into an air ambulance. A validated decontamination procedure is required before the system can be adopted in the UK. Hydrogen peroxide (H2O2) vapour fumigation may offer better penetration of the inaccessible parts than the liquid disinfectant wiping that is currently suggested. To validate this, an EpiShuttle was fumigated in a sealed test chamber. Commercial bacterial spore indicators (BIs), alongside organic liquid suspensions and dried surface samples of MS2 bacteriophage (a safe virus surrogate), were placed in and around the EpiShuttle, for the purpose of evaluation. The complete kill of all of the BIs in the five test runs demonstrated the efficacy of the fumigation cycle. The log reduction of the MS2 that was dried on the coupons ranged from 2.66 to 4.50, but the log reduction of the MS2 that was in the organic liquids only ranged from 0.07 to 1.90, confirming the results of previous work. Fumigation with H2O2 alone may offer insufficient inactivation of viruses in liquid droplets, therefore a combination of fumigation and disinfectant surface wiping was proposed. Initial fumigation reducing contamination with minimal intervention allows disinfectant wipe cleaning to be completed more safely, with a second fumigation step inactivating the residual pathogens.
Collapse
Affiliation(s)
- Claire Bailey
- Health and Safety Executive Science Research Centre, Buxton SK17 9JN, UK; (C.B.); (C.M.-B.); (J.F.); (A.B.)
| | - Catherine Makison-Booth
- Health and Safety Executive Science Research Centre, Buxton SK17 9JN, UK; (C.B.); (C.M.-B.); (J.F.); (A.B.)
- World Health Organization, 1211 Geneva, Switzerland
| | - Jayne Farrant
- Health and Safety Executive Science Research Centre, Buxton SK17 9JN, UK; (C.B.); (C.M.-B.); (J.F.); (A.B.)
- Health and Safety Executive, Leeds LS11 9AT, UK
| | - Alan Beswick
- Health and Safety Executive Science Research Centre, Buxton SK17 9JN, UK; (C.B.); (C.M.-B.); (J.F.); (A.B.)
| | | | | | - Fridtjof Heyerdahl
- EpiGuard, 1634 Gamle Fredrikstad, Norway; (M.E.); (F.H.)
- Department of Prehospital Services, Oslo University Hospital, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Brian Crook
- Health and Safety Executive Science Research Centre, Buxton SK17 9JN, UK; (C.B.); (C.M.-B.); (J.F.); (A.B.)
| |
Collapse
|
10
|
Arunwuttipong A, Jangtawee P, Vchirawongkwin V, Kangwansupamonkon W, Asavanant K, Ekgasit S. Public Buses Decontamination by Automated Hydrogen Peroxide Aerosolization System. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND: Public transportation has been linked to an increase in the risk of coronavirus disease 2019 transmission. The effective decontamination system using aerosolized hydrogen peroxide can mitigate the transmission risk from using public transportation.
AIM: The aim of this study was to develop and validate an effective decontamination system for public transport.
METHODS: The experimental research was performed in 13 inter-city public buses. The aerosol generator with ultrasonic atomizer was used in the experiment. The validation process for disinfection was conducted using both a chemical indicator (CI) and spore discs biological indicator (inoculated with 106 Geobacillus stearothermophilus enclosed in glassine envelopes). The CIs and biological indicators were marked by number and placed in nine locations on each bus. The decontamination cycle was developed by analyzed of various aerosolized and decomposition period. Both concentrations of hydrogen peroxide, 5% and 7%, were used for comparison.
RESULTS: In an aerosolized period, both concentrations of hydrogen peroxide at 30 min were effective for sporicidal 6-log reductions. The decontamination cycle totaled 100 min, based on a 70 min average decomposition time.
CONCLUSIONS: The automated hydrogen peroxide aerosolized system is a highly effective and safe method of decontaminating public buses.
Collapse
|
11
|
Choi YW, Sunderman MM, McCauley MW, Richter WR, Willenberg ZJ, Wood J, Serre S, Mickelsen L, Willison S, Rupert R, Muñiz-Ortiz JG, Casey S, Calfee MW. Decontamination of Bacillus Spores with Formaldehyde Vapor under Varied Environmental Conditions. APPLIED BIOSAFETY 2021; 26:139-53. [PMID: 32982605 PMCID: PMC7511015 DOI: 10.1089/apb.21.926975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Introduction This study investigated formaldehyde decontamination efficacy against dried Bacillus spores on porous and non-porous test surfaces, under various environmental conditions. This knowledge will help responders determine effective formaldehyde exposure parameters to decontaminate affected spaces following a biological agent release. Methods Prescribed masses of paraformaldehyde or formalin were sublimated or evaporated, respectively, to generate formaldehyde vapor within a bench-scale test chamber. Adsorbent cartridges were used to measure formaldehyde vapor concentrations in the chamber at pre-determined times. A validated method was used to extract the cartridges and analyze for formaldehyde via liquid chromatography. Spores of Bacillus globigii, Bacillus thuringiensis, and Bacillus anthracis were inoculated and dried onto porous bare pine wood and non-porous painted concrete material coupons. A series of tests was conducted where temperature, relative humidity, and formaldehyde concentration were varied, to determine treatment efficacy outside of conditions where this decontaminant is well-characterized (laboratory temperature and humidity and 12 mg/L theoretical formaldehyde vapor concentration) to predict decontamination efficacy in applications that may arise following a biological incident. Results Low temperature trials (approximately 10°C) resulted in decreased formaldehyde air concentrations throughout the 48-hour time-course when compared with formaldehyde concentrations collected in the ambient temperature trials (approximately 22°C). Generally, decontamination efficacy on wood was lower for all three spore types compared with painted concrete. Also, higher recoveries resulted from painted concrete compared to wood, consistent with historical data on these materials. The highest decontamination efficacies were observed on the spores subjected to the longest exposures (48 hours) on both materials, with efficacies that gradually decreased with shorter exposures. Adsorption or absorption of the formaldehyde vapor may have been a factor, especially during the low temperature trials, resulting in less available formaldehyde in the air when measured. Conclusion Environmental conditions affect formaldehyde concentrations in the air and thereby affect decontamination efficacy. Efficacy is also impacted by the material with which the contaminants are in contact.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Wood
- US Environmental Protection Agency, TW Alexander Drive, Research Triangle Park, NC, USA
| | - Shannon Serre
- US Environmental Protection Agency, TW Alexander Drive, Research Triangle Park, NC, USA
| | - Leroy Mickelsen
- US Environmental Protection Agency, TW Alexander Drive, Research Triangle Park, NC, USA
| | | | - Rich Rupert
- US Environmental Protection Agency, Region 3, Philadelphia, PA
| | | | - Sara Casey
- United Kingdom, Department for Environment, Food and Rural Affairs, CBRN Recovery Team, Stafford, England
| | - M Worth Calfee
- US Environmental Protection Agency, TW Alexander Drive, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers. Appl Environ Microbiol 2021; 87:AEM.02019-20. [PMID: 33158901 PMCID: PMC7848922 DOI: 10.1128/aem.02019-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. Airborne disinfection of high-containment facilities before maintenance or between animal studies is crucial. Commercial spore carriers (CSC) coated with 106 spores of Geobacillus stearothermophilus are often used to assess the efficacy of disinfection. We used quantitative carrier testing (QCT) procedures to compare the sensitivity of CSC with that of surrogates for nonenveloped and enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and spores, to an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP). We then used the QCT methodology to determine relevant process parameters to develop and validate effective disinfection protocols (≥4-log10 reduction) in various large and complex facilities. Our results demonstrate that aPAA-HP is a highly efficient procedure for airborne room disinfection. Relevant process parameters such as temperature and relative humidity can be wirelessly monitored. Furthermore, we found striking differences in inactivation efficacies against some of the tested microorganisms. Overall, we conclude that dry fogging a mixture of aPAA-HP is highly effective against a broad range of microorganisms as well as material compatible with relevant concentrations. Furthermore, CSC are artificial bioindicators with lower resistance and thus should not be used for validating airborne disinfection when microorganisms other than viruses have to be inactivated. IMPORTANCE Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. In addition, the low concentration of dispersed disinfectant, particularly for enveloped viral pathogens such as SARS-CoV-2, entails high material compatibility. For these reasons and due to the relative simplicity of the procedure, it is an ideal disinfection method for hospital wards, ambulances, public conveyances, and indoor community areas. Thus, we conclude that this method is an excellent choice for control of the current SARS-CoV-2 pandemic.
