1
|
Holomková K, Veselá B, Dadáková K, Sharpe PT, Lesot H, Matalová E, Švandová E. Hypoxia-inducible factors in postnatal mouse molar dental pulp development: insights into expression patterns, localisation and metabolic pathways. Pflugers Arch 2024:10.1007/s00424-024-03003-1. [PMID: 39101996 DOI: 10.1007/s00424-024-03003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Hypoxia is relevant to several physiological and pathological processes and this also applies for the tooth. The adaptive response to lowering oxygen concentration is mediated by hypoxia-inducible factors (HIFs). Since HIFs were shown to participate in the promotion of angiogenesis, stem cell survival, odontoblast differentiation and dentin formation, they may play a beneficial role in the tooth reparative processes. Although some data were generated in vitro, little is known about the in vivo context of HIFs in tooth development. In order to contribute to this field, the mouse mandibular first molar was used as a model.The expression and in situ localisation of HIFs were examined at postnatal (P) days P0, P7, P14, using RT-PCR and immunostaining. The expression pattern of a broad spectrum of hypoxia-related genes was monitored by customised PCR Arrays. Metabolic aspects were evaluated by determination of the lactate level and mRNA expression of the mitochondrial marker Nd1.The results show constant high mRNA expression of Hif1a, increasing expression of Hif2a, and very low expression of Hif3a during early postnatal molar development. In the examined period the localisation of HIFs in the nuclei of odontoblasts and the subodontoblastic layer identified their presence during odontoblastic differentiation. Additionally, the lower lactate level and higher expression of mitochondrial Nd1 in advanced development points to decreasing glycolysis during differentiation. Postnatal nuclear localisation of HIFs indicates a hypoxic state in specific areas of dental pulp as oxygen demands depend on physiological events such as crown and root dentin mineralization.
Collapse
Affiliation(s)
- Kateřina Holomková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Barbora Veselá
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Physiology, Veterinary University, Brno, Czech Republic
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Paul T Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Hervé Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, Veterinary University, Brno, Czech Republic
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Sunohara M, Morikawa S, Shimada K, Suzuki K. Spatiotemporal expression profiles of c-Mpl mRNA in the tooth germ: Comparative expression dynamics of vascularization-related genes. Ann Anat 2024; 253:152227. [PMID: 38336176 DOI: 10.1016/j.aanat.2024.152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Vascularization is an essential event for both embryonic organ development and tissue repair in adults. During mouse tooth development, endothelial cells migrate into dental papilla during the cap stage, and form blood vessels through angiogenesis. Megakaryocytes and/or platelets, as other hematopoietic cells, express angiogenic molecules and can promote angiogenesis in adult tissues. However, it remains unknown which cells are responsible for attracting and leading blood vessels through the dental papilla during tooth development. METHODS Here we analyzed the spatiotemporal expression of c-Mpl mRNA in developing molar teeth of fetal mice. Expression patterns were then compared with those of several markers of hematopoietic cells as well as of angiogenic elements including CD41, erythropoietin receptor, CD34, angiopoietin-1 (Ang-1), Tie-2, and vascular endothelial growth factor receptor2 (VEGFR2) through in situ hybridization or immunohistochemistry. RESULTS Cells expressing c-Mpl mRNA was found in several parts of the developing tooth germ, including the peridental mesenchyme, dental papilla, enamel organ, and dental lamina. This expression occurred in a spatiotemporally controlled fashion. CD41-expressing cells were not detected during tooth development. The spatiotemporal expression pattern of c-Mpl mRNA in the dental papilla was similar to that of Ang-1, which preceded invasion of endothelial cells. Eventually, at the early bell stage, the c-Mpl mRNA signal was detected in morphologically differentiating odontoblasts that accumulated in the periphery of the dental papilla along the inner enamel epithelium layer of the future cusp region. CONCLUSION During tooth development, several kinds of cells express c-Mpl mRNA in a spatiotemporally controlled fashion, including differentiating odontoblasts. We hypothesize that c-Mpl-expressing cells appearing in the forming dental papilla at the cap stage are odontoblast progenitor cells that migrate to the site of odontoblast differentiation. There they attract vascular endothelial cells into the forming dental papilla and lead cells toward the inner enamel epithelium layer through production of angiogenic molecules (e.g., Ang-1) during migration to the site of differentiation. C-Mpl may regulate apoptosis and/or proliferation of expressing cells in order to execute normal development of the tooth.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuto Shimada
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Kingo Suzuki
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Dalir Abdolahinia E, Safari Z, Sadat Kachouei SS, Zabeti Jahromi R, Atashkar N, Karbalaeihasanesfahani A, Alipour M, Hashemzadeh N, Sharifi S, Maleki Dizaj S. Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials. Expert Opin Biol Ther 2022; 22:1405-1416. [DOI: 10.1080/14712598.2022.2142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Safari
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nastaran Atashkar
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdieh Alipour
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Moghanian A, Cecen B, Nafisi N, Miri Z, Rosenzweig DH, Miri AK. Review of Current Literature for Vascularized Biomaterials in Dental Repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Álvarez-Vásquez JL, Bravo-Guapisaca MI, Gavidia-Pazmiño JF, Intriago-Morales RV. Adipokines in dental pulp: physiological, pathological, and potential therapeutic roles. J Oral Biosci 2021; 64:59-70. [PMID: 34808362 DOI: 10.1016/j.job.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hundreds of adipokines have been identified, and their extensive range of endocrine functions-regulating distant organs such as oral tissues-and local autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them have been studied despite their large number. This study reviews recent advances in the investigation of dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential therapeutic applications. HIGHLIGHTS The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in cell differentiation, mineralization, angiogenesis, and immune-system modulation. CONCLUSION Adipokines have potential clinical applications in regenerative endodontics and as biomarkers or targets for the pharmacological management of inflammatory and degenerative processes in dental pulp. A promising direction for the development of new therapies may be the use of agonists/antagonists to modulate the expression of the most studied adipokines.
Collapse
|
7
|
Capparè P, Tetè G, Sberna MT, Panina-Bordignon P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr Gene Ther 2021; 20:259-268. [PMID: 32811413 DOI: 10.2174/1566523220999200818115803] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.
Collapse
Affiliation(s)
- Paolo Capparè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Giulia Tetè
- Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Paola Panina-Bordignon
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Hospital, Milan, Italy,Dental School, Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| |
Collapse
|
8
|
Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021; 174:504-534. [PMID: 33991588 DOI: 10.1016/j.addr.2021.05.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone defects. The goal of this review is to summarize the points of scaffold design as well as applications for bone regeneration based on both electrospinning and 3D bioprinting. It first briefly introduces biological characteristics of bone regeneration and summarizes the applications of different types of material and the considerations for bone regeneration including polymers, ceramics, metals and composites. We then discuss electrospinning nanofibrous scaffold applied for the bone regenerative engineering with various properties, components and structures. Meanwhile, diverse design in the 3D bioprinting scaffolds for osteogenesis especially in the role of drug and bioactive factors delivery are assembled. Finally, we discuss challenges and future prospects in the development of electrospinning and 3D bioprinting for osteogenesis and prominent strategies and directions in future.
