1
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
2
|
The Role of 12/15-Lipoxygenase and Its Various Metabolites Generated from Multiple Polyunsaturated Fatty Acids as Substrates in Inflammatory Responses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4589191. [PMID: 36199753 PMCID: PMC9527411 DOI: 10.1155/2022/4589191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022]
Abstract
12/15-lipoxygenase (12/15-LOX) is a member of the lipoxygenase family, which can catalyze a variety of polyunsaturated fatty acids (PUFA) to produce different metabolites, such as 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, lipoxin (LX), hepoxilin, resolvin, protectin, and maresins. 12/15-LOX and its metabolites take part in inflammatory responses and mediate related signalling pathways, playing an essential role in various inflammatory diseases. So the definition, catalytic substrates, metabolites of 12/15-lipoxygenase, and their roles in inflammatory responses are reviewed in this article.
Collapse
|
3
|
Sufaru IG, Teslaru S, Pasarin L, Iovan G, Stoleriu S, Solomon SM. Host Response Modulation Therapy in the Diabetes Mellitus—Periodontitis Conjuncture: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14081728. [PMID: 36015357 PMCID: PMC9414216 DOI: 10.3390/pharmaceutics14081728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The inflammatory response of the host in periodontitis is the phenomenon that underlies the onset and evolution of periodontal destructive phenomena. A number of systemic factors, such as diabetes mellitus (DM), can negatively affect the patient with periodontitis, just as the periodontal disease can aggravate the status of the DM patient. Host response modulation therapy involves the use of anti-inflammatory and anti-oxidant products aimed at resolving inflammation, stopping destructive processes, and promoting periodontal healing, all important aspects in patients with high tissue loss rates, such as diabetic patients. This paper reviews the data available in the literature on the relationship between DM and periodontitis, the main substances modulating the inflammatory response (nonsteroidal anti-inflammatory drugs, sub-antimicrobial doses of doxycycline, or omega-3 fatty acids and their products, specialized pro-resolving mediators), as well as their application in diabetic patients.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Silvia Teslaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Liliana Pasarin
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Gianina Iovan
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
4
|
Lee CF, Brown CE, Nielsen AJ, Kim C, Livne-Bar I, Parsons PJ, Boldron C, Autelitano F, Weaver DF, Sivak JM, Reed MA. A Stereocontrolled Total Synthesis of Lipoxin B4 and its Biological Activity as a Pro-Resolving Lipid Mediator of Neuroinflammation. Chemistry 2022; 28:e202200360. [PMID: 35491534 PMCID: PMC9891714 DOI: 10.1002/chem.202200360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 02/03/2023]
Abstract
Two stereocontrolled, efficient, and modular syntheses of eicosanoid lipoxin B4 (LXB4 ) are reported. One features a stereoselective reduction followed by an asymmetric epoxidation sequence to set the vicinal diol stereocentres. The dienyne was installed via a one-pot Wittig olefination and base-mediated epoxide ring opening cascade. The other approach installed the diol through an asymmetric dihydroxylation reaction followed by a Horner-Wadsworth-Emmons olefination to afford the common dienyne intermediate. Finally, a Sonogashira coupling and an alkyne hydrosilylation/proto-desilylation protocol furnished LXB4 in 25 % overall yield in just 10 steps. For the first time, LXB4 has been fully characterized spectroscopically with its structure confirmed as previously reported. We have demonstrated that the synthesized LXB4 showed similar biological activity to commercial sources in a cellular neuroprotection model. This synthetic route can be employed to synthesize large quantities of LXB4 , enable synthesis of new analogs, and chemical probes for receptor and pathway characterization.
Collapse
Affiliation(s)
- C. Frank Lee
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Carla E. Brown
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alexander J. Nielsen
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Changmo Kim
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
- Department of Medicine University of Toronto Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
| | - Philip J. Parsons
- Molecular Sciences Research Hub, White City Campus, Imperial College London, London, United Kingdom
| | | | | | - Donald F. Weaver
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Fundamental Neurobiology Krembil Research Institute, University Health Network Toronto, Ontario, Canada
- Department of Chemistry University of Toronto Toronto, Ontario, Canada
- Department of Medicine University of Toronto Toronto, Ontario, Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology University of Toronto Toronto, Ontario, Canada
| | - Mark A. Reed
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
5
|
Hashchyshyn V, Tymochko-Voloshyn R, Paraniak N, Vovkanych L, Hlozhyk I, Trach V, Muzyka F, Serafyn Y, Prystupa E, Boretsky Y. Regeneration of Skeletal Muscle Fibers and Regulation of Myosatellitocytes Metabolism. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
7
|
Balta MG, Papathanasiou E, Christopoulos PF. Specialized Pro-Resolving Mediators as Potential Regulators of Inflammatory Macrophage Responses in COVID-19. Front Immunol 2021; 12:632238. [PMID: 33717168 PMCID: PMC7943727 DOI: 10.3389/fimmu.2021.632238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The recent outbreak of SARS-CoV2 has emerged as one of the biggest pandemics of our century, with outrageous health, social and economic consequences globally. Macrophages may lay in the center of COVID-19 pathogenesis and lethality and treatment of the macrophage-induced cytokine storm has emerged as essential. Specialized pro-resolving mediators (SPMs) hold strong therapeutic potentials in the management of COVID-19 as they can regulate macrophage infiltration and cytokine production but also promote a pro-resolving macrophage phenotype. In this review, we discuss the homeostatic functions of SPMs acting directly on macrophages on various levels, towards the resolution of inflammation. Moreover, we address the molecular events that link the lipid mediators with COVID-19 severity and discuss the clinical potentials of SPMs in COVID-19 immunotherapeutics.
