1
|
Fernandes B, Olkowski CP, Ghaemi B, Basuli F, Shi J, Kiesewetter DO, Lang L, Elijah E, Swenson R, Choyke PL, Lin FI, Jacobson O. Unraveling the dynamics of B7-H3-targeting therapeutic antibodies in cancer through PET imaging and antibody pharmacokinetics. J Control Release 2025; 379:478-488. [PMID: 39814321 DOI: 10.1016/j.jconrel.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
B7-H3, an immunomodulatory protein overexpressed in many cancers, is associated with tumor aggressiveness and poor prognosis, making it a crucial target for imaging to elucidate its role in cancer progression and guide therapeutic interventions. This study employed PET imaging to investigate the in vivo delivery and pharmacokinetics of two anti-B7-H3 antibodies, Ab-1 and Ab-2, in mouse xenograft models with varying B7-H3 expression levels. The antibodies were radiolabeled with [89Zr]Zr and evaluated through PET imaging, biodistribution studies, and in vitro assays to assess binding, tumor uptake, and retention. [89Zr]Zr-Ab-1 demonstrated high initial tumor uptake in B7-H3 positive xenografts but exhibited unexpected decreasing retention over time. This clearance was likely attributed to proteolytic cleavage mediated by matrix metalloproteinases in the tumor and the tumor microenvironment. Conversely, [89Zr]Zr-Ab-2 showed more stable tumor retention but lower overall uptake. Further investigation revealed that Ab-1 had affinity for both 4Ig and 2Ig B7-H3 isoforms, while Ab-2 bound exclusively to the 4Ig isoform. This differential binding to B7-H3 isoforms may explain the observed variations in tumor uptake and retention between the two antibodies. The study provides insights into the complex dynamics of B7-H3 targeted antibodies in vivo, highlighting how antibody characteristics, including isoform-specific binding, and tumor factors influence their behavior. These findings have potential implications for optimizing radiotherapy strategies, suggesting the possibility of tailored approaches based on antibody properties and tumor biology.
Collapse
Affiliation(s)
- Bruna Fernandes
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colleen P Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Behnaz Ghaemi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Dale O Kiesewetter
- Molecular Tracer and Imaging Core Facility, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD 20892, USA
| | - Lixin Lang
- Molecular Tracer and Imaging Core Facility, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD 20892, USA
| | - Edmondson Elijah
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21701, USA
| | - Rolf Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank I Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Orit Jacobson
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Toàn NM. Novel Molecular Classification of Breast Cancer with PET Imaging. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2099. [PMID: 39768978 PMCID: PMC11678748 DOI: 10.3390/medicina60122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression. This narrative review, which focuses on both clinical patients and preclinical studies, explores the latest advancements in PET imaging for breast cancer, emphasizing the development of new tracers targeting hormone receptors such as the estrogen alpha receptor, progesterone receptor, androgen receptor, estrogen beta receptor, as well as the ErbB family of receptors, VEGF/VEGFR, PARP1, PD-L1, and markers for indirectly assessing Ki-67. These innovative radiopharmaceuticals have the potential to guide personalized treatment approaches based on the unique tumor profiles of individual patients. Additionally, they may improve the assessment of treatment efficacy, ultimately leading to better outcomes for those diagnosed with breast cancer.
Collapse
Affiliation(s)
- Ngô Minh Toàn
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Yurt F, Özel D, Karagül Ş, Tunçel A, Durkan K, Medine Eİ. 89Zr-Labeled DFO@Durvalumab-HSA nanoparticles: In vitro potential for triple-negative breast cancer. Drug Dev Res 2024; 85:e22266. [PMID: 39363532 DOI: 10.1002/ddr.22266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
This study presents the development and evaluation of a DFO@mAb-NP (DFO@Durvalumab-HSA-DTX nanoparticle) nanoplatform for imaging in triple-negative breast cancer (TNBC). The nanoplatform demonstrated significant changes postconjugation with DFO, evidenced by increased particle size from 178.1 ± 5 nm to 311 ± 26 nm and zeta potential alteration from -31.9 ± 3 mV to -40.5 ± 0.8 mV. Fourier-transform infrared spectroscopy and ultraviolet spectral analyses confirmed successful DFO conjugation, with notable shifts in peak wavelengths. High labeling efficiency was achieved with 89Zr, as indicated by thin layer radio chromatography and high-performance liquid radio chromatography results, with labeling efficiencies of 98 ± 2% for 89Zr-DFO@mAb and 96 ± 3% for 89Zr-DFO@mAb-NP. The nanoplatforms maintained stability over 24 h, showing less than 5% degradation. Lipophilicity assays revealed logP values of 0.5 ± 0.03 for 89Zr-DFO@mAb-NP and 0.98 ± 0.2 for 89Zr-DFO@mAb, indicating a higher lipophilic tendency in the radiolabeled Durvalumab. Cell uptake experiments showed an initial high uptake in MDA-MB-468 cells (45.1 ± 3.2%), which decreased over time, highlighting receptor-specific interactions. These comprehensive findings suggest the promising potential of the DFO@mAb-NP nanoplatform for targeted imaging in TNBC, with implications for improved diagnostic accuracy and treatment strategies.
Collapse
Affiliation(s)
- Fatma Yurt
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir, Turkey
- Department of Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Izmir, Turkey
| | - Derya Özel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir, Turkey
| | - Şeyma Karagül
- Department of Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Izmir, Turkey
| | - Ayça Tunçel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir, Turkey
| | - Kübra Durkan
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir, Turkey
| | - Emin İlker Medine
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
4
|
Shashkova O, Terekhina L, Malakhov I, Pinevich A, Vartanyan N, Avrov K, Krutetskaya I, Gryazeva I, Berlina M, Stolbovaya A, Smirnov I, Fedorenko S, Krylova A, Nadporojskii M, Shatik S, Stanzhevskii A, Samoilovich M. Cell Model for Testing Pharmaceuticals Targeting Human PD-L1. Sovrem Tekhnologii Med 2024; 16:5-15. [PMID: 39897068 PMCID: PMC11784882 DOI: 10.17691/stm2024.16.5.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/04/2025] Open
Abstract
The aim of this study was to create and evaluate a cell model designed for in vitro and in vivo testing of anti-human PD-L1 therapeutic and diagnostic agents' specificity. Materials and Methods Genetically modified cells expressing human PD-L1 (strain CT26-PD-L1) were obtained by retroviral transduction of murine CT26 carcinoma cells. PD-L1 gene activity was assessed by real-time PCR, and PD-L1 expression on cells was identified by flow cytometry. Cells were tested using recombinant single-domain human anti-PD-L1 antibodies (nanoantibodies) conjugated with radioisotopes 68Ga or 177Lu. Immunoreactive fraction and cell internalization of the radioconjugates were evaluated in vitro. For in vivo experiments CT26-PD-L1 cells were transplanted into mice, radioimmunoconjugates were injected 9-14 days later, in 1-48 h the tumors were retrieved and subjected to direct radiometry. Intact CT26 cells not expressing the antigen served as a control. Results CT26-PD-L1 strain of murine tumor cells expressing human membrane PD-L1 was created. When transplanted into intact BALB/c mice or sublethally irradiated F1(DBA×BALB/c) mice, these cells formed tumors. Thus, a significant advantage of the model was the possibility of in vivo testing of human PD-L1-affinity agents using animals under conventional vivarium conditions. When radioimmunoconjugates were administered to tumor bearing mice, radionuclides accumulated in tumors generated from the transplanted CT26-PD-L1 cells, but not CT26 cells. CT26-PD-L1 cells internalized anti-PD-L1 nanobodies in vitro. Due to a high density of target molecules, CT26-PD-L1 cells allowed both to confirm pharmaceuticals' specificity and to quantify the target-binding fraction of conjugates in a single test. Conclusion The created cells are the first genetically engineered cells designed to evaluate affinity of anti-human PD-L1 therapeutic and diagnostic agents in Russia. Test results confirmed the model suitability for in vitro and in vivo testing of the specificity of pharmaceuticals targeting human PD-L1.