Collapse
|
9
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
10
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
11
|
Abstract
Over the past 100 y, tremendous progress has been made in the fields of dental tissue engineering and regenerative dental medicine, collectively known as translational dentistry. Translational dentistry has benefited from the more mature field of tissue engineering and regenerative medicine (TERM), established on the belief that biocompatible scaffolds, cells, and growth factors could be used to create functional, living replacement tissues and organs. TERM, created and pioneered by an interdisciplinary group of clinicians, biomedical engineers, and basic research scientists, works to create bioengineered replacement tissues that provide at least enough function for patients to survive until donor organs are available and, at best, fully functional replacement organs. Ultimately, the goal of both TERM and regenerative dentistry is to bring new and more effective therapies to the clinic to treat those in need. Very recently, the National Institutes of Health/National Institute of Dental and Craniofacial Research invested $24 million over a 3-y period to create dental oral and craniofacial translational resource centers to facilitate the development of more effective therapies to treat edentulism and other dental-related diseases over the next decade. This exciting era in regenerative dentistry, particularly for whole-tooth tissue engineering, builds on many key successes over the past 100 y that have contributed toward our current knowledge and understanding of signaling pathways directing natural tooth and dental tissue development-the foundation for current strategies to engineer functional, living replacement dental tissues and whole teeth. Here we use a historical perspective to present key findings and pivotal advances made in the field of translational dentistry over the past 100 y. We will first describe how this process has evolved over the past 100 y and then hypothesize on what to expect over the next century.
Collapse
Affiliation(s)
- P C Yelick
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, Department of Orthodontics, Boston, MA, USA
| | - P T Sharpe
- Kings College London Dental Institute, London, UK
| |
Collapse
|
12
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
13
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
14
|
Shadad O, Chaulagain R, Luukko K, Kettunen P. Establishment of tooth blood supply and innervation is developmentally regulated and takes place through differential patterning processes. J Anat 2019; 234:465-479. [PMID: 30793310 DOI: 10.1111/joa.12950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 01/08/2023] Open
Abstract
Teeth are richly supported by blood vessels and peripheral nerves. The aim of this study was to describe in detail the developmental time-course and localization of blood vessels during early tooth formation and to compare that to innervation, as well as to address the putative role of vascular endothelial growth factor (VEGF), which is an essential regulator of vasculature development, in this process. The localization of blood vessels and neurites was compared using double immunofluorescence staining on sections at consecutive stages of the embryonic (E) and postnatal (PN) mandibular first molar tooth germ (E11-PN7). Cellular mRNA expression domains of VEGF and its signaling receptor VEGFR2 were studied using sectional radioactive in situ hybridization. Expression of VEGF mRNA and the encoded protein were studied by RT-PCR and western blot analysis, respectively, in the cap and early bell stage tooth germs, respectively. VEGFR2 was immunolocalized on tooth tissue sections. Smooth muscle cells were investigated by anti-alpha smooth muscle actin (αSMA) antibodies. VEGF showed developmentally regulated epithelial and mesenchymal mRNA expression domains including the enamel knot signaling centers that correlated with the growth and navigation of the blood vessels expressing Vegfr2 and VEGFR2 to the dental papilla and enamel organ. Developing blood vessels were present in the jaw mesenchyme including the presumptive dental mesenchyme before the appearance of the epithelial dental placode and dental neurites. Similarly, formation of a blood vessel plexus around the bud stage tooth germ and ingrowth of vessels into dental papilla at E14 preceded ingrowth of neurites. Subsequently, pioneer blood vessels in the dental papilla started to receive smooth muscle coverage at the early embryonic bell stage. Establishment and patterning of the blood vessels and nerves during tooth formation are developmentally regulated, stepwise processes that likely involve differential patterning mechanisms. Development of tooth vascular supply is proposed to be regulated by local, tooth-specific regulation by epithelial-mesenchymal tissue interactions and involving tooth target expressed VEGF signaling. Further investigations on tooth vascular development by local VEGF signaling, as well as how tooth innervation and development of blood vessels are integrated with advancing tooth organ formation by local signaling mechanisms, are warranted.
Collapse
Affiliation(s)
- Omnia Shadad
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Rajib Chaulagain
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Centre for International Health, University of Bergen, Bergen, Norway
| | - Keijo Luukko
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway.,Section of Orthodontics, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Paivi Kettunen
- Department of Biomedicine, Craniofacial Developmental Biology Group, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Angelova Volponi A, Zaugg LK, Neves V, Liu Y, Sharpe PT. Tooth Repair and Regeneration. CURRENT ORAL HEALTH REPORTS 2018; 5:295-303. [PMID: 30524931 PMCID: PMC6244610 DOI: 10.1007/s40496-018-0196-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Current dental treatments are based on conservative approaches, using inorganic materials and appliances.This report explores and discusses the newest achievements in the field of "regenerative dentistry," based on the concept of biological repair as an alternative to the current conservative approach. RECENT FINDINGS The review covers and critically analyzes three main approaches of tooth repair: the re-mineralization of the enamel, the biological repair of dentin, and whole tooth engineering. SUMMARY The development of a concept of biological repair based on the role of the Wnt signaling pathway in reparative dentin formation offers a new translational approach into development of future clinical dental treatments.In the field of bio-tooth engineering, the current focus of the researchers remains the establishment of odontogenic cell-sources that would be viable and easily accessible for future bio-tooth engineering.
Collapse
Affiliation(s)
- Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, London, UK
| | - Lucia K. Zaugg
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, London, UK
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine Basel, University of Basel, Basel, Switzerland
| | - Vitor Neves
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, London, UK
| | - Yang Liu
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, London, UK
| | - Paul T. Sharpe
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, London, UK
| |
Collapse
|
16
|
Proksch S, Galler KM. Scaffold Materials and Dental Stem Cells in Dental Tissue Regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40496-018-0197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Smith EE, Angstadt S, Monteiro N, Zhang W, Khademhosseini A, Yelick PC. Bioengineered Tooth Buds Exhibit Features of Natural Tooth Buds. J Dent Res 2018; 97:1144-1151. [PMID: 29879370 DOI: 10.1177/0022034518779075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tooth loss is a significant health issue currently affecting millions of people worldwide. Artificial dental implants, the current gold standard tooth replacement therapy, do not exhibit many properties of natural teeth and can be associated with complications leading to implant failure. Here we propose bioengineered tooth buds as a superior alternative tooth replacement therapy. We describe improved methods to create highly cellularized bioengineered tooth bud constructs that formed hallmark features that resemble natural tooth buds such as the dental epithelial stem cell niche, enamel knot signaling centers, transient amplifying cells, and mineralized dental tissue formation. These constructs were composed of postnatal dental cells encapsulated within a hydrogel material that were implanted subcutaneously into immunocompromised rats. To our knowledge, this is the first report describing the use of postnatal dental cells to create bioengineered tooth buds that exhibit evidence of these features of natural tooth development. We propose future bioengineered tooth buds as a promising, clinically relevant tooth replacement therapy.
