1
|
Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol 2018; 4:42-66. [PMID: 31294203 PMCID: PMC6605021 DOI: 10.3934/microbiol.2018.1.42] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
The oral microbiome is diverse in its composition due to continuous contact of oral cavity with the external environment. Temperatures, diet, pH, feeding habits are important factors that contribute in the establishment of oral microbiome. Both culture dependent and culture independent approaches have been employed in the analysis of oral microbiome. Gene-based methods like PCR amplification techniques, random amplicon cloning, PCR-RELP, T-RELP, DGGE and DNA microarray analysis have been applied to increase oral microbiome related knowledge. Studies revealed that microbes from the phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, Neisseria, TM7 predominately inhabits the oral cavity. Culture-independent molecular techniques revealed the presence of genera Megasphaera, Parvimonas and Desulfobulbus in periodontal disease. Bacteria, fungi and protozoa colonize themselves on various surfaces in oral cavity. Microbial biofilms are formed on the buccal mucosa, dorsum of the tongue, tooth surfaces and gingival sulcus. Various studies demonstrate relationship between unbalanced microflora and development of diseases like tooth caries, periodontal diseases, type 2 diabetes, circulatory system related diseases etc. Transcriptome-based remodelling of microbial metabolism in health and disease associated states has been well reported. Human diets and habitat can trigger virus activation and influence phage members of oral microbiome. As it is said, "Mouth, is the gateway to the total body wellness, thus oral microbiome influences overall health of an individual".
Collapse
Affiliation(s)
- Neetu Sharma
- Department of Microbiology, GGDSD College, Sector 32 C Chandigarh, India
| | - Sonu Bhatia
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| | | | - Navneet Batra
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| |
Collapse
|
2
|
Antiviral molecules correlate with vitamin D pathway genes and are associated with natural resistance to HIV-1 infection. Microbes Infect 2016; 18:510-6. [PMID: 27083474 DOI: 10.1016/j.micinf.2016.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 11/24/2022]
Abstract
The relationship between the immunomodulatory effects of Vitamin D (VitD) and the expression of anti-HIV-1 molecules has not been explored in HIV-1-exposed seronegative individuals (HESNs). Higher mRNA levels of cathelicidin and HAD-4 in oral-mucosa and peripheral-blood, along with higher CYP24A1 mRNA in vaginal-mucosa and lower TLR2 mRNA in endocervical-mucosa were found in HESNs compared to non-exposed controls. Furthermore, the mRNA of anti-HIV molecules Elafin, TRIM5, Cathelicidin, HAD-4 and RNase7, previously associated with natural resistance to HIV-1 infection, positively correlated with the mRNA expression of VDR in HESNs, suggesting the potential participation of VitD in natural resistance to HIV-1.
Collapse
|
3
|
Moyes DL, Islam A, Kohli A, Naglik JR. Oral epithelial cells and their interactions with HIV-1. Oral Dis 2016; 22 Suppl 1:66-72. [PMID: 26879550 DOI: 10.1111/odi.12410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As the AIDS pandemic has continued, our understanding of the events that occur during the entry and infection of conventional, susceptible cells has increased dramatically, leading to the development of control therapies for HIV-infected individuals. However, an ongoing hole in our understanding is how HIV crosses the mucosal barriers to gain access to permissive cells, despite how important this information would be in developing successful vaccines and other preventative measures such as topical anti-HIV microbicides. In particular, our knowledge of the role that epithelial cells of the mucosal surfaces play in infection - both during early phases and throughout the life of an infected individual, is currently hazy at best. However, several studies in recent years suggest that HIV can bind to and traverse these mucosal epithelial cells, providing a reservoir of infection that can subsequently infect underlying permissive cells. Despite this interaction with epithelial cells, evidence suggests HIV-1 does not productively infect these cells, although they are capable of transferring surface-bound and transcytosed virus to other, permissive cells. Further, there appear to be key differences between adult and infant epithelial cells in the degree to which HIV can transcytose and infect the epithelium. Thus, it is clear that, whilst not primary targets for infection and virus replication, epithelial cells play an important role in the infection cycle and improving our understanding of their interactions with HIV could potentially provide key insights necessary to develop effective preventative therapies.