Collapse
Affiliation(s)
- O.A. Shashkova
- PhD, Senior Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - L.A. Terekhina
- Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - I.S. Malakhov
- Senior Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia; Postgraduate Student, Institute of Virology and Cell Biology; University of Lübeck, 160 Ratzeburger Allee, Lübeck, 23562, Germany
| | - A.A. Pinevich
- PhD, Senior Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia; Senior Lecturer, Cytology and Histology Department, Biological Faculty; Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, Saint Petersburg, 199034, Russia
| | - N.L Vartanyan
- PhD, Senior Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - K.O. Avrov
- PhD, Senior Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - I.Yu. Krutetskaya
- PhD, Senior Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - I.V Gryazeva
- PhD, Senior Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - M.A. Berlina
- Laboratory Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - A.Yu. Stolbovaya
- Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - I.V. Smirnov
- PhD, Leading Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - S.V. Fedorenko
- Engineer of the 1 Category, Physical and Technical Support Group of Radiation Therapy; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - A.A. Krylova
- Laboratory Researcher, Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - M.A. Nadporojskii
- Researcher, Department of Cyclotron-Produced Radiopharmaceuticals; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - S.V Shatik
- PhD, Head of the Department of Cyclotron-Produced Radiopharmaceuticals; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - A.A. Stanzhevskii
- DSc, Deputy Director of Research; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia
| | - M.P. Samoilovich
- DSc, Chief Researcher, Head of the Hybridoma Technology Laboratory; A.M. Granov Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, 70 Leningradskaya St., Saint Petersburg, Pesochniy pos., 197758, Russia; Chief Researcher, Cytology and Histology Department, Biological Faculty; Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, Saint Petersburg, 199034, Russia
| |
Collapse
|
5
|
Huang Y, Li Z, Li C, Zang Z, Wang Q, Huang S, Liu Q, Liang Y. Bioorthogonal Diels-Alder Click Chemistry-Based Pretargeted PET Imaging Strategy for Monitoring Programmed Death-Ligand 1 Expression. ACS OMEGA 2024; 9:36969-36981. [PMID: 39246495 PMCID: PMC11375721 DOI: 10.1021/acsomega.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
The development of antibody tracers for positron emission tomography (PET) imaging enables real-time monitoring of tumor expression of programmed cell death ligand 1 (PD-L1) in vivo, aiming to facilitate the selection of immunotherapy responders. However, the slow pharmacokinetics of the antibodies in vivo limits their applications in PET imaging with commonly used radionuclides with short half-lives. In this study, we developed a pretargeted PET imaging strategy based on Diels-Alder (IEDDA) click chemistry to overcome these limitations. Atezolizumab and durvalumab, the most commonly used PD-L1 antibodies in cancer immunotherapy, were selected and compared in the development of the pretargeted PET imaging strategy. Fluorine-18-labeled derivatives of methyl tetrazine ([18F]Tz, [18F]PEG6-Tz, and [18F]PEG12-Tz) were tested in biodistribution and PET imaging of A549-PDL1 xenografts (PD-L1 positive) pretargeted with the trans-cyclooctene (TCO)-functionalized atezolizumab/durvalumab. The biodistribution and imaging results indicated that atezolizumab-TCO/[18F]PEG12-Tz was more suitable for pretargeted PET imaging strategy, and the optimal interval time was 48 h after atezolizumab-TCO administration, where the atezolizumab-TCO/[18F]PEG12-Tz pretargeted approach clearly delineated the A549-PDL1 tumor with a tumor-to-muscle ratio of 5.33, while the ratios are 3.39 and 2.39 for durvalumab/[18F]PEG12-Tz and mock-pretargeting controls, respectively. In conclusion, a pretargeted 18F-immuno-PET imaging technology was successfully established on atezolizumab. The high-contrast PET images of the A549-PDL1 tumor models demonstrate that the pretargeting strategy incorporating short-lived fluorine-18 is viable in identifying tumors with high PD-L1 expression, marking this strategy as a potential candidate for further clinical translation.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhongjing Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zihan Zang
- Shenzhen Middle School, Shenzhen 518024, China
| | - Qiong Wang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Size Huang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Qi Liu
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| |
Collapse
|
6
|
Cao Z, Wichmann CW, Burvenich IJG, Osellame LD, Guo N, Rigopoulos A, O'Keefe GJ, Scott FE, Lorensuhewa N, Lynch KP, Scott AM. Radiolabelling and preclinical characterisation of [ 89Zr]Zr-Df-ATG-101 bispecific to PD-L1/4-1BB. Eur J Nucl Med Mol Imaging 2024; 51:3202-3214. [PMID: 38730087 PMCID: PMC11368977 DOI: 10.1007/s00259-024-06742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- School of Chemistry - Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Laura Danielle Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | | | | | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
7
|
He S, Jia L, Zheng X, Wang Y, Liu Y, Zhang L. Preliminary Research of Radiolabeled Atezolizumab for the Noninvasive Evaluation of TNBC PD-L1 Expression In Vivo. J Labelled Comp Radiopharm 2024; 67:384-391. [PMID: 39210726 DOI: 10.1002/jlcr.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Programmed death-ligand 1 (PD-L1) expression is related to the efficacy and prognosis in triple-negative breast cancer. This study employed an indirect labeling method to synthesize [125I]PI-Atezolizumab. The in vitro stability of [125I]PI-Atezolizumab was assessed through incubation in phosphate buffered saline and fetal bovine serum, revealing sustained stability. Specific binding of [125I]PI-Atezolizumab to MDA-MB-231 cells expressing humanized PD-L1 was assessed through in vitro incubation, yielding a Kd value comparable to that of Atezolizumab. This suggests that the labeling process did not compromise the affinity of the Atezolizumab to PD-L1. Subsequently, pharmacokinetic studies were conducted in normal mice and biodistribution experiments in tumor-bearing mice. A comparison of the biodistribution results between [125I]PI-Atezolizumab and 125I-labeled Atezolizumab indicated better in vivo stability for the former. Single photon emission computed tomography (SPECT)/CT imaging further confirmed the targeted specificity of [125I]PI-Atezolizumab for PD-L1 in MDA-MB-231 xenografts, which were validated by immunohistochemistry staining. This research underscores the utility of [125I]PI-Atezolizumab, prepared via indirect labeling, for monitoring PD-L1 in triple-negative breast cancer models.
Collapse
Affiliation(s)
- Shuhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Jia
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaobei Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Vista Pharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
8
|
Bansal A, Lavoie RR, Lucien F, Kethamreddy M, Wootla B, Dong H, Park SS, Pandey MK. Synthesis and evaluation of anti-PD-L1-B11 antibody fragments for PET imaging of PD-L1 in breast cancer and melanoma tumor models. Sci Rep 2024; 14:19561. [PMID: 39174596 PMCID: PMC11341854 DOI: 10.1038/s41598-024-70385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
There is a critical need to non-invasively assess the PD-L1 expression in tumors as a predictive biomarker for determining the efficacy of anti-PD-1/PD-L1 immunotherapies. Non-invasive imaging modality like positron emission tomography (PET) can be a powerful tool to assess the PD-L1 expression in the whole body including multiple metastases as a patient selection criterion for the anti-PD-1/PD-L1 immunotherapy. In this study, we synthesized B11-nanobody, B11-scFv and B11-diabody fragments from the full-length anti-PD-L1 B11 IgG. Out of the three antibody fragments, B11-diabody showed higher nM affinity towards PD-L1 antigen as compared to B11-scFv and B11-nanobody. All three antibody fragments were successfully radiolabeled with 64Cu, a PET radioisotope. For radiolabeling, the antibody fragments were first conjugated with p-SCN-Bn-NOTA followed by chelation with 64Cu. All three radiolabeled antibody fragments were found to be stable in mouse and human sera for up to 24 h. Additionally, all three [64Cu]Cu-NOTA-B11-antibody fragments were evaluated in PD-L1 negative and human PD-L1 expressing cancer cells and subcutaneous tumor models. Based on the results, [64Cu]Cu-NOTA-B11-diabody has potential to be used as a PET imaging probe for assessing PD-L1 expression in tumors as early as 4 h post-injection, allowing faster assessment compared to the full length IgG based PET imaging probe.
Collapse
Affiliation(s)
- Aditya Bansal
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Roxane R Lavoie
- Department of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manasa Kethamreddy
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bharath Wootla
- Office of Translation to Practice, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mukesh K Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Ibrahim D, Simó C, Brown EL, Shmuel S, Panikar SS, Benton A, DeWeerd R, Dehdashti F, Park H, Pereira PMR. PD-L1 has a heterogeneous and dynamic expression in gastric cancer with implications for immunoPET. Front Immunol 2024; 15:1405485. [PMID: 38915392 PMCID: PMC11194338 DOI: 10.3389/fimmu.2024.1405485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This study aimed to investigate the dynamics of programmed death-ligand 1 (PD-L1) expression, spatial heterogeneity, and binding affinity of FDA-approved anti-PD-L1 antibodies (avelumab and atezolizumab) in gastric cancer. Additionally, we determined how PD-L1 glycosylation impacts antibody accumulation in gastric cancer cells. Methods Dynamic PD-L1 expression was examined in NCIN87 gastric cancer cells. Comparative binding studies of avelumab and atezolizumab were conducted in gastric cancer models, both in vitro and in vivo. Antibody uptake in tumors was visualized through positron emission tomography (PET) imaging. PD-L1 glycosylation status was determined via Western blot analyses before and after PNGase F treatment. Results Consistent findings revealed time-dependent PD-L1 induction in NCIN87 gastric cancer cells and spatial heterogeneity in tumors, as shown by PET imaging and immunofluorescence. Avelumab displayed superior binding affinity to NCIN87 cells compared to atezolizumab, confirmed by in vivo PET imaging and ex vivo biodistribution analyses. Notably, PD-L1 glycosylation at approximately 50 kDa was observed, with PNGase F treatment inducing a shift to 35 kDa in molecular weight. Tissue samples from patient-derived xenografts (PDXs) validated the presence of both glycosylated and deglycosylated PD-L1 (degPD-L1) forms in gastric cancer. Immunofluorescence microscopy and binding assays demonstrated enhanced avelumab binding post-deglycosylation. Discussion This study provides an understanding of dynamic and spatially heterogeneous PD-L1 expression in gastric cancer. Anti-PD-L1 immunoPET was able to visualize gastric tumors, and PD-L1 glycosylation has significant implications for antibody recognition. These insights contribute to demonstrating the complexities of PD-L1 in gastric cancer, holding relevance for refining PD-L1 imaging-based approaches.
Collapse
Affiliation(s)
- Dina Ibrahim
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cristina Simó
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep Surendra Panikar
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Alex Benton
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel DeWeerd
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Farrokh Dehdashti
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Haeseong Park
- Gastrointestinal Cancer Center, Center for Cancer Therapeutic Innovation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Patrícia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med (Lausanne) 2024; 11:1401515. [PMID: 38915766 PMCID: PMC11195831 DOI: 10.3389/fmed.2024.1401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Immunotherapy targeted to immune checkpoint inhibitors, such as the program cell death receptor (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, it is now well-known that PD-1/PD-L1 immunotherapy response is inconsistent among patients. The current challenge is to customize treatment regimens per patient, which could be possible if the PD-1/PD-L1 expression and dynamic landscape are known. With positron emission tomography (PET) imaging, it is possible to image these immune targets non-invasively and system-wide during therapy. A successful PET imaging tracer should meet specific criteria concerning target affinity, specificity, clearance rate and target-specific uptake, to name a few. The structural profile of such a tracer will define its properties and can be used to optimize tracers in development and design new ones. Currently, a range of PD-1/PD-L1-targeting PET tracers are available from different molecular categories that have shown impressive preclinical and clinical results, each with its own advantages and disadvantages. This review will provide an overview of current PET tracers targeting the PD-1/PD-L1 axis. Antibody, peptide, and antibody fragment tracers will be discussed with respect to their molecular characteristics and binding properties and ways to optimize them.
Collapse
Affiliation(s)
- Melinda Badenhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Albert D. Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
12
|
Basuli F, Vasalatiy O, Shi J, Lane KC, Escorcia FE, Swenson RE. Preparation of a Zirconium-89 Labeled Clickable DOTA Complex and Its Antibody Conjugate. Pharmaceuticals (Basel) 2024; 17:480. [PMID: 38675440 PMCID: PMC11053460 DOI: 10.3390/ph17040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Desferrioxamine B (DFO) is the clinical standard chelator for preparing zirconium-89 labeled antibodies. In the current study, the stabilities of a zirconium-89 labeled panitumumab (PAN; Vectibix®) with three different chelators (DFO, DFO*, and DOTA) were compared. PAN is an anti-HER1/EGFR monoclonal antibody approved by the FDA for the treatment of HER1-expressing colorectal cancers and was used as the model antibody for this study. DFO/DFO* conjugates of PAN were directly radiolabeled with zirconium-89 at room temperature to produce [89Zr]Zr-DFO/DFO*-PAN conjugates following a well-established procedure. A zirconium-89 labeled DOTA-PAN conjugate was prepared by an indirect radiolabeling method. A cyclooctyne-linked DOTA chelator (BCN-DOTA-GA) was first radiolabeled with zirconium-89 at 90 °C under a two-step basic pH adjustment method followed by conjugation with PAN-tetrazene at 37 °C to produce a labeled conjugate, BCN-[89Zr]Zr-DOTA-GA-PAN. High reproducibility of the radiolabeling was observed via this two-step basic pH adjustment. The overall radiochemical yield was 40-50% (n = 12, decay uncorrected) with a radiochemical purity of >95% in 2 h synthesis time. All three conjugates were stable in whole human serum for up to 7 days at 37 °C. The kinetic inertness of the conjugates was assessed against the EDTA challenge. BCN-[89Zr]Zr-DOTA-GA-PAN exhibited excellent inertness followed by [89Zr]Zr-DFO*-PAN. [89Zr]Zr-DFO-PAN displayed the lowest level of inertness.