Collapse
Affiliation(s)
- E E Smith
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Boston, MA, USA
| | - S Angstadt
- 2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - N Monteiro
- 2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - W Zhang
- 2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | - A Khademhosseini
- 3 Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - P C Yelick
- 1 Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Boston, MA, USA.,2 Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Strub M, Keller L, Idoux-Gillet Y, Lesot H, Clauss F, Benkirane-Jessel N, Kuchler-Bopp S. Bone Marrow Stromal Cells Promote Innervation of Bioengineered Teeth. J Dent Res 2018; 97:1152-1159. [PMID: 29879365 DOI: 10.1177/0022034518779077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMDCs) into a denervated side of the spinal cord was reported to be a useful option for axonal regeneration. The innervation of teeth is essential for their function and protection but does not occur spontaneously after injury. Cultured reassociations between dissociated embryonic dental mesenchymal and epithelial cells and implantation lead to a vascularized tooth organ regeneration. However, when reassociations were coimplanted with a trigeminal ganglion (TG), innervation did not occur. On the other hand, reassociations between mixed embryonic dental mesenchymal cells and bone marrow-derived cells isolated from green fluorescent protein (GFP) transgenic mice (BMDCs-GFP) (50/50) with an intact and competent dental epithelium (ED14) were innervated. In the present study, we verified the stemness of isolated BMDCs, confirmed their potential role in the innervation of bioengineered teeth, and analyzed the mechanisms by which this innervation can occur. For that purpose, reassociations between mixed embryonic dental mesenchymal cells and BMDCs-GFP with an intact and competent dental epithelium were cultured and coimplanted subcutaneously with a TG for 2 wk in ICR mice. Axons entered the dental pulp and reached the odontoblast layer. BMDCs-GFP were detected at the base of the tooth, with some being present in the pulp associated with the axons. Thus, while having a very limited contribution in tooth formation, they promoted the innervation of the bioengineered teeth. Using quantitative reverse transcription polymerase chain reaction and immunostainings, BMDCs were shown to promote innervation by 2 mechanisms: 1) via immunomodulation by reducing the number of T lymphocytes (CD3+, CD25+) in the implants and 2) by expressing neurotrophic factors such as NGF, BDNF, and NT3 for axonal growth. This strategy using autologous mesenchymal cells coming from bone marrow could be used to innervate bioengineered teeth without treatment with an immunosuppressor such as cyclosporine A (CsA), thus avoiding multiple side effects.
Collapse
Affiliation(s)
- M Strub
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France.,3 Hôpitaux Universitaires de Strasbourg (HUS), Department of Pediatric Dentistry, Strasbourg, France
| | - L Keller
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Y Idoux-Gillet
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France
| | - H Lesot
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France
| | - F Clauss
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France.,3 Hôpitaux Universitaires de Strasbourg (HUS), Department of Pediatric Dentistry, Strasbourg, France
| | - N Benkirane-Jessel
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France
| | - S Kuchler-Bopp
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France
| |
Collapse
|
19
|
Batool F, Strub M, Petit C, Bugueno IM, Bornert F, Clauss F, Huck O, Kuchler-Bopp S, Benkirane-Jessel N. Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E337. [PMID: 29772691 PMCID: PMC5977351 DOI: 10.3390/nano8050337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
This review encompasses different pre-clinical bioengineering approaches for periodontal tissues, maxillary jaw bone, and the entire tooth. Moreover, it sheds light on their potential clinical therapeutic applications in the field of regenerative medicine. Herein, the electrospinning method for the synthesis of polycaprolactone (PCL) membranes, that are capable of mimicking the extracellular matrix (ECM), has been described. Furthermore, their functionalization with cyclosporine A (CsA), bone morphogenetic protein-2 (BMP-2), or anti-inflammatory drugs' nanoreservoirs has been demonstrated to induce a localized and targeted action of these molecules after implantation in the maxillary jaw bone. Firstly, periodontal wound healing has been studied in an induced periodontal lesion in mice using an ibuprofen-functionalized PCL membrane. Thereafter, the kinetics of maxillary bone regeneration in a pre-clinical mouse model of surgical bone lesion treated with BMP-2 or BMP-2/Ibuprofen functionalized PCL membranes have been analyzed by histology, immunology, and micro-computed tomography (micro-CT). Furthermore, the achievement of innervation in bioengineered teeth has also been demonstrated after the co-implantation of cultured dental cell reassociations with a trigeminal ganglia (TG) and the cyclosporine A (CsA)-loaded poly(lactic-co-glycolic acid) (PLGA) scaffold in the jaw bone. The prospective clinical applications of these different tissue engineering approaches could be instrumental in the treatment of various periodontal diseases, congenital dental or cranio-facial bone anomalies, and post-surgical complications.
Collapse
Affiliation(s)
- Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Departement of Pediatric Dentistry, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Catherine Petit
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Department of Periodontology, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Department of Oral Surgery, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - François Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Departement of Pediatric Dentistry, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Department of Periodontology, Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France.
- Faculty of Dentistry, University of Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| |
Collapse
|
20
|
Hu X, Lee JW, Zheng X, Zhang J, Lin X, Song Y, Wang B, Hu X, Chang HH, Chen Y, Lin CP, Zhang Y. Efficient induction of functional ameloblasts from human keratinocyte stem cells. Stem Cell Res Ther 2018; 9:126. [PMID: 29720250 PMCID: PMC5930762 DOI: 10.1186/s13287-018-0822-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Background Although adult human tissue-derived epidermal stem cells are capable of differentiating into enamel-secreting ameloblasts and forming teeth with regenerated enamel when recombined with mouse dental mesenchyme that possesses odontogenic potential, the induction rate is relatively low. In addition, whether the regenerated enamel retains a running pattern of prism identical to and acquires mechanical properties comparable with human enamel indeed warrants further study. Methods Cultured human keratinocyte stem cells (hKSCs) were treated with fibroblast growth factor 8 (FGF8) and Sonic hedgehog (SHH) for 18 h or 36 h prior to being recombined with E13.5 mouse dental mesenchyme with implantation of FGF8 and SHH-soaked agarose beads into reconstructed chimeric tooth germs. Recombinant tooth germs were subjected to kidney capsule culture in nude mice. Harvested samples at various time points were processed for histological, immunohistochemical, TUNEL, and western blot analysis. Scanning electronic microscopy and a nanoindentation test were further employed to analyze the prism running pattern and mechanical properties of the regenerated enamel. Results Treatment of hKSCs with both FGF8 and SHH prior to tissue recombination greatly enhanced the rate of tooth-like structure formation to about 70%. FGF8 and SHH dramatically enhanced stemness of cultured hKSCs. Scanning electron microscopic analysis revealed the running pattern of intact prisms of regenerated enamel is similar to that of human enamel. The nanoindentation test indicated that, although much softer than human child and adult mouse enamel, mechanical properties of the regenerated enamel improved as the culture time was extended. Conclusions Application of FGF8 and SHH proteins in cultured hKSCs improves stemness but does not facilitate odontogenic fate of hKSCs, resulting in an enhanced efficiency of ameloblastic differentiation of hKSCs and tooth formation in human–mouse chimeric tooth germs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0822-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuefeng Hu
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou, 350108, China.,Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei, 24301, Taiwan.,Center for Thin Film Technologies and Applications, Ming Chi University of Technology, New Taipei, 24301, Taiwan.,College of Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Junhua Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Xin Lin
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Yingnan Song
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Bingmei Wang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China
| | - Hao-Hueng Chang
- School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048, Taiwan
| | - Yiping Chen
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou, 350108, China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National Taiwan University Hospital, Taipei, 10048, Taiwan.
