1
|
Hickman HD, Moutsopoulos NM. Viral infection and antiviral immunity in the oral cavity. Nat Rev Immunol 2024:10.1038/s41577-024-01100-x. [PMID: 39533045 DOI: 10.1038/s41577-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Individual tissues have distinct antiviral properties garnered through various mechanisms, including physical characteristics, tissue-resident immune cells and commensal organisms. Although the oral mucosa has long been appreciated as a critical barrier tissue that is exposed to a continuous barrage of pathogens, many fundamental aspects of the antiviral immune response in this tissue remain unknown. Several viral pathogens, such as herpesviruses and human papillomaviruses, have been acknowledged both historically and at present for infections in the oral cavity that result in substantial clinical burden. However, recent viral outbreaks, including those with SARS-CoV-2 and mpox, featured oral symptoms even though these viruses are not generally considered oral pathogens. Ensuing studies have shown that the oral cavity is an important locale for viral infection and potential transmission of newly emergent or re-emergent pathogens, highlighting the need for an increased understanding of the mechanisms of antiviral immunity at this site. In this Review, we provide a broad overview of antiviral immune responses in the oral cavity and discuss common viral infections and their manifestations in the oral mucosa. In addition, we present current mouse models for the study of oral viral infections.
Collapse
Affiliation(s)
- Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Zimecki M, Artym J, Kocięba M, Zaczyńska E, Sysak A, Szczypka M, Lis M, Pawlak A, Obmińska-Mrukowicz B, Kaleta-Kuratewicz K, Zambrowicz A, Bobak Ł. Age-Dependent Effects of Yolkin on Contact Sensitivity and Immune Phenotypes in Juvenile Mice. Molecules 2024; 29:3254. [PMID: 39064833 PMCID: PMC11279269 DOI: 10.3390/molecules29143254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Yolkin, an egg yolk immunoregulatory protein, stimulates the humoral but inhibits the cellular immune response in adult mice. The aim of this investigation was to evaluate the effects of yolkin administration on the immune response using a model of juvenile, i.e., 28-day- and 37-day-old, mice. We examined the yolkin influence on the magnitude of the cellular immune response, which was determined as contact sensitivity (CS) to oxazolone (OXA), and the humoral immune response, which was determined as the antibody response to ovalbumin (OVA). Yolkin was administered in drinking water, followed by immunization with OXA or OVA. In parallel, the phenotypic changes in the lymphoid organs were determined following yolkin treatment and prior immunization. The results showed that yolkin had a stimulatory effect on CS in the mice treated with yolkin from the 37th day of life but not from the 28th day of life. In contrast, no regulatory effect of yolkin on antibody production was found in 28-day- and 37-day-old mice. Phenotypic studies revealed significant changes in the content of B cells and T cell subpopulations, including CD4+CD25+Foxp3 regulatory T cells. The association between the effects of yolkin on the magnitude of CS and phenotypic changes in main T- and B-cell compartments, as well the importance of changes in T-regulatory and CD8+ cells in the age categories, are discussed. We conclude that the immunoregulatory effects of yolkin on the generation of CS in mice are age dependent and change from stimulation in juvenile to suppression in adult mice.
Collapse
Affiliation(s)
- Michał Zimecki
- Laboratory of Immunobiology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla Str. 12, 53-114 Wrocław, Poland; (J.A.); (M.K.); (E.Z.)
| | - Jolanta Artym
- Laboratory of Immunobiology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla Str. 12, 53-114 Wrocław, Poland; (J.A.); (M.K.); (E.Z.)
| | - Maja Kocięba
- Laboratory of Immunobiology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla Str. 12, 53-114 Wrocław, Poland; (J.A.); (M.K.); (E.Z.)
| | - Ewa Zaczyńska
- Laboratory of Immunobiology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla Str. 12, 53-114 Wrocław, Poland; (J.A.); (M.K.); (E.Z.)
| | - Angelika Sysak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C. K. Norwida Str. 31, 50-375 Wrocław, Poland; (A.S.); (M.S.); (M.L.); (A.P.); (B.O.-M.)
| | - Marianna Szczypka
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C. K. Norwida Str. 31, 50-375 Wrocław, Poland; (A.S.); (M.S.); (M.L.); (A.P.); (B.O.-M.)
| | - Magdalena Lis
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C. K. Norwida Str. 31, 50-375 Wrocław, Poland; (A.S.); (M.S.); (M.L.); (A.P.); (B.O.-M.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C. K. Norwida Str. 31, 50-375 Wrocław, Poland; (A.S.); (M.S.); (M.L.); (A.P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C. K. Norwida Str. 31, 50-375 Wrocław, Poland; (A.S.); (M.S.); (M.L.); (A.P.); (B.O.-M.)
| | - Katarzyna Kaleta-Kuratewicz
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, C. K. Norwida Str. 25, 50-375 Wrocław, Poland;
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 37 Str., 51-630 Wrocław, Poland; (A.Z.); (Ł.B.)
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 37 Str., 51-630 Wrocław, Poland; (A.Z.); (Ł.B.)
| |
Collapse
|
3
|
Settem RP, Ruscitto A, Chinthamani S, Honma K, Sharma A. Tannerella forsythia scavenges Fusobacterium nucleatum secreted NOD2 stimulatory molecules to dampen oral epithelial cell inflammatory response. Mol Oral Microbiol 2024; 39:40-46. [PMID: 37459655 PMCID: PMC10792118 DOI: 10.1111/omi.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 01/18/2024]
Abstract
The oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides. In this study, we utilized an in vitro T. forsythia-F. nucleatum co-culture model to determine if T. forsythia can selectively scavenge NOD ligands from the environment and impact NOD-mediated inflammation. The results showed that NOD-stimulatory molecules were secreted by F. nucleatum in the spent culture broth, which subsequently induced cytokine and antimicrobial peptide expression in oral epithelial cells. In the spent broth from T. forsythia-F. nucleatum co-cultures, the NOD-stimulatory activity was significantly reduced. These data indicated that F. nucleatum releases NOD2-stimulatory muropeptides in the environment, and T. forsythia can effectively scavenge the muropeptides released by co-habiting bacteria to dampen NOD-mediated host responses. This proof-of-principle study demonstrated that peptidoglycan scavenging by T. forsythia can impact the innate immunity of oral epithelium by dampening NOD activation.
Collapse
Affiliation(s)
| | | | | | - Kiyonobu Honma
- Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Ashu Sharma
- Oral Biology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Mao D, Inoue H, Goda S. Role of the nucleotide-binding oligomerization domain-containing protein 1 pathway in the development of periodontitis. J Oral Biosci 2024; 66:105-111. [PMID: 38182046 DOI: 10.1016/j.job.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES During innate immune defense, host pattern recognition receptors, including toll-like receptors and nucleotide-binding oligomerization domain-like receptors (NLRs), can activate downstream pathways by recognizing pathogen-associated molecular patterns produced by microorganisms, triggering immune responses. NOD1, an important cell membrane protein in the NLR-like receptor protein family, exerts anti-infective effects through γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) recognition. Oral epithelial cells resist bacterial invasion through iE-DAP-induced interleukin (IL)-8 production, recruiting neutrophils to sites of inflammation in response to bacterial threats to periodontal tissues. To date, the regulatory mechanisms of iE-DAP in gingival epithelial cells (GECs) are poorly understood. This study was conducted to investigate the role of the NOD1 pathway in the development of periodontitis by examining the effect of iE-DAP on IL-8 production in Ca9-22 cells. METHODS IL-8 production by iE-DAP-stimulated-Ca9-22 cells was assessed using an enzyme-linked immunosorbent assay. Phosphorylation levels of intracellular signaling molecules were evaluated using western blot analyses. RESULTS iE-DAP induced NOD1 receptor expression in Ca9-22 cells. Additionally, iE-DAP induced expression of pro-IL-1β protein without extracellular secretion. Our results suggest that iE-DAP regulates IL-8 production by activating p38 mitogen-activated protein kinase (MAPK) and ERK1/2 signaling pathways. iE-DAP also promoted nuclear factor kappa-B p65 phosphorylation, facilitating its nuclear translocation. Notably, p38 MAPK and ERK1/2 inhibitors suppressed iE-DAP-stimulated IL-8 production, suggesting that JNK is not involved in this mechanism. CONCLUSIONS Our results indicate that p38 MAPK and ERK1/2, but not JNK, are involved in innate immune responses in GECs.
Collapse
Affiliation(s)
- Dan Mao
- Graduate School of Dentistry, Department of Physiology, Osaka Dental University, Osaka, Japan.
| | - Hiroshi Inoue
- Department of Physiology, Osaka Dental University, Osaka, Japan.
| | - Seiji Goda
- Department of Physiology, Osaka Dental University, Osaka, Japan.
| |
Collapse
|
5
|
Saikia PJ, Pathak L, Mitra S, Das B. The emerging role of oral microbiota in oral cancer initiation, progression and stemness. Front Immunol 2023; 14:1198269. [PMID: 37954619 PMCID: PMC10639169 DOI: 10.3389/fimmu.2023.1198269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy among the Head and Neck cancer. OSCCs are highly inflammatory, immune-suppressive, and aggressive tumors. Recent sequencing based studies demonstrated the involvement of different oral microbiota in oral cavity diseases leading OSCC carcinogenesis, initiation and progression. Researches showed that oral microbiota can activate different inflammatory pathways and cancer stem cells (CSCs) associated stemness pathways for tumor progression. We speculate that CSCs and their niche cells may interact with the microbiotas to promote tumor progression and stemness. Certain oral microbiotas are reported to be involved in dysbiosis, pre-cancerous lesions, and OSCC development. Identification of these specific microbiota including Human papillomavirus (HPV), Porphyromonas gingivalis (PG), and Fusobacterium nucleatum (FN) provides us with a new opportunity to study the bacteria/stem cell, as well as bacteria/OSCC cells interaction that promote OSCC initiation, progression and stemness. Importantly, these evidences enabled us to develop in-vitro and in-vivo models to study microbiota interaction with stem cell niche defense as well as CSC niche defense. Thus in this review, the role of oral microbiota in OSCC has been explored with a special focus on how oral microbiota induces OSCC initiation and stemness by modulating the oral mucosal stem cell and CSC niche defense.