Collapse
|
13
|
Park HW, Chen G, Hwang CA, Huang L. Effect of water activity on inactivation of Listeria monocytogenes using gaseous chlorine dioxide - A kinetic analysis. Food Microbiol 2020; 95:103707. [PMID: 33397625 DOI: 10.1016/j.fm.2020.103707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of water activity (aw) on inactivation of Listeria monocytogenes using gaseous chlorine dioxide (ClO2 (g)) under room temperature. Surface-inoculated tryptic soy agar (TSA) plates adjusted to 9 different water activity levels ranging from 0.994 to 0.429 were used as samples exposed to ClO2 (g) at 150, 250, and 350 ppm for different durations of treatment time. Results showed that the antimicrobial effect of ClO2 (g) significantly decreases as the aw level and ClO2 (g) concentration decrease. Nonlinear models, such as the modified Chick model and the Weibull model, were used to describe the inactivation kinetics of L. monocytogenes. The results showed that the modified Chick model, which is based on chemical reaction kinetics, was more suitable to describe the inactivation of L. monocytogenes (RMSE < 0.5 log CFU/g) than the Weibull model (RMSE < 1.0 log CFU/g). A multiple regression model was developed for the describing the effect of aw and ClO2 (g) concentration on bacterial inactivation. The results of this study may be used to design ClO2 (g) treatment processes to inactivate L. monocytogenes in low-moisture foods.
Collapse
Affiliation(s)
- Hyeon Woo Park
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Guoying Chen
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA
| | - Cheng-An Hwang
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA
| | - Lihan Huang
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA.
| |
Collapse
|
14
|
Kümin D, Albert MG, Weber B, Summermatter K. The Hitchhiker's Guide to Hydrogen Peroxide Fumigation, Part 1: Introduction to Hydrogen Peroxide Fumigation. APPLIED BIOSAFETY 2020; 25:214-224. [PMID: 36032396 PMCID: PMC9134629 DOI: 10.1177/1535676020921007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Introduction When working with pathogens in laboratories, animal or production facilities, and even hospitals, the potential need for room fumigation for decontamination purposes must be taken into consideration. Questions regarding the choice of fumigant, technical aspects of the room, its ventilation, the fumigation system to be used, and other issues will arise and will have to be addressed. Methods This article is based on literature searches and was compiled using the authors' long-time personal experience in room and filter fumigation using various fumigation systems. Results The article can be used as a guide to establish an effective fumigation system in a laboratory or an animal facility setting and may be adapted for use in hospitals. Different systems for hydrogen peroxide fumigation on the market are presented. Also, technical aspects are discussed. Discussion Hydrogen peroxide is used in various forms for fumigation of rooms, equipment, and filters. Regardless of the individual limitations of these forms, hydrogen peroxide is a versatile fumigation method. However, it is important to consider numerous technical requirements when planning to implement hydrogen peroxide fumigation at an institution. Conclusions Subsequent to the present overview of different fumigation systems based on hydrogen peroxide on the market and their technical requirements, part 2 of this article will focus on validation and verification of hydrogen peroxide fumigation while considering the entire fumigation process. The two parts together will serve users as a guide to establishing hydrogen peroxide fumigations at their facilities.
Collapse
|
15
|
Wang Z, Kowal SF, Carslaw N, Kahan TF. Photolysis-driven indoor air chemistry following cleaning of hospital wards. INDOOR AIR 2020; 30:1241-1255. [PMID: 32485006 DOI: 10.1111/ina.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 05/25/2023]
Abstract
Effective cleaning techniques are essential for the sterilization of rooms in hospitals and industry. No-touch devices (NTDs) that use fumigants such as hydrogen peroxide (H2 O2 ), formaldehyde (HCHO), ozone (O3 ), and chlorine dioxide (OClO) are a recent innovation. This paper reports a previously unconsidered potential consequence of such cleaning technologies: the photochemical formation of high concentrations of hydroxyl radicals (OH), hydroperoxy radicals (HO2 ), organic peroxy radicals (RO2 ), and chlorine radicals (Cl) which can form harmful reaction products when exposed to chemicals commonly found in indoor air. This risk was evaluated by calculating radical production rates and concentrations based on measured indoor photon fluxes and typical fumigant concentrations during and after cleaning events. Sunlight and fluorescent tubes without covers initiated photolysis of all fumigants, and plastic-covered fluorescent tubes initiated photolysis of only some fumigants. Radical formation was often dominated by photolysis of fumigants during and after decontamination processes. Radical concentrations were predicted to be orders of magnitude greater than background levels during and immediately following cleaning events with each fumigant under one or more illumination condition. Maximum predicted radical concentrations (1.3 × 107 molecule cm-3 OH, 2.4 ppb HO2 , 6.8 ppb RO2 and 2.2 × 108 molecule cm-3 Cl) were much higher than baseline concentrations. Maximum OH concentrations occurred with O3 photolysis, HO2 with HCHO photolysis, and RO2 and Cl with OClO photolysis. Elevated concentrations may persist for hours after NTD use, depending on the air change rate and air composition. Products from reactions involving radicals could significantly decrease air quality when disinfectants are used, leading to adverse health effects for occupants.