Collapse
Affiliation(s)
- Maria G. Balta
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
8
|
Edwards JM, McCarthy CG, Wenceslau CF. The Obligatory Role of the Acetylcholine-Induced Endothelium-Dependent Contraction in Hypertension: Can Arachidonic Acid Resolve this Inflammation? Curr Pharm Des 2021; 26:3723-3732. [PMID: 32303165 DOI: 10.2174/1381612826666200417150121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The endothelium produces many substances that can regulate vascular tone. Acetylcholine is a widely used pharmacological tool to assess endothelial function. In general, acetylcholine binds to G-protein coupled muscarinic receptors that mediate a transient elevation in intracellular, free calcium. This intracellular rise in calcium is responsible for triggering several cellular responses, including the synthesis of nitric oxide, endothelium- derived hyperpolarizing factor, and eicosanoids derived from arachidonic acid. Endothelial arachidonic acid metabolism is also an important signaling pathway for mediating inflammation. Therefore, in conditions with sustained and excessive inflammation such as hypertension, arachidonic acid serves as a substrate for the synthesis of several vasoconstrictive metabolites, predominantly via the cyclooxygenase and lipoxygenase enzymes. Cyclooxygenase and lipoxygenase products can then activate G-protein coupled receptors expressed on vascular smooth muscle cells to causes contractile responses. As a result, acetylcholine-induced contraction due to arachidonic acid is a commonly observed feature of endothelial dysfunction and vascular inflammation in hypertension. In this review, we will critically analyze the literature supporting this concept, as well as address the potential underlying mechanisms, including the possibility that arachidonic acid signaling is diverted away from the synthesis of pro-resolving metabolites in conditions such as hypertension.
Collapse
Affiliation(s)
- Jonnelle M Edwards
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - Cameron G McCarthy
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| | - Camilla F Wenceslau
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH, United States
| |
Collapse
|
9
|
Kumar A, Behl T, Jamwal S, Kaur I, Sood A, Kumar P. Exploring the molecular approach of COX and LOX in Alzheimer's and Parkinson's disorder. Mol Biol Rep 2020; 47:9895-9912. [PMID: 33263931 DOI: 10.1007/s11033-020-06033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023]
Abstract
Neuroinflammation is well established biomarker for the major neurodegenerative like Alzheimer's disease (AD) and Parkinson's disease (PD). Cytokines/chemokines excite phospholipase A2 and cyclooxygenases (COX), facilitating the release of arachidonic acid (AA) and docosahexaenoic acid (DHA) from membrane glycerophospholipids, in which the former is oxidized to produce pro-inflammatory eicosanoids (prostaglandins, leukotrienes and thromboxane's), which intensify the neuroinflammatory events in the brain. Similarly, resolvins and neuroprotectins are the metabolized products of docosahexaenoic acid, which exert an inhibitory effect on the production of eicosanoids. Furthermore, an oxidized product of arachidonic acid, lipoxin, is generated via 5-lipoxygenase (5-LOX) pathway, and contributes to the resolution of inflammation, along with anti-inflammatory actions. Moreover, DHA and its lipid mediators inhibit neuroinflammatory responses by blocking NF-κB, inhibiting eicosanoid production, preventing cytokine secretion and regulating leukocyte trafficking. Various epidemiological studies reported, elevated levels of COX-2 enzyme in patients with AD and PD, indicating its role in progression of the disease. Similarly, enhanced levels of 5-LOX and 12/15-LOX in PD models represent their role brain disorders, where the former is expressed in AD patients and the latter exhibits it involvement in PD. The present review elaborates the role of AA, DHA, eicosanoids and docosanoids, along with COX and LOX pathway which provides an opportunity to the researchers to understand the role of these lipid mediators in neurological disorders (AD and PD). The information gathered from the review will aid in facilitating the development of appropriate therapeutic options targeting COX and LOX pathway.
Collapse
Affiliation(s)
- Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumit Jamwal
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Archit Sood
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organisation (ARO), Rishon LeTsiyon, Israel
| | - Puneet Kumar
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
10
|
Mariani E, Pulsatelli L. Platelet Concentrates in Musculoskeletal Medicine. Int J Mol Sci 2020; 21:ijms21041328. [PMID: 32079117 PMCID: PMC7072911 DOI: 10.3390/ijms21041328] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/02/2022] Open
Abstract
Platelet concentrates (PCs), mostly represented by platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are autologous biological blood-derived products that may combine plasma/platelet-derived bioactive components, together with fibrin-forming protein able to create a natural three-dimensional scaffold. These types of products are safely used in clinical applications due to the autologous-derived source and the minimally invasive application procedure. In this narrative review, we focus on three main topics concerning the use of platelet concentrate for treating musculoskeletal conditions: (a) the different procedures to prepare PCs, (b) the composition of PCs that is related to the type of methodological procedure adopted and (c) the clinical application in musculoskeletal medicine, efficacy and main limits of the different studies.
Collapse
Affiliation(s)
- Erminia Mariani
- Laboratorio di Immunoreumatologia e rigenerazione tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366803
| | - Lia Pulsatelli
- Laboratorio di Immunoreumatologia e rigenerazione tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
11
|
Omega-3 Fatty Acids Effects on Inflammatory Biomarkers and Lipid Profiles among Diabetic and Cardiovascular Disease Patients: A Systematic Review and Meta-Analysis. Sci Rep 2019; 9:18867. [PMID: 31827125 PMCID: PMC6906408 DOI: 10.1038/s41598-019-54535-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
The purpose of this systematic review and meta-analysis was to investigate omega-3 fatty acids’ influence on 12 inflammatory biomarkers—LDL, HDL, total cholesterol, TG, HbA1c, Apo AI, Apo AII, Apo B, CRP, TNF-α, glucose, and fasting blood glucose among diabetic and cardiovascular disease (CVD) patients. We searched articles in six database engines, and 16 of the 696 articles reviewed met the inclusion criteria. Among these, lipid and inflammatory biomarkers investigated commonly included total cholesterol (11 studies), LDL, and TG (10 studies each). Overall, omega-3 was associated with a significant reduction in Apo AII among diabetic patients, as compared to different controls (−8.0 mg/dL 95% CI: −12.71, −3.29, p = 0.0009), triglycerides (−44.88 mg/dL 95% CI: −82.6, −7.16, p < 0.0001), HDL (−2.27 mg/dL 95% CI: −3.72, −0.83, p = 0.002), and increased fasting blood glucose (16.14 mg/dL 95% CI: 6.25, 26.04, p = 0.001). Omega-3 also was associated with increased LDL among CVD patients (2.10 mg/dL 95% CI: 1.00, 3.20, p = 0.0002). We conclude that omega-3 fatty acids may be associated with lower inflammatory biomarkers among diabetic and cardiovascular patients. Clinicians should be aware of these potential benefits; however, it is essential to recommend that patients consult with clinicians before any omega-3 intake.