Collapse
Affiliation(s)
- Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Kelly C. Lane
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; (O.V.); (J.S.); (K.C.L.); (R.E.S.)
| |
Collapse
|
13
|
Krutzek F, Donat CK, Ullrich M, Stadlbauer S. Design, Synthesis, and Biological Evaluation of Small-Molecule-Based Radioligands with Improved Pharmacokinetic Properties for Imaging of Programmed Death Ligand 1. J Med Chem 2023; 66:15894-15915. [PMID: 38038981 PMCID: PMC10726354 DOI: 10.1021/acs.jmedchem.3c01355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Small molecules offer some advantages for developing positron emission tomography (PET) tracers and are therefore a promising approach for imaging and therapy monitoring of programmed death ligand 1 (PD-L1) positive tumors. Here, we report six biphenyl PD-L1 radioligands using the NODA-GA-chelator for efficient copper-64 complexation. These radioligands contain varying numbers of sulfonic and/or phosphonic acid groups, serving as hydrophilizing units to lower the log D7.4 value down to -4.28. The binding affinities of compounds were evaluated using saturation binding and a real-time binding assay, with a highest binding affinity of 21 nM. Small-animal PET imaging revealed vastly different pharmacokinetic profiles depending on the quantity and type of hydrophilizing units. Of the investigated radioligands, [64Cu]Cu-3 showed the most favorable kinetics in vitro. This was also found in vivo, with a predominantly renal clearance and a specific uptake in the PD-L1-overexpressing tumor. With further modifications, this compound could be a promising candidate for the imaging of PD-L1 in the clinical setting.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Cornelius K. Donat
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
14
|
Tsai SC, Farn SS, Lo WL, Ou Yang FY, Kang YC, Chen LC, Chen KT, Liao JW, Kung JY, Chen JT, Huang FYJ. Evaluation of Chelator-to-Antibody Ratio on Development of 89Zr-iPET Tracer for Imaging of PD-L1 Expression on Tumor. Int J Mol Sci 2023; 24:17132. [PMID: 38138961 PMCID: PMC10743313 DOI: 10.3390/ijms242417132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 μCi/μg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.
Collapse
Affiliation(s)
- Shih-Chuan Tsai
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-C.T.); (J.-Y.K.)
| | - Shiou-Shiow Farn
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Wei-Lin Lo
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Fang-Yu Ou Yang
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Yong-Ching Kang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
| | - Liang-Cheng Chen
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Kuo-Ting Chen
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung-Hsing University, Taichung 402202, Taiwan;
| | - Jui-Yin Kung
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (S.-C.T.); (J.-Y.K.)
| | - Jenn-Tzong Chen
- National Atomic Research Institute, Taoyuan 325207, Taiwan; (S.-S.F.); (W.-L.L.); (F.-Y.O.Y.); (L.-C.C.); (J.-T.C.)
| | - Feng-Yun J. Huang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
| |
Collapse
|
15
|
Zhu D, Xu X, Zou P, Liu Y, Wang H, Han G, Lu C, Xie M. Synthesis and preliminary biological evaluation of a novel 99mTc-labeled small molecule for PD-L1 imaging. Bioorg Med Chem Lett 2023; 96:129496. [PMID: 37797805 DOI: 10.1016/j.bmcl.2023.129496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
In recent years, PD-1/PD-L1 checkpoint blockade immunotherapy with remarkable efficacy has set off a heat wave. The expression level of PD-L1, which plays a predictive role in anti-PD-1/PD-L1 therapy, could be quantified by noninvasive imaging with radiotracers. Herein, we introduced the synthesis and preliminary biological evaluation of a novel 99mTc-labeled small molecule radiotracer [99mTc]G3C-CBM for PD-L1 imaging. [99mTc]G3C-CBM was achieved with high radiochemical purity (>96 %) and remained good stability in PBS and FBS. In competitive combination experiment, [99mTc]G3C-CBM was displaced by increasing concentrations of unlabeled G3C-CBM, resulting in an IC50 value of 41.25±2.23 nM for G3C-CBM. The uptake of [99mTc]G3C-CBM in A375-hPD-L1 cells (17.51±2.08 %) was approximately 6.47 folds of that in A375 cells (2.71±0.36 %) after co-incubation for 2 h. The biodistribution results showed that the radioactivity uptake in A375-hPD-L1 tumor reached the maximum (0.35±0.01 %ID/g) at 2 h post injection, and the optimum tumor/muscle ratio of 2.94±0.29 occurred at the same time. In addition, [99mTc]G3C-CBM was quickly cleared from the blood with a clearance half-life of just 119.25 min. These results indicate that [99mTc]G3C-CBM is a potential SPECT PD-L1 imaging agent and is worthy of further study.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiang Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Guoqing Han
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunxiong Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Minhao Xie
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
16
|
Huang Y, Li C, Li Z, Wang Q, Huang S, Liu Q, Liang Y. Development and Preclinical Evaluation of [ 68Ga]BMSH as a New Potent Positron Emission Tomography Tracer for Imaging Programmed Death-Ligand 1 Expression. Pharmaceuticals (Basel) 2023; 16:1487. [PMID: 37895958 PMCID: PMC10610256 DOI: 10.3390/ph16101487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Immunotherapy targeting the programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) pathway has shown remarkable efficacy against various cancers, but the overall response rate (ORR) is still low. PD-L1 expression in tumors may predict treatment response to immunotherapy. Indeed, ongoing clinical studies utilize a few PD-L1 radiotracers to assess PD-L1 expression as a predictive biomarker for immunotherapy. Here, we present a novel positron emission tomography (PET) radiotracer called [68Ga]BMSH, which is derived from a small molecule inhibitor specifically targeting the binding site of PD-L1. The inhibitor was modified to optimize its in vivo pharmacokinetic properties and enable chelation of 68Ga. In vitro evaluation revealed [68Ga]BMSH possessed a strong binding affinity, high specificity, and rapid internalization in PD-L1 overexpressing cells. Biodistribution studies showed that PD-L1 overexpressing tumors had an uptake of [68Ga]BMSH at 4.22 ± 0.65%ID/g in mice, while the number was 2.23 ± 0.41%ID/g in PD-L1 low-expressing tumors. Micro-PET/CT imaging of tumor-bearing mice further confirmed that, compared to [18F]FDG, [68Ga]BMSH can specifically identify tumors with varying levels of PD-L1 expression. Our findings suggest that the [68Ga]BMSH is a PD-L1 radioligand with ideal imaging properties, and its further application in the clinical screening of PD-L1 overexpressing tumors may improve ORR for immunotherapy.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.); (Z.L.); (Q.W.); (S.H.)
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.); (Z.L.); (Q.W.); (S.H.)
| | - Zhongjing Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.); (Z.L.); (Q.W.); (S.H.)
| | - Qiong Wang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.); (Z.L.); (Q.W.); (S.H.)
| | - Size Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.); (Z.L.); (Q.W.); (S.H.)
| | - Qi Liu
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen University, Shenzhen 518057, China
- Institute of Biomedical Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.); (Z.L.); (Q.W.); (S.H.)
| |
Collapse
|
17
|
Krutzek F, Donat CK, Stadlbauer S. Exploring Hydrophilic PD-L1 Radiotracers Utilizing Phosphonic Acids: Insights into Unforeseen Pharmacokinetics. Int J Mol Sci 2023; 24:15088. [PMID: 37894769 PMCID: PMC10606431 DOI: 10.3390/ijms242015088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Immune checkpoint inhibitor therapy targeting the PD-1/PD-L1 axis in cancer patients, is a promising oncological treatment. However, the number of non-responders remains high, causing a burden for the patient and the healthcare system. Consequently, a diagnostic tool to predict treatment outcomes would help with patient stratification. Molecular imaging provides said diagnostic tool by offering a whole-body quantitative assessment of PD-L1 expression, hence supporting therapy decisions. Four PD-L1 radioligand candidates containing a linker-chelator system for radiometalation, along with three hydrophilizing units-one sulfonic and two phosphonic acids-were synthesized. After labeling with 64Cu, log D7.4 values of less than -3.03 were determined and proteolytic stability confirmed over 94% intact compound after 48 h. Binding affinity was determined using two different assays, revealing high affinities up to 13 nM. µPET/CT imaging was performed in tumor-bearing mice to investigate PD-L1-specific tumor uptake and the pharmacokinetic profile of radioligands. These results yielded an unexpected in vivo distribution, such as low tumor uptake in PD-L1 positive tumors, high liver uptake, and accumulation in bone/bone marrow and potentially synovial spaces. These effects are likely caused by Ca2+-affinity and/or binding to macrophages. Despite phosphonic acids providing high water solubility, their incorporation must be carefully considered to avoid compromising the pharmacokinetic behavior of radioligands.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Medicinal Radiochemistry, Bautzner Landstraße 400, 01328 Dresden, Germany; (F.K.); (C.K.D.)
| | - Cornelius K. Donat
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Medicinal Radiochemistry, Bautzner Landstraße 400, 01328 Dresden, Germany; (F.K.); (C.K.D.)
| | - Sven Stadlbauer
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Medicinal Radiochemistry, Bautzner Landstraße 400, 01328 Dresden, Germany; (F.K.); (C.K.D.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
| |
Collapse
|
18
|
O'Brien SR, Ward R, Wu GG, Bagheri S, Kiani M, Challa A, Ulaner GA, Pantel AR, McDonald ES. Other Novel PET Radiotracers for Breast Cancer. PET Clin 2023; 18:557-566. [PMID: 37369615 DOI: 10.1016/j.cpet.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Many novel PET radiotracers have demonstrated potential use in breast cancer. Although not currently approved for clinical use in the breast cancer population, these innovative imaging agents may one day play a role in the diagnosis, staging, management, and even treatment of breast cancer.