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou, 350108, China. .,Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108, China.
| |
Collapse
|
21
|
Kuchler-Bopp S, Bagnard D, Van-Der-Heyden M, Idoux-Gillet Y, Strub M, Gegout H, Lesot H, Benkirane-Jessel N, Keller L. Semaphorin 3A receptor inhibitor as a novel therapeutic to promote innervation of bioengineered teeth. J Tissue Eng Regen Med 2018; 12:e2151-e2161. [PMID: 29430872 DOI: 10.1002/term.2648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
The sensory innervation of the dental pulp is essential for tooth function and protection. It is mediated by axons originating from the trigeminal ganglia and is spatio-temporally regulated. We have previously shown that the innervation of bioengineered teeth can be achieved only under immunosuppressive conditions. The aim of this study was to develop a model to determine the role of Semaphorin 3A (Sema3A) in the innervation of bioengineered teeth. We first analysed innervation of the dental pulp of mandibular first molars in newborn (postnatal day 0: PN0) mice deficient for Sema3A (Sema3A-/- ), a strong inhibitor of axon growth. While at PN0, axons detected by immunostaining for peripherin and NF200 were restricted to the peridental mesenchyme in Sema3A+/+ mice, they entered the dental pulp in Sema3A-/- mice. Then, we have implanted cultured teeth obtained from embryonic day-14 (E14) molar germs of Sema3A-/- mice together with trigeminal ganglia. The dental pulps of E14 cultured and implanted Sema3A-/- teeth were innervated, whereas the axons did not enter the pulp of E14 Sema3A+/+ cultured and implanted teeth. A "Membrane Targeting Peptide NRP1," suppressing the inhibitory effect of Sema3A, has been previously identified. The injection of this peptide at the site of implantation allowed the innervation of the dental pulp of bioengineered teeth obtained from E14 dental dissociated mesenchymal and epithelial cells reassociations of ICR mice. In conclusion, these data show that inhibition of only one axon repellent molecule, Sema3A, allows for pulp innervation of bioengineered teeth.
Collapse
Affiliation(s)
- Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg
| | - Dominique Bagnard
- INSERM, UMR 1119-Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, Strasbourg, France
| | - Michael Van-Der-Heyden
- INSERM, UMR 1119-Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France.,Hôpitaux universitaires de Strasbourg (HUS), Département de Pédodontie, 1 place de l'Hôpital, 67000, Strasbourg
| | - Hervé Gegout
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| | - Hervé Lesot
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000, Strasbourg.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Ste Elisabeth, 67000, Strasbourg, France
| |
Collapse
|
22
|
Smith EE, Zhang W, Schiele NR, Khademhosseini A, Kuo CK, Yelick PC. Developing a biomimetic tooth bud model. J Tissue Eng Regen Med 2017; 11:3326-3336. [PMID: 28066993 PMCID: PMC6687074 DOI: 10.1002/term.2246] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/11/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
Abstract
A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elizabeth E. Smith
- Department of Cell, Molecular, and Developmental Biology,
Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine
Boston USA
| | - Weibo Zhang
- Department of Orthodontics Tufts University School of
Dental Medicine Boston MA USA
| | - Nathan R. Schiele
- Department of Biomedical Engineering Tufts University
Science and Technology Center Medford MA USA
| | - Ali Khademhosseini
- Division of Health Sciences and Technology Harvard-MIT
Biomaterials Innovations Research Center and Division of Biomedical Engineering,
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine K. Kuo
- Center for Musculoskeletal Research Genetics, Department of
Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Pamela C. Yelick
- Department of Cell, Molecular, and Developmental Biology,
Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine
Boston USA
- Department of Orthodontics Tufts University School of
Dental Medicine Boston MA USA
- Department of Biomedical Engineering Tufts University
Science and Technology Center Medford MA USA
| |
Collapse
|
23
|
Merametdjian L, Beck-Cormier S, Bon N, Couasnay G, Sourice S, Guicheux J, Gaucher C, Beck L. Expression of Phosphate Transporters during Dental Mineralization. J Dent Res 2017; 97:209-217. [PMID: 28892649 DOI: 10.1177/0022034517729811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The importance of phosphate (Pi) as an essential component of hydroxyapatite crystals suggests a key role for membrane proteins controlling Pi uptake during mineralization in the tooth. To clarify the involvement of the currently known Pi transporters (Slc17a1, Slc34a1, Slc34a2, Slc34a3, Slc20a1, Slc20a2, and Xpr1) during tooth development and mineralization, we determined their spatiotemporal expression in murine tooth germs from embryonic day 14.5 to postnatal day 15 and in human dental samples from Nolla stages 6 to 9. Using real-time polymerase chain reaction, in situ hybridization, immunohistochemistry, and X-gal staining, we showed that the expression of Slc17a1, Slc34a1, and Slc34a3 in tooth germs from C57BL/6 mice were very low. In contrast, Slc34a2, Slc20a1, Slc20a2, and Xpr1 were highly expressed, mostly during the postnatal stages. The expression of Slc20a2 was 2- to 10-fold higher than the other transporters. Comparable results were obtained in human tooth germs. In mice, Slc34a2 and Slc20a1 were predominantly expressed in ameloblasts but not odontoblasts, while Slc20a2 was detected neither in ameloblasts nor in odontoblasts. Rather, Slc20a2 was highly expressed in the stratum intermedium and the subodontoblastic cell layer. Although Slc20a2 knockout mice did not show enamel defects, mutant mice showed a disrupted dentin mineralization, displaying unmerged calcospherites at the mineralization front. This latter phenotypical finding raises the possibility that Slc20a2 may play an indirect role in regulating the extracellular Pi availability for mineralizing cells rather than a direct role in mediating Pi transport through mineralizing plasma cell membranes. By documenting the spatiotemporal expression of Pi transporters in the tooth, our data support the possibility that the currently known Pi transporters may be dispensable for the initiation of dental mineralization and may rather be involved later during the tooth mineralization scheme.
Collapse
Affiliation(s)
- L Merametdjian
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France.,3 CHU Nantes, PHU 4 OTONN, Nantes, France
| | - S Beck-Cormier
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - N Bon
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - G Couasnay
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - S Sourice
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| | - J Guicheux
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France.,3 CHU Nantes, PHU 4 OTONN, Nantes, France
| | - C Gaucher
- 4 Dental School, University Paris Descartes, PRES Sorbonne Paris Cité, Montrouge, France.,5 AP-HP, Odontology Department, Hôpital Albert Chenevier, GHHM, Créteil, France
| | - L Beck
- 1 INSERM, U1229, RMeS, Nantes, France.,2 Université de Nantes, UMR_S1229, UFR Odontologie, Nantes, France
| |
Collapse
|
24
|
An SY, Lee YJ, Neupane S, Jun JH, Kim JY, Lee Y, Choi KS, An CH, Suh JY, Shin HI, Sohn WJ, Kim JY. Effects of vascular formation during alveolar bone process morphogenesis in mice. Histochem Cell Biol 2017; 148:435-443. [DOI: 10.1007/s00418-017-1584-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 01/02/2023]
|
25
|
Krivanek J, Adameyko I, Fried K. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth. Front Physiol 2017. [PMID: 28638345 PMCID: PMC5461273 DOI: 10.3389/fphys.2017.00376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.
