1
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024:10.1038/s41579-024-01075-5. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
2
|
Moellmann HL, Kommer K, Karnatz N, Pfeffer K, Henrich B, Rana M. Molecular Genetic Analysis of Perioperative Colonization by Infection-Related Microorganisms in Patients Receiving Intraoral Microvascular Grafts. J Clin Med 2024; 13:4103. [PMID: 39064142 PMCID: PMC11278416 DOI: 10.3390/jcm13144103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: In oral and maxillofacial surgery, the reconstruction of defects often involves the transfer of skin tissue into the oral cavity utilizing microvascular grafts. This study investigates postoperative changes in microbial colonization following intraoral microvascular transplantation, as well as potential influencing factors. Methods: In 37 patients undergoing intraoral reconstructions, pre- and postoperative swabs were taken from the donor and recipient regions to quantify the seven selected marker bacteria using TaqMan PCRs. Patient-specific factors and clinical data were also recorded. Results: The infection-associated Acinetobacter baumannii tended to decrease postoperatively, while the infectious pathogens Pseudomonas aeruginosa, Enterococcus faecalis and the family of Enterobacteriaceae showed a postoperative increase without being directly associated with a clinical infection. Streptococcus mitis showed a significant postoperative decrease on buccal mucosa and increase on the graft surface (oral dysbiosis) and was significantly reduced or displaced by other bacteria (e.g., Mycoplasma salivarium, positive selection) when treated with ampicillin/sulbactam. Conclusions: The cutaneous microbiome of the graft adapts to the local intraoral environment. Postoperative shifts in oral bacterial colonization and an increase in infection-relevant bacteria were observed. These perioperative changes in colonization are also influenced by the administration of ampicillin/sulbactam. Consequently, single doses of antibiotics appear to be more beneficial compared to longer-term preventive use.
Collapse
Affiliation(s)
- Henriette Louise Moellmann
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| | - Katharina Kommer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Nadia Karnatz
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Majeed Rana
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| |
Collapse
|
3
|
Del Pilar Angarita-Díaz M, Fong C, Medina D. Bacteria of healthy periodontal tissues as candidates of probiotics: a systematic review. Eur J Med Res 2024; 29:328. [PMID: 38877601 PMCID: PMC11177362 DOI: 10.1186/s40001-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVES The use of probiotics could promote the balance of the subgingival microbiota to contribute to periodontal health. This study aimed to identify the potential of bacteria commonly associated with healthy periodontal tissues as probiotic candidates. MATERIAL AND METHODS A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the PubMed, Scopus, Science Direct, ProQuest, and Ovid databases as well as the combination of Medical Subject Headings (MeSH) and non-MeSH terms. Based on the selection criteria, original studies published in English and identifying the microorganisms present in the periodontium of healthy individuals and patients with periodontitis using the high-throughput 16S ribosomal gene sequencing technique were included. RESULTS Out of 659 articles, 12 met the criteria for this review. These articles were published from 2012 to 2020 and mainly originated from the United States, China, and Spain. Most of these studies reported adequate criteria for selecting participants, using standardized clinical criteria, and compliance with quality based on the tools used. In periodontal healthy tissue were identified species like Actinomyces viscosus, Actinomyces naeslundii, Haemophilus parainfluenzae, Rothia dentocariosa, Streptococcus sanguinis, Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii, Streptococcus intermedius, and Prevotella nigrescens which have recognized strains with a capacity to inhibit periodontopathogens. CONCLUSIONS S. sanguinis, S. oralis, S. mitis, and S. gordonii are among the bacterial species proposed as potential probiotics because some strains can inhibit periodontopathogens and have been reported as safe for humans.
Collapse
Affiliation(s)
- María Del Pilar Angarita-Díaz
- GIOMET Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Campus Villavicencio, Carrera 35 # 36 99, Villavicencio, Colombia.
| | - Cristian Fong
- Ciencia y Pedagogía Group, School of Medicine, Universidad Cooperativa de Colombia, Campus Santa Marta, Santa Marta, Colombia
| | - Daniela Medina
- School of Dentistry, Universidad Cooperativa de Colombia, Campus Villavicencio, Villavicencio, Colombia
| |
Collapse
|
4
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
5
|
Martínez-Lamas L, García-Mato E, Rincón-Quintero A, Rivas-Mundiña B, Diz-Dios P, Álvarez-Fernández M. Mechanism of Action of Streptococcus downii, a New Bacterial Species with Probiotic Potential. Antibiotics (Basel) 2023; 12:1472. [PMID: 37760768 PMCID: PMC10525679 DOI: 10.3390/antibiotics12091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus downii is a recently reported bacterial species of oral origin, with inhibitory capacity against Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula and Aggregatibacter actinomycetemcomitans, which confers upon it the potential of being an oral probiotic. The aim of the present study was to identify the potential mechanisms by which S. downii exerts its inhibitory effect on S. mutans. To this end, the study assessed the consumption of glucose and proteins available in the culture medium, the modification of the pH, the production of short-chain fatty acids, the changes in the protein panel of the inhibition halo, the production of hydrogen peroxide and the effect of proteinase K. There were no differences in the glucose values or in the protein content of the medium, but there was a reduction in pH (with no effect on the growth of S. mutans). Significant increases were detected in the levels of lactic and formic acid (with no effect on the growth of S. mutans), as well as changes in the peptide panel (with no effect on the growth of S. mutans). The inhibitory effect was maintained in the presence of peroxidase but disappeared after adding proteinase K. Based on these results, it is suggested that the main mechanism of inhibition of S. downii against S. mutans is the production of bacteriocins.
Collapse
Affiliation(s)
- Lucía Martínez-Lamas
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| | - Eliane García-Mato
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Anniris Rincón-Quintero
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| | - Berta Rivas-Mundiña
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Pedro Diz-Dios
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.G.-M.); (B.R.-M.)
| | - Maximiliano Álvarez-Fernández
- Clinical Microbiology, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), 36212 Vigo, Spain; (L.M.-L.); (A.R.-Q.); (M.Á.-F.)
| |
Collapse
|
6
|
Begić G, Badovinac IJ, Karleuša L, Kralik K, Cvijanovic Peloza O, Kuiš D, Gobin I. Streptococcus salivarius as an Important Factor in Dental Biofilm Homeostasis: Influence on Streptococcus mutans and Aggregatibacter actinomycetemcomitans in Mixed Biofilm. Int J Mol Sci 2023; 24:ijms24087249. [PMID: 37108414 PMCID: PMC10139097 DOI: 10.3390/ijms24087249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A disturbed balance within the dental biofilm can result in the dominance of cariogenic and periodontopathogenic species and disease development. Due to the failure of pharmacological treatment of biofilm infection, a preventive approach to promoting healthy oral microbiota is necessary. This study analyzed the influence of Streptococcus salivarius K12 on the development of a multispecies biofilm composed of Streptococcus mutans, S. oralis and Aggregatibacter actinomycetemcomitans. Four different materials were used: hydroxyapatite, dentin and two dense polytetrafluoroethylene (d-PTFE) membranes. Total bacteria, individual species and their proportions in the mixed biofilm were quantified. A qualitative analysis of the mixed biofilm was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that in the presence of S. salivarius K 12 in the initial stage of biofilm development, the proportion of S. mutans was reduced, which resulted in the inhibition of microcolony development and the complex three-dimensional structure of the biofilm. In the mature biofilm, a significantly lower proportion of the periodontopathogenic species A. actinomycetemcomitans was found in the salivarius biofilm. Our results show that S. salivarius K 12 can inhibit the growth of pathogens in the dental biofilm and help maintain the physiological balance in the oral microbiome.