Collapse
Affiliation(s)
- Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
6
|
Lamont RJ, Miller DP, Bagaitkar J. Illuminating the oral microbiome: cellular microbiology. FEMS Microbiol Rev 2023; 47:fuad045. [PMID: 37533213 PMCID: PMC10657920 DOI: 10.1093/femsre/fuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, KY40202, United States
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, VA23298, United States
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, OH43205, United States
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH, OH43210, United States
| |
Collapse
|
7
|
Gürsoy M, Könönen E, He Q, Liukkonen A, Huumonen S, Gürsoy UK. Toll-like receptor-1, -2, and -6 genotypes in relation to salivary human beta-defensin-1, -2, -3 and human neutrophilic peptide-1. J Clin Periodontol 2022; 49:1185-1191. [PMID: 35817420 PMCID: PMC9796255 DOI: 10.1111/jcpe.13697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
Abstract
AIM To examine whether functional gene polymorphisms of toll-like receptor (TLR)1, TLR2, and TLR6 are related to the salivary concentrations of human beta-defensins (hBDs)-1, -2, -3, and human neutrophilic peptide (HNP)-1. MATERIALS AND METHODS Polymorphisms of TLR1 (rs5743618), TLR2 (rs5743708), and TLR6 (rs5743810) were genotyped by PCR-based pyrosequencing from the salivary samples of 230 adults. Salivary hBD-1, -2, -3, and HNP-1 concentrations were measured using enzyme-linked immunosorbent assay. General and periodontal health examinations, including panoramic radiography, were available for all participants. RESULTS The genotype frequencies for wild types and variant types were as follows: 66.5% and 33.5% for TLR1, 95.5% and 4.5% for TLR2, and 25.1% and 74.9% for TLR6, respectively. The TLR2 heterozygote variant group exhibited higher salivary hBD-2 concentrations than the TLR2 wild-type group (p = .038). On the contrary, elevated hBD-2 concentrations were detected in the TLR6 wild-type group compared with the TLR6 heterozygote and homozygote variant group (p = .028). The associations between TLR6 genotypes and salivary hBD-2 concentrations remained significant after adjusting them for periodontal status, age, and smoking. CONCLUSION hBD-2 concentrations in saliva are related to TLR2 and TLR6 polymorphisms, but only the TLR6 genotype seems to exhibit an independent association with the salivary hBD-2 concentrations.
Collapse
Affiliation(s)
- Mervi Gürsoy
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland,Welfare DivisionOral Health CareTurkuFinland
| | - Eija Könönen
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland
| | - Qiushui He
- Research Center for Infections and Immunity, Institute of BiomedicineUniversity of TurkuTurkuFinland,InFLAMES Research Flagship CentreUniversity of TurkuTurkuFinland
| | - Anna Liukkonen
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland
| | - Sisko Huumonen
- Institute of DentistryUniversity of Eastern FinlandKuopioFinland,Department of Clinical RadiologyKuopio University HospitalKuopioFinland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of DentistryUniversity of TurkuTurkuFinland
| |
Collapse
|
8
|
Bizjak DA, Stangl M, Börner N, Bösch F, Durner J, Drunin G, Buhl JL, Abendroth D. Kynurenine serves as useful biomarker in acute, Long- and Post-COVID-19 diagnostics. Front Immunol 2022; 13:1004545. [PMID: 36211365 PMCID: PMC9537769 DOI: 10.3389/fimmu.2022.1004545] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction In patients with SARS-CoV-2, innate immunity is playing a central role, depicted by hyperinflammation and longer lasting inflammatory response. Reliable inflammatory markers that cover both acute and long-lasting COVID-19 monitoring are still lacking. Thus, we investigated one specific inflammatory marker involved as one key player of the immune system, kynurenine (Kyn), and its use for diagnosis/detection of the Long-/Post-COVID syndrome in comparison to currently used markers in both serum and saliva samples. Material and methods The study compromised in total 151 inpatients with a SARS-CoV-2 infection hospitalized between 03/2020 and 09/2021. The group NC (normal controls) included blood bank donors (n=302, 144f/158m, mean age 47.1 ± 18.3 years (range 18-75)). Two further groups were generated based on Group A (n=85, 27f/58m, mean age 63.1 ± 18.3 years (range 19-90), acute admission to the hospital) and Group B (n=66, 22f/44m, mean age 66.6 ± 17.6 years (range 17-90), admitted either for weaning or for rehabilitation period due to Long-COVID symptoms/syndrome). Plasma concentrations of Kyn, C-Reactive Protein (CRP) and interleukin-6 (IL-6) were measured on admission. In Group B we determined Kyn 4 weeks after the negative PCR-test. In a subset of patients (n=11) concentrations of Kyn and CRP were measured in sera and saliva two, three and four months after dismission. We identified 12 patients with Post-COVID symptoms >20 weeks with still significant elevated Kyn-levels. Results Mean values for NC used as reference were 2.79 ± 0.61 µM, range 1.2-4.1 µM. On admission, patients showed significantly higher concentrations of Kyn compared to NC (p-values < 0.001). Kyn significantly correlated with IL-6 peak-values (r=0.411; p-values <0.001) and CRP (r=0.488, p-values<0.001). Kyn values in Group B (Long-/Post-COVID) showed still significant higher values (8.77 ± 1.72 µM, range 5.5-16.6 µM), whereas CRP values in Group B were in the normal range. Conclusion Serum and saliva Kyn are reflecting the acute and long-term pathophysiology of the SARS-CoV-2 disease concerning the innate immune response and thus may serve a useful biomarker for diagnosis and monitoring both Long- and Post-COVID syndrome and its therapy.
Collapse
Affiliation(s)
| | - Manfred Stangl
- Division of General, Visceral and Transplant Surgery, Hospital Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolaus Börner
- Division of General, Visceral and Transplant Surgery, Hospital Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Bösch
- Division of General, Visceral and Transplant Surgery, Hospital Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Joachim Durner
- Neurology Department, Special Medical Clinic Ichenhausen, Ichenhausen, Germany
| | - Gergana Drunin
- Neurology Department, Special Medical Clinic Ichenhausen, Ichenhausen, Germany
| | - Jasmine-Leonike Buhl
- Division of Sports and Rehabilitation Medicine, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
9
|
He Y, Wu Z, Chen S, Wang J, Zhu L, Xie J, Zhou C, Zou S. Activation of the pattern recognition receptor NOD1 in periodontitis impairs the osteogenic capacity of human periodontal ligament stem cells via p38/MAPK signalling. Cell Prolif 2022; 55:e13330. [PMID: 36043447 DOI: 10.1111/cpr.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Nucleotide oligomerization domain receptor 1 (NOD1) mediates host recognition of pathogenic bacteria in periodontium. However, the specific role of NOD1 in regulating osteogenesis is unclear. Therefore, this study focused on the activation status of NOD1 in periodontitis and its effect on the osteogenic capacity of human periodontal ligament stem cells (hPDLSCs) as well as the underlying mechanism. METHODS Histological staining and Western blot were utilized to assess NOD1 expression in the periodontium of people with or without periodontitis. HPDLSCs were cultured under NOD1 agonist or antagonist treatment. Q-PCR and Western blot were employed to assess the expression of osteogenic marker genes and proteins. Alizarin red staining and alkaline phosphatase staining were used to determine the osteogenic capability of hPDLSCs. The activation of downstream signalling was determined and specific inhibitors were utilized to confirm the signalling pathway in NOD1-regulated osteogenesis. RESULTS NOD1 expression is significantly elevated in periodontitis. With NOD1 activated by particular agonist tri-DAP, the osteogenic potential of hPDLSCs was impaired. NOD1 antagonist co-incubation partially restored the decreased osteogenesis in hPDLSCs. P38/MAPK was phosphorylated in tri-DAP-induced NOD1 activation. The inhibitor of p38 rescued the suppression of osteogenesis induced by tri-DAP in hPDLSCs. CONCLUSIONS Our study revealed the expression status of NOD1 in periodontitis. Its activation greatly decreased the osteogenic capacity of hPDLSCs which was mediated by the phosphorylation of p38 downstream signalling.