Collapse
Affiliation(s)
- Zixu Wang
- Department of Environment and Geography, University of York, York, UK
| | - Shawn F Kowal
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Dell'Anna G, Mullin K, Brewer MT, Jesudoss Chelladurai JRJ, Sauer MB, Ball BL. Room Decontamination Using Ionized Hydrogen Peroxide Fog and Mist Reduces Hatching Rates of Syphacia obvelata Ova. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:365-370. [PMID: 32349858 PMCID: PMC7338867 DOI: 10.30802/aalas-jaalas-19-000156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 06/11/2023]
Abstract
This study evaluated the efficacy of ionized hydrogen peroxide (iHP) fog and mist for environmental and surface decontamination of Syphacia obvelata ova in rodent rooms. Ova were collected by perianal tape impression from S. obvelata infected mice. In experiment 1, ova were exposed to iHP using a whole-room fogging decontamination system with a 15 min initial fog application cycle in unoccupied rodent rooms. Ova were removed from the fogged environment after a 15 min, 30 min, 90 min, or 240 min iHP exposure time. In experiment 2, a second cohort of ova were exposed to iHP using the whole-room fogging decontamination system. Ova were removed after 3, 4 or 6 continuous fog application cycles with 45 min dwelling time between each cycle and 15 h dwelling time for the last time point. In experiment 3, a third set of ova was exposed to an iHP surface misting unit with 1, 2, or 3 iHP mist applications. A 7 min contact time followed each application. After exposure, ova were incubated in a hatching medium for 6 h. Control ova were maintained at room temperature without iHP exposure before incubation in the hatching medium. After incubation, the number of ova hatched was assessed by microscopic examination. For experiment 1, results ranged from 46% to 57% of exposed ova hatched. For experiment 2, results ranged from 43% to 49% of ova hatched. For experiment 3, 37% to 46% of exposed ova hatched. Conversely, for the control groups above 80% of ova hatched for all 3 experiments. These data suggest that exposure to iHP fog and mist has variable effectiveness in reducing viability of S. obvelata ova at the time points tracked. Further studies are needed to identify iHP exposures that will further reduce or eliminate the hatching of rodent pinworm ova.
Collapse
Affiliation(s)
- Giuseppe Dell'Anna
- Laboratory Animal Resources, Iowa State University, Ames, Iowa, United States;,
| | - Kathleen Mullin
- Laboratory Animal Resources, Iowa State University, Ames, Iowa, United States
| | | | | | - Mary B Sauer
- Laboratory Animal Resources, Iowa State University, Ames, Iowa, United States
| | - Brianne Ls Ball
- Office of Animal Resources, University of Iowa, Iowa City, Iowa
| |
Collapse
|
17
|
Choi YW, Sunderman MM, McCauley MW, Richter WR, Willenberg ZJ, Wood J, Serre S, Mickelsen L, Willison S, Rupert R, Ortiz JGM, Casey S, Calfee MW. Decontamination of Bacillus Spores with Formaldehyde Vapor Under Varied Environmental Conditions. APPLIED BIOSAFETY 2020. [DOI: 10.1177/1535676020926975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction: This effort investigated formaldehyde vapor characteristics under various environmental conditions by the analyses of air samples collected over a time-course. This knowledge will help responders achieve desired formaldehyde exposure parameters for decontamination of affected spaces after a biological contamination incident. Methods: Prescribed masses of paraformaldehyde and formalin were sublimated or evaporated, respectively, to generate formaldehyde vapor. Adsorbent cartridges were used to collect air samples from the test chamber at predetermined times. A validated method was used to extract the cartridges and analyze for formaldehyde via liquid chromatography. In addition, material demand for the formaldehyde was evaluated by inclusion of arrays of Plexiglas panels in the test chamber to determine the effect of varied surface areas within the test chamber. Temperature was controlled with a circulating water bath connected to a radiator and fan inside the chamber. Relative humidity was controlled with humidity fixed-point salt solutions and water vapor generated from evaporated water. Results: Low temperature trials (approximately 10°C) resulted in decreased formaldehyde air concentrations throughout the 48-hour time-course when compared with formaldehyde concentrations in the ambient temperature trials (approximately 22°C). The addition of clear Plexiglas panels to increase the surface area of the test chamber interior resulted in appreciable decreases of formaldehyde air concentration when compared to an empty test chamber. Conclusion: This work has shown that environmental variables and surface-to-volume ratios in the decontaminated space may affect the availability of formaldehyde in the air and, therefore, may affect decontamination effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Wood
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shannon Serre
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Leroy Mickelsen
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Rich Rupert
- US Environmental Protection Agency, Region 3, Philadelphia, PA, USA
| | | | - Sara Casey
- Department for Environment, Food and Rural Affairs, CBRN Recovery Team, Stafford, UK
| | - M. Worth Calfee
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
18
|
Choi YW, Sunderman MM, McCauley MW, Richter WR, Willenberg ZJ, Wood J, Serre S, Mickelsen L, Willison S, Rupert R, Ortiz JGM, Casey S, Calfee MW. Formaldehyde Vapor Characteristics in Varied Decontamination Environments. APPLIED BIOSAFETY 2020. [DOI: 10.1177/1535676020926968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: This effort investigated formaldehyde vapor characteristics under various environmental conditions by the analyses of air samples collected over a time-course. This knowledge will help responders achieve desired formaldehyde exposure parameters for decontamination of affected spaces after a biological contamination incident. Methods: Prescribed masses of paraformaldehyde and formalin were sublimated or evaporated, respectively, to generate formaldehyde vapor. Adsorbent cartridges were used to collect air samples from the test chamber at predetermined times. A validated method was used to extract the cartridges and analyze for formaldehyde via liquid chromatography. In addition, material demand for the formaldehyde was evaluated by inclusion of arrays of Plexiglas panels in the test chamber to determine the impact of varied surface areas within the test chamber. Temperature was controlled with a circulating water bath connected to a radiator and fan inside the chamber. Relative humidity was controlled with humidity fixed-point salt solutions and water vapor generated from evaporated water. Results: Low temperature trials (approximately 10°C) resulted in decreased formaldehyde air concentrations throughout the 48-hour time-course when compared with formaldehyde concentrations in the ambient temperature trials (approximately 22°C). The addition of clear Plexiglas panels to increase the surface area of the test chamber interior resulted in appreciable decreases of formaldehyde air concentration when compared to an empty test chamber. Conclusion: This work has shown that environmental variables and surface-to-volume ratios in the decontaminated space may affect the availability of formaldehyde in the air and, therefore, may affect decontamination effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Wood
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shannon Serre
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Leroy Mickelsen
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Rich Rupert
- US Environmental Protection Agency, Region 3, Philadelphia, PA, USA
| | | | - Sara Casey
- Department for Environment, Food and Rural Affairs, CBRN Recovery Team, Stafford, UK
| | - M. Worth Calfee
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
19
|
Stuart J, Chewins J, Tearle J. Comparing the Efficacy of Formaldehyde with Hydrogen Peroxide Fumigation on Infectious Bronchitis Virus. APPLIED BIOSAFETY 2020; 25:83-89. [PMID: 34191920 PMCID: PMC7307011 DOI: 10.1177/1535676020909998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The recent reclassification of formaldehyde as a presumed carcinogen prompted the investigation into the comparative efficacy of hydrogen peroxide as a fumigant in microbiological safety cabinets. INTRODUCTION The aim of the study was to quantify the biocidal efficacy of formaldehyde fumigation, including variables such as exposure time and concentration, and then to compare this to the biocidal efficacy achieved from a hydrogen peroxide vapor fumigation system. The study also investigated the ability of both fumigants to permeate the microbiological safety cabinet (MBSC), including the workspace, under the work tray, and after the HEPA filters. Furthermore, the effect of organic soiling on efficacy was also assessed. Infectious bronchitis virus (IBV) was used as the biological target to develop this study model. METHODS A model using IBV was developed to determine the efficacy of formaldehyde and hydrogen peroxide as fumigants. Virus was dried on stainless steel discs, and variables including concentration, time, protein soiling, and location within an MBSC were assessed. RESULTS It was demonstrated that formaldehyde fumigation could achieve a 6-log reduction in the titer of the virus throughout the cabinet, and high protein soiling in the presentation did not affect efficacy. Appropriate cycle parameters for the hydrogen peroxide system were developed, and when challenged with IBV, it was shown that vaporized hydrogen peroxide could achieve an equal 6-log titer reduction as formaldehyde within the cabinet workspace and overcome the presence of soiling. CONCLUSION Hydrogen peroxide was demonstrated to be a viable alternative to formaldehyde under most situations tested. However, the hydrogen peroxide system did not achieve an equal titer reduction above the cabinet's first HEPA filter using the cabinet workspace cycle, and further optimization of the hydrogen peroxide cycle parameters, including pulsing of the cabinet fans, may be required to achieve this.