Collapse
Affiliation(s)
- Gabrijela Begić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Jelovica Badovinac
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Medical Informatics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Davor Kuiš
- Department of Periodontology, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Dental Medicine, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Clinical Hospital Centre, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
7
|
Homayouni Rad A, Pourjafar H, Mirzakhani E. A comprehensive review of the application of probiotics and postbiotics in oral health. Front Cell Infect Microbiol 2023; 13:1120995. [PMID: 36968114 PMCID: PMC10031100 DOI: 10.3389/fcimb.2023.1120995] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Oral diseases are among the most common diseases around the world that people usually suffer from during their lifetime. Tooth decay is a multifactorial disease, and the composition of oral microbiota is a critical factor in its development. Also, Streptococcus mutans is considered the most important caries-causing species. It is expected that probiotics, as they adjust the intestinal microbiota and reduce the number of pathogenic bacteria in the human intestine, can exert their health-giving effects, especially the anti-pathogenic effect, in the oral cavity, which is part of the human gastrointestinal tract. Therefore, numerous in vitro and in vivo studies have been conducted on the role of probiotics in the prevention of tooth decay. In this review, while investigating the effect of different strains of probiotics Lactobacillus and Bifidobacteria on oral diseases, including dental caries, candida yeast infections, periodontal diseases, and halitosis, we have also discussed postbiotics as novel non-living biological compounds derived from probiotics.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Esmaeel Mirzakhani, ; Hadi Pourjafar,
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Esmaeel Mirzakhani, ; Hadi Pourjafar,
| |
Collapse
|
8
|
Zhang Y, Ding Y, Guo Q. Probiotic Species in the Management of Periodontal Diseases: An Overview. Front Cell Infect Microbiol 2022; 12:806463. [PMID: 35402306 PMCID: PMC8990095 DOI: 10.3389/fcimb.2022.806463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontal diseases are one of the most common chronic inflammatory diseases of the oral cavity, which are initiated and sustained by pathogenic plaque biofilms. Central to modern periodontology is the idea that dysbiosis of periodontal microecology and disorder of host inflammatory response gives rise to degradation of periodontal tissues together, which eventually leads to tooth loss, seriously affecting the life quality of patients. Probiotics were originally used to treat intestinal diseases, while in recent years, extensive studies have been exploring the utilization of probiotics in oral disease treatment and oral healthcare. Probiotic bacteria derived from the genera Lactobacillus, Bifidobacterium, Streptococcus, and Weissella are found to play an effective role in the prevention and treatment of periodontal diseases via regulating periodontal microbiota or host immune responses. Here, we review the research status of periodontal health-promoting probiotic species and their regulatory effects. The current issues on the effectiveness and safety of probiotics in the management of periodontal diseases are also discussed at last. Taken together, the use of probiotics is a promising approach to prevent and treat periodontal diseases. Nevertheless, their practical use for periodontal health needs further research and exploration.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Qiang Guo,
| |
Collapse
|
9
|
Hbibi A, Bouziane A, Lyoussi B, Zouhdi M, Benazza D. Aggregatibacter actinomycetemcomitans: From Basic to Advanced Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:45-67. [DOI: 10.1007/978-3-030-96881-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Subgingival Microbiota Profile in Association with Cigarette Smoking in Young Adults: A Cross-Sectional Study. Dent J (Basel) 2021; 9:dj9120150. [PMID: 34940047 PMCID: PMC8700501 DOI: 10.3390/dj9120150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
While smoking is recognized as one of the factors for the development and progression of periodontal diseases, a relation between the composition of the subgingival microbiota and smoking is yet to be elucidated. The aim of this study was to investigate the prevalence of subgingival bacteria in young smokers and non-smokers without clinical signs of periodontal disease. In this cross-sectional study, performed at the Department of Pharmacology, School of Dental Medicine, University of Zagreb, we enrolled 32 periodontally healthy smokers and 32 non-smokers, aged 25–35 years old. The number of oral bacteria and the prevalence of particular bacteria were assessed for each subject. Subgingival plaque samples were collected with sterile paper points from two first molars for microbiological analyses with MALDI-TOF mass spectrometry. In smokers, a significantly higher prevalence of Actinomyces odontolyticus was observed compared to non-smokers, and a significantly lower prevalence of Streptococcus sanguinis was observed compared to non-smokers. Smoking affects the composition of subgingival microbiota, either via depletion of beneficial bacteria or the increase in pathogenic bacteria.
Collapse
|
11
|
Sang-Ngoen T, Czumbel LM, Sadaeng W, Mikó A, Németh DI, Mátrai P, Hegyi P, Tóth B, Csupor D, Kiss I, Szabó A, Gerber G, Varga G, Kerémi B. Orally Administered Probiotics Decrease Aggregatibacter actinomycetemcomitans but Not Other Periodontal Pathogenic Bacteria Counts in the Oral Cavity: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:682656. [PMID: 34447307 PMCID: PMC8383782 DOI: 10.3389/fphar.2021.682656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: At the initial part of the gastrointestinal tract, multiple tissues serve the normal function of food delivery. Periodontal structures are integral elements of these. When they deteriorate, it is extremely challenging to regenerate and reconstruct them. The conventional intervention for periodontal disease is scaling and root planning with the aim of reducing pathogenic bacteria. However, periodontal pathogens can rapidly recolonize treated areas. Probiotics have been proposed as novel tools for managing oral health by suppressing pathogenic bacteria through their anti-inflammatory effect, but the available data are controversial. Aim: Therefore, we performed a meta-analysis to study the effect of probiotics on periodontal pathogenic bacteria. Methods: The study was registered in PROSPERO under registration number CRD42018094903. A comprehensive literature search from four electronic databases (PubMed, Cochrane CENTRAL, Embase, and Web of Science) yielded nine eligible records for statistical analysis. Studies measuring bacterial counts in saliva and supra- and subgingival plaque were included. Bacterial counts were analyzed using standard mean difference (SMD) and by a random effects model with the DerSimonian-Laird estimation. Results: The results showed a significant decrease in the overall count of Aggregatibacter actinomycetemcomitans in the probiotic-treated group compared to the control at 4 weeks (SMD: -0.28; 95% CI: -0.56--0.01; p = 0.045) but not later. Analyzing the bacterial counts in subgroups, namely, in saliva and supra- and subgingival plaque, separately, yielded no significant difference. Probiotics had no significant effect on the overall count of Porphyromonas gingivalis at 4 weeks (SMD: -0.02; 95% CI: -0.35-0.31; p = 0.914) or later. Subgroup analysis also revealed no significant difference between treatment and control groups nor did probiotics significantly decrease the overall and subgroup bacterial counts of Prevotella intermedia, Tannerella forsythia, and Fusobacterium nucleatum. Conclusion: Our data support the beneficial effect of probiotics in reducing A. actinomycetemcomitans counts, but not of other key periodontal pathogenic bacteria in periodontal disease patients. However, due to the complex mechanism associated with periodontal disease and the limitations of the available studies, there is a further need for well-designed randomized clinical trials to assess the efficacy of probiotics.