Collapse
Affiliation(s)
- Yuying He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ji L, Hao S, Wang J, Zou J, Wang Y. Roles of Toll-Like Receptors in Radiotherapy- and Chemotherapy-Induced Oral Mucositis: A Concise Review. Front Cell Infect Microbiol 2022; 12:831387. [PMID: 35719331 PMCID: PMC9201217 DOI: 10.3389/fcimb.2022.831387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy and/or chemotherapy-induced oral mucositis (RIOM/CIOM) is a common complication in cancer patients, leading to negative clinical manifestations, reduced quality of life, and impacting compliance with anticancer treatment. The composition and metabolic function of the oral microbiome, as well as the innate immune response of the oral mucosa are severely altered during chemotherapy or radiotherapy, promoting the expression of inflammatory mediators by direct and indirect mechanisms. Commensal oral bacteria-mediated innate immune signaling via Toll-like receptors (TLRs) ambiguously shapes radiotherapy- and/or chemotherapy-induced oral damage. To date, there has been no comprehensive overview of the role of TLRs in RIOM/CIOM. This review aims to provide a narrative of the involvement of TLRs, including TLR2, TLR4, TLR5, and TLR9, in RIOM/CIOM, mainly by mediating the interaction between the host and microorganisms. As such, we suggest that these TLR signaling pathways are a novel mechanism of RIOM/CIOM with considerable potential for use in therapeutic interventions. More studies are needed in the future to investigate the role of different TLRs in RIOM/CIOM to provide a reference for the precise control of RIOM/CIOM.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siyuan Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiantao Wang
- State Key Laboratory of Biotherapy and Department of Lung Cancer Center and Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yan Wang,
| |
Collapse
|
11
|
Groeger S, Zhou Y, Ruf S, Meyle J. Pathogenic Mechanisms of Fusobacterium nucleatum on Oral Epithelial Cells. FRONTIERS IN ORAL HEALTH 2022; 3:831607. [PMID: 35478496 PMCID: PMC9037381 DOI: 10.3389/froh.2022.831607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Periodontitis is an oral chronic inflammatory disease and may cause tooth loss in adults. Oral epithelial cells provide a barrier for bacteria and participate in the immune response. Fusobacterium nucleatum (F. nucleatum) is one of the common inhabitants of the oral cavity and has been identified as a potential etiologic bacterial agent of oral diseases, such as periodontitis and oral carcinomas. F. nucleatum has been shown to be of importance in the development of diverse human cancers. In the dental biofilm, it exhibits a structural role as a bridging organism, connecting primary colonizers to the largely anaerobic secondary colonizers. It expresses adhesins and is able to induce host cell responses, including the upregulation of defensins and the release of chemokines and interleukins. Like other microorganisms, its detection is achieved through germline-encoded pattern-recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). By identification of the pathogenic mechanisms of F. nucleatum it will be possible to develop effective methods for the diagnosis, prevention, and treatment of diseases in which a F. nucleatum infection is involved. This review summarizes the recent progress in research targeting F. nucleatum and its impact on oral epithelial cells.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
- *Correspondence: Sabine Groeger
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
12
|
Kurago Z, Loveless J. Microbial Colonization and Inflammation as Potential Contributors to the Lack of Therapeutic Success in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:739499. [PMID: 35048056 PMCID: PMC8757816 DOI: 10.3389/froh.2021.739499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
This review discusses the microenvironment of evolving and established conventional oral squamous cell carcinoma, by far the most common oral cancer. The focus of this paper is mainly on the more recent data that describe the role of microorganisms, host-microbial interactions, and in particular, the contributions of cell-surface toll-like receptors on immune system cells and on normal and malignant epithelial cells to their functions that support carcinogenesis. Because carcinomas arising at various host surfaces share much in common, additional information available from studies of other carcinomas is included in the discussion. Accumulating evidence reveals the complex toll-like receptor-mediated tumor-supporting input into many aspects of carcinogenesis via malignant cells, stromal immune cells and non-immune cells, complicating the search for effective treatments.
Collapse
Affiliation(s)
- Zoya Kurago
- Augusta University Dental College of Georgia, Augusta, GA, United States.,Medical College of Georgia, Augusta, GA, United States.,Georgia Cancer Center, Augusta, GA, United States
| | - Jenni Loveless
- Augusta University Dental College of Georgia, Augusta, GA, United States
| |
Collapse
|
13
|
Pelaez-Prestel HF, Sanchez-Trincado JL, Lafuente EM, Reche PA. Immune Tolerance in the Oral Mucosa. Int J Mol Sci 2021; 22:ijms222212149. [PMID: 34830032 PMCID: PMC8624028 DOI: 10.3390/ijms222212149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
The oral mucosa is a site of intense immune activity, where a large variety of immune cells meet to provide a first line of defense against pathogenic organisms. Interestingly, the oral mucosa is exposed to a plethora of antigens from food and commensal bacteria that must be tolerated. The mechanisms that enable this tolerance are not yet fully defined. Many works have focused on active immune mechanisms involving dendritic and regulatory T cells. However, epithelial cells also make a major contribution to tolerance by influencing both innate and adaptive immunity. Therefore, the tolerogenic mechanisms concurring in the oral mucosa are intertwined. Here, we review them systematically, paying special attention to the role of oral epithelial cells.
Collapse
|
14
|
Cimões R, Pinho RCM, Gurgel BCDV, Borges SB, Marcantonio Júnior E, Marcantonio CC, Melo MARDC, Piattelli A, Shibli JA. Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation. Braz Oral Res 2021; 35:e101. [PMID: 34586215 DOI: 10.1590/1807-3107bor-2021.vol35.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
When periodontal disease is diagnosed, it is difficult to predict the clinical response of treatment of a tooth over time because the result of treatment is affected by several factors and will depend on the maintenance and support of periodontal treatment. Rehabilitation with removable dental prostheses, fixed prostheses, and dental implants makes it possible to restore the function and esthetics of patients with tooth loss due to periodontal disease. The predictive factors of tooth loss in periodontitis patients should be assessed by dentists to inform their clinical decision-making during dental treatment planning. This will provide detailed individualized information and level of risk of patients considered suitable for dental rehabilitation. Therefore, the aim of this article was to review the subject of "Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation" and the effect of fixed, removable, and implant-supported prostheses in periodontal patients.
Collapse
Affiliation(s)
- Renata Cimões
- Universidade Federal de Pernambuco - UFPE, Health Sciences Centre, Department of Prosthesis and Oral and Maxillofacial Surgery, Recife, PE, Brazil
| | | | | | - Samuel Batista Borges
- Universidade Federal do Rio Grande do Norte - UFRN, Health Sciences Centre, Department of Dentistry, Natal, RN Brazil
| | - Elcio Marcantonio Júnior
- Universidade Estadual Paulista Júlio de Mesquita Filho - Unesp, Faculdade de Odontologia de Araraquara, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - Camila Chierici Marcantonio
- Universidade Estadual Paulista Júlio de Mesquita Filho - Unesp, Faculdade de Odontologia de Araraquara, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | | | - Adriano Piattelli
- University of Chieti, Dental School, Department of Medical, Oral and Biotechnological Sciences, Chieti, Italy
| | - Jamil Awad Shibli
- Universidade de Guarulhos - UnG, Dental Research Division, Department of Periodontology and Oral Implantology, Guarulhos, SP, Brazil
| |
Collapse
|
15
|
Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral Versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Front Immunol 2021; 12:705206. [PMID: 34290715 PMCID: PMC8287884 DOI: 10.3389/fimmu.2021.705206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Different body systems (epidermis, respiratory tract, cornea, oral cavity, and gastrointestinal tract) are in continuous direct contact with innocuous and/or potentially harmful external agents, exhibiting dynamic and highly selective interaction throughout the epithelia, which function as both a physical and chemical protective barrier. Resident immune cells in the epithelia are constantly challenged and must distinguish among antigens that must be either tolerated or those to which a response must be mounted for. When such a decision begins to take place in lymphoid foci and/or mucosa-associated lymphoid tissues, the epithelia network of immune surveillance actively dominates both oral and gastrointestinal compartments, which are thought to operate in the same immune continuum. However, anatomical variations clearly differentiate immune processes in both the mouth and gastrointestinal tract that demonstrate a wide array of independent immune responses. From single vs. multiple epithelia cell layers, widespread cell-to-cell junction types, microbial-associated recognition receptors, dendritic cell function as well as related signaling, the objective of this review is to specifically contrast the current knowledge of oral versus gut immune niches in the context of epithelia/lymphoid foci/MALT local immunity and systemic output. Related differences in 1) anatomy 2) cell-to-cell communication 3) antigen capture/processing/presentation 4) signaling in regulatory vs. proinflammatory responses and 5) systemic output consequences and its relations to disease pathogenesis are discussed.
Collapse
Affiliation(s)
- Lina J Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silie Arboleda
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger M Arce
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
16
|
Chang AM, Kantrong N, Darveau RP. Maintaining homeostatic control of periodontal epithelial tissue. Periodontol 2000 2021; 86:188-200. [PMID: 33690934 DOI: 10.1111/prd.12369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Years of coevolution with resident microbes has made them an essential component of health. Yet, little is known about oral commensal bacteria's contribution to and role in the maintenance of oral health and homeostasis. Commensal bacteria are speculated to play a host protective role in the maintenance of health. In this review, we describe and provide examples of the coordinate regulation that occurs between oral commensal bacteria and the host innate immune response to modulate and maintain oral homeostasis.
Collapse
Affiliation(s)
- Ana M Chang
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Nutthapong Kantrong
- Department of Periodontics, University of Washington, Seattle, Washington, USA.,Oral Biology Research Unit, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Richard P Darveau
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Villa TG, Sánchez-Pérez Á, Sieiro C. Oral lichen planus: a microbiologist point of view. Int Microbiol 2021; 24:275-289. [PMID: 33751292 PMCID: PMC7943413 DOI: 10.1007/s10123-021-00168-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Oral lichen planus (OLP) is a chronic disease of uncertain etiology, although it is generally considered as an immune-mediated disease that affects the mucous membranes and even the skin and nails. Over the years, this disease was attributed to a variety of causes, including different types of microorganisms. This review analyzes the present state of the art of the disease, from a microbiological point of view, while considering whether or not the possibility of a microbial origin for the disease can be supported. From the evidence presented here, OLP should be considered an immunological disease, as it was initially proposed, as opposed to an illness of microbiological origin. The different microorganisms so far described as putative disease-causing agents do not fulfill Koch’s postulates; they are, actually, not the cause, but a result of the disease that provides the right circumstances for microbial colonization. This means that, at this stage, and unless new data becomes available, no microorganism can be envisaged as the causative agent of lichen planus.