Collapse
Affiliation(s)
- Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Rebecca Ward
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Grace G Wu
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Sina Bagheri
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA. https://twitter.com/Sina_Bagherii
| | - Mahsa Kiani
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Ashrit Challa
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA 92618, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA 90033, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Chen Y, Guo Y, Liu Z, Hu X, Hu M. An overview of current advances of PD-L1 targeting immuno-imaging in cancers. J Cancer Res Ther 2023; 19:866-875. [PMID: 37675710 DOI: 10.4103/jcrt.jcrt_88_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The programmed death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a significant role in immune evasion. PD-1 or PD-L1 immune checkpoint inhibitors (ICIs) have become a standard treatment for multiple types of cancer. To date, PD-L1 has served as a biomarker for predicting the efficacy of ICIs in several cancers. The need to establish an effective detection method that could visualize PD-L1 expression and predict the efficacy of PD-1/PD-L1 ICIs has promoted a search for new imaging strategies. PD-L1-targeting immuno-imaging could provide a noninvasive, real-time, repeatable, dynamic, and quantitative assessment of the characteristics of all tumor lesions in individual patients. This study analyzed the existing evidence in the literature on PD-L1-based immuno-imaging (2015-2022). Original English-language articles were searched using PubMed and Google Scholar. Keywords, such as "PD-L1," "PET," "SPECT," "PET/CT," and "SPECT/CT," were used in various combinations. A total of nearly 50 preclinical and clinical studies of PD-L1-targeting immuno-imaging were selected, reviewed, and included in this study. Therefore, in this review, we conducted a study of the advances in PD-L1-targeting immuno-imaging for detecting the expression of PD-L1 and the efficacy of ICIs. We focused on the different types of PD-L1-targeting agents, including antibodies and small PD-L1-binding agents, and illustrated the strength and weakness of these probes. Furthermore, we summarized the trends in the development of PD-L1-targeting immuno-imaging, as well as the current challenges and future directions for clinical workflow.
Collapse
Affiliation(s)
- Yunhao Chen
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yujiao Guo
- Department of Oncology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhiguo Liu
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaokun Hu
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Man Hu
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
20
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
21
|
Altena R, Tzortzakakis A, Af Burén S, Tran TA, Frejd FY, Bergh J, Axelsson R. Current status of contemporary diagnostic radiotracers in the management of breast cancer: first steps toward theranostic applications. EJNMMI Res 2023; 13:43. [PMID: 37195374 DOI: 10.1186/s13550-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Expanding therapeutic possibilities have improved disease-related prospects for breast cancer patients. Pathological analysis on a tumor biopsy is the current reference standard biomarker used to select for treatment with targeted anticancer drugs. This method has, however, several limitations, related to intra- and intertumoral as well as spatial heterogeneity in receptor expression as well as the need to perform invasive procedures that are not always technically feasible. MAIN BODY In this narrative review, we focus on the current role of molecular imaging with contemporary radiotracers for positron emission tomography (PET) in breast cancer. We provide an overview of diagnostic radiotracers that represent treatment targets, such as programmed death ligand 1, human epidermal growth factor receptor 2, polyadenosine diphosphate-ribose polymerase and estrogen receptor, and discuss developments in therapeutic radionuclides for breast cancer management. CONCLUSION Imaging of treatment targets with PET tracers may provide a more reliable precision medicine tool to find the right treatment for the right patient at the right time. In addition to visualization of the target of treatment, theranostic trials with alpha- or beta-emitting isotopes provide a future treatment option for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Renske Altena
- Institutionen Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Solna, Sweden.
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Siri Af Burén
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Thuy A Tran
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Solna, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Solna, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Jonas Bergh
- Institutionen Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Solna, Sweden
| | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Massicano AVF, Song PN, Mansur A, White SL, Sorace AG, Lapi SE. [ 89Zr]-Atezolizumab-PET Imaging Reveals Longitudinal Alterations in PDL1 during Therapy in TNBC Preclinical Models. Cancers (Basel) 2023; 15:2708. [PMID: 37345044 PMCID: PMC10216761 DOI: 10.3390/cancers15102708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) currently have limited treatment options; however, PD-L1 is an indicator of susceptibility to immunotherapy. Currently, assessment of PD-L1 is limited to biopsy samples. These limitations may be overcome with molecular imaging. In this work, we describe chemistry development and optimization, in vitro, in vivo, and dosimetry of [89Zr]-Atezolizumab for PD-L1 imaging. Atezolizumab was conjugated to DFO and radiolabeled with 89Zr. Tumor uptake and heterogeneity in TNBC xenograft and patient-derived xenograft (PDX) mouse models were quantified following [89Zr]-Atezolizumab-PET imaging. PD-L1 expression in TNBC PDX models undergoing therapy and immunohistochemistry (IHC) was used to validate imaging. SUV from PET imaging was quantified and used to identify heterogeneity. PET/CT imaging using [89Zr]-Atezolizumab identified a significant increase in tumor:muscle SUVmean 1 and 4 days after niraparib therapy and revealed an increased trend in PD-L1 expression following other cytotoxic therapies. A preliminary dosimetry study indicated the organs that will receive a higher dose are the spleen, adrenals, kidneys, and liver. [89Zr]-Atezolizumab PET/CT imaging reveals potential for the noninvasive detection of PD-L1-positive TNBC tumors and allows for quantitative and longitudinal assessment. This has potential significance for understanding tumor heterogeneity and monitoring early expression changes in PD-L1 induced by therapy.
Collapse
Affiliation(s)
| | - Patrick N. Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ameer Mansur
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sharon L. White
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suzanne E. Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
23
|
Krutzek F, Donat CK, Ullrich M, Zarschler K, Ludik MC, Feldmann A, Loureiro LR, Kopka K, Stadlbauer S. Design and Biological Evaluation of Small-Molecule PET-Tracers for Imaging of Programmed Death Ligand 1. Cancers (Basel) 2023; 15:cancers15092638. [PMID: 37174103 PMCID: PMC10177516 DOI: 10.3390/cancers15092638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Noninvasive molecular imaging of the PD-1/PD-L1 immune checkpoint is of high clinical relevance for patient stratification and therapy monitoring in cancer patients. Here we report nine small-molecule PD-L1 radiotracers with solubilizing sulfonic acids and a linker-chelator system, designed by molecular docking experiments and synthesized according to a new, convergent synthetic strategy. Binding affinities were determined both in cellular saturation and real-time binding assay (LigandTracer), revealing dissociation constants in the single digit nanomolar range. Incubation in human serum and liver microsomes proved in vitro stability of these compounds. Small animal PET/CT imaging, in mice bearing PD-L1 overexpressing and PD-L1 negative tumors, showed moderate to low uptake. All compounds were cleared primarily through the hepatobiliary excretion route and showed a long circulation time. The latter was attributed to strong blood albumin binding effects, discovered during our binding experiments. Taken together, these compounds are a promising starting point for further development of a new class of PD-L1 targeting radiotracers.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Marie-Charlotte Ludik
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
24
|
Immuno-PET Imaging of Siglec-15 Using the Zirconium-89-Labeled Therapeutic Antibody, NC318. Mol Imaging 2023. [DOI: 10.1155/2023/3499655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Objective. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is overexpressed in various cancers which has led to the development of therapeutic anti-Siglec-15 monoconal antibodies (mAbs). In these preclinical studies, the therapeutic mAb, NC318 (antihuman/murine Siglec-15 mAb), was labeled with zirconium-89 and evaluated in human Siglec-15 expressing cancer cells and mouse xenografts for potential use as a clinical diagnostic imaging agent. Methods. Desferrioxamine-conjugated NC318 was radiolabeled with zirconium-89 to synthesize [89Zr]Zr-DFO-NC318. Cancer cell lines expressing variable Siglec-15 levels were used for in vitro cell binding studies and tumor xenograft mouse models for biodistributions. [89Zr]Zr-DFO-NC318 biodistribution and PET imaging studies to determine tissue uptakes (tissue : muscle ratios, T : M) included pharmacokinetic evaluation in Siglec-15+tumor xenografts and immunocompetent mice, blocking with nonradioactive NC318 (20, 100, and 300 μg) and xenografts with low/negligible Siglec-15 expressing tumors. Results. [89Zr]Zr-DFO-NC318 exhibited high affinity (
~4 nM) for Siglec-15 and distinguished between moderate and negligible Siglec-15 expression levels in cancer cell lines. The highest [89Zr]Zr-DFO-NC318 uptakes occurred in the spleen and lymph nodes of the Siglec-15+tumor xenografts at all time points followed by Siglec-15+tumor uptake which was lower although highly retained. In immunocompetent mice, the spleen and lymph nodes exhibited lower uptakes indicating that the athymic xenografts had increased Siglec-15+ immune cells. Specific [89Zr]Zr-DFO-NC318 binding to Siglec-15 was proven with NC318 blocking studies in which dose-dependent decreases in Siglec-15+tumor T : Ms were observed. Higher than expected, tumor T : Ms were seen in lower expressing tumors likely due to the contribution of murine Siglec-15+ immune cells in the tumor microenvironment as confirmed by immunohistochemistry. Siglec-15+tumors were identified on PET images whereas low/negligible expressing tumors showed lower uptakes. Conclusions. In vitro and in vivo [89Zr]Zr-DFO-NC318 uptakes correlated with Siglec-15 expression levels in target tissues. Despite uptake in immune cell subsets in the tumor microenvironment, these results suggest that clinical [89Zr]Zr-DFO-NC318 PET imaging may have value in selecting patients for Siglec-15-targeted therapies.