Collapse
Affiliation(s)
| | | | - Wuttapon Sadaeng
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Alexandra Mikó
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dávid István Németh
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Mátrai
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Barbara Tóth
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - István Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Szabó
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Beáta Kerémi
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Choi Y, Park E, Kim S, Ha J, Oh H, Kim Y, Lee Y, Seo Y, Kang J, Lee S, Lee H, Yoon Y, Choi KH. Alleviation of periodontal disease using Lactobacillus curvatus SMFM2016-NK. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Probiotics, Prebiotics, Synbiotics and Dental Caries. New Perspectives, Suggestions, and Patient Coaching Approach for a Cavity-Free Mouth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Probiotic therapy forms a new strategy for dental caries prevention. Probiotic microorganisms possess the ability to displace cariogenic microorganisms and colonize the oral cavity. They can produce various antimicrobial substances such as bacteriocins, bacteriocin-like peptides, lactic acid, and hydrogen peroxide. Dairy products may be ideal for probiotic administration in dental patients. Many other means have been proposed, primarily for those allergic to dairy components, such as capsules, liquid form, tablets, drops, lozenges, sweetened cakes, and ice creams. The last two forms can be used in a coaching approach for children and elderly patients who find it difficult to avoid sugary beverages in their daily routine and benefit from the suggestion of easy, cheap, and common forms of delicacies. In caries prevention, the concept of the effector strain is already considered an integral part of the contemporary caries cure or prevention strategy in adults. Adults, though, seem not to be favored as much as children at early ages by using probiotics primarily due to their oral microbiome’s stability. In this non-systematic review we describe the modes of action of probiotics, their use in the cariology field, their clinical potential, and propose options to prevent caries through a patient coaching approach for the daily dental practice.
Collapse
|
14
|
Minić I, Pejčić A, Bradić-Vasić M. Effect of the local probiotics in the therapy of periodontitis A randomized prospective study. Int J Dent Hyg 2021; 20:401-407. [PMID: 33964104 DOI: 10.1111/idh.12509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The use of local probiotics in the therapy of periodontitis is reflected in their ability to antagonize periodontopathogens and modulates the immune response of the host to the presence of pathogenic microorganisms. The aim of this study was to investigate the use of local probiotics in the treatment of periodontitis as an adjunctive therapy to scaling and root planning (SRP). METHODS The study involved 80 patients diagnosed with periodontitis. All participants underwent SRP therapy. Semi-solid probiotic was then locally applied to the periodontal pocket in randomly selected patients for the test group (40 of them). The other 40 patients were in the control group. Clinical parameters including periodontal pocket depth (PPD), bleeding on probing (BOP) and plaque index (PI) were measured at baseline, and at 7 and 30 days after treatment. RESULTS Seven days after the applied therapy in the test and control group, there was a significant decrease in the values or BOP (p < .001), while the values of other parameters did not show a statistically significant difference (p < .05). One month after the therapy in both groups, there was a statistically significant difference in the values of all clinical parameters (p < .001). CONCLUSIONS Based on the results of this pilot study, it can be said that, during periodontal treatment, topical application of probiotics in combination with SRP increases the effectiveness of conventional non-surgical therapy of periodontitis.
Collapse
Affiliation(s)
- Ivan Minić
- Department of Periodontology and Oral medicine, Medical faculty, University of Nis, Nis, Serbia
| | - Ana Pejčić
- Department of Periodontology and Oral medicine, Medical faculty, University of Nis, Nis, Serbia
| | - Marija Bradić-Vasić
- Department of Periodontology and Oral medicine, Medical faculty, University of Nis, Nis, Serbia
| |
Collapse
|
15
|
Cuenca M, Sánchez MC, Diz P, Martínez-Lamas L, Álvarez M, Limeres J, Sanz M, Herrera D. In Vitro Anti-Biofilm and Antibacterial Properties of Streptococcus downii sp. nov. Microorganisms 2021; 9:450. [PMID: 33671537 PMCID: PMC7926871 DOI: 10.3390/microorganisms9020450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.
Collapse
Affiliation(s)
- Maigualida Cuenca
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| | - María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| | - Pedro Diz
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (P.D.); (J.L.)
| | - Lucía Martínez-Lamas
- Clinical Microbiology, Microbiology and Infectology Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, 36312 Galicia, Spain; (L.M.-L.); (M.Á.)
| | - Maximiliano Álvarez
- Clinical Microbiology, Microbiology and Infectology Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, 36312 Galicia, Spain; (L.M.-L.); (M.Á.)
| | - Jacobo Limeres
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (P.D.); (J.L.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| |
Collapse
|
16
|
Oral microbiome: possible harbinger for children's health. Int J Oral Sci 2020; 12:12. [PMID: 32350240 PMCID: PMC7190716 DOI: 10.1038/s41368-020-0082-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
The human microbiome functions as an intricate and coordinated microbial network, residing throughout the mucosal surfaces of the skin, oral cavity, gastrointestinal tract, respiratory tract, and reproductive system. The oral microbiome encompasses a highly diverse microbiota, consisting of over 700 microorganisms, including bacteria, fungi, and viruses. As our understanding of the relationship between the oral microbiome and human health has evolved, we have identified a diverse array of oral and systemic diseases associated with this microbial community, including but not limited to caries, periodontal diseases, oral cancer, colorectal cancer, pancreatic cancer, and inflammatory bowel syndrome. The potential predictive relationship between the oral microbiota and these human diseases suggests that the oral cavity is an ideal site for disease diagnosis and development of rapid point-of-care tests. The oral cavity is easily accessible with a non-invasive collection of biological samples. We can envision a future where early life salivary diagnostic tools will be used to predict and prevent future disease via analyzing and shaping the infant’s oral microbiome. In this review, we present evidence for the establishment of the oral microbiome during early childhood, the capability of using childhood oral microbiome to predict future oral and systemic diseases, and the limitations of the current evidence.