Collapse
Affiliation(s)
- Jan Krivanek
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria.,Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
26
|
Khayat A, Monteiro N, Smith EE, Pagni S, Zhang W, Khademhosseini A, Yelick PC. GelMA-Encapsulated hDPSCs and HUVECs for Dental Pulp Regeneration. J Dent Res 2016; 96:192-199. [PMID: 28106508 DOI: 10.1177/0022034516682005] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulpal revascularization is commonly used in the dental clinic to obtain apical closure of immature permanent teeth with thin dentinal walls. Although sometimes successful, stimulating bleeding from the periapical area of the tooth can be challenging and in turn may deleteriously affect tooth root maturation. Our objective here was to define reliable methods to regenerate pulp-like tissues in tooth root segments (RSs). G1 RSs were injected with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) encapsulated in 5% gelatin methacrylate (GelMA) hydrogel. G2 RSs injected with acellular GelMA alone, and G3 empty RSs were used as controls. White mineral trioxide aggregate was used to seal one end of the tooth root segment, while the other was left open. Samples were cultured in vitro in osteogenic media (OM) for 13 d and then implanted subcutaneously in nude rats for 4 and 8 wk. At least 5 sample replicates were used for each experimental group. Analyses of harvested samples found that robust pulp-like tissues formed in G1, GelMA encapsulated hDPSC/HUVEC-filled RSs, and less cellularized host cell-derived pulp-like tissue was observed in the G2 acellular GelMA and G3 empty RS groups. Of importance, only the G1, hDPSC/HUVEC-encapsulated GelMA constructs formed pulp cells that attached to the inner dentin surface of the RS and infiltrated into the dentin tubules. Immunofluorescent (IF) histochemical analysis showed that GelMA supported hDPSC/HUVEC cell attachment and proliferation and also provided attachment for infiltrating host cells. Human cell-seeded GelMA hydrogels promoted the establishment of well-organized neovasculature formation. In contrast, acellular GelMA and empty RS constructs supported the formation of less organized host-derived vasculature formation. Together, these results identify GelMA hydrogel combined with hDPSC/HUVECs as a promising new clinically relevant pulpal revascularization treatment to regenerate human dental pulp tissues.
Collapse
Affiliation(s)
- A Khayat
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | - N Monteiro
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | - E E Smith
- 1 Tufts University School of Dental Medicine, Boston, MA, USA.,2 Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - S Pagni
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | - W Zhang
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | | | - P C Yelick
- 1 Tufts University School of Dental Medicine, Boston, MA, USA.,2 Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Yang L, Angelova Volponi A, Pang Y, Sharpe P. Mesenchymal Cell Community Effect in Whole Tooth Bioengineering. J Dent Res 2016; 96:186-191. [DOI: 10.1177/0022034516682001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In vitro expanded cell populations can contribute to bioengineered tooth formation but only as cells that respond to tooth-inductive signals. Since the success of whole tooth bioengineering is predicated on the availability of large numbers of cells, in vitro cell expansion of tooth-inducing cell populations is an essential requirement for further development of this approach. We set out to investigate if the failure of cultured mesenchyme cells to form bioengineered teeth might be rescued by the presence of uncultured cells. To test this, we deployed a cell-mixing approach to evaluate the contributions of cell populations to bioengineered tooth formation. Using genetically labeled cells, we are able to identify the formation of tooth pulp cells and odontoblasts in bioengineered teeth. We show that although cultured embryonic dental mesenchyme cells are unable to induce tooth formation, they can contribute to tooth induction and formation if combined with noncultured cells. Moreover, we show that teeth can form from cell mixtures that include embryonic cells and populations of postnatal dental pulp cells; however, these cells are unable to contribute to the formation of pulp cells or odontoblasts, and at ratios of 1:1, they inhibit tooth formation. These results indicate that although in vitro cell expansion of embryonic tooth mesenchymal cells renders them unable to induce tooth formation, they do not lose their ability to contribute to tooth formation and differentiate into odontoblasts. Postnatal pulp cells, however, lose all tooth-inducing and tooth-forming capacity following in vitro expansion, and at ratios >1:3 postnatal:embryonic cells, they inhibit the ability of embryonic dental mesenchyme cells to induce tooth formation.
Collapse
Affiliation(s)
- L. Yang
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King’s College London, London, UK
| | - A. Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King’s College London, London, UK
| | - Y. Pang
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King’s College London, London, UK
| | - P.T. Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King’s College London, London, UK
| |
Collapse
|
28
|
Rombouts C, Giraud T, Jeanneau C, About I. Pulp Vascularization during Tooth Development, Regeneration, and Therapy. J Dent Res 2016; 96:137-144. [PMID: 28106505 DOI: 10.1177/0022034516671688] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pulp is a highly vascularized tissue situated in an inextensible environment surrounded by rigid dentin walls, with the apical foramina being the only access. The pulp vascular system is not only responsible for nutrient supply and waste removal but also contributes actively to the pulp inflammatory response and subsequent regeneration. This review discusses the underlying mechanisms of pulp vascularization during tooth development, regeneration, and therapeutic procedures, such as tissue engineering and tooth transplantation. Whereas the pulp vascular system is established by vasculogenesis during embryonic development, sprouting angiogenesis is the predominant process during regeneration and therapeutic processes. Hypoxia can be considered a common driving force. Dental pulp cells under hypoxic stress release proangiogenic factors, with vascular endothelial growth factor being one of the most potent. The benefit of exogenous vascular endothelial growth factor application in tissue engineering has been well demonstrated. Interestingly, dental pulp stem cells have an important role in pulp revascularization. Indeed, recent studies show that dental pulp stem cell secretome possesses angiogenic potential that actively contributes to the angiogenic process by guiding endothelial cells and even by differentiating themselves into the endothelial lineage. Although considerable insight has been obtained in the processes underlying pulp vascularization, many questions remain relating to the signaling pathways, timing, and influence of various stress conditions.
Collapse
Affiliation(s)
- C Rombouts
- 1 Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - T Giraud
- 1 Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.,2 Service d'Odontologie, Hôpital Timone, APHM, Marseille, France
| | - C Jeanneau
- 1 Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - I About
- 1 Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| |
Collapse
|
29
|
Smith EE, Yelick PC. Progress in Bioengineered Whole Tooth Research: From Bench to Dental Patient Chair. ACTA ACUST UNITED AC 2016; 3:302-308. [PMID: 28255531 DOI: 10.1007/s40496-016-0110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tooth loss is a significant health issue that affects the physiological and social aspects of everyday life. Missing teeth impair simple tasks of chewing and speaking, and can also contribute to reduced self-confidence. An emerging and exciting area of regenerative medicine based dental research focuses on the formation of bioengineered whole tooth replacement therapies that can provide both the function and sensory responsiveness of natural teeth. This area of research aims to enhance the quality of dental and oral health for those suffering from tooth loss. Current approaches use a combination of dental progenitor cells, scaffolds and growth factors to create biologically based replacement teeth to serve as improved alternatives to currently used artificial dental prosthetics. This article is an overview of current progress, challenges, and future clinical applications of bioengineered whole teeth.
Collapse
Affiliation(s)
- Elizabeth E Smith
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School Medicine, Department of Orthodontics, Tufts University School of Dental Medicine
| | - Pamela C Yelick
- Director, Division of Craniofacial and Molecular Genetics, Professor, Department of Orthodontics, Tufts University School of Dental Medicine, Department of Biomedical Engineering, Tufts University, Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences Tufts University School of Medicine, 136 Harrison Avenue, M824, Boston MA 02111
| |
Collapse
|
30
|
Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry. Stem Cells Int 2016; 2016:7231038. [PMID: 27648076 PMCID: PMC5018320 DOI: 10.1155/2016/7231038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.