Collapse
|
25
|
Zhang Y, Wu J, Zhao C, Zhang S, Zhu J. Recent Advancement of PD-L1 Detection Technologies and Clinical Applications in the Era of Precision Cancer Therapy. J Cancer 2023; 14:850-873. [PMID: 37056391 PMCID: PMC10088895 DOI: 10.7150/jca.81899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
Programmed death-1 is a protein found on the surface of immune cells that can interact with its ligand, programmed death-ligand 1 (PD-L1), which is expressed on the plasma membrane, the surface of secreted cellular exosomes, in cell nuclei, or as a circulating soluble protein. This interaction can lead to immune escape in cancer patients. In clinical settings, PD-L1 plays an important role in tumor disease diagnosis, determining therapeutic effectiveness, and predicting patient prognosis. PD-L1 inhibitors are also essential components of tumor immunotherapy. Thus, the detection of PD-L1 levels is crucial, especially in the era of precision cancer therapy. In recent years, innovations have been made in traditional immunoassay methods and the development of new immunoassays for PD-L1 detection. This review aims to summarize recent research progress in tumor PD-L1 detection technology and highlight the clinical applications of PD-L1.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Juanjuan Wu
- Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, 256600, China
| | - Chaobin Zhao
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Shuyuan Zhang
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Jianbo Zhu
- Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, 256600, China
- ✉ Corresponding author: Pro. Jianbo Zhu, Binzhou People's Hospital Affiliated to Shandong First Medical University, 515 Yellow River Seven Road, Binzhou, Shandong, 256600, China; ,
| |
Collapse
|
26
|
Mulgaonkar A, Elias R, Woolford L, Guan B, Nham K, Kapur P, Christie A, Tcheuyap VT, Singla N, Bowman IA, Stevens C, Hao G, Brugarolas J, Sun X. ImmunoPET Imaging with 89Zr-Labeled Atezolizumab Enables In Vivo Evaluation of PD-L1 in Tumorgraft Models of Renal Cell Carcinoma. Clin Cancer Res 2022; 28:4907-4916. [PMID: 36074149 PMCID: PMC9669181 DOI: 10.1158/1078-0432.ccr-22-1547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) targeting the programmed cell death protein 1 and its ligand (PD-1/PD-L1) have transformed the treatment paradigm for metastatic renal cell carcinoma (RCC). However, response rates to ICIs as single agents or in combination vary widely and predictive biomarkers are lacking. Possibly related to the heterogeneity and dynamic nature of PD-L1 expression, tissue-based methods have shown limited value. Immuno-positron emission tomography (immunoPET) may enable noninvasive, comprehensive, and real-time PD-L1 detection. Herein, we systematically examined the performance of immunoPET for PD-L1 detection relative to IHC in an RCC patient-derived tumorgraft (TG) platform. EXPERIMENTAL DESIGN Eight independent RCC TGs with a wide range of PD-L1 expression (0%-85%) were evaluated by immunoPET. Uptake of 89Zr-labeled atezolizumab ([89Zr]Zr-DFO-ATZ) was compared with PD-L1 expression in tumors by IHC through double-blind analyses. Clinical outcomes of ICI-treated patients whose TGs were examined were analyzed to evaluate the clinical role of immunoPET in RCC. RESULTS ImmunoPET with [89Zr]Zr-DFO-ATZ (day 6/7 postinjection) revealed a statistically significant association with PD-L1 IHC assays (P = 0.0014; correlation ρXY = 0.78). Furthermore, immunoPET can be used to assess the heterogeneous distribution of PD-L1 expression. Finally, studies in the corresponding patients (n = 4) suggest that PD-L1 signal may influence ICI responsiveness. CONCLUSIONS ImmunoPET with [89Zr]Zr-DFO-ATZ may enable a thorough and dynamic assessment of PD-L1 across sites of disease. The power of immunoPET to predict ICI response in RCC is being explored in an ongoing clinical trial (NCT04006522).
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Elias
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Layton Woolford
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bing Guan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kien Nham
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nirmish Singla
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - I. Alex Bowman
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guiyang Hao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Liang Z, Hu X, Hu H, Wang P, Cai J. Novel small 99mTc-labeled affibody molecular probe for PD-L1 receptor imaging. Front Oncol 2022; 12:1017737. [PMID: 36387113 PMCID: PMC9643847 DOI: 10.3389/fonc.2022.1017737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE The in vivo imaging of programmed death ligand 1 (PD-L1) can monitor changes in PD-L1 expression and guide programmed death 1 (PD-1) or PD-L1-targeted immune checkpoint therapy. A 99mTc-labeled affibody molecular probe targeting the PD-L1 receptor was prepared and evaluated its tracing effect in PD-L1-overexpressing colon cancer. METHODS The PD-L1 affibody was prepared by genetic recombineering. The 99mTc labeling of the affibody was achieved by sodium glucoheptonate and an SnCl2 labeling system. The labeling rate, radiochemical purity, and stability in vitro were determined by instant thin-layer chromatography; MC38-B7H1 (PD-L1-positive) and MC38 (PD-L1-negative) colon cancer cells were used to evaluate its affinity to PD-L1 by cell-binding experiments. The biodistribution of the 99mTc-labeled affibody molecular probe was then determined in C57BL/6J mice bearing MC38-B7H1 tumors, and tumor targeting was assessed in C57BL/6J mice with MC38-B7H1, MC38 double xenografts. RESULT The nondecayed corrected yield of the 99mTc-PD-L1 affibody molecular probe was 95.95% ± 1.26%, and showed good stability both in phosphate-buffered saline (PBS) and fetal bovine serum within 6 h. The affinity of the 99mTc-PD-L1 affibody molecular probe for cell-binding assays was 10.02 nmol/L. Single photon emission-computed tomography imaging showed a rapid uptake of the tracer in PD-L1-positive tumors and very little tracer retention in PD-L1-negative control tumors. The tracer was significantly retained in the kidneys and bladder, suggesting that it is mainly excreted through the urinary system. Heart, liver, lung, and muscle tissue showed no significant radioactive retention. The biodistribution in vitro also showed significant renal retention, a small amount of uptake in the thyroid and gastrointestinal tract, and rapid blood clearance, and the tumor-to-blood radioactivity uptake ratio peaked 120 min after drug injection. CONCLUSION The 99mTc-PD-L1 affibody molecular probe that we prepared can effectively target to PD-L1-positive tumors imaging in vivo, and clear in blood quickly, with no obvious toxic side effects, which is expected to become a new type of tracer for detecting PD-L1 expression in tumors.
Collapse
Affiliation(s)
| | | | | | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
28
|
Zanello A, Bortolotti M, Maiello S, Bolognesi A, Polito L. Anti-PD-L1 immunoconjugates for cancer therapy: Are available antibodies good carriers for toxic payload delivering? Front Pharmacol 2022; 13:972046. [PMID: 36052121 PMCID: PMC9424723 DOI: 10.3389/fphar.2022.972046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint mechanisms are important molecular cell systems that maintain tolerance toward autoantigens in order to prevent immunity-mediated accidental damage. It is well known that cancer cells may exploit these molecular and cellular mechanisms to escape recognition and elimination by immune cells. Programmed cell death protein-1 (PD-1) and its natural ligand programmed cell death ligand-1 (PD-L1) form the PD-L1/PD-1 axis, a well-known immune checkpoint mechanism, which is considered an interesting target in cancer immunotherapy. In fact, the expression of PD-L1 was found in various solid malignancies and the overactivation of PD-L1/PD-1 axis results in a poor patient survival rate. Breaking PD-L1/PD-1 axis, by blocking either the cancer side or the immune side of the axis, is currently used as anti-cancer strategy to re-establish a tumor-specific immune response. For this purpose, several blocking antibodies are now available. To date, three anti-PD-L1 antibodies have been approved by the FDA, namely atezolizumab, durvalumab and avelumab. The main advantages of anti-PD-L1 antibodies arise from the overexpression of PD-L1 antigen by a high number of tumor cells, also deriving from different tissues; this makes anti-PD-L1 antibodies potential pan-specific anti-cancer molecules. Despite the good results reported in clinical trials with anti-PD-L1 antibodies, there is a significant number of patients that do not respond to the therapy. In fact, it should be considered that, in some neoplastic patients, reduced or absent infiltration of cytotoxic T cells and natural killer cells in the tumor microenvironment or presence of other immunosuppressive molecules make immunotherapy with anti-PD-L1 blocking antibodies less effective. A strategy to improve the efficacy of antibodies is to use them as carriers for toxic payloads (toxins, drugs, enzymes, radionuclides, etc.) to form immunoconjugates. Several immunoconjugates have been already approved by FDA for treatment of malignancies. In this review, we focused on PD-L1 targeting antibodies utilized as carrier to construct immunoconjugates for the potential elimination of neoplastic cells, expressing PD-L1. A complete examination of the literature regarding anti-PD-L1 immunoconjugates is here reported, describing the results obtained in vitro and in vivo. The real potential of anti-PD-L1 antibodies as carriers for toxic payload delivery is considered and extensively discussed.
Collapse
|
29
|
Brown EL, DeWeerd RA, Zidel A, Pereira PMR. Preclinical antibody-PET imaging of PD-L1. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:953202. [PMID: 39354977 PMCID: PMC11440863 DOI: 10.3389/fnume.2022.953202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 10/03/2024]
Abstract
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) blockade, including antibody therapeutics, has transformed cancer treatment. However, a major challenge in the field relates to selecting patients who are likely to respond to immune checkpoint inhibitors. Indeed, biopsy-based diagnostic tests to determine immune checkpoint protein levels do not accurately capture the inherent spatial and temporal heterogeneity of PD-L1 tumor expression. As a result, not all PD-L1-positive tumors respond to immunotherapies, and some patients with PD-L1-negative tumors have shown clinical benefits. In 2018, a first-in-human study of the clinically-approved anti-PD-L1 antibody Atezolizumab labeled with the positron emitter zirconium-89 validated the ability of positron emission tomography (PET) to visualize PD-L1 expression in vivo and predict tumor response to immunotherapy. These studies have triggered the expansion of PD-L1-targeted immunoPET to assess PD-L1 protein levels and PD-L1 expression heterogeneity in real time and across the whole tumor. First, this mini-review introduces new PD-L1 PET imaging studies of the last 4 years, focusing on the expansion of preclinical tumor models and anti-PD-L1 antibodies/antibody fragments in development. Then, the review discusses how these preclinical models and targeting agents can be utilized to study spatial and temporal heterogeneity of PD-L1 expression.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel A. DeWeerd
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Abbey Zidel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
30
|
van de Donk PP, Oosting SF, Knapen DG, van der Wekken AJ, Brouwers AH, Lub-de Hooge MN, de Groot DJA, de Vries EG. Molecular imaging to support cancer immunotherapy. J Immunother Cancer 2022; 10:e004949. [PMID: 35922089 PMCID: PMC9352987 DOI: 10.1136/jitc-2022-004949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/04/2022] Open
Abstract
The advent of immune checkpoint inhibitors has reinvigorated the field of immuno-oncology. These monoclonal antibody-based therapies allow the immune system to recognize and eliminate malignant cells. This has resulted in improved survival of patients across several tumor types. However, not all patients respond to immunotherapy therefore predictive biomarkers are important. There are only a few Food and Drug Administration-approved biomarkers to select patients for immunotherapy. These biomarkers do not consider the heterogeneity of tumor characteristics across lesions within a patient. New molecular imaging tracers allow for whole-body visualization with positron emission tomography (PET) of tumor and immune cell characteristics, and drug distribution, which might guide treatment decision making. Here, we summarize recent developments in molecular imaging of immune checkpoint molecules, such as PD-L1, PD-1, CTLA-4, and LAG-3. We discuss several molecular imaging approaches of immune cell subsets and briefly summarize the role of FDG-PET for evaluating cancer immunotherapy. The main focus is on developments in clinical molecular imaging studies, next to preclinical studies of interest given their potential translation to the clinic.