Collapse
Affiliation(s)
- D L Moyes
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| | - A Islam
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| | - A Kohli
- Public Health England, London, UK
| | - J R Naglik
- Mucosal & Salivary Biology Division, King's College London Dental Institute, King's College London, London, UK
| |
Collapse
|
4
|
High Expression of Antiviral Proteins in Mucosa from Individuals Exhibiting Resistance to Human Immunodeficiency Virus. PLoS One 2015; 10:e0131139. [PMID: 26091527 PMCID: PMC4474690 DOI: 10.1371/journal.pone.0131139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several soluble factors have been reported to have the capacity of inhibiting HIV replication at different steps of the virus life cycle, without eliminating infected cells and through enhancement of specific cellular mechanisms. Yet, it is unclear if these antiviral factors play a role in the protection from HIV infection or in the control of viral replication. Here we evaluated two cohorts: i) one of 58 HIV-exposed seronegative individuals (HESNs) who were compared with 59 healthy controls (HCs), and ii) another of 13 HIV-controllers who were compared with 20 HIV-progressors. Peripheral blood, oral and genital mucosa and gut-associated lymphoid tissue (GALT) samples were obtained to analyze the mRNA expression of ELAFIN, APOBEC3G, SAMHD1, TRIM5α, RNase 7 and SerpinA1 using real-time PCR. RESULTS HESNs exhibited higher expression of all antiviral factors in peripheral blood mononuclear cells (PBMCs), oral or genital mucosa when compared with HCs. Furthermore, HIV-controllers exhibited higher levels of SerpinA1 in GALT. CONCLUSIONS These findings suggest that the activity of these factors is compartmentalized and that these proteins have a predominant role depending on the tissue to avoid the infection, reduce the viral load and modulate the susceptibility to HIV infection.
Collapse
|
5
|
Kohli A, Islam A, Moyes DL, Murciano C, Shen C, Challacombe SJ, Naglik JR. Oral and vaginal epithelial cell lines bind and transfer cell-free infectious HIV-1 to permissive cells but are not productively infected. PLoS One 2014; 9:e98077. [PMID: 24857971 PMCID: PMC4032250 DOI: 10.1371/journal.pone.0098077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 04/26/2014] [Indexed: 11/28/2022] Open
Abstract
The majority of HIV-1 infections worldwide are acquired via mucosal surfaces. However, unlike the vaginal mucosa, the issue of whether the oral mucosa can act as a portal of entry for HIV-1 infection remains controversial. To address potential differences with regard to the fate of HIV-1 after exposure to oral and vaginal epithelium, we utilized two epithelial cell lines representative of buccal (TR146) and pharyngeal (FaDu) sites of the oral cavity and compared them with a cell line derived from vaginal epithelium (A431) in order to determine (i) HIV-1 receptor gene and protein expression, (ii) whether HIV-1 genome integration into epithelial cells occurs, (iii) whether productive viral infection ensues, and (iv) whether infectious virus can be transferred to permissive cells. Using flow cytometry to measure captured virus by HIV-1 gp120 protein detection and western blot to detect HIV-1 p24 gag protein, we demonstrate that buccal, pharyngeal and vaginal epithelial cells capture CXCR4- and CCR5-utilising virus, probably via non-canonical receptors. Both oral and vaginal epithelial cells are able to transfer infectious virus to permissive cells either directly through cell-cell attachment or via transcytosis of HIV-1 across epithelial cells. However, HIV-1 integration, as measured by real-time PCR and presence of early gene mRNA transcripts and de novo protein production were not detected in either epithelial cell type. Importantly, both oral and vaginal epithelial cells were able to support integration and productive infection if HIV-1 entered via the endocytic pathway driven by VSV-G. Our data demonstrate that under normal conditions productive HIV-1 infection of epithelial cells leading to progeny virion production is unlikely, but that epithelial cells can act as mediators of systemic viral dissemination through attachment and transfer of HIV-1 to permissive cells.