Collapse
|
20
|
Tearle J, MacRae G, Andrews S, Clarke A, Stuart J, Tremblay G. Biological Validation and Observations of Formaldehyde Fumigation in Operational and Representative Scenarios in High-Containment Laboratories. APPLIED BIOSAFETY 2020; 25:41-47. [DOI: 10.1177/1535676019895084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Beswick A, Bailey C, Crook B, Crouch D, Farrant J, Frost G, Stagg S. Performance Testing of a Venturi-Based Backpack Spray Decontamination System. APPLIED BIOSAFETY 2020; 25:28-40. [PMID: 36033381 PMCID: PMC9134619 DOI: 10.1177/1535676019898299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Introduction The performance of 2 disinfectant chemicals, peracetic acid (PAA) and hypochlorous acid (HOCl), was evaluated using a Venturi-nozzle-based light decontamination system (LDS) for delivery. The atomization equipment combined low-pressure air and disinfectant via a handheld lance, producing a fine, dense aerosol. A range of microorganisms, including Bacillus cereus and Bacillus anthracis (Vollum) spores, were used as test challenges to evaluate chemicals and equipment. Methods The tests undertaken included assessments over fixed and variable exposure times, use of multiple surface materials, and a live agent challenge. Results Over a fixed-time exposure of 60 minutes, aerosolized PAA gave 7- to 8-log reductions of all test challenges, but HOCl was less effective. Material tests showed extensive kill on most surfaces using PAA (≥6-log kill), but HOCl showed more variation (4- to 6-log). Testing using B. anthracis showed measurable PAA induced spore kill inside 5 minutes and >6-log kill at 5 minutes or over. HOCl was less effective. Discussion The results demonstrate the importance of testing decontamination systems against a range of relevant microbiological challenges. Disinfectant efficacy may vary depending on product choice, types of challenge microorganisms, and their position in a treated area. The most effective disinfectants demonstrate biocidal efficacy despite these factors. Conclusion The data confirmed PAA as an effective disinfectant capable of rapidly killing a range of microorganisms, including spores. HOCl was less effective. The LDS system successfully delivered PAA and HOCl over a wide area and could be suitable for a range of frontline biosecurity applications.
Collapse
Affiliation(s)
- Alan Beswick
- Health and Safety Executive, Buxton, Derbyshire, UK
| | | | - Brian Crook
- Health and Safety Executive, Buxton, Derbyshire, UK
| | - David Crouch
- 3M™ United Kingdom PLC, Skelmersdale, Lancashire, UK
| | | | | | | |
Collapse
|
22
|
Peluola C, Hoesel S, Crutcher F. Chlorine gas is an effective alternative to sterilize carnation leaves for Fusarium spp. identification. J Microbiol Methods 2020; 170:105841. [PMID: 31954107 DOI: 10.1016/j.mimet.2020.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
Abstract
Sterile carnation leaves are required for proper morphological identification of Fusarium spp. but the gamma irradiation equipment required for leaf sterilization is not available to everyone. This study evaluated three different methods for sterilizing carnation leaves: microwave radiation, ultraviolet, and chlorine gas (CG) sterilization. Both microwave and ultraviolet treatments did not sufficiently sterilize leaf tissue, however, exposure to CG for 2 h resulted in no growth of either fungi or bacteria. Exposure times of carnation leaves to CG were also evaluated for spore production, spore size and morphological characteristics of five Fusarium spp. Only carnation leaves exposed to CG for 45, 60 or 90 min were completely free of microorganism contamination. There were some differences in spore production and size, however, no differences were observed for characteristics essential for proper species identification such as micro- and macrospore features and production of sporodochia, perithecia, chlamydospores, and phialides for any of the CG exposure times. This study identified leaves sterilized by CG as a reliable substitute for gamma irradiation sterilization. The method described here is suitable for most laboratories and will provide a means for Fusarium identification when gamma irradiated leaves are not available.
Collapse
Affiliation(s)
- Cecilia Peluola
- Montana State University, Eastern Agriculture Research Center, 1501 North Central Ave., Sidney, MT 59270, USA.
| | - Samantha Hoesel
- Montana State University, Eastern Agriculture Research Center, 1501 North Central Ave., Sidney, MT 59270, USA.
| | - Frankie Crutcher
- Montana State University, Eastern Agriculture Research Center, 1501 North Central Ave., Sidney, MT 59270, USA.
| |
Collapse
|
23
|
Otter J, Yezli S, Barbut F, Perl T. An overview of automated room disinfection systems: When to use them and how to choose them. DECONTAMINATION IN HOSPITALS AND HEALTHCARE 2020. [PMCID: PMC7153347 DOI: 10.1016/b978-0-08-102565-9.00015-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional disinfection methods are limited by reliance on the operator to ensure appropriate selection, formulation, distribution, and contact time of the agent. Automated room disinfection (ARD) systems remove or reduce reliance on operators and so they have the potential to improve the efficacy of terminal disinfection. The most commonly used systems are hydrogen peroxide vapor (H2O2 vapor), aerosolized hydrogen peroxide (aHP), and ultraviolet (UV) light. These systems have important differences in their active agent, delivery mechanism, efficacy, process time, and ease of use. The choice of ARD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation, and cost considerations.
Collapse
Affiliation(s)
- J.A. Otter
- NIHR Health Protection Research Unit (HPRU) in HCAIs and AMR at Imperial College London, and Imperial College Healthcare NHS Trust, Infection Prevention and Control, London, United Kingdom
| | - S. Yezli
- Global Centre for Mass Gatherings Medicine, WHO Collaborating Centre for Mass Gatherings Medicine, Ministry of Health-Public Health Directorate, Riyadh, Kingdom of Saudi Arabia
| | - F. Barbut
- National Reference Laboratory for C. difficile, Infection Control Unit, Hôpital Saint Antoine, Paris, France,INSERM S-1139, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - T.M. Perl
- Infectious Diseases and Geographic Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
24
|
Kümin D, Albert MG, Summermatter K. Case Study: Room Fumigation Using Aerosolized Hydrogen Peroxide-A Versatile and Economic Fumigation Method. APPLIED BIOSAFETY 2019; 24:200-206. [PMID: 36032058 PMCID: PMC9134476 DOI: 10.1177/1535676019887049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Introduction Formaldehyde is still the method of choice for fumigation of rooms and HEPA filters at high- and maximum-containment facilities because of its proven track record and low cost. However, formaldehyde has been shown to be carcinogenic and should ideally be replaced by other, less hazardous methods. This change has in part been hampered by the relatively high cost of alternative methods. Methods Here, we provide examples of room fumigations using aerosolized hydrogen peroxide showing not only that it can be used economically but also that it is a versatile method and may be used under circumstances not normally suited for fumigation. Results and Discussion Four examples of fumigation setups are presented that illustrate the versatility, ease of use, and adaptability of aerosolized hydrogen peroxide as a fumigant. In addition, we demonstrate that aerosolized hydrogen peroxide passes through HEPA filters in biological safety cabinets and individually ventilated cage racks. Conclusions Considering that the fumigation method presented here is simple and highly effective, we expect it to serve as a relatively cost-effective alternative to formaldehyde fumigation for disinfecting potentially contaminated rooms and surfaces.