Collapse
Affiliation(s)
- Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, EU Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW 2006 Australia
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, Faculty of Biology, University of Vigo, 36310 Vigo, Pontevedra, EU Spain
| |
Collapse
|
18
|
Koren N, Zubeidat K, Saba Y, Horev Y, Barel O, Wilharm A, Heyman O, Wald S, Eli-Berchoer L, Shapiro H, Nadler C, Elinav E, Wilensky A, Prinz I, Bercovier H, Hovav AH. Maturation of the neonatal oral mucosa involves unique epithelium-microbiota interactions. Cell Host Microbe 2021; 29:197-209.e5. [PMID: 33412104 DOI: 10.1016/j.chom.2020.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Postnatal host-microbiota interplay governs mucosal homeostasis and is considered to have life-long health consequences. The intestine monolayer epithelium is critically involved in such early-life processes; nevertheless, the role of the oral multilayer epithelium remains ill defined. We demonstrate that unlike the intestine, the neonate oral cavity is immensely colonized by the microbiota that decline to adult levels during weaning. Neutrophils are present in the oral epithelium prenatally, and exposure to the microbiota postnatally further recruits them to the preamble neonatal epithelium by γδT17 cells. These neutrophils virtually disappear during weaning as the epithelium seals. The neonate and adult epithelium display distinct turnover kinetics and transcriptomic signatures, with neonate epithelium reminiscent of the signature found in germ-free mice. Microbial reduction during weaning is mediated by the upregulation of saliva production and induction of salivary antimicrobial components by the microbiota. Collectively, unique postnatal interactions between the multilayer epithelium and microbiota shape oral homeostasis.
Collapse
Affiliation(s)
- Noam Koren
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Khaled Zubeidat
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yael Horev
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Or Barel
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Sharon Wald
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Nadler
- Oral Medicine Department, Hebrew University, Hadassah School of Dental Medicine, Jerusalem
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Hillel Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Avi-Hai Hovav
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
19
|
Yang Y, Huang Y, Li W. Autophagy and its significance in periodontal disease. J Periodontal Res 2020; 56:18-26. [PMID: 33247437 DOI: 10.1111/jre.12810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/24/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Autophagy is an evolutionarily conserved process essential for cellular homeostasis and human health. As a lysosome-dependent degradation pathway, autophagy acts as a modulator of the pathogenesis of diverse diseases. The relationship between autophagy and oral diseases has been explored in recent years, and there is increasing interest in the role of autophagy in periodontal disease. Periodontal disease is a prevalent chronic inflammatory disorder characterized by the destruction of periodontal tissues. It is initiated through pathogenic bacterial infection and interacts with the host immune defense, leading to inflammation and alveolar bone resorption. In this review, we outline the machinery of autophagy and present an overview of work on the significance of autophagy in regulating pathogen invasion, the immune response, inflammation, and alveolar bone homeostasis of periodontal disease. Existing data provide support for the importance of autophagy as a multi-dimensional regulator in the pathogenesis of periodontal disease and demonstrate the importance of future research on the potential roles of autophagy in periodontal disease.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
20
|
The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol 2020; 110:105011. [PMID: 32980528 DOI: 10.1016/j.oraloncology.2020.105011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Oral cancer (OC) is among the top twenty occurring cancers in the world, with a mortality rate of 50%. A shift to a functionally inflammatory or a 'disease state' oral microbiome composition has been observed amongst patients with premalignant disorders and OC, with evidence suggesting alcohol could be exacerbating the inflammatory influence of the oral microorganisms. Alcohol dehydrogenase (ADH, EC 1.1.1.1) converts alcohol into a known carcinogenic metabolite, acetaldehyde and while ADH levels in oral mucosa are low, several oral commensal species possess ADH and could produce genotoxic levels of acetaldehyde. With a direct association between oral microbiome status, alcohol and poor oral health status combining to induce chronic inflammation with increased acetaldehyde levels - this leads to a tumour promoting environment. This new disease state increases the production of reactive oxygen species (ROS), while impairing anti-oxidant systems thus activating the redox signalling required for the promotion and survival of tumours. This review aims to highlight the evidence linking these processes in the progression of oral cancer.
Collapse
|
21
|
Response of Human Mesenchymal Stromal Cells from Periodontal Tissue to LPS Depends on the Purity but Not on the LPS Source. Mediators Inflamm 2020; 2020:8704896. [PMID: 32714091 PMCID: PMC7352132 DOI: 10.1155/2020/8704896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Human periodontal ligament stromal cells (hPDLSCs) and gingival mesenchymal stromal cells (hGMSCs) are resident mesenchymal stromal cells (MSCs) of the periodontal tissue. The lipopolysaccharide (LPS) from Porphyromonas gingivalis is structurally distinct from that of other Gram-negative bacteria, and earlier studies linked this structural difference to a distinct virulence activity and the ability to activate toll-like receptor 2 (TLR-2), besides TLR-4 as commonly occurring upon LPS challenge. Later studies, in contrast, argue that TLR-2 activation by P. gingivalis LPS is due to lipoprotein contamination. In the present study, we aimed to define the influence of structure versus purity of P. gingivalis LPS on the immune response of hPDLSCs and hGMSCs. Cells were stimulated with commercially available "standard" P. gingivalis LPS, "ultrapure" P. gingivalis LPS, or "ultrapure" Escherichia coli LPS, and the expression of interleukin- (IL-) 8, IL-6, monocyte chemoattractant protein- (MCP-) 1, TLR-2, and TLR-4 was evaluated. The contribution of TLR-4 to the LPS-induced response was assessed using the specific TLR-4 inhibitor TAK-242. "Standard" P. gingivalis LPS induced significantly higher IL-8, IL-6, and MCP-1 production compared to the "ultrapure" LPS preparations, with no significant difference detectable for "ultrapure" LPS from P. gingivalis and E. coli. By using TAK-242, the response of hPDLSCs and hGMSCs to "ultrapure" LPS preparations was effectively inhibited to the levels comparable to those of nonstimulated controls. In contrast, high levels of response to "standard" LPS were observed, even in the presence of TAK-242. Our data show that the response of MSCs from periodontal tissue to LPS depends more on the purity of the LPS preparation than on the LPS source. Even a small amount of contaminating lipoproteins can drastically enhance the hPDLSCs' and hGMSCs; responsiveness to P. gingivalis LPS, which might also contribute to the progression of periodontal disease.
Collapse
|
22
|
In Vitro Effects of Streptococcus oralis Biofilm on Peri-Implant Soft Tissue Cells. Cells 2020; 9:cells9051226. [PMID: 32429151 PMCID: PMC7290395 DOI: 10.3390/cells9051226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Human gingival epithelial cells (HGEps) and fibroblasts (HGFs) are the main cell types in peri-implant soft tissue. HGEps are constantly exposed to bacteria, but HGFs are protected by connective tissue as long as the mucosa-implant seal is intact. Streptococcus oralis is one of the commensal bacteria, is highly abundant at healthy implant sites, and might modulate soft tissue cells-as has been described for other streptococci. We have therefore investigated the effects of the S. oralis biofilm on HGEps and HGFs. HGEps or HGFs were grown separately on titanium disks and responded to challenge with S. oralis biofilm. HGFs were severely damaged after 4 h, exhibiting transcriptional inflammatory and stress responses. In contrast, challenge with S. oralis only induced a mild transcriptional inflammatory response in HGEps, without cellular damage. HGFs were more susceptible to the S. oralis biofilm than HGEps. The pro-inflammatory interleukin 6 (IL-6) was attenuated in HGFs, as was interleukin 8 (CXCL8) in HGEps. This indicates that S. oralis can actively protect tissue. In conclusion, commensal biofilms can promote homeostatic tissue protection, but only if the implant-mucosa interface is intact and HGFs are not directly exposed.
Collapse
|
23
|
Marchesan JT, Girnary MS, Moss K, Monaghan ET, Egnatz GJ, Jiao Y, Zhang S, Beck J, Swanson KV. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol 2000 2020; 82:93-114. [PMID: 31850638 PMCID: PMC6927484 DOI: 10.1111/prd.12269] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasomes are a group of multimolecular intracellular complexes assembled around several innate immune proteins. Recognition of a diverse range of microbial, stress and damage signals by inflammasomes results in direct activation of caspase‐1, which subsequently induces the only known form of secretion of active interleukin‐1β and interleukin‐18. Although the importance of interleukin‐1β in the periodontium is not questioned, the impact of inflammasomes in periodontal disease and its potential for therapeutics in periodontology is still in its very early stages. Increasing evidence in preclinical models and human data strongly implicate the involvement of inflammasomes in a number of inflammatory, autoinflammatory and autoimmune disorders. Here we review: (a) the currently known inflammasome functions, (b) clinical/preclinical data supporting inflammasome involvement in the context of periodontal and comorbid diseases and (c) potential therapies targeting inflammasomes. To clarify further the inflammasome involvement in periodontitis, we present analyses of data from a large clinical study (n = 5809) that measured the gingival crevicular fluid‐interleukin‐1β and grouped the participants based on current periodontal disease classifications. We review data on 4910 European‐Americans that correlate 16 polymorphisms in the interleukin‐1B region with high gingival crevicular fluid‐interleukin‐1β levels. We show that inflammasome components are increased in diseased periodontal tissues and that the caspase‐1 inhibitor, VX‐765, inhibits ~50% of alveolar bone loss in experimental periodontitis. The literature review further supports that although patients clinically present with the same phenotype, the disease that develops probably has different underlying biological pathways. The current data indicate that inflammasomes have a role in periodontal disease pathogenesis. Understanding the contribution of different inflammasomes to disease development and distinct patient susceptibility will probably translate into improved, personalized therapies.