Collapse
Affiliation(s)
- Pim P van de Donk
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan G Knapen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Derk-Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth Ge de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
32
|
Grindel BJ, Engel BJ, Ong JN, Srinivasamani A, Liang X, Zacharias NM, Bast RC, Curran MA, Takahashi TT, Roberts RW, Millward SW. Directed Evolution of PD-L1-Targeted Affibodies by mRNA Display. ACS Chem Biol 2022; 17:1543-1555. [PMID: 35611948 PMCID: PMC10691555 DOI: 10.1021/acschembio.2c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Therapeutic monoclonal antibodies directed against PD-L1 (e.g., atezolizumab) disrupt PD-L1:PD-1 signaling and reactivate exhausted cytotoxic T-cells in the tumor compartment. Although anti-PD-L1 antibodies are successful as immune checkpoint inhibitor (ICI) therapeutics, there is still a pressing need to develop high-affinity, low-molecular-weight ligands for molecular imaging and diagnostic applications. Affibodies are small polypeptides (∼60 amino acids) that provide a stable molecular scaffold from which to evolve high-affinity ligands. Despite its proven utility in the development of imaging probes, this scaffold has never been optimized for use in mRNA display, a powerful in vitro selection platform incorporating high library diversity, unnatural amino acids, and chemical modification. In this manuscript, we describe the selection of a PD-L1-binding affibody by mRNA display. Following randomization of the 13 amino acids that define the binding interface of the well-described Her2 affibody, the resulting library was selected against recombinant human PD-L1 (hPD-L1). After four rounds, the enriched library was split and selected against either hPD-L1 or the mouse ortholog (mPD-L1). The dual target selection resulted in the identification of a human/mouse cross-reactive PD-L1 affibody (M1) with low nanomolar affinity for both targets. The M1 affibody bound with similar affinity to mPD-L1 and hPD-L1 expressed on the cell surface and inhibited signaling through the PD-L1:PD-1 axis at low micromolar concentrations in a cell-based functional assay. In vivo optical imaging with M1-Cy5 in an immune-competent mouse model of lymphoma revealed significant tumor uptake relative to a Cy5-conjugated Her2 affibody.
Collapse
Affiliation(s)
- Brian J. Grindel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Brian J. Engel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Justin N. Ong
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA, 90089
| | | | - Xiaowen Liang
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Niki M. Zacharias
- Department of Urology, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Robert C. Bast
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Michael A. Curran
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| | - Terry T. Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, California, USA, 90089
| | - Richard W. Roberts
- Department of Chemistry, University of Southern California, Los Angeles, California, USA, 90089
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA, 90089
- USC Norris Comprehensive Cancer Center, Los Angeles, California, USA, 90089
| | - Steven W. Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA, 77054
| |
Collapse
|
33
|
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15060747. [PMID: 35745666 PMCID: PMC9228425 DOI: 10.3390/ph15060747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has emerged as a major treatment option for a variety of cancers. Among the immune checkpoints addressed, the programmed death receptor 1 (PD-1) and its ligand PD-L1 are the key targets for an ICI. PD-L1 has especially been proven to be a reproducible biomarker allowing for therapy decisions and monitoring therapy success. However, the expression of PD-L1 is not only heterogeneous among and within tumor lesions, but the expression is very dynamic and changes over time. Immunohistochemistry, which is the standard diagnostic tool, can only inadequately address these challenges. On the other hand, molecular imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) provide the advantage of a whole-body scan and therefore fully address the issue of the heterogeneous expression of checkpoints over time. Here, we provide an overview of existing PET, SPECT, and optical imaging (OI) (radio)tracers for the imaging of the upregulation levels of PD-1 and PD-L1. We summarize the preclinical and clinical data of the different molecule classes of radiotracers and discuss their respective advantages and disadvantages. At the end, we show possible future directions for developing new radiotracers for the imaging of PD-1/PD-L1 status in cancer patients.
Collapse
Affiliation(s)
- Fabian Krutzek
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
| | - Klaus Kopka
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Cancer (UCC), 01307 Dresden, Germany
| | - Sven Stadlbauer
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- Correspondence:
| |
Collapse
|
34
|
Wen X, Zeng X, Cheng X, Zeng X, Liu J, Zhang Y, Li Y, Chen H, Huang J, Guo Z, Chen X, Zhang X. PD-L1-Targeted Radionuclide Therapy Combined with αPD-L1 Antibody Immunotherapy Synergistically Improves the Antitumor Effect. Mol Pharm 2022; 19:3612-3622. [PMID: 35652897 DOI: 10.1021/acs.molpharmaceut.2c00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockers (ICBs) targeting programmed death receptor 1 (PD-1) ligand 1 (PD-L1) for immunotherapy have radically reformed oncology. It is of great significance to enhance the response rate of ICB in cancer patients. Here, a radioiodinated anti-PD-L1 antibody (131I-αPD-L1) was developed for PD-L1-targeted single-photon emission computed tomography (SPECT) imaging and αPD-L1 immunotherapy. Flow cytometry and immunofluorescence staining were performed to identify PD-L1 upregulation in a time- and dose-dependent manner after being induced by 131I-αPD-L1. ImmunoSPECT imaging and biodistributions of 131I-αPD-L1 in CT26, MC38, 4T1, and B16F10 tumor models were conducted to visualize the high tumor uptake and low background signal. Compared to monotherapy alone, concurrent administration of αPD-L1 mAb and 131I-αPD-L1 revealed improved tumor control in murine tumor models. The combination of 11.1 MBq of 131I-αPD-L1 and 200 μg of αPD-L1 mAb resulted in significant tumor growth delay and prolonged survival. This radioligand synergized immunotherapy strategy holds great potential for cancer management.
Collapse
Affiliation(s)
- Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xueyuan Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xingxing Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yiren Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Haojun Chen
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jinxiong Huang
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
35
|
Ridge NA, Rajkumar-Calkins A, Dudzinski SO, Kirschner AN, Newman NB. Radiopharmaceuticals as Novel Immune System Tracers. Adv Radiat Oncol 2022; 7:100936. [PMID: 36148374 PMCID: PMC9486425 DOI: 10.1016/j.adro.2022.100936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigms for multiple cancers. However, ICI therapy often fails to generate measurable and sustained antitumor responses, and clinically meaningful benefits remain limited to a small proportion of overall patients. A major obstacle to development and effective application of novel therapeutic regimens is optimized patient selection and response assessment. Noninvasive imaging using novel immunoconjugate radiopharmaceuticals (immuno–positron emission tomography and immuno-single-photon emission computed tomography) can assess for expression of cell surface immune markers, such as programmed cell death protein ligand-1 (PD-L1), akin to a virtual biopsy. This emerging technology has the potential to provide clinicians with a quantitative, specific, real-time evaluation of immunologic responses relative to cancer burden in the body. We discuss the rationale for using noninvasive molecular imaging of the programmed cell death protein-1 and PD-L1 axis as a biomarker for immunotherapy and summarize the current status of preclinical and clinical studies examining PD-L1 immuno–positron emission tomography. The strategies described in this review provide insight for future clinical trials exploring the use of immune checkpoint imaging as a biomarker for both ICI and radiation therapy, and for the rational design of combinatorial therapeutic regimens.
Collapse
|
36
|
Liu Q, Wang X, Yang Y, Wang C, Zou J, Lin J, Qiu L. Immuno-PET imaging of PD-L1 expression in patient-derived lung cancer xenografts with [ 68Ga]Ga-NOTA-Nb109. Quant Imaging Med Surg 2022; 12:3300-3313. [PMID: 35655844 PMCID: PMC9131318 DOI: 10.21037/qims-21-991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/17/2022] [Indexed: 09/17/2023]
Abstract
Background Accurate evaluation of programmed death-ligand 1 (PD-L1) expression levels in cancer patients may be useful in the identification of potential candidates for anti-programmed death-1/PD-L1 (anti-PD-1/PD-L1) immune checkpoint therapy to improve the response rate of immune checkpoint blockade therapy. This study evaluated the feasibility of the nanobody-based positron emission tomography (PET) tracer [68Ga]Ga-NOTA-Nb109 for immuno-PET imaging of PD-L1 in lung cancer patient-derived xenograft (PDX). Methods We constructed 2 PDXs of lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SCC) and used them for immuno-PET imaging. A 2-hour dynamic PET scanning was performed on the samples and the in vivo biodistribution and metabolism of [68Ga]Ga-NOTA-Nb109 were investigated using region of interest (ROI) analysis. The ex vivo biodistribution of [68Ga]Ga-NOTA-Nb109 in the 2 PDXs was investigated by static PET scanning. In addition, tumor PD-L1 expression in the 2 PDXs was evaluated by autoradiography, western blot, and immunohistochemical (IHC) analysis. Results Noninvasive PET imaging showed that [68Ga]Ga-NOTA-Nb109 can accurately and sensitively assess the PD-L1 expression in non-small cell lung cancer (NSCLC) PDX models. The maximum [68Ga]Ga-NOTA-Nb109 uptake by the ADC PDX LU6424 and the SCC PDX LU6437 were 3.13%±0.35% and 2.60%±0.32% injected dose per milliliter of tissue volume (ID/mL), respectively, at 20 min post injection. In vivo and ex vivo biodistribution analysis showed that [68Ga]Ga-NOTA-Nb109 was rapidly cleared through renal excretion and an enhanced signal-to-noise ratio (SNR) was achieved. Ex vivo PD-L1 expression analysis showed good agreement with in vivo PET imaging results. Conclusions This study demonstrated that [68Ga]Ga-NOTA-Nb109 could be applied with PET imaging to noninvasively and accurately monitor PD-L1 expression in vivo for screening patients who may be responsive to immunotherapy and to guide the development of appropriate treatment strategies for such patients.
Collapse
Affiliation(s)
- Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xiaodan Wang
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yanling Yang
- Suzhou Smart Nuclide Biopharmaceutical Co. Ltd., Suzhou Industrial Park, Suzhou, China
| | - Chao Wang
- Suzhou Smart Nuclide Biopharmaceutical Co. Ltd., Suzhou Industrial Park, Suzhou, China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
38
|
Wu AM, Pandit-Taskar N. ImmunoPET: harnessing antibodies for imaging immune cells. Mol Imaging Biol 2022; 24:181-197. [PMID: 34550529 DOI: 10.1007/s11307-021-01652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/22/2023]
Abstract
Dramatic, but uneven, progress in the development of immunotherapies for cancer has created a need for better diagnostic technologies including innovative non-invasive imaging approaches. This review discusses challenges and opportunities for molecular imaging in immuno-oncology and focuses on the unique role that antibodies can fill. ImmunoPET has been implemented for detection of immune cell subsets, activation and inhibitory biomarkers, tracking adoptively transferred cellular therapeutics, and many additional applications in preclinical models. Parallel progress in radionuclide availability and infrastructure supporting biopharmaceutical manufacturing has accelerated clinical translation. ImmunoPET is poised to provide key information on prognosis, patient selection, and monitoring immune responses to therapy in cancer and beyond.