Collapse
|
12
|
Liu X, Davis CM, Alkayed NJ. P450 Eicosanoids and Reactive Oxygen Species Interplay in Brain Injury and Neuroprotection. Antioxid Redox Signal 2018; 28:987-1007. [PMID: 28298143 PMCID: PMC5849284 DOI: 10.1089/ars.2017.7056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Eicosanoids are endogenous lipid mediators that play important roles in brain function and disease. Acute brain injury such as that which occurs in stroke and traumatic brain injury increases the formation of eicosanoids, which, in turn, exacerbate or diminish injury. In chronic neurodegenerative diseases such as Alzheimer's disease and vascular dementia (VD), eicosanoid synthetic and metabolizing enzymes are altered, disrupting the balance between neuroprotective and neurotoxic eicosanoids. Recent Advances: Human and experimental studies have established the opposing roles of hydroxy- and epoxyeicosanoids and their potential utility as diagnostic biomarkers and therapeutic targets in neural injury. Critical Issues: A gap in knowledge remains in understanding the cellular and molecular mechanisms underlying the neurovascular actions of specific eicosanoids, such as specific isomers of epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic acids (HETEs). Future Directions: EETs and HETEs exert their actions on brain cells by targeting multiple mechanisms, which include surface G-protein coupled receptors. The identification of high-affinity receptors for EETs and HETEs and their cellular localization in the brain will be a breakthrough in our understanding of these eicosanoids as mediators of cell-cell communications and contributors to brain development, function, and disease. Antioxid. Redox Signal. 28, 987-1007.
Collapse
Affiliation(s)
- Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
13
|
Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000 2015; 64:57-80. [PMID: 24320956 DOI: 10.1111/prd.12002] [Citation(s) in RCA: 762] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenesis of periodontitis involves a complex immune/inflammatory cascade that is initiated by the bacteria of the oral biofilm that forms naturally on the teeth. The susceptibility to periodontitis appears to be determined by the host response; specifically, the magnitude of the inflammatory response and the differential activation of immune pathways. The purpose of this review was to delineate our current knowledge of the host response in periodontitis. The role of innate immunity, the failure of acute inflammation to resolve (thus becoming chronic), the cytokine pathways that regulate the activation of acquired immunity and the cells and products of the immune system are considered. New information relating to regulation of both inflammation and the immune response will be reviewed in the context of susceptibility to, and perhaps control of, periodontitis.
Collapse
|
14
|
Lütfioğlu M, Aydoğdu A, Sakallioğlu EE, Alaçam H, Pamuk F. Gingival crevicular fluid interleukin-8 and lipoxin A4 levels of smokers and nonsmokers with different periodontal status: a cross-sectional study. J Periodontal Res 2015; 51:471-80. [PMID: 26446985 DOI: 10.1111/jre.12324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Smoking is an important risk factor for periodontal disease and effects the pathogenesis of the disease. This study evaluated the impact of smoking on gingival crevicular fluid interleukin-8 (IL-8) and lipoxin A4 (LxA4 ) levels in patients with and without periodontal disease. MATERIAL AND METHODS A total of 122 participants were grouped as follows: smokers with generalized aggressive periodontitis (S-GAgP, n = 15); smokers with chronic periodontitis (S-CP, n = 17); smokers with gingivitis (SG, n = 15); smokers classified as periodontally healthy (SH, n = 15); nonsmokers with generalized aggressive periodontitis (N-GAgP, n = 15); nonsmokers with chronic periodontitis (N-CP, n = 15); nonsmokers with gingivitis (NG, n = 15); and nonsmokers classified as periodontally healthy (NH, n = 15). Gingival index, plaque index, probing pocket depth and clinical attachment level were recorded. Gingival crevicular fluid IL-8 and LxA4 levels were analyzed by ELISA. RESULTS Gingival crevicular fluid IL-8 levels varied among groups, as follows: S-GAgP>S-CP>SG>SH and N-GAgP>N-CP>NG>NH. The gingival crevicular fluid IL-8 levels were significantly higher in the S-GAgP group compared with the N-GAgP group and in the S-CP group compared with the N-CP group (p < 0.05); differences between the SG and NG and the SH and NH groups were not statistically significant (p > 0.05). Gingival crevicular fluid LxA4 levels also varied among groups, but in an inverse direction when compared with the IL-8 levels, as follows: S-GAgP<S-CP<SG and N-GAgP<N-CP<NG. (The gingival crevicular fluid LxA4 levels in SH and NH groups were below the limits of detection.) The gingival crevicular fluid LxA4 levels were significantly lower in the S-GAgP group than in the N-GAgP group and in the S-CP group than in the N-CP group (p < 0.05); differences between the SG and NG groups were not statistically significant (p > 0.05). CONCLUSION The study findings suggest that the observed increases in gingival crevicular fluid IL-8 levels and decreases in gingival crevicular fluid LxA4 levels reflect changes in immune and inflammatory responses that occur as a result of smoking.