Collapse
Affiliation(s)
- Julie T Marchesan
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mustafa Saadat Girnary
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kevin Moss
- Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eugenia Timofeev Monaghan
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Grant Joseph Egnatz
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yizu Jiao
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shaoping Zhang
- Periodontics Department, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Jim Beck
- Department of Dental Ecology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen V Swanson
- Department of Medicine, Infectious Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Ahn MY, Kang JK, Kwon SM, Yoon HE, Yoon JH. Expression of nucleotide-binding oligomerization domain 1 and 2 in oral lichen planus. J Dent Sci 2020; 15:1-8. [PMID: 32256993 PMCID: PMC7109494 DOI: 10.1016/j.jds.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Background/purpose Oral lichen planus (OLP) is a chronic inflammatory disease of oral mucosa. The present study investigated the expression of nucleotide-binding oligomerization domain (NOD), a pivotal sensor protein of the innate immune system, in OLP. Materials and methods Oral mucosal biopsies were collected from 20 patients with OLP and 6 individuals with normal oral mucosa (NOM). The expression of NOD1 and NOD2 was determined using RT-PCR and immunohistochemistry in OLP and NOM samples. Results The mRNA expression of NOD1 and NOD2 was significantly higher in the OLP group than in the NOM group. The protein expression of NOD1 was marginally upregulated in all mucosal layers in the OLP group compared with that of the NOM group; however, the differences were not significant. The expression of NOD2 was elevated in infiltrating lymphocytes of the submucosal layer in the OLP group compared with the NOM group, but was undetected in other inflammatory disease, inflammatory fibrous hyperplasia (IFH). This study revealed the upregulation of NOD2 mRNA and protein in the OLP group, but not in the NOM group. Conclusion These findings suggest that NOD2 may play an important role in the pathogenesis of OLP and represents a new diagnostic and treatment target.
Collapse
Affiliation(s)
- Mee-Young Ahn
- Major in Pharmaceutical Engineering, Division of Bio-industry, College of Medical and Life Sciences, Silla University, Busan, Republic of Korea
| | - Jin-Kyu Kang
- Department of Oral Medicine and Orofacial Pain, College of Dentistry, Daejeon Dental Hospital, Wonkwang University, Daejeon, Republic of Korea
| | - Seong-Min Kwon
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon, Republic of Korea
| | - Hyo-Eun Yoon
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon, Republic of Korea
| |
Collapse
|
25
|
Nii T, Yumoto H, Hirota K, Miyake Y. Anti-inflammatory effects of olanexidine gluconate on oral epithelial cells. BMC Oral Health 2019; 19:239. [PMID: 31703580 PMCID: PMC6839112 DOI: 10.1186/s12903-019-0932-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023] Open
Abstract
Background Periodontitis is a biofilm-induced chronic inflammatory condition of the periodontium. Chemokines produced by the innate and acquired immune responses play a significant role in disease progression. Reducing biofilm formation and inflammatory response caused by chemokines is vital for preventing and treating periodontitis. Previously, we observed that treatment with 0.1% olanexidine gluconate (OLG) inhibited biofilm formation on saliva-coated hydroxyapatite. This study aimed to evaluate the anti-inflammatory effect of OLG on oral epithelial cells. Methods We examined if OLG could inhibit the inflammatory responses caused by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and heat-killed P. gingivalis in immortalized human oral keratinocytes (RT7). Results Treatment of RT7 with non-cytotoxic OLG concentrations significantly inhibited the production of inflammatory chemokines such as interleukin 8 (IL-8), C-C motif ligand 20 (CCL20), and growth-related oncogene protein-α (GRO-α), which are stimulated by P. gingivalis LPS in a concentration-dependent manner. Moreover, the inhibitory effects were observed regardless of the treatment time with P. gingivalis LPS (6, 12, or 24 h). OLG also significantly inhibited chemokine production stimulated by heat-killed P. gingivalis. Conclusions The findings of this study suggest that treatment with OLG inhibits chronic inflammatory reactions in oral mucosal cells, such as periodontitis, caused by oral bacteria.
Collapse
Affiliation(s)
- Takuya Nii
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Takuya Nii, 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan.
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuhiko Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences Tokushima University, Tokushima, Japan.,Present Address: Department of Medical Hygiene, Dental Hygiene Course, Kochi Gakuen College, Kochi, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences Tokushima University, Tokushima, Japan.,Present Address: Department of Oral Health Sciences, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
26
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
27
|
Zhou X, Zhang P, Wang Q, Xia S, Ji N, Ding Y, Wang Q. 25-Hydroxyvitamin D 3 Alleviates Experimental Periodontitis via Promoting Expression of Cathelicidin in Mice with Type 2 Diabetic Mellitus. J Nutr Sci Vitaminol (Tokyo) 2019; 64:307-315. [PMID: 30381619 DOI: 10.3177/jnsv.64.307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type 2 diabetic mellitus is manifested by metabolic impairments with high prevalence worldwide, of which periodontitis represents a typical oral complication (also called diabetic periodontitis). Oral epithelia bear the brunt of periodontal damage from microscopic intruders; thus the defense function of epithelial cells is of vital significance. We have previously proved that 25-hydroxyvitamin D3 (25-OHD3) altered the expression of cathelicidin antimicrobial peptide in oral epithelial cells in vitro. Herein, we discovered that 25-OHD3 intraperitoneal injection attenuated periodontal inflammation by promoting cathelicidin production in gingival epithelia and reducing fasting glucose of diabetic mice. Dotblotting of serum showed cathelicidin secretion was consistent with 25-OHD3 treatment. Immunochemistry exhibited enhanced expression of cathelicidin and vitamin D receptors along with reduced expression of TLR4 in diabetic mice. Stereomicroscope showed less alveolar bone loss when injected with 25-OHD3.These results showed 25-OHD3 can promote cathelicidin and ameliorate the severity of diabetic periodontitis. Our study complemented the mechanism of cathelicidin and extended knowledge of 25-OHD3's role in diabetic periodontitis.
Collapse
Affiliation(s)
- Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University
| | - Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University
| | - Sisi Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
28
|
Nabergoj S, Mlinarič-Raščan I, Jakopin Ž. Harnessing the untapped potential of nucleotide-binding oligomerization domain ligands for cancer immunotherapy. Med Res Rev 2018; 39:1447-1484. [PMID: 30548868 PMCID: PMC6767550 DOI: 10.1002/med.21557] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
In the last decade, cancer immunotherapy has emerged as an effective alternative to traditional therapies such as chemotherapy and radiation. In contrast to the latter, cancer immunotherapy has the potential to distinguish between cancer and healthy cells, and thus to avoid severe and intolerable side‐effects, since the cancer cells are effectively eliminated by stimulated immune cells. The cytosolic nucleotide‐binding oligomerization domains 1 and 2 receptors (NOD1 and NOD2) are important components of the innate immune system and constitute interesting targets in terms of strengthening the immune response against cancer cells. Many NOD ligands have been synthesized, in particular NOD2 agonists that exhibit favorable immunostimulatory and anticancer activity. Among them, mifamurtide has already been approved in Europe by the European Medicine Agency for treating patients with osteosarcoma in combination with chemotherapy after complete surgical removal of the primary tumor. This review is focused on NOD receptors as promising targets in cancer immunotherapy as well as summarizing current knowledge of the various NOD ligands exhibiting antitumor and even antimetastatic activity in vitro and in vivo.
Collapse
Affiliation(s)
- Sanja Nabergoj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | | | - Žiga Jakopin
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
29
|
Fernández-Rojas B, Gutiérrez-Venegas G. Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects. Life Sci 2018; 209:435-454. [DOI: 10.1016/j.lfs.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/19/2022]
|
30
|
Zhu H, Lu S, Wei M, Cai X, Wang G. Identification of novel genes involved in gingival epithelial cells responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections. Arch Oral Biol 2018; 96:113-121. [PMID: 30223242 DOI: 10.1016/j.archoralbio.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study aimed to identify the differentially expressed genes (DEGs) in gingiva epithelial cells responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections using bioinformatics method. STUDY DESIGN GSE9723 dataset was downloaded from Gene Expression Omnibus, and DEGs between the infected cells and controls were identified using unpaired t-test. Overlapping DEGs in responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections were extracted. Protein-protein interaction networks were constructed and functional modules were isolated using Molecular Complex Detection algorithm. Key genes in protein-protein interaction network and Molecular Complex Detection modules were subjected to functional enrichment analyses. In addition, the transcriptional factors were predicted. RESULTS A total of 533 co-up-regulated and 202 co-down-regulated genes were identified. The up-regulated genes, including IL6, CCL19, EDN1, ADCY9, and BCL2 and the down-regulated genes, including CCNB1, PLK1, and CCNA2 were the key genes in the protein-protein interaction network and modules. They were intensively enriched in chemokine signaling pathway, calcium signaling pathway and cell cycle. Finally, two transcriptional factors, E12 and NRSF, targeting to the up-regulated genes and one transcriptional factor, NRP1, targeting the down-regulated genes, were predicted. CONCLUSIONS CCNB1, PLK1, and CCNA2 might play important roles in the response of host epithelial cells to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis.