Collapse
|
25
|
Coppens F, Willemarck N, Breyer D. Opinion: Airtightness for Decontamination by Fumigation of High-Containment Laboratories. APPLIED BIOSAFETY 2019; 24:207-212. [PMID: 36032062 PMCID: PMC9134471 DOI: 10.1177/1535676019871370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
INTRODUCTION While the European legislation states that laboratories of high-containment must be sealable for fumigation, they do not prescribe a minimal value for airtightness. Starting from a previous study in which we measured the airtightness in 4 BSL-3 laboratories with blower-door tests, we discuss the connection between airtightness and a successful decontamination by fumigation. METHODS Biological indicators (BIs) consisting of spores of Geobacillus stearothermophilus on metal disks were laid out in laboratories of different levels of airtightness before performing a fumigation with aerosolized hydrogen peroxide using an automated device, according to the manufacturer's instructions. RESULTS Incubation of all BI disks placed in the facility with the highest level of airtightness showed complete inactivation of spores. However, in the facility with a lower level of airtightness, not all spores were inactivated. DISCUSSION Air leaks might be a factor in the outcome of the decontamination of a room by fumigation, as seen in the laboratory with a lower level of airtightness, but other factors associated with the fumigation process might also be critical for a successful decontamination. CONCLUSION We argue that a validation of the decontamination procedure, before first use or after important renovations of a laboratory of high-containment, is a more effective endpoint than reaching a predefined level of airtightness.
Collapse
Affiliation(s)
- Fanny Coppens
- Sciensano, Service Biosafety and Biotechnology, Brussels, Belgium
| | | | - Didier Breyer
- Sciensano, Service Biosafety and Biotechnology, Brussels, Belgium
| |
Collapse
|
26
|
Pottage T, Lewis S, Lansley A, Fraser S, Hendon-Dunn C, Bacon J, Ngabo D, Parks SR, Bennett AM. Hazard Group 3 agent decontamination using hydrogen peroxide vapour in a class III microbiological safety cabinet. J Appl Microbiol 2019; 128:116-123. [PMID: 31559683 DOI: 10.1111/jam.14461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
Abstract
AIMS This study investigated the efficacy of hydrogen peroxide vapour (HPV) at inactivating hazard group 3 bacteria that have been presented dried from their growth medium to present a realistic challenge. METHODS AND RESULTS Hydrogen peroxide vapour technology (Bioquell) was used to decontaminate a class III microbiological safety cabinet containing biological indicators (BIs) made by drying standard working suspensions of the following agents: Bacillus anthracis (Ames) spores, Brucella abortus (strain S99), Burkholderia pseudomallei (NCTC 12939), Escherichia coli O157 ST11 (NCTC 12079), Mycobacterium tuberculosis (strain H37Rv) and Yersinia pestis (strain CO92) on stainless steel coupons. Extended cycles were used to expose the agents for 90 min. The HPV cycle completely inactivated B. anthracis spores, B. abortus, B. pseudomallei, E. coli O157 and Y. pestis when BIs were processed using quantitative and qualitative methods. Whilst M. tuberculosis was not completely inactivated, it was reduced by 4 log10 from a starting concentration of 106 colony-forming units. CONCLUSIONS This study demonstrates that HPV is able to inactivate a range of HG3 agents at high concentrations with associated organic matter, but M. tuberculosis showed increased resistance to the process. SIGNIFICANCE AND IMPACT OF THE STUDY This publication demonstrates that HPV can inactivate HG3 agents that have an organic load associated with them. It also shows that M. tuberculosis has higher resistance to HPV than other agents. This shows that an appropriate BI to represent the agent of interest should be chosen to demonstrate a decontamination is successful.
Collapse
Affiliation(s)
- T Pottage
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury, UK
| | - S Lewis
- Novel and Dangerous Pathogens Training, National Infection Service, Public Health England, Salisbury, UK
| | - A Lansley
- Novel and Dangerous Pathogens Training, National Infection Service, Public Health England, Salisbury, UK
| | - S Fraser
- Novel and Dangerous Pathogens Training, National Infection Service, Public Health England, Salisbury, UK
| | - C Hendon-Dunn
- TB Research Group, National Infection Service, Public Health England, Salisbury, UK
| | - J Bacon
- TB Research Group, National Infection Service, Public Health England, Salisbury, UK
| | - D Ngabo
- Medical Interventions Group, National Infection Service, Public Health England, Salisbury, UK
| | - S R Parks
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury, UK
| | - A M Bennett
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury, UK
| |
Collapse
|
27
|
Wood JP, Adrion AC. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4045-4062. [PMID: 30901213 PMCID: PMC6547374 DOI: 10.1021/acs.est.8b05274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since the intentional release of Bacillus anthracis spores through the U.S. Postal Service in the fall of 2001, research and development related to decontamination for this biological agent have increased substantially. This review synthesizes the advances made relative to B. anthracis spore decontamination science and technology since approximately 2002, referencing the open scientific literature and publicly available, well-documented scientific reports. In the process of conducting this review, scientific knowledge gaps have also been identified. This review focuses primarily on techniques that are commercially available and that could potentially be used in the large-scale decontamination of buildings and other structures, as well as outdoor environments. Since 2002, the body of scientific data related to decontamination and microbial sterilization has grown substantially, especially in terms of quantifying decontamination efficacy as a function of several factors. Specifically, progress has been made in understanding how decontaminant chemistry, the materials the microorganisms are associated with, environmental factors, and microbiological methods quantitatively impact spore inactivation. While advancement has been made in the past 15 years to further the state of the science in the inactivation of bacterial spores in a decontamination scenario, further research is warranted to close the scientific gaps that remain.