Collapse
Affiliation(s)
- Arinder Kohli
- Department of Oral Immunology, Clinical and Diagnostic Sciences, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Ayesha Islam
- Department of Oral Immunology, Clinical and Diagnostic Sciences, King's College London Dental Institute, King's College London, London, United Kingdom; Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - David L Moyes
- Department of Oral Immunology, Clinical and Diagnostic Sciences, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Celia Murciano
- Department of Oral Immunology, Clinical and Diagnostic Sciences, King's College London Dental Institute, King's College London, London, United Kingdom; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Chengguo Shen
- Department of Oral Immunology, Clinical and Diagnostic Sciences, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Stephen J Challacombe
- Department of Oral Immunology, Clinical and Diagnostic Sciences, King's College London Dental Institute, King's College London, London, United Kingdom
| | - Julian R Naglik
- Department of Oral Immunology, Clinical and Diagnostic Sciences, King's College London Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Aguilar-Jiménez W, Zapata W, Caruz A, Rugeles MT. High transcript levels of vitamin D receptor are correlated with higher mRNA expression of human beta defensins and IL-10 in mucosa of HIV-1-exposed seronegative individuals. PLoS One 2013; 8:e82717. [PMID: 24349345 PMCID: PMC3857805 DOI: 10.1371/journal.pone.0082717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/28/2013] [Indexed: 11/21/2022] Open
Abstract
Vitamin D (VitD) is an endogenous immunomodulator that could protect from HIV-1 infection reducing immune activation and inducing the expression of anti-HIV-1 peptides. To establish a correlation between VitD and natural resistance to HIV-1 infection, a case-control study using blood and mucosa samples of 58 HIV-1-exposed but seronegative (HESN) individuals, 43 HIV-1 seropositives (SPs) and 59 non-exposed healthy controls (HCs) was carried out. The VitD concentration in plasma was determined by ELISA, and mRNA relative units (RU) of VDR, IL-10, TGF-β, TNF-α and IL-1β in peripheral blood mononuclear cells (PBMCs), oral and genital mucosa was quantified by qRT-PCR. mRNA levels of human beta-defensin (HBD) -2 and -3 were previously reported and used for correlations. Significantly higher levels of VitD were found in plasma as well as higher mRNA RU of VDR in PBMCs, and in genital mucosa from HESN compared to HCs. In addition, higher mRNA RU of TNF-α, IL-1β and IL-10, and lower mRNA RU of TGF-β were found in PBMC from HESNs compared to HCs. We also observed higher IL-10 mRNA RU in genital mucosa of HESNs compared to HCs, and the mRNA levels of TNF-α in oral and genital mucosa of SPs were higher compared to HESNs. Furthermore, positive correlations between VDR and IL-10 mRNA RU in PBMCs and genital mucosa of HESNs were found. Finally, HBD-2 and HBD-3 mRNA RU were positively correlated with VDR mRNA expression in oral mucosa from HESNs. These results suggest that high levels of VitD and its receptor are associated with natural resistance to HIV-1 infection. Up-regulation of the anti-inflammatory IL-10, and the induction of anti-HIV-1 defensins in mucosa might be part of the mechanisms involved in this association. However, further studies are required to define causal associations.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jiménez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Antonio Caruz
- Unidad de Inmunogenética, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, España
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- * E-mail:
| |
Collapse
|
7
|
Dietrich EA, Gebhard KH, Fasching CE, Giacaman RA, Kappes JC, Ross KF, Herzberg MC. Short communication: HIV type 1 escapes inactivation by saliva via rapid escape into oral epithelial cells. AIDS Res Hum Retroviruses 2012; 28:1574-8. [PMID: 22077822 DOI: 10.1089/aid.2011.0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saliva contains anti-HIV-1 factors, which show unclear efficacy in thwarting mucosal infection. When incubated in fresh, unfractionated whole saliva, infectious HIV-1 IIIb and BaL (X4- and R5-tropic, respectively) persisted from 4 to at least 30 min in a saliva concentration-dependent manner. In salivary supernatant for up to 6 h, both infectious HIV-1 strains "escaped" into immortalized oral epithelial cells; infectious BaL showed selectively enhanced escape in the presence of saliva. Fluorescently labeled HIV-1 virus-like particles entered oral epithelial cells within minutes of exposure. Using a previously unrecognized mechanism, therefore, strains of HIV-1 escape inactivation by saliva via rapid uptake into oral epithelial cells.
Collapse
Affiliation(s)
- Elizabeth A. Dietrich
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Kristin H. Gebhard
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Claudine E. Fasching
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Rodrigo A. Giacaman
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - John C. Kappes
- Departments of Medicine, Microbiology, and Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama 352335
| | - Karen F. Ross
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| | - Mark C. Herzberg
- University of Minnesota School of Dentistry, Minneapolis, Minnesota
- The Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota
| |
Collapse
|
8
|
Borel S, Espert L, Biard-Piechaczyk M. Macroautophagy Regulation during HIV-1 Infection of CD4+ T Cells and Macrophages. Front Immunol 2012; 3:97. [PMID: 22586428 PMCID: PMC3345938 DOI: 10.3389/fimmu.2012.00097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/13/2012] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an intracellular mechanism whereby pathogens, particularly viruses, are destroyed in autolysosomes after their entry into targets cells. Therefore, to survive and replicate in host cells, viruses have developed multiple strategies to either counteract or exploit this process. The aim of this review is to outline the known relationships between HIV-1 and autophagy in CD4+ T lymphocytes and macrophages, two main HIV-1 cell targets. The differential regulation of autophagy in these two cell-types is highlighted and its potential consequences in terms of viral replication and physiopathology discussed.