Collapse
|
31
|
Jamal HA. Tooth Organ Bioengineering: Cell Sources and Innovative Approaches. Dent J (Basel) 2016; 4:dj4020018. [PMID: 29563460 PMCID: PMC5851265 DOI: 10.3390/dj4020018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Various treatment approaches for restoring missing teeth are being utilized nowadays by using artificial dental crowns/bridges or the use of dental implants. All aforementioned restorative modalities are considered to be the conventional way of treating such cases. Although these artificial therapies are commonly used for tooth loss rehabilitation, they are still less conservative, show less biocompatibility and fail to restore the natural biological and physiological function. Adding to that, they are considered to be costly due to the risk of failure and they also require regular maintenance. Regenerative dentistry is currently considered a novel therapeutic concept with high potential for a complete recovery of the natural function and esthetics of teeth. Biological-cell based dental therapies would involve replacement of teeth by using stem cells that will ultimately grow a bioengineered tooth, thereby restoring both the biological and physiological functions of the natural tooth, and are considered to be the ultimate goal in regenerative dentistry. In this review, various stem cell-based therapeutic approaches for tooth organ bioengineering will be discussed.
Collapse
Affiliation(s)
- Hasan A Jamal
- Independent Researcher, Ibrahim Al- Jaffali, Awali, Mecca 21955, Saudi Arabia.
| |
Collapse
|
32
|
Kuchler-Bopp S, Bécavin T, Kökten T, Weickert JL, Keller L, Lesot H, Deveaux E, Benkirane-Jessel N. Three-dimensional Micro-culture System for Tooth Tissue Engineering. J Dent Res 2016; 95:657-64. [PMID: 26965424 DOI: 10.1177/0022034516634334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The arrangement of cells within a tissue plays an essential role in organogenesis, including tooth development. Progress is being made to regenerate teeth by reassociating dissociated embryonic dental cells and implanting them in vivo. In the present study, we tested the hanging drop method to study mixed epithelial-mesenchymal cell reorganization in a liquid instead of semisolid medium to see whether it could lead to tooth histogenesis and organogenesis. This method allowed the control of the proportion and number of cells to be used, and the forming microtissues showed homogeneous size. The liquid environment favored cell migrations as compared with collagen gels. Three protocols were compared. The one that sequentially combined the hanging drop and semisolid medium cultures prior to in vivo implantation gave the best results. Indeed, after implantation, teeth developed, showing a well-formed crown, mineralization of dentin and enamel, and the initiation of root formation. Vascularization and the cellular heterogeneity in the mesenchyme were similar to what was observed in developing molars. Finally, after coimplantation with a trigeminal ganglion, the dental mesenchyme, including the odontoblast layer, became innervated. The real advantage of this technique is the small number of cells required to make a tooth. This experimental model can be employed to study the development, physiology, metabolism, or toxicology in forming teeth and test other cell sources.
Collapse
Affiliation(s)
- S Kuchler-Bopp
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - T Bécavin
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, Université de Lille, Lille, France
| | - T Kökten
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France INSERM U954-NEGRE (Nutrition-Génétique et Exposition aux risques environnementaux), Université de Lorraine, Vandoeuvre-les-Nancy, France
| | - J L Weickert
- Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM Unité U 964, CNRS UMR 1704, UDS, Illkirch, France
| | - L Keller
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - H Lesot
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| | - E Deveaux
- Faculté de Chirurgie Dentaire, Université de Lille, Lille, France
| | - N Benkirane-Jessel
- INSERM, Unité Mixte de Recherche UMR 1109, Team "Osteoarticular and Dental Regenerative NanoMedicine," Fédération de Médecine Translationnelle de Strasbourg, UDS, Strasbourg, France Faculté de Chirurgie Dentaire, UDS, Strasbourg, France
| |
Collapse
|
33
|
QIN H, YANG Z, LI L, YANG X, LIU J, CHEN X, YU X. A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: Strontium-doped calcium polyphosphate. Dent Mater J 2016; 35:241-9. [PMID: 27041014 DOI: 10.4012/dmj.2015-272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huanhuan QIN
- College of Polymer Science and Engineering, Sichuan University
| | - Zhouyuan YANG
- Department of Orthopaedics, West China Hospital ,Sichuan University
| | - Li LI
- Department of Oncology, the 452 Hospital of Chinese PLA
| | - Xu YANG
- College of Polymer Science and Engineering, Sichuan University
| | - Jingwang LIU
- College of Polymer Science and Engineering, Sichuan University
| | - Xi CHEN
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy
| | - Xixun YU
- College of Polymer Science and Engineering, Sichuan University
| |
Collapse
|
34
|
Khaddam M, Huet E, Vallée B, Bensidhoum M, Le Denmat D, Filatova A, Jimenez-Rojo L, Ribes S, Lorenz G, Morawietz M, Rochefort GY, Kiesow A, Mitsiadis TA, Poliard A, Petzold M, Gabison EE, Menashi S, Chaussain C. EMMPRIN/CD147 deficiency disturbs ameloblast-odontoblast cross-talk and delays enamel mineralization. Bone 2014; 66:256-66. [PMID: 24970041 DOI: 10.1016/j.bone.2014.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition.
Collapse
Affiliation(s)
- Mayssam Khaddam
- EA 2496, Pathologies, Imaging, and Biotherapies of the Tooth, Dental School Université Paris Descartes Sorbonne Paris Cité, France
| | - Eric Huet
- Laboratoire CRRET, Université Paris-Est, CNRS, Créteil, France
| | - Benoît Vallée
- Laboratoire CRRET, Université Paris-Est, CNRS, Créteil, France
| | - Morad Bensidhoum
- Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaire UMR CNRS 7052, Faculté de médecine Lariboisière St. Louis Université Paris 7 Sorbonne Paris Cité, France
| | - Dominique Le Denmat
- EA 2496, Pathologies, Imaging, and Biotherapies of the Tooth, Dental School Université Paris Descartes Sorbonne Paris Cité, France
| | - Anna Filatova
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zurich, Switzerland
| | - Lucia Jimenez-Rojo
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zurich, Switzerland
| | - Sandy Ribes
- EA 2496, Pathologies, Imaging, and Biotherapies of the Tooth, Dental School Université Paris Descartes Sorbonne Paris Cité, France
| | - Georg Lorenz
- Fraunhofer Institute for Mechanics of Materials IWM, Walter-Hülse-Str. Halle, Saale, Germany
| | - Maria Morawietz
- Fraunhofer Institute for Mechanics of Materials IWM, Walter-Hülse-Str. Halle, Saale, Germany
| | - Gael Y Rochefort
- EA 2496, Pathologies, Imaging, and Biotherapies of the Tooth, Dental School Université Paris Descartes Sorbonne Paris Cité, France
| | - Andreas Kiesow
- Fraunhofer Institute for Mechanics of Materials IWM, Walter-Hülse-Str. Halle, Saale, Germany
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zurich, Switzerland
| | - Anne Poliard
- EA 2496, Pathologies, Imaging, and Biotherapies of the Tooth, Dental School Université Paris Descartes Sorbonne Paris Cité, France
| | - Matthias Petzold
- Fraunhofer Institute for Mechanics of Materials IWM, Walter-Hülse-Str. Halle, Saale, Germany
| | - Eric E Gabison
- Fondation ophtalmologique A de Rothschild, Université Paris Diderot, PRES Sorbonne Paris Cité, France
| | - Suzanne Menashi
- Laboratoire CRRET, Université Paris-Est, CNRS, Créteil, France
| | - Catherine Chaussain
- EA 2496, Pathologies, Imaging, and Biotherapies of the Tooth, Dental School Université Paris Descartes Sorbonne Paris Cité, France; AP-HP, Odontology Department, Groupement Hospitalier Nord Val de Seine (Bretonneau), France
| |
Collapse
|
35
|
Zhang Y, Chen Y. Bioengineering of a human whole tooth: progress and challenge. ACTA ACUST UNITED AC 2014; 3:8. [PMID: 25408887 PMCID: PMC4230350 DOI: 10.1186/2045-9769-3-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 04/25/2014] [Indexed: 12/03/2022]
Abstract
A major challenge in stem cell-based bioengineering of an implantable human tooth is to identify appropriate sources of postnatal stem cells that are odontogenic competent as the epithelial component due to the lack of enamel epithelial cells in adult teeth. In a recent issue (2013, 2:6) of Cell Regeneration, Cai and colleagues reported that epithelial sheets derived from human induced pluripotent stem cells (iPSCs) can functionally substitute for tooth germ epithelium to regenerate tooth-like structures, providing an appealing stem cell source for future human tooth regeneration.