Collapse
Affiliation(s)
- Joseph P. Wood
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Corresponding Author: Phone: (919) 541-5029;
| | - Alden Charles Adrion
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
28
|
Disinfection efficiency of positive pressure respiratory protective hood using fumigation sterilization cabinet. BIOSAFETY AND HEALTH 2019; 1:46-53. [PMID: 32501442 PMCID: PMC7148600 DOI: 10.1016/j.bsheal.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 02/26/2019] [Indexed: 11/22/2022] Open
Abstract
Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process. Currently, there is little data available on the effects of disinfection and decontamination on positive pressure respiratory protective hoods (PPRPH). In this study, we evaluated the effect of vaporized hydrogen peroxide (VHP) on the disinfection of PPRPH to determine applicability of this method for disinfection of protective equipment, especially protective equipment with an electric supply system. A hydrogen peroxide-based fumigation sterilization cabinet was developed particularly for disinfection of protective equipment, and the disinfection experiments were conducted using four PPRPHs hung in the fumigation chamber. The pathogenic microorganism Geobacillus stearothermophilus ATCC 7953 was used as a biological indicator in this study and the relationship between air flow (the amount of VHP) and disinfection was investigated. Both function and the material physical properties of the PPRPH were assessed following the disinfection procedure. No surviving Geobacillus stearothermophilus ATCC 7953, both inside and outside of these disinfected PPRPHs, could be observed after a 60 min treatment with an air flow of 10.5–12.3 m3/h. Both function and material physical properties of these PPRPHs met the working requirements after disinfection. This study indicates that air flow in the fumigation chamber directly influences the concentration of VHP. The protective equipment fumigation sterilization cabinet developed in this paper achieves the complete sterilization of the PPRPHs when the air flow is at 10.5–12.3 m3/h, and provides a potential solution for the disinfection of various kind of protective equipment.
Collapse
|
29
|
Freyssenet C, Karlen S. Plasma-Activated Aerosolized Hydrogen Peroxide (aHP) in Surface Inactivation Procedures. APPLIED BIOSAFETY 2019; 24:10-19. [PMID: 36034636 PMCID: PMC9093241 DOI: 10.1177/1535676018818559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Introduction Hydrogen peroxide is a strong oxidant that possesses an antimicrobial activity. It has been successfully used in surface/room decontamination processes either under the form of hydrogen peroxide vapor (HPV) or of vaporized hydrogen peroxide (VHP). Aerosolized hydrogen peroxide (aHP) offers a third alternative. The technology relies on the dispersion of aerosols of a hydrogen peroxide solution often complemented with silver cations. aHP provides an inexpensive and safe approach to treat contaminated rooms but sometimes fails to achieve the 6-log10 reduction limit in the number of viable microorganisms. Methods Here, we used a venturi-based aHP generator that generates 4 mm in size aerosols from a 12% plasma-activated hydrogen peroxide solution free of silver cations. Results & Discussion We could successfully and constantly inactivate bacterial growth from biological indicators containing at least 106 spores of Geobacillus stearothermophilus placed on stainless steel discs wrapped in Tyvek pouches. We could also show that the biological indicators placed at various locations in a class II biosafety cabinet were equally inactivated, showing that hydrogen peroxide aerosols migrate through HEPA filters. Conclusions Considering that our method for aerosol generation is simple, reproducible, and highly effective at inactivating spores, our approach is expected to serve as a relatively cost effective alternative method for disinfecting potentially contaminated rooms or surfaces.
Collapse
Affiliation(s)
- Camille Freyssenet
- Swiss Federal Institute of Technology Lausanne, EPFL RHO DSPS, Lausanne, Switzerland
| | - Stéphane Karlen
- Swiss Federal Institute of Technology Lausanne, EPFL RHO DSPS, Lausanne, Switzerland
| |
Collapse
|
30
|
Møretrø T, Fanebust H, Fagerlund A, Langsrud S. Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments. Int J Food Microbiol 2018; 292:118-125. [PMID: 30594743 DOI: 10.1016/j.ijfoodmicro.2018.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Listeria monocytogenes surviving daily cleaning and disinfection is a challenge for many types of food industries. In this study, it was tested whether whole room disinfection (WRD) with H2O2 mist could kill L. monocytogenes under conditions relevant for the food industry. Survival of a mixture of four L. monocytogenes strains exposed to H2O2 mist was investigated in a 36 m3 room. A commercial machine produced H2O2 mist by pumping a 5% H2O2 solution containing 0.005% silver through a nozzle, and breaking the liquid up in droplets using pressurized air. When a suspension of bacteria in 0.9% NaCl applied on stainless steel coupons was exposed to WRD with H2O2 mist, a >5 log reduction (LR) of L. monocytogenes was observed. Similar reductions were observed in all tests with conditions between 12 and 20 °C, H2O2 concentrations of 35-80 ppm and 1-2 h exposure. It was shown that the H2O2 in the mist dissolved and accumulated in the liquid on the steel, and acted against L. monocytogenes in the liquid phase. At high cell concentrations, the effect was reduced if cells were pregrown at highly aerated conditions. The anti-listerial effect was robust against protein and fat, but the effect was quenched by raw meat and raw salmon, probably due to high catalase activity. The effect of whole room disinfection with H2O2 against dried L. monocytogenes cells was 1-2 LR, however the effect of air-drying by itself lead to 3-4 LR. When biofilms were exposed to WRD, no surviving L. monocytogenes were observed on stainless steel, however for L. monocytogenes on a PVC conveyor belt material, there were surviving bacteria, with about 2 LR. Screening of 54 L. monocytogenes strains for growth susceptibility to H2O2 showed that their sensitivity to H2O2 was very similar, thus WRD with H2O2 are likely to be robust against strain variation in susceptibility to H2O2. Production of H2O2 mist resulted in increased room humidity, and this may limit the maximum H2O2 concentration achievable, especially at low temperatures. The results in this study show that whole room disinfection with H2O2 may have potential to control L. monocytogenes in the food industry, however intervention studies in the food industry are needed to verify the effect in practical use.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway.
| | - Helge Fanebust
- Decon-X International, Vollsveien 13C, N-1366 Lysaker, Norway
| | - Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway
| |
Collapse
|
31
|
Zacharski KA, Southern M, Ryan A, Adley CC. Evaluation of an Environmental Monitoring Program for the Microbial Safety of Air and Surfaces in a Dairy Plant Environment. J Food Prot 2018; 81:1108-1116. [PMID: 29916731 DOI: 10.4315/0362-028x.jfp-17-464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microbiological hazards can occur when foodstuffs come into contact with contaminated surfaces or infectious agents dispersed by air currents in the manufacturing environment. An environmental monitoring program (EMP) is a critical aspect of sustainable and safe food manufacturing used to evaluate the effectiveness of the microbial controls in place. An effective EMP should be based on risk analysis, taking into account previous sampling history to determine the selection of the sampling points, the scope of the test, and the frequency of analysis. This study involved evaluation of the environmental monitoring regime and microbiological status of a medium-sized dairy plant manufacturing food ingredients, e.g., proteins, milk powders, and dairy fats. The data specific to microbial tests ( n = 3,468), recorded across 124 fixed sampling locations over a 2-year period (2014 to 2015) from air ( n = 1,787) and surfaces ( n = 1,681) were analyzed. The aim of this study was to highlight the strengths and weaknesses of the EMP in a select dairy processing plant. The results of this study outline the selection of sampling locations, the scope of the test, and the frequency of analysis. An analysis of variance revealed subsections of the manufacturing areas with high risk factors, especially the packaging subsection specified for bulk packaging, the atomizer, and the fluidized bed. The temporal and spatial analysis showed the potential to reduce or relocate the monitoring effort, most notably related to total coliforms and Staphylococcus aureus, across the dairy plant due to homogeneity across the sampling subsections with little or no deviations. The results suggest a need to reevaluate the current EMP and the corrective action plan, especially with regard to detection of pathogens. Recommendations for optimization of the EMP are presented to assist the dairy industry with reviewing and revising the control measures and hazard assessment with regard to existing contamination issues.