Collapse
Affiliation(s)
- Sophie Borel
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS UMR5236, UM1/UM2 Montpellier, France
| | | | | |
Collapse
|
9
|
Herzberg MC, Vacharaksa A, Gebhard KH, Giacaman RA, Ross KF. Plausibility of HIV-1 Infection of Oral Mucosal Epithelial Cells. Adv Dent Res 2011; 23:38-44. [PMID: 21441479 DOI: 10.1177/0022034511399283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The AIDS pandemic continues. Little is understood about how HIV gains access to permissive cells across mucosal surfaces, yet such knowledge is crucial to the development of successful topical anti-HIV-1 agents and mucosal vaccines. HIV-1 rapidly internalizes and integrates into the mucosal keratinocyte genome, and integrated copies of HIV-1 persist upon cell passage. The virus does not appear to replicate, and the infection may become latent. Interactions between HIV-1 and oral keratinocytes have been modeled in the context of key environmental factors, including putative copathogens and saliva. In keratinocytes, HIV-1 internalizes within minutes; in saliva, an infectious fraction escapes inactivation and is harbored and transferable to permissive target cells for up to 48 hours. When incubated with the common oral pathogen Porphyromonas gingivalis, CCR5- oral keratinocytes signal through protease-activated receptors and Toll-like receptors to induce expression of CCR5, which increases selective uptake of infectious R5-tropic HIV-1 into oral keratinocytes and transfer to permissive cells. Hence, oral keratinocytes-like squamous keratinocytes of other tissues-may be targets for low-level HIV-1 internalization and subsequent dissemination by transfer to permissive cells.
Collapse
Affiliation(s)
- M C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | |
Collapse
|
10
|
Avila M, Ojcius DM, Yilmaz Ö. The oral microbiota: living with a permanent guest. DNA Cell Biol 2009; 28:405-11. [PMID: 19485767 PMCID: PMC2768665 DOI: 10.1089/dna.2009.0874] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/25/2009] [Indexed: 01/09/2023] Open
Abstract
The oral cavity of healthy individuals contains hundreds of different bacterial, viral, and fungal species. Many of these can associate to form biofilms, which are resistant to mechanical stress or antibiotic treatment. Most are also commensal species, but they can become pathogenic in responses to changes in the environment or other triggers in the oral cavity, including the quality of an individual's personal hygiene. The complexity of the oral microbiome is being characterized through the newly developed tools of metagenomics. How the microbiome of the oral cavity contributes to health and disease is attracting the interest of a growing number of cell biologists, microbiologists, and immunologists.
Collapse
Affiliation(s)
- Maria Avila
- School of Natural Sciences, University of California, Merced, California
| | - David M. Ojcius
- School of Natural Sciences, University of California, Merced, California
| | - Özlem Yilmaz
- Department of Periodontology, College of Dentistry; University of Florida, Gainesville, Florida
- Emerging Pathogens Institute; University of Florida, Gainesville, Florida
| |
Collapse
|
11
|
Giacaman RA, Nobbs AH, Ross KF, Herzberg MC. Porphyromonas gingivalis selectively up-regulates the HIV-1 coreceptor CCR5 in oral keratinocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:2542-50. [PMID: 17675516 DOI: 10.4049/jimmunol.179.4.2542] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primary infection of oral epithelial cells by HIV-1, if it occurs, could promote systemic infection. Most primary systemic infections are associated with R5-type HIV-1 targeting the R5-specific coreceptor CCR5, which is not usually expressed on oral keratinocytes. Because coinfection with other microbes has been suggested to modulate cellular infection by HIV-1, we hypothesized that oral keratinocytes may up-regulate CCR5 in response to the oral endogenous pathogen Porphyromonas gingivalis by cysteine-protease (gingipains) activation of the protease-activated receptors (PARs) or LPS signaling through the TLRs. The OKF6/TERT-2-immortalized normal human oral keratinocyte line expressed CXCR4, whereas CCR5 was not detectable. When exposed to P. gingivalis ATCC 33277, TERT-2 cells induced greater time-dependent expression of CCR5-specific mRNA and surface coreceptors than CXCR4. By comparing arg- (Rgp) and lys-gingipain (Kgp) mutants, a mutant deficient in both proteases, and the action of trypsin, P. gingivalis Rgp was strongly suggested to cleave PAR-1 and PAR-2 to up-regulate CCR5. CCR5 was also slightly up-regulated by an isogenic gingipain-deficient mutant, suggesting the presence of a nongingipain-mediated mechanism. Purified P. gingivalis LPS also up-regulated CCR5. Blocking TLR2 and TLR4 receptors with Abs attenuated induction of CCR5, suggesting LPS signaling through TLRs. P. gingivalis, therefore, selectively up-regulated CCR5 by two independent signaling pathways, Rgp acting on PAR-1 and PAR-2, and LPS on TLR2 and TLR4. By inducing CCR5 expression, P. gingivalis coinfection could promote selective R5-type HIV-1 infection of oral keratinocytes.