Collapse
Affiliation(s)
- Hongguang Zhu
- School of Stomatology of Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, 250012, China; Department of Dental Medicine, Weifang People's Hospital, Weifang 261041, China
| | - Shouyi Lu
- Department of Dentistry, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, China
| | - Meirong Wei
- Department of Dentistry, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, China
| | - Xiaoshan Cai
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, China
| | - Guoyou Wang
- Department of Dentistry, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, China.
| |
Collapse
|
31
|
Kriebel K, Hieke C, Engelmann R, Potempa J, Müller-Hilke B, Lang H, Kreikemeyer B. Porphyromonas gingivalis Peptidyl Arginine Deiminase Can Modulate Neutrophil Activity via Infection of Human Dental Stem Cells. J Innate Immun 2018; 10:264-278. [PMID: 29860256 DOI: 10.1159/000489020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis (PD) is a widespread chronic inflammatory disease in the human population. Porphyromonas gingivalis is associated with PD and can citrullinate host proteins via P. gingivalis peptidyl arginine deiminase (PPAD). Here, we hypothesized that infection of human dental follicle stem cells (hDFSCs) with P. gingivalis and subsequent interaction with neutrophils will alter the neutrophil phenotype. To test this hypothesis, we established and analyzed a triple-culture system of neutrophils and hDFSCs primed with P. gingivalis. Mitogen-activated pathway blocking reagents were applied to gain insight into stem cell signaling after infection. Naïve hDFSCs do not influence the neutrophil phenotype. However, infection of hDFSCs with P. gingivalis prolongs the survival of neutrophils and increases their migration. These phenotypic changes depend on direct cellular contacts and PPAD expression by P. gingivalis. Active JNK and ERK pathways in primed hDFSCs are essential for the phenotypic changes in neutrophils. Collectively, our results confirm that P. gingivalis modifies hDFSCs, thereby causing an immune imbalance.
Collapse
Affiliation(s)
- Katja Kriebel
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Jan Potempa
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Krakow, Poland.,University of Louisville School of Dentistry, Department of Oral Immunity and Infectious Diseases, Louisville, Kentucky, USA
| | | | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
32
|
Wallet SM, Puri V, Gibson FC. Linkage of Infection to Adverse Systemic Complications: Periodontal Disease, Toll-Like Receptors, and Other Pattern Recognition Systems. Vaccines (Basel) 2018; 6:E21. [PMID: 29621153 PMCID: PMC6027258 DOI: 10.3390/vaccines6020021] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that provide innate immune sensing of conserved pathogen-associated molecular patterns (PAMPs) to engage early immune recognition of bacteria, viruses, and protozoa. Furthermore, TLRs provide a conduit for initiation of non-infectious inflammation following the sensing of danger-associated molecular patterns (DAMPs) generated as a consequence of cellular injury. Due to their essential role as DAMP and PAMP sensors, TLR signaling also contributes importantly to several systemic diseases including cardiovascular disease, diabetes, and others. The overlapping participation of TLRs in the control of infection, and pathogenesis of systemic diseases, has served as a starting point for research delving into the poorly defined area of infection leading to increased risk of various systemic diseases. Although conflicting studies exist, cardiovascular disease, diabetes, cancer, rheumatoid arthritis, and obesity/metabolic dysfunction have been associated with differing degrees of strength to infectious diseases. Here we will discuss elements of these connections focusing on the contributions of TLR signaling as a consequence of bacterial exposure in the context of the oral infections leading to periodontal disease, and associations with metabolic diseases including atherosclerosis and type 2 diabetes.
Collapse
Affiliation(s)
- Shannon M Wallet
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Frank C Gibson
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
33
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
34
|
Hamonic G, Pasternak JA, Wilson HL. Recognizing conserved non-canonical localization patterns of toll-like receptors in tissues and across species. Cell Tissue Res 2018; 372:1-11. [PMID: 29330675 DOI: 10.1007/s00441-017-2767-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Toll-like receptors (TLR) 1, 2, 4, 5 and 6 were originally characterized as exclusively expressed on the cell surface and TLR 3, 7, 8 and 9 were said to be localized to the endosomes. However, continued research in this area shows that TLR localization may be altered across cell-types, and in response to stimulation, age or disease. Mucosal surfaces must remain tolerant to the commensal flora and thus intracellular or basal lateral localization of TLRs at mucosal surfaces may be necessary to prevent induction of an inflammatory response to commensal flora while still allowing the possibility for the receptors to prime an immune response when a pathogen has crossed the epithelial barrier. Here, we highlight the research specifying 'non-canonical' localization of TLRs in human and animal mucosal tissues and blood-derived cells, while excluding cultured polarized immortalized cells. Reports that only indicate TLR gene/protein expression and/or responsiveness to agonists have been excluded unless the report also indicates surface/intracellular distribution in the cell. Understanding the tissue- and species-specific localization of these specific pattern recognition receptors will lead to a greater appreciation of the way in which TLR ligands promote innate immunity and influence the adaptive immune response. A more comprehensive understanding of this information will potentially aid in the exploitation of the therapeutic or adjuvant potential of selectively localized TLRs and in opening new perspectives in understanding the basis of immunity.
Collapse
Affiliation(s)
- Glenn Hamonic
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada
| | - J Alex Pasternak
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
35
|
Delitto AE, Rocha F, Decker AM, Amador B, Sorenson HL, Wallet SM. MyD88-mediated innate sensing by oral epithelial cells controls periodontal inflammation. Arch Oral Biol 2017; 87:125-130. [PMID: 29289808 DOI: 10.1016/j.archoralbio.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Periodontal diseases are a class of non-resolving inflammatory diseases, initiated by a pathogenic subgingival biofilm, in a susceptible host, which if left untreated can result in soft and hard tissue destruction. Oral epithelial cells are the first line of defense against microbial infection within the oral cavity, whereby they can sense the environment through innate immune receptors including toll-like receptors (TLRs). Therefore, oral epithelial cells directly and indirectly contribute to mucosal homeostasis and inflammation, and disruption of this homeostasis or over-activation of innate immunity can result in initiation and/or exacerbation of localized inflammation as observed in periodontal diseases. Dynamics of TLR signaling outcomes are attributable to several factors including the cell type on which it engaged. Indeed, our previously published data indicates that oral epithelial cells respond in a unique manner when compared to canonical immune cells stimulated in a similar fashion. Thus, the objective of this study was to evaluate the role of oral epithelial cell innate sensing on periodontal disease, using a murine poly-microbial model in an epithelial cell specific knockout of the key TLR-signaling molecule MyD88 (B6K5Cre.MyD88plox). Following knockdown of MyD88 in the oral epithelium, mice were infected with Porphorymonas gingivalis and Aggregatibacter actinomycetemcomitans by oral lavage 4 times per week, every other week for 6 weeks. Loss of oral epithelial cell MyD88 expression resulted in exacerbated bone loss, soft tissue morphological changes, soft tissue infiltration, and soft tissue inflammation following polymicrobial oral infection. Most interestingly while less robust, loss of oral epithelial cell MyD88 also resulted in mild but statistically significant soft tissue inflammation and bone loss even in the absence of a polymicrobial infection. Together these data demonstrate that oral epithelial cell MyD88-dependent TLR signaling regulates the immunological balance within the oral cavity under conditions of health and disease.
Collapse
Affiliation(s)
- Andrea E Delitto
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Fernanda Rocha
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Ann M Decker
- Department of Periodontology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Byron Amador
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Heather L Sorenson
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
36
|
NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. Int Immunopharmacol 2017; 54:385-400. [PMID: 29207344 DOI: 10.1016/j.intimp.2017.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD) 1 and NOD2 are pattern-recognition receptors responsible for sensing fragments of bacterial peptidoglycan known as muropeptides. Stimulation of innate immunity by systemic or local administration of NOD1 and NOD2 agonists is an attractive means to prevent and treat infectious diseases. In this review, we discuss novel data concerning structural features of selective and non-selective (dual) NOD1 and NOD2 agonists, main signaling pathways and biological effects induced by NOD1 and NOD2 stimulation, including induction of pro-inflammatory cytokines, type I interferons and antimicrobial peptides, induction of autophagy, alterations of metabolism. We also discuss interactions between NOD1/NOD2 and Toll-like receptor agonists in terms of synergy and cross-tolerance. Finally, we review available animal data on the role of NOD1 and NOD2 in protection against infections, and discuss how these data could be applied in human infectious diseases.
Collapse
|
37
|
Li J, Ke X, Yan F, Lei L, Li H. Necroptosis in the periodontal homeostasis: Signals emanating from dying cells. Oral Dis 2017; 24:900-907. [PMID: 28763140 DOI: 10.1111/odi.12722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Periodontal tissues are constantly exposed to microbial stimuli. The equilibrium between microbes and host defense system helps maintain the homeostasis in the periodontal microenvironment. Growth of pathogenic bacteria in dental biofilms may induce proinflammatory cytokine production to recruit sentinel cells, mainly neutrophils and monocytes into the gingival sulcus or the periodontal pocket. Moreover, dysbiosis with overgrowth of anaerobic pathogens, such as Porphyromonas gingivalis and Tannerella forsythia, may induce death of both immune cells and host resident cells. Necroptosis is one newly characterized programmed cell death mediated by receptor-interacting protein kinase (RIPK)-1, RIPK3, and mixed lineage kinase like (MLKL). With its release of death-associated molecular patterns (DAMPs) into extracellular environment, necroptosis may help transmit the danger signal and amplify the inflammatory responses. In this review, we present recent advances on how necroptosis influences bacterial infection progression and what a role necroptosis plays in maintaining the homeostasis in the periodontal niche. Until we fully decipher the signals emanated from dying cells, we cannot completely understand the mechanism of disease progression.