Collapse
|
17
|
Zhang HN, Zhou XD, Xu X, Wang Y. [Oral microbiota and inflammatory bowel disease]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:443-449. [PMID: 31512842 DOI: 10.7518/hxkq.2019.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract with a high incidence but a poor therapeutic outcome. However, IBD is generally caused by complicated interactions between environmental factors and gut microflora in genetically susceptible individuals. In view of a series of oral manifestations in patients with IBD and a high detection rate of oral bacteria among this population, oral microbiota may play an important role in the development of IBD. This article reviews the relationship between oral microbiota and IBD.
Collapse
Affiliation(s)
- Hao-Nan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Abstract
The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.
Collapse
|
19
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
The oral commensal Streptococcus mitis activates the aryl hydrocarbon receptor in human oral epithelial cells. Int J Oral Sci 2017. [PMID: 28621325 PMCID: PMC5709542 DOI: 10.1038/ijos.2017.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptococcus mitis (S. mitis) is a pioneer commensal bacterial species colonizing many of the surfaces of the oral cavity in healthy individuals. Yet, not much information is available regarding its interaction with the host. We used examination of its transcriptional regulation in oral keratinocytes to elucidate some of its potential roles in the oral cavity. Transcription factor analysis of oral keratinocytes predicted S. mitis-mediated activation of aryl hydrocarbon receptor (AhR). Activation and functionality of AhR was confirmed through nuclear translocation determined by immunofluorescence microscopy and real-time polymerase chain reaction with reverse transcription analysis of CYP1A1, the hallmark gene for AhR activation. Addition of Streptococcus mutans or Streptococcus gordonii did not induce CYP1A1 transcription in the keratinocyte cultures. Introduction of an AhR-specific inhibitor revealed that S. mitis-mediated transcription of CXCL2 and CXCL8 was regulated by AhR. Elevated levels of prostaglandin E2 (enzyme-linked immunosorbent assay) in supernatants from S. mitis-treated oral epithelial cells were also attenuated by inhibition of AhR activity. The observed AhR-regulated activities point to a contribution of S. mitis in the regulation of inflammatory responses and thereby to wound healing in the oral cavity. The concept that the oral commensal microbiota can induce AhR activation is important, also in view of the role that AhR has in modulation of T-cell differentiation and as an anti-inflammatory factor in macrophages.
Collapse
|
21
|
Complete Genome Sequence of the Gamma-Aminobutyric Acid-Producing Strain Streptococcus thermophilus APC151. GENOME ANNOUNCEMENTS 2017; 5:5/17/e00205-17. [PMID: 28450504 PMCID: PMC5408102 DOI: 10.1128/genomea.00205-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%.
Collapse
|
22
|
Carrouel F, Viennot S, Santamaria J, Veber P, Bourgeois D. Quantitative Molecular Detection of 19 Major Pathogens in the Interdental Biofilm of Periodontally Healthy Young Adults. Front Microbiol 2016; 7:840. [PMID: 27313576 PMCID: PMC4889612 DOI: 10.3389/fmicb.2016.00840] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
Abstract
In oral health, the interdental spaces are a real ecological niche for which the body has few or no alternative defenses and where the traditional daily methods for control by disrupting biofilm are not adequate. The interdental spaces are the source of many hypotheses regarding their potential associations with and/or causes of cardiovascular disease, diabetes, chronic kidney disease, degenerative disease, and depression. This PCR study is the first to describe the interdental microbiota in healthy adults aged 18–35 years-old with reference to the Socransky complexes. The complexes tended to reflect microbial succession events in developing dental biofilms. Early colonizers included members of the yellow, green, and purple complexes. The orange complex bacteria generally appear after the early colonizers and include many putative periodontal pathogens, such as Fusobacterium nucleatum. The red complex (Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) was considered the climax community and is on the list of putative periodontal pathogens. The 19 major periodontal pathogens tested were expressed at various levels. F. nucleatum was the most abundant species, and the least abundant were Actinomyces viscosus, P. gingivalis, and Aggregatibacter actinomycetemcomitans. The genome counts for Eikenella corrodens, Campylobacter concisus, Campylobacter rectus, T. denticola, and Tannerella forsythensis increased significantly with subject age. The study highlights the observation that bacteria from the yellow complex (Streptococcus spp., S. mitis), the green complex (E. corrodens, Campylobacter gracilis, Capnocytophaga ochracea, Capnocytophaga sputigena, A. actinomycetemcomitans), the purple complex (Veillonella parvula, Actinomyces odontolyticus) and the blue complex (A. viscosus) are correlated. Concerning the orange complex, F. nucleatum is the most abundant species in interdental biofilm. The red complex, which is recognized as the most important pathogen in adult periodontal disease, represents 8.08% of the 19 bacteria analyzed. P. gingivalis was detected in 19% of healthy subjects and represents 0.02% of the interdental biofilm. T. forsythensis and T. denticola (0.02 and 0.04% of the interdental biofilm) were detected in 93 and 49% of healthy subjects, respectively. The effective presence of periodontal pathogens is a strong indicator of the need to develop new methods for disrupting interdental biofilm in daily oral hygiene.
Collapse
Affiliation(s)
- Florence Carrouel
- Institute of Functional Genomics of Lyon, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, University Lyon 1, Lyon France
| | - Stéphane Viennot
- Laboratory "Health, Individual, Society" EA4129, University Lyon 1, Lyon France
| | - Julie Santamaria
- Department of Prevention and Public Health, Faculty of Dentistry, University Lyon 1, Lyon France
| | - Philippe Veber
- Laboratory "Biométrie et Biologie Évolutive", UMR CNRS 5558 - LBBE, University Lyon 1, Villeurbanne France
| | - Denis Bourgeois
- Laboratory "Health, Individual, Society" EA4129, University Lyon 1, Lyon France
| |
Collapse
|
23
|
Herrero ER, Slomka V, Bernaerts K, Boon N, Hernandez-Sanabria E, Passoni BB, Quirynen M, Teughels W. Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 2016; 47:23-33. [DOI: 10.1016/j.jdent.2016.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/15/2022] Open
|
24
|
Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01637-15. [PMID: 26847886 PMCID: PMC4742683 DOI: 10.1128/genomea.01637-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.
Collapse
|
25
|
Jayaram P, Chatterjee A, Raghunathan V. Probiotics in the treatment of periodontal disease: A systematic review. J Indian Soc Periodontol 2016; 20:488-495. [PMID: 29242683 PMCID: PMC5676329 DOI: 10.4103/0972-124x.207053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the years, probiotics have been used in the treatment of a variety of diseases. The use of probiotics in the treatment of periodontal disease has caught on over the last decade or so. This review was performed to determine whether administration of probiotics produced a lasting clinical benefit in the treatment of periodontal disease. A MEDLINE, Cochrane database and a hand search was performed on human randomized placebo controlled trials using probiotics in the treatment of periodontal disease. A total of thirteen papers which addressed the question of the use of probiotics in the treatment of periodontal disease were retrieved. Most of the studies reviewed showed only a short term benefit with regards to reduction in gingival inflammation and probing depth reduction. Lasting clinical benefits were not seen in any of the studies. At least four different combinations and strains of probiotics have been used in the studies. There also existed significant heterogeneity in the methodology of the studies reviewed. It was concluded that current regimens of probiotics in the treatment of periodontal disease produce only short-term clinical and microbiologic benefits.