Collapse
Affiliation(s)
- M Lütfioğlu
- Department of Periodontology, OndokuzMayis University Faculty of Dentistry, Samsun, Turkey
| | - A Aydoğdu
- Department of Periodontology, Biruni University Faculty of Dentistry, İstanbul, Turkey
| | - E E Sakallioğlu
- Department of Periodontology, OndokuzMayis University Faculty of Dentistry, Samsun, Turkey
| | - H Alaçam
- Department of Medical Biochemistry, Hacettepe University Medical Faculty, Ankara, Turkey
| | - F Pamuk
- Department of Periodontology, Istanbul Aydin University Faculty of Dentistry, İstanbul, Turkey
| |
Collapse
|
15
|
Zhu Z, Qian F, Yang R, Chen J, Luo Q, Chen H, Yan X. A lipoxygenase from red alga Pyropia haitanensis, a unique enzyme catalyzing the free radical reactions of polyunsaturated fatty acids with triple ethylenic bonds. PLoS One 2015; 10:e0117351. [PMID: 25658744 PMCID: PMC4319731 DOI: 10.1371/journal.pone.0117351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/22/2014] [Indexed: 12/03/2022] Open
Abstract
Lipoxygenases (LOXs) are key enzymes to regulate the production of hormones and defensive metabolites in plants, animals and algae. In this research, a full length LOX gene has been cloned and expressed from the red alga Pyropia haitanensis (Bangiales, Rhodophyta) gametophyte (PhLOX2). Subsequent phylogenetic analysis showed that such LOX enzymes are separated at the early stage of evolution, establishing an independent branch. The LOX activity was investigated at the optimal pH of 8.0. It appears that PhLOX2 is a multifunctional enzyme featuring both lipoxygenase and hydroperoxidase activities. Additionally, PhLOX2 exhibits remarkable substrate and position flexibility, and it can catalyze an array of chemical reactions involving various polyunsaturated fatty acids, ranging from C18 to C22. As a matter of fact, mono-hydroperoxy, di-hydroperoxy and hydroxyl products have been obtained from such transformations, and eicosapentaenoic acid seem to be the most preferred substrate. It was found that at least triple ethylenic bonds are required for PhLOX2 to function as a LOX, and the resulting hydroxy products should be originated from the PhLOX2 mediated reduction of mono-hydroperoxides, in which the hydrogen abstraction occurs on the carbon atom between the second and third double bond. Most of the di-hydroperoxides observed seem to be missing their mono-position precursors. The substrate and position flexibility, as well as the function versatility of PhLOXs represent the ancient enzymatic pathway for organisms to control intracellular oxylipins.
Collapse
Affiliation(s)
- Zhujun Zhu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Feijian Qian
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Rui Yang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qijun Luo
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Haimin Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, Zhejiang, 315211, China
- * E-mail: (HMC); (XJY)
| | - Xiaojun Yan
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315211, China
- * E-mail: (HMC); (XJY)
| |
Collapse
|
16
|
Wenceslau CF, McCarthy CG, Szasz T, Webb RC. Lipoxin A4 mediates aortic contraction via RHOA/RHO kinase, endothelial dysfunction and reactive oxygen species. J Vasc Res 2015; 51:407-17. [PMID: 25612650 DOI: 10.1159/000371490] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/03/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lipoxin A4 (LXA4) is a biologically active product generated from arachidonic acid by lipoxygenase action. The production of lipoxins is enhanced by aspirin through acetylation of cyclooxygenase-2, via a mechanism known as 'aspirin-triggered lipoxin'. LXA4 has both anti-inflammatory and proinflammatory actions, the latter being related with reocclusion and restenosis after coronary angioplasty in patients treated with aspirin. However, little is known of the actions of LXA4 on the vasculature. We hypothesized that LXA4 promotes contractile responses and contributes to endothelial dysfunction. METHODS We used aorta from Wistar rats to assess vascular function. Reactive oxygen species (ROS) production and contractile and regulatory proteins were investigated. RESULTS LXA4 induced concentration-dependent contractions via formyl peptide receptor-2 activation and both RhoA/Rho kinase inhibitor and ROS scavenger decreased this contraction. Also, endothelium removal, and COX-2 and NAD(P)H oxidase inhibitors attenuate the LXA4-induced contraction. LXA4 potentiated phenylephrine-induced contraction and inhibited acetylcholine-induced relaxation. In the presence of LXA4, ROS production was increased and protein expression of RhoA, phospho-myosin light chain, COX-2 and p67phox was higher. CONCLUSION LXA4 has a functional role in the vasculature and may contribute to further vascular damage in conditions where its production is exacerbated, such as in angioplasty-associated complications treated with aspirin.
Collapse
|
17
|
Assirelli E, Filardo G, Mariani E, Kon E, Roffi A, Vaccaro F, Marcacci M, Facchini A, Pulsatelli L. Effect of two different preparations of platelet-rich plasma on synoviocytes. Knee Surg Sports Traumatol Arthrosc 2015; 23:2690-703. [PMID: 24942296 PMCID: PMC4541703 DOI: 10.1007/s00167-014-3113-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/29/2014] [Indexed: 01/15/2023]
Abstract
PURPOSE To analyse the modifications induced by two different platelet-rich plasma (PRP) preparations on osteoarthritis (OA) synoviocytes, by documenting changes in gene expression of factors involved in joint physiopathology. METHODS OA synoviocytes were cultured for 7 days in medium with different concentrations of either P-PRP (a pure platelet concentrate without leucocytes but with a limited number of platelets), L-PRP (a higher platelet concentrate containing leucocytes) or platelet-poor plasma (PPP). Gene expression of interleukin (IL)-1beta, IL-6, IL-8/CXCL8, tumour necrosis factor alpha, IL-10, IL-4, IL-13, metalloproteinase-13, tissue inhibitor of metalloproteinase (TIMP)-1, (TIMP)-3, (TIMP)-4, vascular endothelial growth factor, transforming growth factor beta1, fibroblast growth factor (FGF)-2, hepatocyte growth factor (HGF), hyaluronic acid (HA) synthases (HAS)-1, (HAS)-2, and (HAS)-3 was analysed by RT-PCR. HA production was determined in culture supernatants by ELISA. RESULTS IL-1β, IL-8 and FGF-2 were significantly induced by L-PRP compared to both P-PRP and PPP; HGF was down-modulated by L-PRP versus both P-PRP and PPP, and an inverse dose-response influence was shown for all preparations. Expression level of TIMP-4 was lower in the presence of L-PRP compared with P-PRP. HA production and HAS gene expression did not seem to be modulated by PRP. CONCLUSIONS L-PRP is able to sustain the up-regulation of proinflammatory factors, (IL-1beta, IL-8 and FGF-2), together with a down-modulation of HGF and TIMP-4 expression, two factors that have been recognized as anti-catabolic mediators in cartilage, thus supporting the need to further optimize the PRP preparations to be applied in clinical practice.