Collapse
Affiliation(s)
- Anna M Wu
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Center for Theranostics Studies, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
- Department of Radiation Oncology, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Neeta Pandit-Taskar
- Molecular Imaging &Therapy Svc, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
- Center for Targeted Radioimmunotherapy and Theranostics, Ludwig Center for Cancer Immunotherapy, MSK, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
39
|
Ng TSC, Allen HH, Rashidian M, Miller MA. Probing immune infiltration dynamics in cancer by in vivo imaging. Curr Opin Chem Biol 2022; 67:102117. [PMID: 35219177 PMCID: PMC9118268 DOI: 10.1016/j.cbpa.2022.102117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity. To address this need, in vivo imaging of both adaptive and innate immune cell populations has emerged as a tool to quantify spatial leukocyte accumulation in tumors non-invasively. Here we review recent progress in the translational development of probes for in vivo leukocyte imaging, focusing on complementary perspectives provided by imaging of T-cells, phagocytic macrophages, and their responses to therapy.
Collapse
Affiliation(s)
- Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
40
|
Napier TS, Hunter CL, Song PN, Larimer BM, Sorace AG. Preclinical PET Imaging of Granzyme B Shows Promotion of Immunological Response Following Combination Paclitaxel and Immune Checkpoint Inhibition in Triple Negative Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14020440. [PMID: 35214172 PMCID: PMC8875418 DOI: 10.3390/pharmaceutics14020440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Advancements in monitoring and predicting of patient-specific response of triple negative breast cancer (TNBC) to immunotherapy (IMT) with and without chemotherapy are needed. Using granzyme B-specific positron emission tomography (GZP-PET) imaging, we aimed to monitor changes in effector cell activation in response to IMT with chemotherapy in TNBC. TNBC mouse models received the paclitaxel (PTX) ± immune checkpoint inhibitors anti-programmed death 1 (anti-PD1) and anti-cytotoxic T-lymphocyte 4 (anti-CTLA4). GZP-PET imaging was performed on treatment days 0, 3, and 6. Mean standard uptake value (SUVmean), effector cell fractions, and SUV histograms were compared. Mice were sacrificed at early imaging timepoints for cytokine and histological analyses. GZP-PET imaging data revealed differences prior to tumor volume changes. By day six, responders had SUVmean ≥ 2.2-fold higher (p < 0.0037) and effector cell fractions ≥ 1.9-fold higher (p = 0.03) compared to non-responders. IMT/PTX resulted in a significantly different SUV distribution compared to control, indicating broader distribution of activated intratumoral T-cells. IMT/PTX resulted in significantly more necrotic tumor tissue and increased levels of IL-2, 4, and 12 compared to control. Results implicate immunogenic cell death through upregulation of key Th1/Th2 cytokines by IMT/PTX. Noninvasive PET imaging can provide data on the TNBC tumor microenvironment, specifically intratumoral effector cell activation, predicting response to IMT plus chemotherapy.
Collapse
Affiliation(s)
- Tiara S. Napier
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chanelle L. Hunter
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Patrick N. Song
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-934-3116, Fax: +1-(205)-975-6522
| |
Collapse
|
41
|
Krache A, Fontan C, Pestourie C, Bardiès M, Bouvet Y, Payoux P, Chatelut E, White-Koning M, Salabert AS. Preclinical Pharmacokinetics and Dosimetry of an 89Zr Labelled Anti-PDL1 in an Orthotopic Lung Cancer Murine Model. Front Med (Lausanne) 2022; 8:741855. [PMID: 35174180 PMCID: PMC8841431 DOI: 10.3389/fmed.2021.741855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Anti-PDL1 is a monoclonal antibody targeting the programmed death-cell ligand (PD-L1) by blocking the programmed death-cell (PD-1)/PD-L1 axis. It restores the immune system response in several tumours, such as non-small cell lung cancer (NSCLC). Anti-PDL1 or anti-PD1 treatments rely on PD-L1 tumoural expression assessed by immunohistochemistry on biopsy tissue. However, depending on the biopsy extraction site, PD-L1 expression can vary greatly. Non-invasive imaging enables whole-body mapping of PD-L1 sites and could improve the assessment of tumoural PD-L1 expression.MethodsPharmacokinetics (PK), biodistribution and dosimetry of a murine anti-PDL1 radiolabelled with zirconium-89, were evaluated in both healthy mice and immunocompetent mice with lung cancer. Preclinical PET (μPET) imaging was used to analyse [89Zr]DFO-Anti-PDL1 distribution in both groups of mice. Non-compartmental (NCA) and compartmental (CA) PK analyses were performed in order to describe PK parameters and assess area under the concentration-time curve (AUC) for dosimetry evaluation in humans.ResultsOrgan distribution was correctly estimated using PK modelling in both healthy mice and mice with lung cancer. Tumoural uptake occurred within 24 h post-injection of [89Zr]DFO-Anti-PDL1, and the best imaging time was at 48 h according to the signal-to-noise ratio (SNR) and image quality. An in vivo blocking study confirmed that [89Zr]DFO-anti-PDL1 specifically targeted PD-L1 in CMT167 lung tumours in mice. AUC in organs was estimated using a 1-compartment PK model and extrapolated to human (using allometric scaling) in order to estimate the radiation exposure in human. Human-estimated effective dose was 131 μSv/MBq.ConclusionThe predicted dosimetry was similar or lower than other antibodies radiolabelled with zirconium-89 for immunoPET imaging.
Collapse
Affiliation(s)
- Anis Krache
- CRCT, UMR 1037, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- General-Electric - Zionexa, Targeting Imaging and Therapy, Buc, France
- Anis Krache
| | - Charlotte Fontan
- General-Electric - Zionexa, Targeting Imaging and Therapy, Buc, France
| | - Carine Pestourie
- CREFRE (Centre Régional D'Exploration Fonctionnelle et Ressources Expérimentales) – INSERM UMS006, Plateforme GénoToul-Anexplo, Toulouse, France
- ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse, France
| | - Manuel Bardiès
- IRCM (Institut de Recherche en Cancérologie de Montpellier), UMR 1194 INSERM, Université de Montpellier and ICM, Montpellier, France
- Département de Médecine Nucléaire, ICM (Institut du Cancer de Montpellier), Montpellier, France
| | - Yann Bouvet
- General-Electric - Zionexa, Targeting Imaging and Therapy, Buc, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Etienne Chatelut
- CRCT, UMR 1037, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
| | - Melanie White-Koning
- CRCT, UMR 1037, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, UMR 1214, Université de Toulouse, INSERM, Université Paul-Sabatier, Toulouse, France
- Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- *Correspondence: Anne-Sophie Salabert
| |
Collapse
|
42
|
Wu AM. Imaging the host response to cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Yang Y, Wang C, Wang Y, Sun Y, Huang X, Huang M, Xu H, Fan H, Chen D, Zhao F. Dose escalation biodistribution, positron emission tomography/computed tomography imaging and dosimetry of a highly specific radionuclide-labeled non-blocking nanobody. EJNMMI Res 2021; 11:113. [PMID: 34718889 PMCID: PMC8557220 DOI: 10.1186/s13550-021-00854-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immunotherapy is a valuable option for cancer treatment, and the curative effect of anti-PD-1/PD-L1 therapy correlates closely with PD-L1 expression levels. Positron emission tomography (PET) imaging of PD-L1 expression is feasible using 68Ga-NOTA-Nb109 nanobody. 68Ga-NOTA-Nb109 was generated by radionuclide (68Ga) labeling of Nb109 using a NOTA chelator. To facilitate clinical trials, we explored the optimal dose range of 68Ga-NOTA-Nb109 in BALB/c A375-hPD-L1 tumor-burdened nude mice and C57-hPD-L1 transgenic MC38-hPD-L1 tumor-burdened mice by administration of a single intravenous dose of 68Ga-NOTA-Nb109 and confirmed the dose in cynomolgus monkeys. The biodistribution data of cynomolgus monkey PET images were extrapolated to estimate the radiation dose for the adult male and female using OLINDA2.1 software. RESULTS 68Ga-NOTA-Nb109 was stable in physiologic media and human serum. Ex vivo biodistribution studies showed rapid and specific uptake in A375-hPD-L1 or MC38-hPD-L1 tumors. The estimated ED50 was approximately 5.4 µg in humanized mice. The injected mass (0.3-100 µg in nude mice and approximately 1-100 µg in humanized mice) greatly influenced the general biodistribution, with a better tumor-to-background ratio acquired at lower doses of Nb109 (0.3-10 µg in nude mice and approximately 1 µg in humanized mice), indicating maximum uptake in tumors at administered mass doses below the estimated ED50. Therefore, a single 15-μg/kg dose was adopted for the PET/CT imaging in the cynomolgus monkey. The highest specific and persistent uptake of the tracer was detected in the spleen, except the levels in the kidney and urine bladder, which was related to metabolism and excretion. The spleen-to-muscle ratio of the tracer exceeded 10 from immediately to 4 h after administration, indicating that the dose was appropriate. The estimated effective dose was calculated to yield a radiation dose of 4.1 mSv to a patient after injecting 185 MBq of 68Ga-NOTA-Nb109. CONCLUSION 68Ga-NOTA-Nb109 showed specific accumulation in hPD-L1 xenografts in ex vivo biodistribution studies and monkey PET/CT imaging. The dose escalation distribution data provided a recommended dose range for further use, and the safety of the tracer was confirmed in dosimetry studies.