Collapse
Affiliation(s)
- Yanding Zhang
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province P.R. China
| | - YiPing Chen
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province P.R. China ; Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118 USA
| |
Collapse
|
36
|
Eap S, Bécavin T, Keller L, Kökten T, Fioretti F, Weickert JL, Deveaux E, Benkirane-Jessel N, Kuchler-Bopp S. Nanofibers implant functionalized by neural growth factor as a strategy to innervate a bioengineered tooth. Adv Healthc Mater 2014; 3:386-91. [PMID: 24124118 DOI: 10.1002/adhm.201300281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 11/08/2022]
Abstract
Current strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes and also reduce patient suffering. A unique nanofibrous and active implant for bone-tooth unit regeneration and also the innervation of this bioengineered tooth are demonstrated. A nanofibrous polycaprolactone membrane is functionalized with neural growth factor, along with dental germ, and tooth innervation follows. Such innervation allows complete functionality and tissue homeostasis of the tooth, such as dentinal sensitivity, odontoblast function, masticatory forces, and blood flow.
Collapse
Affiliation(s)
- Sandy Eap
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine; 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire; 1 place de l'Hôpital 67000 Strasbourg France
| | - Thibault Bécavin
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine; 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire; 1 place de l'Hôpital 67000 Strasbourg France
- Université Lille Nord de France Faculté de Chirurgie Dentaire INSERM UMR 1008 “Controlled Drug Delivery Systems and Biomaterials”; 59006 Lille France
| | - Laetitia Keller
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine; 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire; 1 place de l'Hôpital 67000 Strasbourg France
| | - Tunay Kökten
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine; 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire; 1 place de l'Hôpital 67000 Strasbourg France
| | - Florence Fioretti
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine; 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire; 1 place de l'Hôpital 67000 Strasbourg France
| | - Jean-Luc Weickert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Service de Microscopie Electronique; 1 rue 67404 Illkirch CEDEX France
| | - Etienne Deveaux
- Université Lille Nord de France Faculté de Chirurgie Dentaire INSERM UMR 1008 “Controlled Drug Delivery Systems and Biomaterials”; 59006 Lille France
| | - Nadia Benkirane-Jessel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine; 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire; 1 place de l'Hôpital 67000 Strasbourg France
| | - Sabine Kuchler-Bopp
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine; 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire; 1 place de l'Hôpital 67000 Strasbourg France
| |
Collapse
|
37
|
Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 2014; 20:1342-51. [PMID: 24295512 DOI: 10.1089/ten.tea.2013.0386] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tooth-supporting periodontium forms a complex with multiple tissues, including cementum, periodontal ligament (PDL), and alveolar bone. In this study, we developed multiphase region-specific microscaffolds with spatiotemporal delivery of bioactive cues for integrated periodontium regeneration. Polycarprolactione-hydroxylapatite (90:10 wt%) scaffolds were fabricated using three-dimensional printing seamlessly in three phases: 100-μm microchannels in Phase A designed for cementum/dentin interface, 600-μm microchannels in Phase B designed for the PDL, and 300-μm microchannels in Phase C designed for alveolar bone. Recombinant human amelogenin, connective tissue growth factor, and bone morphogenetic protein-2 were spatially delivered and time-released in Phases A, B, and C, respectively. Upon 4-week in vitro incubation separately with dental pulp stem/progenitor cells (DPSCs), PDL stem/progenitor cells (PDLSCs), or alveolar bone stem/progenitor cells (ABSCs), distinctive tissue phenotypes were formed with collagen I-rich fibers especially by PDLSCs and mineralized tissues by DPSCs, PDLSCs, and ABSCs. DPSC-seeded multiphase scaffolds upon in vivo implantation yielded aligned PDL-like collagen fibers that inserted into bone sialoprotein-positive bone-like tissue and putative cementum matrix protein 1-positive/dentin sialophosphoprotein-positive dentin/cementum tissues. These findings illustrate a strategy for the regeneration of multiphase periodontal tissues by spatiotemporal delivery of multiple proteins. A single stem/progenitor cell population appears to differentiate into putative dentin/cementum, PDL, and alveolar bone complex by scaffold's biophysical properties and spatially released bioactive cues.
Collapse
Affiliation(s)
- Chang H Lee
- Center for Craniofacial Regeneration (CCR), Columbia University Medical Center , New York, New York
| | | | | | | | | | | |
Collapse
|
38
|
Lesot H, Hovorakova M, Peterka M, Peterkova R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust Dent J 2014; 59 Suppl 1:81-100. [DOI: 10.1111/adj.12132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H Lesot
- Institut National de la Santé et de la Recherche Médicale; UMR 1109, Team ‘Osteoarticular and Dental Regenerative NanoMedicine’; Strasbourg France
- Université de Strasbourg; Faculté de Chirurgie Dentaire; Strasbourg France
| | - M Hovorakova
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - M Peterka
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - R Peterkova
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
39
|
Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Aust Dent J 2014; 59 Suppl 1:55-80. [PMID: 24495023 PMCID: PMC4199315 DOI: 10.1111/adj.12130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration.
Collapse
Affiliation(s)
- R Peterkova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
40
|
Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, Harada H. Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 2014; 5:36. [PMID: 24550845 PMCID: PMC3912331 DOI: 10.3389/fphys.2014.00036] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/17/2014] [Indexed: 12/13/2022] Open
Abstract
Stem cells are capable of renewing themselves through cell division and have the remarkable ability to differentiate into many different types of cells. They therefore have the potential to become a central tool in regenerative medicine. During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth. Investigation of embryonic and adult (tissue) stem cells as potential cell sources for tooth regeneration has led to many promising results. However, technical and ethical issues have hindered the availability of these cells for clinical application. The recent discovery of induced pluripotent stem (iPS) cells has provided the possibility to revolutionize the field of regenerative medicine (dentistry) by offering the option of autologous transplantation. In this article, we review the current progress in the field of stem cell-based tooth regeneration and discuss the possibility of using iPS cells for this purpose.