Collapse
Affiliation(s)
- Elisa Assirelli
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy,
| | - Giuseppe Filardo
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy ,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elizaveta Kon
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - Alice Roffi
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - Franca Vaccaro
- Immunohematology and Transfusion Medicine Service, San Pietro Hospital, Via Cassia 600, Rome, Italy
| | - Maurilio Marcacci
- Laboratory of Biomechanics and Technology Innovation/NABI, 2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - Andrea Facchini
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy ,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
18
|
Sudha A, Srinivasan P. Bioassay-guided isolation, identification and molecular ligand-target insight of lipoxygenase inhibitors from leaves of Anisomeles malabarica R.Br. Pharmacogn Mag 2014; 10:S596-605. [PMID: 25298680 PMCID: PMC4189278 DOI: 10.4103/0973-1296.139795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/05/2014] [Accepted: 08/30/2014] [Indexed: 11/14/2022] Open
Abstract
Background: Anisomeles malabarica R. Br. (Lamiaceae) is extensively used in traditional medicine in major parts of India for several medicinal purposes, including their use in rheumatism. Materials and Methods: The air-dried leaves of A. malabarica were extracted with ethanol, defatted with n-hexane and then successively partitioned into chloroform and n-butanol fractions. Bioassay-guided fractionation and purification of chloroform fraction from A. malabarica lead to the isolation of lipoxygenase (LOX) inhibitors. The structures of isolated compounds were elucidated by ultraviolet, infrared, 1H nuclear magnetic resonance (NMR), 13C NMR and mass spectrometry spectroscopic techniques and assessed further by in vitro soybean lipoxygenase (sLOX) assay. In addition, the enzyme type inhibition was evaluated through molecular docking technique as a part of computational study. Results: The bioactive compounds 3, 4 dihydroxy benzoic acid (1) and 4’, 5, 7-trihydroxyflavone (2) were isolated from chloroform fraction of A. malabarica, whose bioactivity was observed to be dose-dependent compared to n-butanol fraction. Among the compounds, 3, 4 dihydroxy benzoic acid showed significant sLOX inhibitory activity with 74.04% ±2.6% followed by 4’, 5, 7-trihydroxyflavone (34.68% ±1.9%). The computational analysis of compounds showed their molecular interaction with important amino acid residues and nonheme iron atom in the catalytic site of LOX by enlightening their potential binding mode at molecular level. Conclusions: The LOX inhibitory constituents were identified from A. malabarica by means of bioassay-guided fractionation process. The results derived from in vitro and computational experiments confirm the potential of the isolated compounds and provide additional evidence for its traditional use in inflammatory disorders.
Collapse
Affiliation(s)
- A Sudha
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - P Srinivasan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
19
|
Tumor necrosis factor-related apoptosis-inducing ligand mediates the resolution of allergic airway inflammation induced by chronic allergen inhalation. Mucosal Immunol 2014; 7:1199-208. [PMID: 24569802 DOI: 10.1038/mi.2014.9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/14/2014] [Indexed: 02/04/2023]
Abstract
Allergic asthma can vanish over time either spontaneously or induced by allergen-specific immunotherapy. In mice with established airway allergic inflammation, chronic intranasal (IN) allergen challenges decreases progressively airway allergic inflammation. Here we compared the contribution of different regulatory pathways that could be associated with this phenomenon, known as local inhalational tolerance. We found that inhalational tolerance was not associated with increased number of regulatory T cells or suppressive cytokines. Instead, it was associated with increased apoptosis of airway inflammatory leukocytes revealed by annexin-V staining and the expression of apical caspase 8 and effector caspase 3. Also, the transition from acute to chronic phase was associated with a shift in the expression of pro-allergic to pro-apoptotic molecules. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was found to be a key molecule in mediating resolution of allergic inflammation because anti-TRAIL treatment blocked apoptosis and increased the infiltration of T helper type 2 (Th2) cells and eosinophils. Notably, repeated IN treatment with recombinant TRAIL in established airway allergic inflammation augmented leukocyte apoptosis and decreased the frequency of interleukin-5-producing Th2 cells and eosinophils to airways. Our data indicate that TRAIL signaling is sufficient for downmodulation of allergic airway disease, suggesting a potential therapeutic use of TRAIL for asthma treatment.
Collapse
|
20
|
Mustafa M, Zarrough A, Bolstad AI, Lygre H, Mustafa K, Hasturk H, Serhan C, Kantarci A, Van Dyke TE. Resolvin D1 protects periodontal ligament. Am J Physiol Cell Physiol 2013; 305:C673-9. [PMID: 23864609 DOI: 10.1152/ajpcell.00242.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resolution agonists are endogenous mediators that drive inflammation to homeostasis. We earlier demonstrated in vivo activity of resolvins and lipoxins on regenerative periodontal wound healing. The goal of this study was to determine the impact of resolvin D1 (RvD1) on the function of human periodontal ligament (PDL) fibroblasts, which are critical for wound healing during regeneration of the soft and hard tissues around teeth. Primary cells were cultured from biopsies obtained from three individuals free of periodontal diseases. Peripheral blood mononuclear cells were isolated by density gradient centrifugation from whole blood of healthy volunteers. PGE2, leukotriene B4 (LTB4), and lipoxin A4 (LXA4) in culture supernatants were measured by ELISA. The direct impact of RvD1 on PDL fibroblast proliferation was measured and wound closure was analyzed in vitro using a fibroblast culture "scratch assay." PDL fibroblast function in response to RvD1 was further characterized by basic FGF production by ELISA. IL-1β and TNF-α enhanced the production of PGE2. Treatment of PDL cells and monocytes with 0.1-10 ng/ml RvD1 (0.27-27 M) reduced cytokine induced production of PGE2 and upregulated LXA4 production by both PDL cells and monocytes. RvD1 significantly enhanced PDL fibroblast proliferation and wound closure as well as basic FGF release. The results demonstrate that anti-inflammatory and proresolution actions of RvD1 with upregulation of arachidonic acid-derived endogenous resolution pathways (LXA4) and suggest resolution pathway synergy establishing a novel mechanism for the proresolution activity of the ω-3 docosahexaenoic acid-derived resolution agonist RvD1.