Collapse
Affiliation(s)
- Praveen Jayaram
- Department of Periodontics, The Oxford Dental College, Bengaluru, Karnataka, India
| | - Anirban Chatterjee
- Department of Periodontics, The Oxford Dental College, Bengaluru, Karnataka, India
| | - Vinayak Raghunathan
- Department of Periodontics, The Oxford Dental College, Bengaluru, Karnataka, India
| |
Collapse
|
26
|
Abstract
The role of probiotic bacteria in improving human health has been an attractive subject for researchers since the beginning of the 20(th) century. They have been used to control gastro-intestinal infections, to promote immunity and to prevent various diseases (allergies, urogenital infections, etc.). However, the use of beneficial bacteria in the field of dentistry has only recently gained interest. Investigation of the effects of probiotic bacteria on oral health has become an important research subject. These studies are still in the early stages, however results show that probiotic bacteria are effective against tooth caries, periodontal disease, oral mucosal lesions and oral malodour. This review provides information on the effects of probiotics--well-known for their effects on general health, and therefore more widely used in healthcare--on oral and dental health, in order to promote their use/prescription by physicians and patients.
Collapse
Affiliation(s)
- O E Gungor
- 1 Akdeniz University, Faculty of Dentistry, Department of Pediatric Dentistry, 07058 Antalya, Turkey
| | - Z Kirzioglu
- 2 Süleyman Demirel University, Faculty of Dentistry, Department of Pediatric Dentistry, 32260 Isparta, Turkey
| | - M Kivanc
- 3 Anadolu University, Faculty of Science, Department of Biology, 26470 Eskişehir, Turkey
| |
Collapse
|
27
|
Delorme C, Abraham AL, Renault P, Guédon E. Genomics of Streptococcus salivarius, a major human commensal. INFECTION GENETICS AND EVOLUTION 2014; 33:381-92. [PMID: 25311532 DOI: 10.1016/j.meegid.2014.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites (all levels of the digestive tract, skin, breast milk, and body fluids) and included clinical strains, no genetic or genomic niche-specific features could be identified to discriminate specific group.
Collapse
Affiliation(s)
- Christine Delorme
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Anne-Laure Abraham
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Pierre Renault
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Eric Guédon
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France.
| |
Collapse
|
28
|
Fernandez y Mostajo M, van der Reijden WA, Buijs MJ, Beertsen W, Van der Weijden F, Crielaard W, Zaura E. Effect of an oxygenating agent on oral bacteria in vitro and on dental plaque composition in healthy young adults. Front Cell Infect Microbiol 2014; 4:95. [PMID: 25101249 PMCID: PMC4107829 DOI: 10.3389/fcimb.2014.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/23/2014] [Indexed: 11/25/2022] Open
Abstract
Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. Material and methods:In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. Results: AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). Conclusion: AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research.
Collapse
Affiliation(s)
- Mercedes Fernandez y Mostajo
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam Amsterdam, Netherlands
| | - Wil A van der Reijden
- Regional Laboratory for Public Health Haarlem, Department Molecular Biology Haarlem, Netherlands
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam Amsterdam, Netherlands
| | - Wouter Beertsen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam Amsterdam, Netherlands
| | - Fridus Van der Weijden
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam Amsterdam, Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam Amsterdam, Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
29
|
Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig 2014; 18:2151-8. [PMID: 24535074 DOI: 10.1007/s00784-014-1201-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/30/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVES The purposes of this study were to fabricate biodegradable polydioxanone (PDS II®) electrospun periodontal drug delivery systems (hereafter referred to as matrices) containing either metronidazole (MET) or ciprofloxacin (CIP) and to investigate the effects of antibiotic incorporation on both periodontopathogens and commensal oral bacteria. MATERIALS AND METHODS Fibrous matrices were processed from PDS polymer solution by electrospinning. Antibiotic-containing PDS solutions were prepared to obtain four distinct groups: 5 wt.% MET, 25 wt.% MET, 5 wt.% CIP, and 25 wt.% CIP. Pure PDS was used as a control. High-performance liquid chromatography (HPLC) was done to evaluate MET and CIP release. Dual-species biofilms formed by Lactobacillus casei (Lc) and Streptococcus salivarius (Ss) were grown on the surface of all electrospun matrices. After 4 days of biofilm growth, the viability of bacteria on biofilms was assessed. Additionally, antimicrobial properties were evaluated against periodontopathogens Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa) using agar diffusion assay. RESULTS A three-dimensional interconnected porous network was observed in the different fabricated matrices. Pure PDS showed the highest fiber diameter mean (1,158 ± 402 nm) followed in a descending order by groups 5 wt.% MET (1,108 ± 383 nm), 25 wt.% MET (944 ± 392 nm), 5 wt.% CIP (871 ± 309 nm), and 25 wt.% CIP (765 ± 288 nm). HPLC demonstrated that groups containing higher amounts (25 wt.%) of incorporated drugs released more over time, while those with lower levels (5 wt.%) the least. No inhibitory effect of the tested antibiotics was detected on biofilm formation by the tested commensal oral bacteria. Meanwhile, CIP-containing matrices inhibited growth of Fn and Aa. CONCLUSION CIP-containing matrices led to a significant inhibition of periodontopathogens without negatively impairing the growth of periodontal beneficial bacteria. CLINICAL RELEVANCE Based on the proven in vitro inhibition of periodontitis-related bacteria, future in vivo research using relevant animal models is needed to confirm the effectiveness of these drug delivery systems.
Collapse
Affiliation(s)
- Marco C Bottino
- Department of Restorative Dentistry, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), 1121 W. Michigan Street, Indianapolis, IN, 46202, USA,
| | | | | | | | | | | |
Collapse
|
30
|
Güngör Ö, Kırzıoğlu Z, Dinçer E, Kıvanç M. Who will win the race in childrens' oral cavities? Streptococcus mutans or beneficial lactic acid bacteria? Benef Microbes 2013; 4:237-45. [DOI: 10.3920/bm2012.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adhesion to oral soft and hard tissue is crucial for bacterial colonisation in the mouth. The aim of this work was to select strains of oral lactic acid bacteria that could be used as probiotics for oral health. To this end, the adhesive properties of some lactic acid bacteria were investigated. Seventeen lactic acid bacteria including two Streptococcus mutans strains were isolated from the oral cavity of healthy children, while other strains were isolated from fermented meat products. The bacterial strains were applied to teeth surfaces covered with saliva or without saliva. A significant diversity in adhesion capacity to teeth surfaces among the lactic acid bacteria was observed. Lactic acid bacteria isolated from the oral cavity adhered the best to teeth surfaces covered with saliva, whereas lactic acid bacteria isolated from fermented meat samples adhered the best to tooth surface without saliva. All strains of lactic acid bacteria were able to reduce the number of S. mutans cells, in particular on saliva-coated tooth surface. Therefore, they might have potential as probiotics for the oral cavity.