Collapse
Affiliation(s)
- Yanling Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Chao Wang
- SmartNuclide Biopharma Co. Ltd, 218 Xinghu St., BioBAY A4-202, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Yan Wang
- Department of Clinical Pharmacology, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Gusu District, Suzhou, 215006, People's Republic of China
| | - Yan Sun
- SmartNuclide Biopharma Co. Ltd, 218 Xinghu St., BioBAY A4-202, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Minzhou Huang
- Department of Clinical Pharmacology, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Gusu District, Suzhou, 215006, People's Republic of China
| | - Hui Xu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Daquan Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China.
| | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
44
|
Sarcan ET, Silindir-Gunay M, Ozer AY, Hartman N. 89Zr as a promising radionuclide and it’s applications for effective cancer imaging. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07928-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Pharmacodynamic measures within tumors expose differential activity of PD(L)-1 antibody therapeutics. Proc Natl Acad Sci U S A 2021; 118:2107982118. [PMID: 34508005 DOI: 10.1073/pnas.2107982118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 01/22/2023] Open
Abstract
Macromolecules such as monoclonal antibodies (mAbs) are likely to experience poor tumor penetration because of their large size, and thus low drug exposure of target cells within a tumor could contribute to suboptimal responses. Given the challenge of inadequate quantitative tools to assess mAb activity within tumors, we hypothesized that measurement of accessible target levels in tumors could elucidate the pharmacologic activity of a mAb and could be used to compare the activity of different mAbs. Using positron emission tomography (PET), we measured the pharmacodynamics of immune checkpoint protein programmed-death ligand 1 (PD-L1) to evaluate pharmacologic effects of mAbs targeting PD-L1 and its receptor programmed cell death protein 1 (PD-1). For PD-L1 quantification, we first developed a small peptide-based fluorine-18-labeled PET imaging agent, [18F]DK222, which provided high-contrast images in preclinical models. We then quantified accessible PD-L1 levels in the tumor bed during treatment with anti-PD-1 and anti-PD-L1 mAbs. Applying mixed-effects models to these data, we found subtle differences in the pharmacodynamic effects of two anti-PD-1 mAbs (nivolumab and pembrolizumab). In contrast, we observed starkly divergent target engagement with anti-PD-L1 mAbs (atezolizumab, avelumab, and durvalumab) that were administered at equivalent doses, correlating with differential effects on tumor growth. Thus, we show that measuring PD-L1 pharmacodynamics informs mechanistic understanding of therapeutic mAbs targeting PD-L1 and PD-1. These findings demonstrate the value of quantifying target pharmacodynamics to elucidate the pharmacologic activity of mAbs, independent of mAb biophysical properties and inclusive of all physiological variables, which are highly heterogeneous within and across tumors and patients.
Collapse
|
46
|
Lv G, Miao Y, Chen Y, Lu C, Wang X, Xie M, Qiu L, Lin J. Promising potential of a 18F-labelled small-molecular radiotracer to evaluate PD-L1 expression in tumors by PET imaging. Bioorg Chem 2021; 115:105294. [PMID: 34426150 DOI: 10.1016/j.bioorg.2021.105294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Programmed death ligand 1 (PD-L1) expression level is a reproducible biomarker for guiding stratification of patients to immunotherapy. However, the most widely used immunohistochemistry method is incompetent to fully understand the PD-L1 expression level in the whole body because of the highly complex PD-L1 expression in the tumor microenvironment. In this work, a novel small-molecular radiotracer [18F]LG-1 based on the biphenyl active structure was developed to evaluate PD-L1 expression in tumors. [18F]LG-1 was obtained by conjugating and radiolabeling with [18F]FDG with high radiochemical purity (>98.0%) and high molar activity (37.2 ± 2.9 MBq/nmol). In vitro experimental results showed that [18F]LG-1 could target PD-L1 in tumor cells and the cellular uptake in A375-hPD-L1 cells (PD-L1 + ) was clearly higher than that in A375 cells (PD-L1-). In vivo dynamic PET images of [18F]LG-1 provided clear visualization of A375-hPD-L1 tumor with high tumor-to-background contrast, and the tumor uptake was determined to be 3.98 ± 0.21 %ID/g at 60 min, which was 2.6-fold higher than that of A375 tumor. These results suggested that [18F]LG-1 had great potential as a promising PD-L1 radiotracer.
Collapse
Affiliation(s)
- Gaochao Lv
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunmei Lu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiuting Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
47
|
Abstract
The use of PET imaging agents in oncology, cardiovascular disease, and neurodegenerative disease shows the power of this technique in evaluating the molecular and biological characteristics of numerous diseases. These agents provide crucial information for designing therapeutic strategies for individual patients. Novel PET tracers are in continual development and many have potential use in clinical and research settings. This article discusses the potential applications of tracers in diagnostics, the biological characteristics of diseases, the ability to provide prognostic indicators, and using this information to guide treatment strategies including monitoring treatment efficacy in real time to improve outcomes and survival.
Collapse
|
48
|
Bouleau A, Lebon V, Truillet C. PET imaging of immune checkpoint proteins in oncology. Pharmacol Ther 2021; 222:107786. [PMID: 33307142 DOI: 10.1016/j.pharmthera.2020.107786] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Despite the remarkable clinical successes of immune checkpoint inhibitors (ICIs) in various advanced cancers, response is still limited to a subset of patients that generally exhibit tumoral expression of immune checkpoint (IC) proteins. Development of biomarkers assessing the expression of such ICs is therefore a major challenge nowadays to refine patient selection and improve therapeutic benefits. Positron emission tomography (PET) imaging using IC-targeted radiolabeled monoclonal antibodies (immunoPET) provides a non-invasive and whole-body visualization of in vivo IC biodistribution. As such, PET imaging of ICs may serve as a robust biomarker to predict and monitor responses to ICIs, complementing the existing immunohistochemical techniques. Besides monoclonal antibodies, other PET radioligand formats, ranging from antibody-derived fragments to small proteins, have gained increasing interest owing to their faster pharmacokinetics and enhanced imaging characteristics. We provide an overview of the various strategies investigated so far for PET imaging of ICs in preclinical and clinical studies, emphasizing their benefits and limitations. Moreover, we discuss various parameters to consider for designing optimized and best-suited PET radioligands.
Collapse
Affiliation(s)
- Alizée Bouleau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France
| | - Vincent Lebon
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France.
| |
Collapse
|
49
|
Roy J, Jagoda EM, Basuli F, Vasalatiy O, Phelps TE, Wong K, Ton AT, Hagemann UB, Cuthbertson AS, Cole PE, Hassan R, Choyke PL, Lin FI. In Vitro and In Vivo Comparison of 3,2-HOPO Versus Deferoxamine-Based Chelation of Zirconium-89 to the Antimesothelin Antibody Anetumab. Cancer Biother Radiopharm 2021; 36:316-325. [PMID: 34014767 PMCID: PMC8161658 DOI: 10.1089/cbr.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: [227Th]Th-3,2-HOPO-MSLN-mAb, a mesothelin (MSLN)-targeted thorium-227 therapeutic conjugate, is currently in phase I clinical trial; however, direct PET imaging using this conjugate is technically challenging. Thus, using the same MSLN antibody, we synthesized 3,2-HOPO and deferoxamine (DFO)-based zirconium-89 antibody conjugates, [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb, respectively, and compared them in vitro and in vivo. Methods: [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb were evaluated in vitro to determine binding affinity and immunoreactivity in HT29-MSLN and PDX (NCI-Meso16, NCI-Meso21) cells. For both the zirconium-89 conjugates, in vivo studies (biodistribution/imaging) were performed at days 1, 3, and 6, from which tissue uptake was determined. Results: Both the conjugates demonstrated a low nanomolar binding affinity for MSLN and >95% immunoreactivity. In all the three tumor types, biodistribution of [89Zr]Zr-DFO-MSLN-mAb resulted in higher tumor uptake(15.88-28-33%ID/g) at all time points compared with [89Zr]Zr-3,2-HOPO-MSLN-mAb(7–13.07%ID/g). [89Zr]Zr-3,2-HOPO-MSLN-mAb femur uptake was always higher than [89Zr]Zr-DFO-MSLN-mAb, and imaging results concurred with the biodistribution studies. Conclusions: Even though the conjugates exhibited a high binding affinity for MSLN, [89Zr]Zr-DFO-MSLN-mAb showed a higher tumor and lower femur uptake than [89Zr]Zr-3,2-HOPO-MSLN-mAb. Nevertheless, [89Zr]Zr-3,2-HOPO-MSLN-mAb could be used to study organ distribution and lesion uptake with the caveat of detecting MSLN-positive bone lesions. Clinical trial (NCT03507452).
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine M Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Tim E Phelps
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen Wong
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita T Ton
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | - Raffit Hassan
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Kelly MP, Makonnen S, Hickey C, Arnold TC, Giurleo JT, Tavaré R, Danton M, Granados C, Chatterjee I, Dudgeon D, Retter MW, Ma D, Olson WC, Thurston G, Kirshner JR. Preclinical PET imaging with the novel human antibody 89Zr-DFO-REGN3504 sensitively detects PD-L1 expression in tumors and normal tissues. J Immunother Cancer 2021; 9:jitc-2020-002025. [PMID: 33483343 PMCID: PMC7831708 DOI: 10.1136/jitc-2020-002025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background Programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) blocking antibodies including cemiplimab have generated profound clinical activity across diverse cancer types. Tumorous PD-L1 expression, as assessed by immunohistochemistry (IHC), is an accepted predictive marker of response to therapy in some cancers. However, expression is often dynamic and heterogeneous, and therefore not reliably captured by IHC from tumor biopsies or archival samples. Thus, there is significant need for accurate whole-body quantification of PD-L1 levels. Methods We radiolabeled the novel human anti-PD-L1 antibody REGN3504 with zirconium-89 (89Zr) using the chelator p-SCN-Bn-Deferoxamine to enable non-invasive immuno-positron emission tomography (immuno-PET) of PD-L1 expression. PET imaging assessed the localization of 89Zr-REGN3504 to multiple human tumor xenografts. Mice genetically humanized for PD-1 and PD-L1 were used to assess the biodistribution of 89Zr-REGN3504 to normal tissues and the estimated human radiation dosimetry of 89Zr-REGN3504 was also determined. Pharmacokinetics of REGN3504 was assessed in monkeys. Results Clear localization of 89Zr-REGN3504 to human tumor xenografts was observed via PET imaging and ex vivo biodistribution studies demonstrated high (fourfold to sixfold) tumor:blood ratios. 89Zr-REGN3504 specifically localized to spleen and lymph nodes in the PD-1/PD-L1 humanized mice. 89Zr-REGN3504 immuno-PET accurately detected a significant reduction in splenic PD-L1 positive cells following systemic treatment with clodronate liposomes. Radiation dosimetry suggested absorbed doses would be within guidelines for other 89Zr radiolabeled, clinically used antibodies. Pharmacokinetics of REGN3504 was linear. Conclusion This work supports the clinical translation of 89Zr-REGN3504 immuno-PET for the assessment of PD-L1 expression. Future clinical studies will aim to investigate the utility of 89Zr-REGN3504 immuno-PET for predicting and monitoring response to anti-PD-1 therapy.
Collapse
Affiliation(s)
| | | | - Carlos Hickey
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - T Cody Arnold
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | | | | | | | | - Drew Dudgeon
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Marc W Retter
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Dangshe Ma
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | | | |
Collapse
|