Collapse
Affiliation(s)
- Manal Mustafa
- Department of Clinical Dentistry-Center for Clinical Dental Research, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Daak AA, Ghebremeskel K, Hassan Z, Attallah B, Azan HH, Elbashir MI, Crawford M. Reply to UN Das. Am J Clin Nutr 2013; 97:1416-7. [PMID: 23828965 DOI: 10.3945/ajcn.113.061952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Canny GO, Lessey BA. The role of lipoxin A4 in endometrial biology and endometriosis. Mucosal Immunol 2013; 6:439-50. [PMID: 23485944 PMCID: PMC4062302 DOI: 10.1038/mi.2013.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipoxin A4 (LXA4), an endogenous anti-inflammatory and immunomodulatory mediator studied in many disease states, is recently appreciated as a potentially significant player in the endometrium. This eicosanoid, synthesized from arachidonic acid via the action of lipoxygenase enzymes, is likely regulated in endometrial tissue during the menstrual cycle. Recent studies revealed that LXA4 acts as an estrogen receptor agonist in endometrial epithelial cells, antagonizing some estrogen-mediated activities in a manner similar to the weak estrogen estriol, with which it shares structural similarity. LXA4 may also be an anti-inflammatory molecule in the endometrium, though its precise function in various physiological and pathological scenarios remains to be determined. The expression patterns for LXA4 and its receptor in the female reproductive tract suggest a role in pregnancy. The present review provides an oversight of its known and putative roles in the context of immuno-endocrine crosstalk. Endometriosis, a common inflammatory condition and a major cause of infertility and pain, is currently treated by surgery or anti-hormone therapies that are contraceptive and associated with undesirable side effects. LXA4 may represent a potential therapeutic and further research to elucidate its function in endometrial tissue and the peritoneal cavity will undoubtedly provide valuable insights.
Collapse
Affiliation(s)
- GO Canny
- Geneva Foundation for Medical Education and Research, Versoix, Switzerland
| | - BA Lessey
- University of South Carolina School of Medicine—Greenville, Greenville, SC, USA
| |
Collapse
|
23
|
Shiloah J, Bland PS, Scarbecz M, Patters MR, Stein SH, Tipton DA. The effect of long-term aspirin intake on the outcome of non-surgical periodontal therapy in smokers: a double-blind, randomized pilot study. J Periodontal Res 2013; 49:102-9. [DOI: 10.1111/jre.12085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Jacob Shiloah
- Department of Periodontology; College of Dentistry; University of Tennessee Health Science Center; Memphis TN USA
| | - Paul S. Bland
- Department of Periodontology; College of Dentistry; University of Tennessee Health Science Center; Memphis TN USA
| | - Mark Scarbecz
- Department of Periodontology; College of Dentistry; University of Tennessee Health Science Center; Memphis TN USA
| | - Mark R. Patters
- Department of Periodontology; College of Dentistry; University of Tennessee Health Science Center; Memphis TN USA
| | - Sydney H. Stein
- Department of Periodontology; College of Dentistry; University of Tennessee Health Science Center; Memphis TN USA
| | - David A. Tipton
- Department of Periodontology; College of Dentistry; University of Tennessee Health Science Center; Memphis TN USA
| |
Collapse
|
24
|
da Silva NG, Sampaio SC, Gonçalves LRC. Inhibitory effect of Crotalus durissus terrificus venom on chronic edema induced by injection of bacillus Calmette-Guérin into the footpad of mice. Toxicon 2012; 63:98-103. [PMID: 23246578 DOI: 10.1016/j.toxicon.2012.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 11/15/2022]
Abstract
In this study, we evaluated the effect of the Crotalus durissus terrificus (Cdt) venom on the chronic paw edema induced by the injection of bacillus Calmette-Guérin (BCG) into the footpad of mice. The BCG injection evoked chronic edema, which was significantly diminished in animals treated subcutaneously (s.c.) with Cdt venom 1 h before or after the BCG injection. This inhibition persisted throughout the evaluation period (15 days). In mice injected with Cdt venom 6 or 11 days after injection of BCG, we observed a significant reduction in edema only in the period after the venom injection. While studying possible mechanisms involved in this inhibition, we observed that pre-treatment with dexamethasone, zileuton or Boc2 (a selective antagonist of formyl peptide receptors), but not with indomethacin, canceled out the inhibitory effect of Cdt venom on the edema induced by BCG. These results strongly suggest that this rattlesnake venom can stimulate the generation of mediators from the lipoxygenase pathway, which can down-regulate this chronic inflammatory edema. Using fractionated venom, the results indicated that crotoxin was the only component of Cdt venom responsible for this inhibitory effect. These results indicated that crotoxin, the main toxin of the C. durissus terrificus venom, has a significant inhibitory effect on BCG-induced chronic edema, possibly by generating anti-inflammatory mediators from the lipoxygenase pathway.
Collapse
Affiliation(s)
- Nancy Gimenes da Silva
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | |
Collapse
|
25
|
Huang HS, Chang HH. Platelets in inflammation and immune modulations: functions beyond hemostasis. Arch Immunol Ther Exp (Warsz) 2012; 60:443-51. [PMID: 22940877 DOI: 10.1007/s00005-012-0193-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 02/29/2012] [Indexed: 12/13/2022]
Abstract
Platelets play central roles for maintaining the homeostasis of the blood coagulation. As they are also involved in immune responses and host defenses, increasing evidences have suggested that platelets exert other roles beyond their well-recognized function in preventing bleeding. This review is focused on inflammation, allergy and immune modulations of platelets. Platelets conduct immunoregulation through secretion of functional mediators, interaction with various immune cells, endothelial cells and beneficial for the leukocyte infiltration to inflamed/allergic tissues. In these regulations, the leukocytes are influenced by and receiving the signals from platelets. In contrast, rare attentions were focused on platelet regulations by immune system. An intriguingly example in the intravenous immunoglobulin (IVIg) treatment is discussed, in which dendritic cells exert anti-inflammatory effect through platelets. This further suggests that coagulant and immune systems are tightly associated rather than separate entities. The cross-talks between these two systems implicate that platelet therapy may have application beyond thrombosis, and immune interventions may have potentials to treat thrombosis diseases.