Collapse
Affiliation(s)
- ö.E. Güngör
- Faculty of Dentistry, Department of Paediatric Dentistry, Akdeniz University, 07058 Antalya, Turkey
| | - Z. Kırzıoğlu
- Faculty of Dentistry, Department of Paediatric Dentistry, Süleyman Demirel University, 32260 Isparta, Turkey
| | - E. Dinçer
- Science of Faculty, Department of Biology, Anadolu University, Yunusemre Campus, 26470 Eskişehir, Turkey
| | - M. Kıvanç
- Science of Faculty, Department of Biology, Anadolu University, Yunusemre Campus, 26470 Eskişehir, Turkey
| |
Collapse
|
31
|
Manrique P, Freire MO, Chen C, Zadeh HH, Young M, Suci P. Perturbation of the indigenous rat oral microbiome by ciprofloxacin dosing. Mol Oral Microbiol 2013; 28:404-14. [PMID: 23844936 DOI: 10.1111/omi.12033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 11/28/2022]
Abstract
Mucosal surfaces such as the gut, vagina and oral cavity are colonized by microbiota that are an integral component of the healthy ecosystem. Recent molecular techniques make it feasible to correlate antimicrobial dosing levels with changes in microbiome composition. The objective of this study was to characterize the rat oral plaque microbiome composition at doses of ciprofloxacin that were considerably above and below nominal in vitro minimal inhibitory concentrations of a variety of gram-positive oral commensal bacteria. We exposed the oral cavities of rats to relatively low (0.1 μg ml(-1) ) and high (20 μg ml(-1)) doses of ciprofloxacin in the drinking water over a 3-day period. Plaque microbiota were characterized using 454 pyrosequencing. The rat indigenous community was dominated by the genera Rothia (74.4%) and Streptococcus (4.7%). Dosing at 0.1 μg ml(-1) was associated with changes in Rothia and Streptococcus species that were not significant, whereas dosing at 20 μg ml(-1) caused a pronounced (significant) reduction in the relative abundance of the Streptococcus genus. Taxonomic independent analysis indicated that the perturbation in the overall community structure attributed to dosing with ciprofloxacin at either the low or high dose was relatively low. The results suggest that it is feasible to use an antimicrobial dosing regimen to selectively target a specific subset of a mucosal microbiome for elimination with minimal perturbation of the entire community.
Collapse
Affiliation(s)
- P Manrique
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
32
|
Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk. J Bacteriol 2012; 194:4466-7. [PMID: 22843595 DOI: 10.1128/jb.00896-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus salivarius is a commensal species commonly found in the human oropharyngeal tract. Some strains of this species have been developed for use as oral probiotics, while others have been associated with a variety of opportunistic human infections. Here, we report the complete sequence of strain PS4, which was isolated from breast milk of a healthy woman.
Collapse
|
33
|
van Essche M, Loozen G, Godts C, Boon N, Pauwels M, Quirynen M, Teughels W. Bacterial antagonism against periodontopathogens. J Periodontol 2012; 84:801-11. [PMID: 22897652 DOI: 10.1902/jop.2012.120261] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of the current study is to compare the prevalence of commensal bacteria, with beneficial properties, for healthy and diseased individuals and additionally to examine the inhibitory effect of some commercial dietary probiotics on periodontopathogens, comparing this inhibitory effect to that of orally derived beneficial bacteria. METHODS Subgingival plaque samples from 35 patients (healthy and periodontitis patients) were analyzed. Growth inhibition of the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans was examined using the agar overlay technique and agar well diffusion method. The quantification of the inhibitory effect was checked with the agar well diffusion method. RESULTS Using the agar overlay technique, the prevalence of strains antagonistic toward P. gingivalis, A. actinomycetemcomitans, and F. nucleatum was found to be higher in healthy individuals than in individuals with periodontitis, but this could not be validated by the agar well diffusion assay. Compared with the antagonistic activity of the isolated strains, the probiotic strains overall showed a stronger inhibition of the periodontal pathogens. CONCLUSION It was shown that some oral bacteria can cause antagonism toward periodontopathogens, and these observations underline the therapeutic potential of applications that stimulate oral health by the application of beneficial effector strains.
Collapse
Affiliation(s)
- Mark van Essche
- Catholic University of Leuven, Department of Periodontology, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
Saha S, Tomaro-Duchesneau C, Tabrizian M, Prakash S. Probiotics as oral health biotherapeutics. Expert Opin Biol Ther 2012; 12:1207-20. [PMID: 22690730 DOI: 10.1517/14712598.2012.693474] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Oral health is affected by its resident microorganisms. Three prominent oral disorders are dental caries, gingivitis and periodontitis, with the oral microbiota playing a key role in the initiation/progression of all three. Understanding the microbiota and the diseases they may cause is critical to the development of new therapeutics. This review is focused on probiotics for the prevention and/or treatment of oral diseases. AREAS COVERED This review describes the oral ecosystem and its correlation with oral health/disease. The pathogenesis and current prevention/treatment strategies of periodontal diseases (PD) and dental caries (DC) are depicted. An introduction of probiotics is followed by an analysis of their role in PD and DC, and their potential role(s) in oral health. Finally, a discussion ensues on the future research directions and limitations of probiotics for oral health. EXPERT OPINION An effective oral probiotic formulation should contribute to the prevention/treatment of microbial diseases of the oral cavity. Understanding the oral microbiota's role in oral disease is important for the development of a therapeutic to prevent/treat dental diseases. However, investigations into clinical efficacy, delivery/dose optimization, mechanism(s) of action and other related parameters are yet to be fully explored. Keeping this in mind, investigations into oral probiotic therapies are proving promising.
Collapse
Affiliation(s)
- Shyamali Saha
- McGill University, Physiology and Artificial Cells and Organs Research Centre, Departments of Biomedical Engineering, Biomedical Technology and Cell Therapy, Research Laboratory, Faculty of Medicine, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | |
Collapse
|
35
|
Qiqiang L, Huanxin M, Xuejun G. Longitudinal study of volatile fatty acids in the gingival crevicular fluid of patients with periodontitis before and after nonsurgical therapy. J Periodontal Res 2012; 47:740-9. [DOI: 10.1111/j.1600-0765.2012.01489.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Complete genome sequence of the commensal Streptococcus salivarius strain JIM8777. J Bacteriol 2011; 193:5024-5. [PMID: 21742871 DOI: 10.1128/jb.05390-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The commensal bacterium Streptococcus salivarius is a prevalent species of the human oropharyngeal tract with an important role in oral ecology. Here, we report the complete 2.2-Mb genome sequence and annotation of strain JIM8777, which was recently isolated from the oral cavity of a healthy, dentate infant.