Collapse
MESH Headings
- Adhesins, Bacterial/immunology
- Adhesins, Bacterial/metabolism
- Antibodies/immunology
- Antibodies/pharmacology
- Bacteroidaceae Infections/genetics
- Bacteroidaceae Infections/immunology
- Bacteroidaceae Infections/pathology
- Cell Line, Transformed
- Cysteine Endopeptidases/deficiency
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/metabolism
- Gingipain Cysteine Endopeptidases
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/metabolism
- HIV Infections/pathology
- HIV-1/immunology
- HIV-1/metabolism
- Humans
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Lipopolysaccharides/pharmacology
- Mouth/immunology
- Mouth/metabolism
- Mouth/pathology
- Mutation/immunology
- Porphyromonas gingivalis/genetics
- Porphyromonas gingivalis/immunology
- Porphyromonas gingivalis/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, PAR-1/immunology
- Receptor, PAR-1/metabolism
- Receptor, PAR-2/immunology
- Receptor, PAR-2/metabolism
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/immunology
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2/antagonists & inhibitors
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 4/antagonists & inhibitors
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/metabolism
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Rodrigo A Giacaman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
12
|
Bando M, Hiroshima Y, Kataoka M, Shinohara Y, Herzberg MC, Ross KF, Nagata T, Kido JI. Interleukin-1alpha regulates antimicrobial peptide expression in human keratinocytes. Immunol Cell Biol 2007; 85:532-7. [PMID: 17549071 DOI: 10.1038/sj.icb.7100078] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human epidermis and epithelium serve as physiologic barriers to protect against noxious and infectious agents. Contributing to the defense against infection, epithelial cells express antimicrobial peptides (AMPs). The expression of AMPs in keratinocytes is generally regulated directly by bacteria and indirectly by proinflammatory cytokines. Bacteria may also regulate AMP expression by inducing keratinocyte expression of the autonomous proinflammatory cytokine, interleukin-1alpha (IL-1alpha). To test the hypothesis that AMP expression may be regulated by cell autonomous cytokines, we investigated the effect of IL-1alpha on the expression of AMPs in human keratinocytes (HaCaT cells) by microarray, northern blot, reverse transcriptase (RT)-PCR and western blot analyses. IL-1alpha increased expression of mRNA in a dose- and time-dependent manner specific for lipocalin 2, S100A8, S100A9 and secretory leukocyte protease inhibitor (SLPI) more than twofold relative to nonstimulated cells (control), and slightly upregulated S100A7 and beta-defensin-2. Furthermore, the expression of lipocalin 2, S100A7, S100A8, S100A9 and SLPI proteins were upregulated by IL-1alpha. On the other hand, HaCaT cells expressed mRNA specific for other AMPs, including cystatin 3, adrenomedullin, RNase-7 and mucin 5, which were unaffected by IL-1alpha treatment. These results suggest that the autonomous keratinocyte cytokine, IL-1alpha, selectively upregulates the expression of AMPs which may modulate innate epithelial cell immunity in skin and mucosa.
Collapse
Affiliation(s)
- Mika Bando
- Department of Periodontology and Endodontology, Oral and Maxillofacial Dentistry, Division of Medico-Dental Dynamics and Reconstruction, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|