Collapse
Affiliation(s)
- Hsuan-Shun Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Sec. 3, Chung Yang Rd, Hualien, 970, Taiwan, ROC
| | | |
Collapse
|
26
|
Hasturk H, Kantarci A, Van Dyke TE. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol 2012; 3:118. [PMID: 22623923 PMCID: PMC3353263 DOI: 10.3389/fimmu.2012.00118] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/24/2012] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex reaction to injurious agents and includes vascular responses, migration, and activation of leukocytes. Inflammation starts with an acute reaction, which evolves into a chronic phase if allowed to persist unresolved. Acute inflammation is a rapid process characterized by fluid exudation and emigration of leukocytes, primarily neutrophils, whereas chronic inflammation extends over a longer time and is associated with lymphocyte and macrophage infiltration, blood vessel proliferation, and fibrosis. Inflammation is terminated when the invader is eliminated, and the secreted mediators are removed; however, many factors modify the course and morphologic appearance as well as the termination pattern and duration of inflammation. Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have an impact on the periodontium. Reciprocal effects of periodontal diseases are potential factors modifying severity in the progression of systemic inflammatory diseases. Macrophages are key cells for the inflammatory processes as regulators directing inflammation to chronic pathological changes or resolution with no damage or scar tissue formation. As such, macrophages are involved in a remarkably diverse array of homeostatic processes of vital importance to the host. In addition to their critical role in immunity, macrophages are also widely recognized as ubiquitous mediators of cellular turnover and maintenance of extracellular matrix homeostasis. In this review, our objective is to identify macrophage-mediated events central to the inflammatory basis of chronic diseases, with an emphasis on how control of macrophage function can be used to prevent or treat harmful outcomes linked to uncontrolled inflammation.
Collapse
Affiliation(s)
- Hatice Hasturk
- Department of Periodontology, The Forsyth InstituteCambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Periodontology, The Forsyth InstituteCambridge, MA, USA
| | | |
Collapse
|
27
|
Kanamoto H, Takemura M, Ohyama K. Cloning and expression of three lipoxygenase genes from liverwort, Marchantia polymorpha L., in Escherichia coli. PHYTOCHEMISTRY 2012; 77:70-8. [PMID: 22425284 DOI: 10.1016/j.phytochem.2012.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 02/06/2012] [Accepted: 02/14/2012] [Indexed: 05/24/2023]
Abstract
Three genes homologous to plant lipoxygenase genes were identified from the EST libraries of Marchantia polymorpha, in order to clarify the function of LOXs in bryophytes. Full-length genes were isolated using 5'- and 3'-RACE methods and named MpLOX1, MpLOX2, and MpLOX3, respectively. To investigate the enzymatic activities of liverwort LOXs, recombinant MpLOX1, MpLOX2, and MpLOX3 proteins were prepared from Escherichia coli cells expressing the corresponding gene. LC-MS/MS analyses and chiral column chromatography of their reaction products showed that MpLOX1 codes for 11S/15S-lipoxygenase against eicosapentaenoic acid and for 15S-lipoxygenase against arachidonic acid, and that MpLOX2 and MpLOX3 code for 15S-lipoxygenase against eicosapentaenoic and arachidonic acids. Phylogenetic analysis showed that the liverwort lipoxygenase genes separated from the ancestor of higher plants in the early stages of plant evolution. Quantification analyses suggested that arachidonic acid and eicosapentaenoic acid were preferred substrates. Furthermore, each liverwort lipoxygenase exhibited highest activity at pH 7.0 and dependency on Ca(2+) ion in the oxygenation reaction.
Collapse
Affiliation(s)
- Hirosuke Kanamoto
- Laboratory of Plant Gene Technology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | | | | |
Collapse
|
28
|
Association analysis of formyl peptide receptor 2 (FPR2) polymorphisms and aspirin exacerbated respiratory diseases. J Hum Genet 2012; 57:247-53. [PMID: 22377711 DOI: 10.1038/jhg.2012.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aspirin-exacerbated respiratory diseases (AERD) are associated with the metabolism of arachidonic acid. FPR2 (formyl peptide receptor2) is a high-affinity ligand receptor for potent anti-inflammatory lipid metabolites: lipoxins. Thus, functional alterations of the FPR2 may contribute to AERD. We investigated the relationship between single-nucleotide polymorphisms (SNPs) in the FPR2 and AERD. Asthmatics were categorized into AERD <15% decreases in forced expiratory volume in one second (FEV(1)), and/or naso-ocular reactions after oral aspirin challenge (n=170) and aspirin-tolerant asthma (ATA, n=268). In all, 11 SNPs were genotyped. FPR2 protein expressions on CD14-positive monocytes in peripheral blood were measured using flow cytometric analysis. We performed RT-PCR of the FPR2 mRNA expressed by peripheral blood mononuclear cells. Logistic regression analysis showed that the minor allele frequency of FPR2 -4209T>G (rs1769490) in intron 2 was significantly lower in the AERD group (n=170) than in the ATA group (n=268) (P=0.006, P(corr)=0.04, recessive model). The decline of FEV(1) after aspirin challenge was significantly lower in the subjects with GG homozygotes of FPR2 -4209T>G than those with the other genotypes (P=0.0002). Asthmatic homozygotes for FPR2 -4209T>G minor allele exhibited significantly higher FPR2 protein expression in CD14-positive monocytes than did those with the common allele of FPR2 -4209T>G allele (P=0.01). There was no difference in the expression of the wild form and the exon 2 deleted variant form of FPR2 gene according to the genotypes of FPR2 -4209T>G. The minor allele at FPR2 -4209T>G may have a protective role against the development of AERD, via increase of FPR2 protein expression in inflammatory cells.