Collapse
|
37
|
Teughels W, Loozen G, Quirynen M. Do probiotics offer opportunities to manipulate the periodontal oral microbiota? J Clin Periodontol 2011; 38 Suppl 11:159-77. [PMID: 21323712 DOI: 10.1111/j.1600-051x.2010.01665.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND As in other fields of healthcare, probiotics have been introduced for prevention and treatment of periodontal diseases. OBJECTIVE This review was initiated to explore whether the use of probiotics can influence the periodontal microbiota and periodontal health. MATERIALS AND METHODS Literature on the mode of action of oral probiotics was reviewed and a systematic review was performed on the microbiological and clinical effects of oral probiotics on periodontal health. RESULTS Three animal and 11 in vivo human studies were retrieved. Six studies reported on microbiological effects whereas eight studies report on clinical effects. Seven studies were performed on healthy or gingivitis patients and four studies on periodontitis patients. Many of the retrieved studies are pilot in nature and with low quality. The high degree of heterogeneity between studies hampered analysis. CONCLUSION Taking into consideration all limitations, the currently available data indicate an effect of probiotics on the oral microbiota and a more limited effect on clinical periodontal outcome measures. However, there is an urgent need for properly conducted clinical trials where probiotics are used as adjuncts to standard periodontal care, similar to antibiotics, using probiotic strains with, at least at an in vitro level, proven periodontal probiotic effects.
Collapse
Affiliation(s)
- Wim Teughels
- Department of Periodontology, Research Group for Microbial Adhesion, Catholic University Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
38
|
Inhibition of the NF-kappaB pathway in human intestinal epithelial cells by commensal Streptococcus salivarius. Appl Environ Microbiol 2011; 77:4681-4. [PMID: 21602373 DOI: 10.1128/aem.03021-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus salivarius exhibited an anti-inflammatory effect on intestinal epithelial cells (IECs) and monocytes. Strains were screened using a reporter clone, HT-29/kB-luc-E, induced by tumor necrosis factor alpha (TNF-α). Supernatant from each strain downregulated NF-κB activation. The two most efficient strains produced an active metabolite (<3 kDa) which was able to downregulate the secretion of the proinflammatory chemokine interleukin-8 (IL-8).
Collapse
|
39
|
Mitchell J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol 2011; 26:89-98. [PMID: 21375700 DOI: 10.1111/j.2041-1014.2010.00601.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen.
Collapse
Affiliation(s)
- J Mitchell
- University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
40
|
Standar K, Kreikemeyer B, Redanz S, Münter WL, Laue M, Podbielski A. Setup of an in vitro test system for basic studies on biofilm behavior of mixed-species cultures with dental and periodontal pathogens. PLoS One 2010; 5. [PMID: 20957048 PMCID: PMC2948514 DOI: 10.1371/journal.pone.0013135] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/31/2010] [Indexed: 11/24/2022] Open
Abstract
Background Caries and periodontitis are important human diseases associated with formation of multi-species biofilms. The involved bacteria are intensively studied to understand the molecular basis of the interactions in such biofilms. This study established a basic in vitro single and mixed-species culture model for oral bacteria combining three complimentary methods. The setup allows a rapid screening for effects in the mutual species interaction. Furthermore, it is easy to handle, inexpensive, and reproducible. Methods Streptococcus mitis, S. salivarius and S. sanguinis, typical inhabitants of the healthy oral cavity, S. mutans as main carriogenic species, and Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, S. intermedius and Aggregatibacter actinomycetemcomitans as periodontitis-associated bacteria, were investigated for their biofilm forming ability. Different liquid growth media were evaluated. Safranin-staining allowed monitoring of biofilm formation under the chosen conditions. Viable counts and microscopy permitted investigation of biofilm behavior in mixed-species and transwell setups. Findings S. mitis, F. nucleatum, P. gingivalis and P. micra failed to form biofilm structures. S. mutans, S. sanguinis, S. intermedius and S. salivarius established abundant biofilm masses in CDM/sucrose. A. actinomycetemcomitans formed patchy monolayers. For in depth analysis S. mitis, S. mutans and A. actinomycetemcomitans were chosen, because i) they are representatives of the physiological-, cariogenic and periodontitis-associated bacterial flora, respectively and ii) their difference in their biofilm forming ability. Microscopic analysis confirmed the results of safranin staining. Investigation of two species combinations of S. mitis with either S. mutans or A. actinomycetemcomitans revealed bacterial interactions influencing biofilm mass, biofilm structure and cell viability. Conclusions This setup shows safranin staining, microscopic analysis and viable counts together are crucial for basic examination and evaluation of biofilms. Our experiment generated meaningful results, exemplified by the noted S. mitis influence, and allows a fast decision about the most important bacterial interactions which should be investigated in depth.
Collapse
Affiliation(s)
- Kerstin Standar
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
- * E-mail: .
| | - Sylvio Redanz
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Wanja L. Münter
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Michael Laue
- Electron Microscopic Centre, Institute of Pathology, University Hospital Rostock, Rostock, Germany
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
41
|
Rohrer N, Widmer AF, Waltimo T, Kulik EM, Weiger R, Filipuzzi-Jenny E, Walter C. Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: can chlorhexidine be replaced? Infect Control Hosp Epidemiol 2010; 31:733-9. [PMID: 20518635 DOI: 10.1086/653822] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Use of oral antiseptics decreases the bacterial load in the oral cavity. OBJECTIVE To compare the antimicrobial activity of 3 novel oral antiseptics with that of chlorhexidine, which is considered the "gold standard" of oral hygiene. DESIGN Comparative in vitro study. METHODS Four common oral microorganisms (Streptococcus sanguinis, Streptococcus mutans, Candida albicans, and Fusobacterium nucleatum) were tested under standard conditions and at different concentrations, by use of a broth dilution assay and an agar diffusion assay and by calculating the log10 reduction factor (RF). The antimicrobial activity of each antiseptic was assessed by counting the difference in bacterial densities (ie, the log10 number of colony-forming units of bacteria) before and after the disinfection process. RESULTS The oral antiseptics containing octenidine (with an RF in the range of 7.1-8.24 CFU/mL) and polyhexamethylene biguanide (with an RF in the range of 7.1-8.24 CFU/mL) demonstrated antimicrobial activity comparable to that of chlorhexidine (with an RF in the range of 1.03-8.24 CFU/mL), whereas the mouth rinse containing Citroxx (Citroxx Biosciences; with an RF in the range of 0.22-1.36 CFU/mL) showed significantly weaker antimicrobial efficacy. Overall, octenidine and polyhexamethylene biguanide were more active at lower concentrations.conclusion. Oral antiseptics containing the antimicrobial agent octenidine or polyhexamethylene biguanide may be considered as potent alternatives to chlorhexidine-based preparations.