Collapse
Affiliation(s)
- Krzysztof A Zacharski
- 1 Dairy Processing Technology Centre (DPTC) (ORCID: http://orcid.org/0000-0002-2557-5455 [K.A.Z.]).,2 Microbiology Laboratory, School of Natural Sciences, and
| | - Mark Southern
- 1 Dairy Processing Technology Centre (DPTC) (ORCID: http://orcid.org/0000-0002-2557-5455 [K.A.Z.]).,3 Enterprise Research Centre, University of Limerick, Limerick, Ireland, V94 T9PX
| | - Alan Ryan
- 1 Dairy Processing Technology Centre (DPTC) (ORCID: http://orcid.org/0000-0002-2557-5455 [K.A.Z.])
| | | |
Collapse
|
32
|
Kümin D, Albert MG, Summermatter K. Comparison and Validation of Three Fumigation Methods to Inactivate Foot-and-Mouth Disease Virus. APPLIED BIOSAFETY 2018. [DOI: 10.1177/1535676018771982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Daniel Kümin
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | | | | |
Collapse
|
33
|
Petit BM, Almeida FC, Uchiyama TR, Lopes FOC, Tino KH, Chewins J. Evaluating the efficacy of hydrogen peroxide vapour against foot-and-mouth disease virus within a BSL4 biosafety facility. Lett Appl Microbiol 2017; 65:281-284. [PMID: 28736948 DOI: 10.1111/lam.12778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022]
Abstract
An evaluation was made of the efficacy of 35% hydrogen peroxide vapour (HPV) against foot-and-mouth disease virus (FMDV) in a biosafety facility. Biological indicators (BIs) were produced using three serotypes of FMDV, all with a titre of ≥106 TCID50 per ml. Fifteen BIs of each serotype were distributed across five locations, throughout a 30-m3 airlock chamber, producing a total of 45 BIs. Thirty-five percent HPV was generated and applied using a Bioquell vaporization module located in the centre of the chamber. After a dwell period of 40 min, the HPV was removed via the enclosures air handling system and the BIs were collected. The surfaces of the BIs were recovered into Glasgow's modified Eagle's medium (GMEM), cultivated in BHK21 Cl13 cell culture and analysed for evidence of cytopathic effect (CPE). No CPE was detected in any BI sample. Positive controls showed CPE. The experimentation shows that FMDV is susceptible to HPV decontamination and presents a potential alternative to formaldehyde. SIGNIFICANCE AND IMPACT OF THE STUDY Foot-and-mouth disease virus (FMDV) is an important pathogen in terms of biosafety due to its infectious nature and wide range of host animals, such as cattle, sheep, goats and pigs. Outbreaks of FMDV can have a severe impact on livestock production, causing morbidity, mortality, reduced yields and trade embargoes. Laboratories studying FMDV must possess BSL4 robust bio-decontamination methods to prevent inadvertent release. Formaldehyde has been the primary agent for environmental decontamination, but its designation as a human carcinogen has led to a search for alternatives. This study shows 35% hydrogen peroxide vapour has the potential to be a rapid, effective, residue-free alternative.
Collapse
Affiliation(s)
- B M Petit
- STEQ Com e Representações LTDA, Sao Paulo, Brazil
| | - F C Almeida
- INOVA Biotecnologia, Juatuba, Minas Gerais, Brazil
| | - T R Uchiyama
- INOVA Biotecnologia, Juatuba, Minas Gerais, Brazil
| | - F O C Lopes
- INOVA Biotecnologia, Juatuba, Minas Gerais, Brazil
| | - K H Tino
- STEQ Com e Representações LTDA, Sao Paulo, Brazil
| | | |
Collapse
|
34
|
Singh K. Role of silver nitrate in the efficacy of hydrogen peroxide aerial decontamination systems. J Hosp Infect 2017; 97:313-314. [PMID: 28577922 DOI: 10.1016/j.jhin.2017.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Affiliation(s)
- K Singh
- APNI Technology Corporation, 5819 - 201 Street, Edmonton, Alberta, T6M0B4, Canada.
| |
Collapse
|
35
|
Affiliation(s)
- Didier Ngabo
- Public Health England, Porton, Salisbury, Wiltshire, UK
| | | | - Allan Bennett
- Public Health England, Porton, Salisbury, Wiltshire, UK
| | - Simon Parks
- Public Health England, Porton, Salisbury, Wiltshire, UK
| |
Collapse
|
36
|
Mora M, Mahnert A, Koskinen K, Pausan MR, Oberauner-Wappis L, Krause R, Perras AK, Gorkiewicz G, Berg G, Moissl-Eichinger C. Microorganisms in Confined Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station. Front Microbiol 2016; 7:1573. [PMID: 27790191 PMCID: PMC5061736 DOI: 10.3389/fmicb.2016.01573] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023] Open
Abstract
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 – and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments – and the need to reassess the current hygiene standards.
Collapse
Affiliation(s)
- Maximilian Mora
- Department for Internal Medicine, Medical University of Graz, Graz Austria
| | - Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Graz Austria
| | - Kaisa Koskinen
- Department for Internal Medicine, Medical University of Graz, GrazAustria; BioTechMed-Graz, GrazAustria
| | - Manuela R Pausan
- Department for Internal Medicine, Medical University of Graz, Graz Austria
| | | | - Robert Krause
- Department for Internal Medicine, Medical University of Graz, Graz Austria
| | - Alexandra K Perras
- Department for Internal Medicine, Medical University of Graz, GrazAustria; Department for Microbiology, University of Regensburg, RegensburgGermany
| | - Gregor Gorkiewicz
- BioTechMed-Graz, GrazAustria; Department of Pathology, Medical University of Graz, GrazAustria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz Austria
| | | |
Collapse
|
37
|
Adams N, Chewins J. Response to 'Cleaning up after carbapenemase-producing organisms'. J Hosp Infect 2016; 94:107-8. [PMID: 27264243 DOI: 10.1016/j.jhin.2016.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
|
38
|
Macellaro A, Karlsson L, Emmoth E, Dergel I, Metreveli G, Bengtsson UA, Byström M, Hultén C, Johansson AL. Evaluation of Biological Indicator Spores as Tools for Assessment of Fumigation Decontamination Effectiveness. APPLIED BIOSAFETY 2015. [DOI: 10.1177/153567601502000404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Eva Emmoth
- SVA, National Veterinary Institute, Uppsala, Sweden
| | - Irene Dergel
- SVA, National Veterinary Institute, Uppsala, Sweden
| | | | | | - Mona Byström
- FOI, Swedish Defence Research Agency, Umeå, Sweden
| | | | | |
Collapse
|
39
|
Margaritis D, Tyler N. Understanding the Challenges in the Design, Installation, and Commissioning of Biocontainment Doors. APPLIED BIOSAFETY 2015. [DOI: 10.1177/153567601502000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Nick Tyler
- Centre for Urban Sustainability and Resilience, UCL, London, United Kingdom
| |
Collapse
|
40
|
Kaspari O, Lemmer K, Becker S, Lochau P, Howaldt S, Nattermann H, Grunow R. Decontamination of a BSL3 laboratory by hydrogen peroxide fumigation using three different surrogates for Bacillus anthracis spores. J Appl Microbiol 2014; 117:1095-103. [PMID: 25040253 DOI: 10.1111/jam.12601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022]
Abstract
AIMS Two independent trials investigated the decontamination of a BSL3 laboratory using vaporous hydrogen peroxide and compared the effect on spores of Bacillus cereus, Bacillus subtilis and Bacillus thuringiensis as surrogates for Bacillus anthracis spores, while spores of Geobacillus stearothermophilus served as control. METHODS AND RESULTS Carriers containing 1·0 × 10(6) spores were placed at various locations within the laboratory before fumigation with hydrogen peroxide following a previously validated protocol. Afterwards, carriers were monitored by plating out samples on agar and observing enrichment in nutrient medium for up to 14 days. Three months later, the experiment was repeated and results were compared. On 98 of 102 carriers, no viable spores could be detected after decontamination, while the remaining four carriers exhibited growth of CFU only after enrichment for several days. Reduction factors between 4·0 and 6·0 log levels could be reached. CONCLUSIONS A validated decontamination of a laboratory with hydrogen peroxide represents an effective alternative to fumigation with formaldehyde. Spores of B. cereus seem to be more resistant than those of G. stearothermophilus. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study provide important results in the field of hydrogen peroxide decontamination when analysing the effect on spores other than those of G. stearothermophilus.