Collapse
Affiliation(s)
- Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Japan
| | - Naoki Fujiwara
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Japan
| | - Kazuko Kikuchi
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Japan ; Division of Special Care Dentistry, Department of Developmental Oral Health Science, Iwate Medical University Morioka, Japan
| | - Laetitia Keller
- INSERM UMR 1109, team "Osteoarticular and Dental Regenerative NanoMedicine", Faculté de Médecine, Université de Strasbourg Strasbourg, France
| | - Hervé Lesot
- INSERM UMR 1109, team "Osteoarticular and Dental Regenerative NanoMedicine", Faculté de Médecine, Université de Strasbourg Strasbourg, France ; Faculté de Chirurgie dentaire, Université de Strasbourg Strasbourg, France
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Japan
| |
Collapse
|
41
|
Yuan G, Zhang L, Yang G, Yang J, Wan C, Zhang L, Song G, Chen S, Chen Z. The distribution and ultrastructure of the forming blood capillaries and the effect of apoptosis on vascularization in mouse embryonic molar mesenchyme. Cell Tissue Res 2014; 356:137-45. [PMID: 24477797 DOI: 10.1007/s00441-013-1785-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
Vascularization is essential for organ and tissue development. Teeth develop through interactions between epithelium and mesenchyme. The developing capillaries in the enamel organ, the dental epithelial structure, occur simultaneously by mechanisms of vasculogenesis and angiogenesis at the onset of dentinogenesis. The vascular neoformation in the dental mesenchyme has been reported to start from the cap stage. However, the mechanisms of vascularization in the dental mesenchyme remain unknown. In the hope of understanding the mechanisms of the formation of dental mesenchymal vasculature, mouse lower molar germs from embryonic day (E) 13.5 to E16.5 were processed for immunostaining of CD31 and CD34, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and transmission electron microscopy (TEM). In addition, the role of apoptosis for the vascularization in dental mesenchyme was examined by in vitro culture of E14.0 lower molars in the presence of the apoptosis inhibitor (z-VAD-fmk) and a subsequent subrenal culture. Our results showed that CD31- and CD34-positive cells progressively entered the central part of the dental papilla from the peridental mesenchyme. For TEM, angioblasts, young capillaries with thick endothelium and endothelial cells containing vacuoles were observed in peripheral dental mesenchyme, suggesting vasculogenesis was taking place. The presence of lateral sprouting, cytoplasmic filopodia and transluminal bridges in the dental papilla suggested angiogenesis was also occurring. Inhibition of apoptosis delayed the angiogenic vascularization of the dental papilla. Therefore, these data demonstrated that molar mesenchyme is progressively vascularized by mechanisms of both vasculogenesis and angiogenesis and apoptosis partially contributes to the vascularization of the dental papilla.
Collapse
Affiliation(s)
- Guohua Yuan
- Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China, 430079
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kökten T, Bécavin T, Keller L, Weickert JL, Kuchler-Bopp S, Lesot H. Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One 2014; 9:e86011. [PMID: 24465840 PMCID: PMC3899083 DOI: 10.1371/journal.pone.0086011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/04/2013] [Indexed: 01/24/2023] Open
Abstract
The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme.
Collapse
Affiliation(s)
- Tunay Kökten
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Thibault Bécavin
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Laetitia Keller
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Weickert
- Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM Unité (U)964, Centre National de la Recherche Scientifique (CNRS) UMR1704, Université de Strasbourg, Illkirch, France
| | - Sabine Kuchler-Bopp
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hervé Lesot
- Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1109, team “Osteoarticular and Dental Regenerative NanoMedicine”, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
43
|
Crucke J, Huysseune A. Unravelling the blood supply to the zebrafish pharyngeal jaws and teeth. J Anat 2013; 223:399-409. [PMID: 23937397 DOI: 10.1111/joa.12096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 01/02/2023] Open
Abstract
We describe the vascular supply to the pharyngeal jaws and teeth in zebrafish, from larval stages to juveniles, using serial high quality semithin sections and 3D reconstructions. We have identified that the arterial blood supply to the last pair of branchial arches, which carries the teeth, issues from the hypobranchial artery. Surprisingly, the arteries supplying the pharyngeal jaws show an asymmetric branching pattern that is modified over ontogeny. Moreover, the blood vessel pattern that serves each jaw can best be described as a sinusoidal cavity encircling the bases of both the functional and replacement teeth. Capillaries branching from this sinusoidal cavity enter the pulp and constitute the intrinsic blood supply to the attached teeth. The role of these blood vessels during tooth development (whether instructive or nutritive) remains to be determined and requires further study. However, we have provided a firm morphological basis that will aid in the interpretation of experiments addressing this question.
Collapse
Affiliation(s)
- Jeroen Crucke
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
44
|
Nasu M, Nakahara T, Tominaga N, Tamaki Y, Ide Y, Tachibana T, Ishikawa H. Isolation and characterization of vascular endothelial cells derived from fetal tooth buds of miniature swine. In Vitro Cell Dev Biol Anim 2013; 49:189-95. [DOI: 10.1007/s11626-013-9584-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/25/2013] [Indexed: 12/23/2022]
|
45
|
Kuchler-Bopp S, Bécavin T, Kökten T, Fioretti F, Deveaux E, Benkirane-Jessel N, Keller L. Nanostructured hybrid materials for bone-tooth unit regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojrm.2013.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Rothová M, Peterková R, Tucker AS. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol 2012; 366:244-54. [PMID: 22542602 DOI: 10.1016/j.ydbio.2012.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/01/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022]
Abstract
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.
Collapse
Affiliation(s)
- Michaela Rothová
- Department of Craniofacial Development, King's College London, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, SE1 9RT, London, UK.
| | | | | |
Collapse
|
47
|
Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY, Zhou H, Chen L, Mao JJ. Biomaterial selection for tooth regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 17:373-88. [PMID: 21699433 DOI: 10.1089/ten.teb.2011.0041] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth.
Collapse
Affiliation(s)
- Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
49
|
Matalova E, Svandova E, Tucker AS. Apoptotic signaling in mouse odontogenesis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 16:60-70. [PMID: 22204278 DOI: 10.1089/omi.2011.0039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.
Collapse
Affiliation(s)
- Eva Matalova
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences, Brno, Czech Republic.
| | | | | |
Collapse
|
50
|
Abstract
The currently available options for tooth-loss are prostheses, implants, or surgery (auto-transplantation). They all have their limitations. The emergence of tissue engineering, 15 years ago, was made possible by a better knowledge of the various stages of dental development, and the mastery of stem cell differentiation. It opened a new alternative approach for tooth regeneration. Even if animal experiments have demonstrated that it was possible to obtain a biological tooth from stem cells, two major issues remain to be discussed. Is it possible to use induced pluripotent stem cells instead of embryonic stem cells, which raise an ethical problem? Is it possible to reproduce a dental crown with an adapted shape and colour? Or should we consider the simpler creation of a biological root secondarily covered by a ceramic prosthesis? Our study mentions the main landmarks and the key cells involved in the embryological development of the tooth, establishes a mapping and a list of the various types of stem cells. It details the various methods used to create a biological implant.
Collapse
Affiliation(s)
- H Magloire
- Institut de génomique fonctionnelle de Lyon, « équipe physiopathologie de l'odontoblaste », UMR CNRS 5242, École normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon cedex 08, France.
| | | |
Collapse
|