Collapse
Affiliation(s)
- Nadine Rohrer
- School of Dentistry, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Targeted delivery of a photosensitizer to Aggregatibacter actinomycetemcomitans biofilm. Antimicrob Agents Chemother 2010; 54:2489-96. [PMID: 20385858 DOI: 10.1128/aac.00059-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to selectively target specific biofilm species with antimicrobials would enable control over biofilm consortium composition, with medical applications in treatment of infections on mucosal surfaces that are colonized by a mixture of beneficial and pathogenic microorganisms. We functionalized a genetically engineered multimeric protein with both a targeting moiety (biotin) and either a fluorophore or a photosensitizer (SnCe6). Biofilm microcolonies of Aggregatibacter actinomycetemcomitans, a periodontal pathogen, were targeted with the multifunctional dodecamer. Streptavidin was used to couple biotinylated dodecamer to a biotinylated anti-A. actinomycetemcomitans antibody. This modular targeting approach enabled us to increase the loading of photosensitizer onto the cells by a cycle of amplification. Scanning laser confocal microscopy was used to characterize transport of fluorescently tagged dodecamer into the microcolonies and targeting of the cells with biotin-labeled, fluorescently tagged dodecamer. Light-induced activity of the targeted photosensitizer reduced the viability of A. actinomycetemcomitans biofilm, as indicated by membrane permeability to propidium iodide. The functionalized multimeric protein promises to be a useful tool for controlling periodontal biofilm consortia and offers a modular design whereby moieties that target different species can be readily combined with the functionalized protein construct.
Collapse
|
44
|
|
45
|
Lang C, Böttner M, Holz C, Veen M, Ryser M, Reindl A, Pompejus M, Tanzer JM. Specific Lactobacillus/Mutans Streptococcus co-aggregation. J Dent Res 2009; 89:175-9. [PMID: 20042742 DOI: 10.1177/0022034509356246] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selective interaction of mutans streptococci with benign bacteria could present an opportunity for their removal from the mouth without disruption of other oral flora. This study was conducted to find probiotic lactobacilli that could specifically co-aggregate in vitro with mutans streptococci, but not with other plaque commensals. A search of 624 lactobacilli among a large culture library revealed 6 strains, all classifiable as L. paracasei or L. rhamnosus, which met this criterion. Such novel, specific co-aggregation, however, was not a general characteristic of these species or the genus Lactobacillus. The co-aggregation by these specific lactobacilli was characterized as heat treatment (autoclaving)- and protease-resistant, lectin-independent, not inactivated by sugar substitutes, operational over a wide pH range, unaffected by whole saliva, but calcium-dependent. It is thus seen to present a potential strategy for in vivo alteration of plaque biofilm and caries.
Collapse
Affiliation(s)
- C Lang
- ORGANOBALANCE GmbH, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sliepen I, Van Damme J, Van Essche M, Loozen G, Quirynen M, Teughels W. Microbial interactions influence inflammatory host cell responses. J Dent Res 2009; 88:1026-30. [PMID: 19828891 DOI: 10.1177/0022034509347296] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The inflammatory response plays an important role in the tissue destruction associated with periodontitis. Bacterial species can regulate the inflammatory responses of host cells, triggered by pathogens. It was hypothesized that, in the field of oral microbiology/immunology, such effects of bacterial interactions on inflammatory host cell responses might also be present. In this study, the effects of beneficial, commensal, and pathogenic species on Aggregatibacter actinomycetemcomitans-induced interleukin-8 (IL-8) production by human cells were investigated. The beneficial species, Streptococcus mitis, Streptococcus salivarius, and Streptococcus sanguinis, were able to lower the IL-8 production triggered by A. actinomycetemcomitans. The inhibitory effect was also achieved by the application of streptococcal supernatants. In contrast, the commensal Streptococcus gordonii caused no reduction, and the pathogen Fusobacterium nucleatum increased IL-8 production by the host cells. These results show that bacterial species can influence the inflammatory responses of host cells triggered by infection with A. actinomycetemcomitans.
Collapse
Affiliation(s)
- I Sliepen
- Catholic University Leuven, Research Group for Microbial Adhesion, Department of Periodontology, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Sliepen I, Van Essche M, Loozen G, Van Eldere J, Quirynen M, Teughels W. Interference withAggregatibacter actinomycetemcomitans: colonization of epithelial cells under hydrodynamic conditions. ACTA ACUST UNITED AC 2009; 24:390-5. [DOI: 10.1111/j.1399-302x.2009.00531.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Faveri M, Figueiredo LC, Duarte PM, Mestnik MJ, Mayer MPA, Feres M. Microbiological profile of untreated subjects with localized aggressive periodontitis. J Clin Periodontol 2009; 36:739-49. [PMID: 19637996 DOI: 10.1111/j.1600-051x.2009.01449.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The microbial profile of localized aggressive periodontitis (LAgP) has not yet been determined. Therefore, the aim of this study was to evaluate the subgingival microbial composition of LAgP. MATERIAL AND METHODS One hundred and twenty subjects with LAgP (n=15), generalized aggressive periodontitis (GAgP, n=25), chronic periodontitis (ChP, n=30) or periodontal health (PH, n=50) underwent clinical and microbiological assessment. Nine subgingival plaque samples were collected from each subject and analysed for their content of 38 bacterial species using checkerboard DNA-DNA hybridization. RESULTS Red complex and some orange complex species are the most numerous and prevalent periodontal pathogens in LAgP. The proportions of Aggregatibacter actinomycetemcomitans were elevated in shallow and intermediate pockets of LAgP subjects in comparison with those with GAgP or ChP, but not in deep sites. This species also showed a negative correlation with age and with the proportions of red complex pathogens. The host-compatible Actinomyces species were reduced in LAgP. CONCLUSION A. actinomycetemcomitans seems to be associated with the onset of LAgP, and Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Eubacterium nodatum and Prevotella intermedia play an important role in disease progression. Successful treatment of LAgP would involve a reduction in these pathogens and an increase in the Actinomyces species.
Collapse
Affiliation(s)
- Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Sliepen I, Van Essche M, Pauwels M, Van Eldere J, Hofkens J, Quirynen M, Teughels W. Colonization of hard and soft surfaces byAggregatibacter actinomycetemcomitansunder hydrodynamic conditions. ACTA ACUST UNITED AC 2008; 23:498-504. [DOI: 10.1111/j.1399-302x.2008.00461.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Sliepen I, Hofkens J, Van Essche M, Quirynen M, Teughels W. Aggregatibacter actinomycetemcomitansadhesion inhibited in a flow cell. ACTA ACUST UNITED AC 2008; 23:520-4. [DOI: 10.1111/j.1399-302x.2008.00456.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|