Collapse
Affiliation(s)
- J Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - X Ke
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - F Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - L Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - H Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Sudo T, Okada Y, Ozaki K, Urayama K, Kanai M, Kobayashi H, Gokyu M, Izumi Y, Tanaka T. Association of NOD2 Mutations with Aggressive Periodontitis. J Dent Res 2017; 96:1100-1105. [PMID: 28682159 DOI: 10.1177/0022034517715432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aggressive periodontitis (AgP) is characterized by rapid alveolar bone destruction and tooth loss early in life, and its etiology remains unclear. To explore the genetic risk factors of AgP, we performed genome-wide single-nucleotide polymorphism genotyping for identity-by-descent mapping and identified 32 distinct candidate loci, followed by whole exome sequencing with 2 pedigrees of AgP consisting of 3 cases and 1 control in 1 family and 2 sibling cases in the other. After variant filtering procedures and validation by targeted Sanger sequencing, we identified 2 missense mutations at 16q12 in NOD2 (p.Ala110Thr and p.Arg311Trp), which encodes nucleotide-binding oligomerization domain protein 2. We further examined 94 genetically unrelated AgP patients by targeted sequencing of NOD2 and found that 2 patients among them also carried the p.Arg311Trp variant. Furthermore, we found 3 additional missense mutations in this gene (p.His370Tyr, p.Arg459Cys, and p.Ala868Thr). These mutations either had not been previously observed or are extremely rare (frequency <0.001) in Asian populations. NOD2 plays a crucial role in innate immunity as an intracellular receptor initiating nuclear factor κB-dependent and mitogen-activated protein kinase-dependent gene transcription. These results demonstrated NOD2 as a novel gene involved in AgP.
Collapse
Affiliation(s)
- T Sudo
- 1 Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,2 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Y Okada
- 1 Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,3 Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - K Ozaki
- 4 Laboratory for Medical Genome Sciences, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan.,5 Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - K Urayama
- 1 Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,6 Center for Clinical Epidemiology, St. Luke's International University, Tokyo, Japan
| | - M Kanai
- 1 Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - H Kobayashi
- 2 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - M Gokyu
- 2 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Y Izumi
- 2 Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - T Tanaka
- 1 Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,7 Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
39
|
Bi J, Koivisto L, Pang A, Li M, Jiang G, Aurora S, Wang Z, Owen GR, Dai J, Shen Y, Grenier D, Haapasalo M, Häkkinen L, Larjava H. Suppression of αvβ6 Integrin Expression by Polymicrobial Oral Biofilms in Gingival Epithelial Cells. Sci Rep 2017; 7:4411. [PMID: 28667248 PMCID: PMC5493688 DOI: 10.1038/s41598-017-03619-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Periodontal diseases manifest by the formation of deep pockets between the gingiva and teeth where multispecies bacterial biofilms flourish, causing inflammation and bone loss. Epithelial cell receptor αvβ6 integrin that regulates inflammation by activating the anti-inflammatory cytokine transforming growth factor-β1, is highly expressed in healthy junctional epithelium that connects the gingiva to the tooth enamel. However, its expression is attenuated in human periodontal disease. Moreover, Itgb6−/− mice display increased periodontal inflammation compared to wild-type mice. We hypothesized that bacterial biofilms present in the periodontal pockets suppress αvβ6 integrin levels in periodontal disease and that this change aggravates inflammation. To this end, we generated three-week-old multi-species oral biofilms in vitro and treated cultured gingival epithelial cells (GECs) with their extracts. The biofilm extracts caused suppression of β6 integrin expression and upregulation of pro-inflammatory cytokines, including interleukin-1β and -6. Furthermore, GECs with β6 integrin siRNA knockdown showed increased interleukin-1β expression, indicating that αvβ6 integrin-deficiency is associated with pro-inflammatory cytokine responsiveness. FSL-1, a synthetic bacterial lipopeptide, also suppressed β6 integrin expression in GECs. Therefore, biofilm components, including lipopeptides, may downregulate αvβ6 integrin expression in the pocket epithelium and thus promote epithelial cell-driven pro-inflammatory response in periodontal disease.
Collapse
Affiliation(s)
- Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Aihui Pang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Li
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoqiao Jiang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Saljae Aurora
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhejun Wang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Gethin R Owen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiayin Dai
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ya Shen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Daniel Grenier
- Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Markus Haapasalo
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
40
|
Heron SE, Elahi S. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation. Front Immunol 2017; 8:241. [PMID: 28326084 PMCID: PMC5339276 DOI: 10.3389/fimmu.2017.00241] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to “inflammaging” that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Samantha E Heron
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Heron SE, Elahi S. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation. Front Immunol 2017; 8:241. [PMID: 28326084 DOI: 10.3389/fimmu.2017.00241doi|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 05/25/2023] Open
Abstract
Mucosal surfaces account for the vast majority of HIV transmission. In adults, HIV transmission occurs mainly by vaginal and rectal routes but rarely via oral route. By contrast, pediatric HIV infections could be as the result of oral route by breastfeeding. As such mucosal surfaces play a crucial role in HIV acquisition, and spread of the virus depends on its ability to cross a mucosal barrier. HIV selectively infects, depletes, and/or dysregulates multiple arms of the human immune system particularly at the mucosal sites and causes substantial irreversible damage to the mucosal barriers. This leads to microbial products translocation and subsequently hyper-immune activation. Although introduction of antiretroviral therapy (ART) has led to significant reduction in morbidity and mortality of HIV-infected patients, viral replication persists. As a result, antigen presence and immune activation are linked to "inflammaging" that attributes to a pro-inflammatory environment and the accelerated aging process in HIV patients. HIV infection is also associated with the prevalence of oral mucosal infections and dysregulation of oral microbiota, both of which may compromise the oral mucosal immunity of HIV-infected individuals. In addition, impaired oral immunity in HIV infection may predispose the patients to periodontal diseases that are associated with systemic inflammation and increased risk of cardiovascular diseases. The purpose of this review is to examine existing evidence regarding the role of innate and cellular components of the oral cavity in HIV infection and how HIV infection may drive systemic hyper-immune activation in these patients. We will also discuss current knowledge on HIV oral transmission, HIV immunosenescence in relation to the oral mucosal alterations during the course of HIV infection and periodontal disease. Finally, we discuss oral manifestations associated with HIV infection and how HIV infection and ART influence the oral microbiome. Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Samantha E Heron
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
Kohailan M, Alanazi M, Rouabhia M, Al Amri A, Parine NR, Semlali A. Two SNPs in the promoter region of Toll-like receptor 4 gene are not associated with smoking in Saudi Arabia. Onco Targets Ther 2017; 10:745-752. [PMID: 28223830 PMCID: PMC5308598 DOI: 10.2147/ott.s111971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Defects in the innate immune system, particularly in Toll-like receptors (TLRs), have been reported in several cigarette smoke-promoted diseases. The aim of this study was to examine the impact of tobacco smoke on allelic frequencies of TLR4 single-nucleotide polymorphisms (SNPs) and to compare the genotypic distribution of these SNPs in a Saudi Arabian population with that in previously studied populations. DNA was extracted from 303 saliva samples collected from smokers and nonsmokers. Two transitional SNPs in the promoter region of TLR4 were selected, rs2770150 (T/C) and rs10759931 (G/A). Genotype frequencies were determined using quantitative polymerase chain reaction. Our results showed a slight effect of smoking on the distribution of rs2770150 and rs10759931. However, the differences were not significant. Thus, we conclude that the SNPs selected for this study were independent of smoking and may not be related to smoking-induced diseases.
Collapse
Affiliation(s)
- Muhammad Kohailan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Département de Stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
| | - Abdullah Al Amri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdelhabib Semlali
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa. Proc Natl Acad Sci U S A 2017; 114:E337-E346. [PMID: 28049839 DOI: 10.1073/pnas.1614926114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The oral epithelium contributes to innate immunity and oral mucosal homeostasis, which is critical for preventing local inflammation and the associated adverse systemic conditions. Nevertheless, the mechanisms by which the oral epithelium maintains homeostasis are poorly understood. Here, we studied the role of growth arrest specific 6 (GAS6), a ligand of the TYRO3-AXL-MERTK (TAM) receptor family, in regulating oral mucosal homeostasis. Expression of GAS6 was restricted to the outer layers of the oral epithelium. In contrast to protein S, the other TAM ligand, which was constitutively expressed postnatally, expression of GAS6 initiated only 3-4 wk after birth. Further analysis revealed that GAS6 expression was induced by the oral microbiota in a myeloid differentiation primary response gene 88 (MyD88)-dependent fashion. Mice lacking GAS6 presented higher levels of inflammatory cytokines, elevated frequencies of neutrophils, and up-regulated activity of enzymes, generating reactive nitrogen species. We also found an imbalance in Th17/Treg ratio known to control tissue homeostasis, as Gas6-deficient dendritic cells preferentially secreted IL-6 and induced Th17 cells. As a result of this immunological shift, a significant microbial dysbiosis was observed in Gas6-/- mice, because anaerobic bacteria largely expanded by using inflammatory byproducts for anaerobic respiration. Using chimeric mice, we found a critical role for GAS6 in epithelial cells in maintaining oral homeostasis, whereas its absence in hematopoietic cells synergized the level of dysbiosis. We thus propose GAS6 as a key immunological regulator of host-commensal interactions in the oral epithelium.