Collapse
Affiliation(s)
- O Kaspari
- Division Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Quoi de neuf dans les techniques de désinfection des chambres de réanimation ? MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Abstract
Conventional disinfection methods are limited by reliance on the operator to ensure appropriate selection, formulation, distribution and contact time of the agent. ‘No-touch’ automated room disinfection (NTD) systems remove or reduce reliance on operators and so they have the potential to improve the efficacy of terminal disinfection. The most commonly used systems are hydrogen peroxide vapour (H2O2 vapour), aerosolised hydrogen peroxide (aHP) and ultraviolet (UV) radiation. These systems have important differences in their active agent, delivery mechanism, efficacy, process time and ease of use. The choice of NTD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation and cost constraints.
Collapse
|
43
|
Meyer K, Calfee M, Wood J, Mickelsen L, Attwood B, Clayton M, Touati A, Delafield R. Fumigation of a laboratory-scale HVAC system with hydrogen peroxide for decontamination following a biological contamination incident. J Appl Microbiol 2013; 116:533-41. [DOI: 10.1111/jam.12404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/29/2022]
Affiliation(s)
- K.M. Meyer
- Oak Ridge Institute for Science and Education; Research Triangle Park NC USA
- US EPA; Office of Research and Development; National Homeland Security Research Center; Research Triangle Park NC USA
| | - M.W. Calfee
- US EPA; Office of Research and Development; National Homeland Security Research Center; Research Triangle Park NC USA
| | - J.P. Wood
- US EPA; Office of Research and Development; National Homeland Security Research Center; Research Triangle Park NC USA
| | - L. Mickelsen
- US EPA; Office of Emergency Management; Research Triangle Park NC USA
| | - B. Attwood
- US EPA; Office of Research and Development; National Homeland Security Research Center; Research Triangle Park NC USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Lowe JJ, Gibbs SG, Iwen PC, Smith PW, Hewlett AL. Decontamination of a hospital room using gaseous chlorine dioxide: Bacillus anthracis, Francisella tularensis, and Yersinia pestis. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2013; 10:533-539. [PMID: 23971883 DOI: 10.1080/15459624.2013.818241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study assessed the efficacy of gaseous chlorine dioxide for inactivation of Bacillus anthracis, Francisella tularensis, and Yersinia pestis in a hospital patient care suite. Spore and vegetative cells of Bacillus anthracis Sterne 34F2, spores of Bacillus atrophaeus ATCC 9372 and vegetative cells of both Francisella tularensis ATCC 6223 and Yersinia pestis A1122 were exposed to gaseous chlorine dioxide in a patient care suite. Organism inactivation was then assessed by log reduction in viable organisms postexposure to chlorine dioxide gas compared to non-exposed control organism. Hospital room decontamination protocols utilizing chlorine dioxide gas concentrations of 377 to 385 ppm maintained to exposures of 767 ppm-hours with 65% relative humidity consistently achieved complete inactivation of B. anthracis and B. atrophaeus spores, as well as vegetative cells of B. anthracis, F. tularensis, and Y. pestis. Decrease in exposure (ppm-hours) and relative humidity (<65%) or restricting airflow reduced inactivation but achieved >8 log reductions in organisms. Up to 10-log reductions were achieved in a hospital room with limited impact on adjacent areas, indicating chlorine dioxide concentrations needed for decontamination of highly concentrated (>6 logs) organisms can be achieved throughout a hospital room. This study translates laboratory chlorine dioxide fumigation studies applied in a complex clinical environment.
Collapse
Affiliation(s)
- John J Lowe
- a Department of Environmental, Agricultural & Occupational Health , University of Nebraska Medical Center College of Public Health , Omaha , Nebraska
| | | | | | | | | |
Collapse
|
46
|
Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of 'no-touch' automated room disinfection systems in infection prevention and control. J Hosp Infect 2012. [PMID: 23195691 DOI: 10.1016/j.jhin.2012.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surface contamination in hospitals is involved in the transmission of pathogens in a proportion of healthcare-associated infections. Admission to a room previously occupied by a patient colonized or infected with certain nosocomial pathogens increases the risk of acquisition by subsequent occupants; thus, there is a need to improve terminal disinfection of these patient rooms. Conventional disinfection methods may be limited by reliance on the operator to ensure appropriate selection, formulation, distribution and contact time of the agent. These problems can be reduced by the use of 'no-touch' automated room disinfection (NTD) systems. AIM To summarize published data related to NTD systems. METHODS Pubmed searches for relevant articles. FINDINGS A number of NTD systems have emerged, which remove or reduce reliance on the operator to ensure distribution, contact time and process repeatability, and aim to improve the level of disinfection and thus mitigate the increased risk from the prior room occupant. Available NTD systems include hydrogen peroxide (H(2)O(2)) vapour systems, aerosolized hydrogen peroxide (aHP) and ultraviolet radiation. These systems have important differences in their active agent, delivery mechanism, efficacy, process time and ease of use. Typically, there is a trade-off between time and effectiveness among NTD systems. The choice of NTD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation and cost constraints. CONCLUSION NTD systems are gaining acceptance as a useful tool for infection prevention and control.
Collapse
Affiliation(s)
- J A Otter
- Centre for Clinical Infection and Diagnostics Research, CIDR, Department of Infectious Diseases, King's College London, School of Medicine and Guy's and St Thomas' NHS Foundation Trust, UK.
| | | | | | | | | |
Collapse
|
47
|
Lowe JJ, Gibbs SG, Iwen PC, Smith PW. A case study on decontamination of a biosafety level-3 laboratory and associated ductwork within an operational building using gaseous chlorine dioxide. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2012; 9:D196-D205. [PMID: 23113601 DOI: 10.1080/15459624.2012.733592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- John J Lowe
- Department of Environmental, Agricultural & Occupational Health, University of Nebraska Medical Center College of Public Health, Omaha, Nebraska 68198-5110, USA
| | | | | | | |
Collapse
|