Collapse
|
44
|
Jennings LR, Colley HE, Ong J, Panagakos F, Masters JG, Trivedi HM, Murdoch C, Whawell S. Development and Characterization of In Vitro Human Oral Mucosal Equivalents Derived from Immortalized Oral Keratinocytes. Tissue Eng Part C Methods 2016; 22:1108-1117. [PMID: 27846777 DOI: 10.1089/ten.tec.2016.0310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tissue-engineered oral mucosal equivalents (OME) are being increasingly used to measure toxicity, drug delivery, and to model oral diseases. Current OME mainly comprise normal oral keratinocytes (NOK) cultured on top of a normal oral fibroblasts-containing matrix. However, the commercial supply of NOK is limited, restricting widespread use of these mucosal models. In addition, NOK suffer from poor longevity and donor-to-donor variability. Therefore, we constructed, characterized, and tested the functionality of OME based on commercial TERT2-immortalized oral keratinocytes (FNB6) to produce a more readily available alternative to NOK-based OME. FNB6 OME cultured at an air-to-liquid interface for 14 days exhibited expression of differentiation markers cytokeratin 13 in the suprabasal layers and cytokeratin 14 in basal layer of the epithelium. Proliferating cells were restricted to the basal epithelium, and there was immuno-positive expression of E-cadherin confirming the presence of established cell-to-cell contacts. The histology and expression of these structural markers paralleled those observed in the normal oral mucosa and NOK-based models. On stimulation with TNFα and IL-1, FNB6 OME displayed a similar global gene expression profile to NOK-based OME, with increased expression of many common pro-inflammatory molecules such as chemokines (CXCL8), cytokines (IL-6), and adhesion molecules (ICAM-1) when analyzed by gene array and quantitative PCR. Similarly, pathway analysis showed that both FNB6 and NOK models initiated similar intracellular signaling on stimulation. Gene expression in FNB6 OME was more consistent than NOK-based OME that suffered from donor variation in response to stimuli. Mucosal equivalents based on immortalized FNB6 cells are accessible, reproducible and will provide an alternative animal experimental system for studying mucosal drug delivery systems, host-pathogen interactions, and drug-induced toxicity.
Collapse
Affiliation(s)
- Luke R Jennings
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| | - Helen E Colley
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| | - Jane Ong
- 2 Colgate-Palmolive Company , Piscataway, New Jersey
| | | | | | | | - Craig Murdoch
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| | - Simon Whawell
- 1 School of Clinical Dentistry, University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
45
|
Kohailan M, Alanazi M, Rouabhia M, Alamri A, Parine NR, Alhadheq A, Basavarajappa S, Abdullah Al-Kheraif AA, Semlali A. Effect of smoking on the genetic makeup of toll-like receptors 2 and 6. Onco Targets Ther 2016; 9:7187-7198. [PMID: 27920557 PMCID: PMC5123654 DOI: 10.2147/ott.s109650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Cigarette smoking is a major risk factor for lung cancer, asthma, and oral cancer, and is central to the altered innate immune responsiveness to infection. Many hypotheses have provided evidence that cigarette smoking induces more genetic changes in genes involved in the development of many cigarette-related diseases. This alteration may be from single-nucleotide polymorphisms (SNPs) in innate immunity genes, especially the toll-like receptors (TLRs). Objective In this study, the genotype frequencies of TLR2 and TLR6 in smoking and nonsmoking population were examined. Methods Saliva samples were collected from 177 smokers and 126 nonsmokers. The SNPs used were rs3804100 (1350 T/C, Ser450Ser) and rs3804099 (597 T/C, Asn199Asn) for TLR2 and rs3796508 (979 G/A, Val327Met) and rs5743810 (745 T/C, Ser249Pro) for TLR6. Results Results showed that TLR2 rs3804100 has a significant effect in short-term smokers (OR =2.63; P=0.04), and this effect is not observed in long-term smokers (>5 years of smoking). Therefore, this early mutation may be repaired by the DNA repair system. For TLR2 rs3804099, the variation in genotype frequencies between the smokers and control patients was due to a late mutation, and its protective role appears only in long-term smokers (OR =0.40, P=0.018). In TLR6 rs5743810, the TT genotype is significantly higher in smokers than in nonsmokers (OR =6.90). The effect of this SNP is observed in long-term smokers, regardless of the smoking regime per day. Conclusion TLR2 (rs3804100 and rs3804099) and TLR6 (rs5743810) can be used as a potential index in the diagnosis and prevention of more diseases caused by smoking.
Collapse
Affiliation(s)
- Muhammad Kohailan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Rouabhia
- Département de Stomatologie, Faculté de Médecine Dentaire, Groupe de Recherche en Écologie Buccale, Université Laval, Québec City, QC, Canada
| | - Abdullah Alamri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Alhadheq
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Santhosh Basavarajappa
- Dental Biomaterial Research Chair, Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdul Aziz Abdullah Al-Kheraif
- Dental Biomaterial Research Chair, Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdelhabib Semlali
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Qin Y, Zhang L, Xu Z, Zhang J, Jiang YY, Cao Y, Yan T. Innate immune cell response upon Candida albicans infection. Virulence 2016; 7:512-26. [PMID: 27078171 DOI: 10.1080/21505594.2016.1138201] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity.
Collapse
Affiliation(s)
- Yulin Qin
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Lulu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Zheng Xu
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Jinyu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yuan-Ying Jiang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yongbing Cao
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Tianhua Yan
- b Department of Pharmacology , School of Pharmacy, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
47
|
Ross KF, Herzberg MC. Autonomous immunity in mucosal epithelial cells: fortifying the barrier against infection. Microbes Infect 2016; 18:387-398. [PMID: 27005450 DOI: 10.1016/j.micinf.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
Mucosal epithelial cells express an autonomous innate immune response that controls the overgrowth of invaded bacteria, mitigates the harmful effects of the bacteria carried within, and does not rely on other external arms of the immune response. Epithelial cell autonomous innate immunity "respects" the social biology of invading bacteria to achieve symbiosis, and is the primary protective mechanism against pathogens.
Collapse
Affiliation(s)
- Karen F Ross
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, USA.
| |
Collapse
|
48
|
Ebersole JL, Kirakodu S, Novak MJ, Exposto CR, Stromberg AJ, Shen S, Orraca L, Gonzalez-Martinez J, Gonzalez OA. Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. Mol Oral Microbiol 2016; 31:18-32. [PMID: 26197995 PMCID: PMC4712099 DOI: 10.1111/omi.12121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 01/28/2023]
Abstract
The molecular changes underlying the higher risk of chronic inflammatory disorders during aging remain incompletely understood. Molecular variations in the innate immune response related to recognition and interaction with microbes at mucosal surfaces could be involved in aging-related inflammation. We developed an ontology analysis of 20 nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) and seven inflammasome-related genes (IRGs) in healthy and inflamed/periodontitis oral mucosal tissues from young, adolescent, adult, and aged non-human primates (Macaca mulatta) using the GeneChip(®) Rhesus Macaque Genome array. Validation of some of the significant changes was done by quantitative reverse transcription-polymerase chain reaction. The expression of NLRB/NAIP, NLRP12, and AIM2 increased with aging in healthy mucosa whereas NLRC2/NOD2 expression decreased. Although higher expression levels of some NLRs were generally observed with periodontitis in adult mucosal tissues (e.g. NLRB/NAIP, NLRP5, and NLRX1), various receptors (e.g. NLRC2/NOD2 and NLRP2) and the inflammasome adaptor protein ASC, exhibited a significant reduction in expression in aged periodontitis tissues. Accordingly, the expression of NLR-activated innate immune genes, such as HBD3 and IFNB1, was impaired in aged but not adult periodontitis tissues. Both adult and aged tissues showed significant increase in interleukin-1β expression. These findings suggest that the expression of a subset of NLRs appears to change with aging in healthy oral mucosa, and that aging-related oral mucosal inflammation could involve an impaired regulation of the inflammatory and antimicrobial response associated with downregulation of specific NLRs and IRGs.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - M. John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Cristina R. Exposto
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Arnold J. Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Shu Shen
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR
| | | | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
49
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
50
|
Huang X, Han Y, Shao Y, Yi JL. Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats. Int J Ophthalmol 2015; 8:860-5. [PMID: 26558192 DOI: 10.3980/j.issn.2222-3959.2015.05.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
AIM To evaluate the therapeutic effect of Nodinhibit-1 on alkali-burn-induced corneal neovascularization (CNV) and inflammation. The nucleotide-binding oligomerzation domain 1 (NOD1) is a potent angiogenic gene. METHODS The alkali-burned rat corneas (32 right eyes) were treated with eye drops containing Nodinhibit-1 or phosphate buffered solution (PBS, PH 7.4) only, four times per day. CNV and inflammation were monitored using slit lamp microscopy, and the area of CNV was measured by formula. Vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) was determined by Western blot analysis. The TUNEL assay was used to assess the corneal apoptosis cells. RESULTS Alkali-burn-induced progressive CNV and inflammation in the cornea. After treatment for 7d and 14d, there were statistically significant differences in the CNV areas and inflammatory index on that between two group(P<0.05, respectively). Epithelial defect quantification showed a significant difference between the two groups at days 4 and 7 after the alkali burns (P<0.05). The apoptotic cells on days 1, 4, and 7 between the two groups showed significant differences at all time points (P<0.05, respectively). Compared to that in control group, the protein level of VEGF expression was significantly reduced whereas the PEDF expression was increase in the Nodinhibit-1 groups on day 14 (P<0.05, respectively). CONCLUSION Topical application of 10.0 µg/mL Nodinhibit-1 may have potential effect for the alkali burn-induced CNV and inflammation. The effect of Nodinhibit-1 on CNV may be by regulation the equilibrium of VEGF and PEDF in the wounded cornea.
Collapse
Affiliation(s)
- Xu Huang
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing-Lin Yi
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|