Collapse
|
29
|
Mittal A, Ranganath V, Nichani A. Omega fatty acids and resolution of inflammation: A new twist in an old tale. J Indian Soc Periodontol 2011; 14:3-7. [PMID: 20922071 PMCID: PMC2933521 DOI: 10.4103/0972-124x.65426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 02/02/2010] [Indexed: 12/02/2022] Open
Abstract
Identification of the factors that regulate immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Resolution of inflammation and the return of tissues to homeostasis protect us against excessive tissue injury and promote the restoration of function and structure. Resolution of inflammation, which was considered a passive event, is actually an active process where new families of endogenous lipid mediators from omega-3 polyunsaturated fatty acids play an important role in removing proinflammatory mediators generated from arachidonic acid. These chemical mediator families, termed Resolvins and Protectins, are potent stereoselective agonists that control the duration and magnitude of inflammation, along with the Lipoxins as signals in resolution. This review examines the mapping of these circuits and recent advances in our understanding of the biosynthesis and actions of these novel proresolving lipid mediators. A search in the electronical databases PubMed and the Cochrane Central Register of Controlled Trials was carried out. The search strategy applied was: “Omega fatty acid” AND “resolution of inflammation,” including articles from January 1,1985 to October 2009. This resulted in the identification of a total of 52 articles, which were analyzed in full text leading to consideration of only nine full texts.
Collapse
Affiliation(s)
- Antush Mittal
- Department of Periodontics, AECS Maruti College of Dental Sciences and Research Centre, Bangalore - 575 076, India
| | | | | |
Collapse
|
30
|
Gregory LG, Causton B, Murdoch JR, Mathie SA, O'Donnell V, Thomas CP, Priest FM, Quint DJ, Lloyd CM. Inhaled house dust mite induces pulmonary T helper 2 cytokine production. Clin Exp Allergy 2009; 39:1597-610. [PMID: 19545261 PMCID: PMC3385347 DOI: 10.1111/j.1365-2222.2009.03302.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Inhaled house dust mite (HDM) results in T-helper (TH) 2 type pathology in unsensitized mice, in conjunction with airway hyperreactivity and airway remodelling. However, the pulmonary cytokine and chemokine profile has not been reported. METHODS We have performed a time course analysis of the characteristic molecular mediators and cellular influx in the bronchoalveolar lavage (BAL) and lung in order to define the pulmonary inflammatory response to inhaled HDM extract. Mice were exposed five times a week to soluble HDM extract for 3 weeks. Lung function was measured in groups of mice at intervals following the final HDM challenge. Recruitment of inflammatory cells and inflammatory mediator production was then assessed in BAL and lungs of individual mice. RESULTS We found that Th2 cytokines were significantly increased in BAL and lung after HDM challenge from as early as 2 h post-final challenge. The levels of cytokines and chemokines correlated with the influx of eosinophils and Th2 cells to the different compartments of the lung. However, the production of key cytokines such as IL-4, IL-5 and IL-13 preceded the increase in airways resistance. CONCLUSION Inhaled HDM challenge induces a classical Th2 inflammatory mediator profile in the BAL and lung. These data are important for studies determining the efficacy of novel treatment strategies for allergic airways disease.
Collapse
Affiliation(s)
- L G Gregory
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Wang J, John EM, Ingles SA. 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer. Cancer Epidemiol Biomarkers Prev 2008; 17:2748-54. [PMID: 18843019 DOI: 10.1158/1055-9965.epi-08-0439] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The n-6 polyunsaturated fatty acid 5-lipoxygenase pathway has been shown to play a role in the carcinogenesis of breast cancer. We conducted a population-based case-control study among Latina, African-American, and White women from the San Francisco Bay area to examine the association of the 5-lipoxygenase gene (ALOX5) and 5-lipoxygenase-activating protein gene (ALOX5AP) with breast cancer risk. Three ALOX5AP polymorphisms [poly(A) microsatellite, -4900 A>G (rs4076128), and -3472 A>G (rs4073259)] and three ALOX5 polymorphisms [Sp1-binding site (-GGGCGG-) variable number of tandem repeat polymorphism, -1279 G>T (rs6593482), and 760 G>A (rs2228065)] were genotyped in 802 cases and 888 controls. We did not find significant main effects of ALOX5 and ALOX5AP genotypes on breast cancer risk that were consistent across race or ethnicity; however, there was a significant interaction between the ALOX5AP -4900 A>G polymorphism and dietary linoleic acid intake (P=0.03). Among women consuming a diet high in linoleic acid (top quartile of intake, >17.4 g/d), carrying the AA genotype was associated with higher breast cancer risk (age- and race-adjusted odds ratio, 1.8; 95% confidence interval, 1.2-2.9) compared with carrying genotypes AG or GG. Among women consuming <or=17.4 g/d of linoleic acid, ALOX5AP -4900 genotype was not associated with breast cancer risk (age- and race-adjusted odds ratio, 0.9; 95% confidence interval, 0.7-1.2). These results support a role for n-6 polyunsaturated fatty acids in breast carcinogenesis and suggest that epidemiologic studies on dietary fat and breast cancer should take into account genetic predisposition related to n-6 polyunsaturated fatty acid metabolism.
Collapse
Affiliation(s)
- Jun Wang
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
33
|
Abstract
It has become clear in recent years that periodontitis is an inflammatory disease initiated by oral microbial biofilm. This distinction implies that it is the host response to the biofilm that destroys the periodontium in the pathogenesis of the disease. As our understanding of pathways of inflammation has matured, a better understanding of the molecular basis of resolution of inflammation has emerged. Resolution of inflammation is an active, agonist-mediated, well-orchestrated return of tissue homeostasis. There is an important distinction between anti-inflammation and resolution; anti-inflammation is pharmacologic intervention in inflammatory pathways, whereas resolution is biologic pathways restoring homeostasis. A growing body of research suggests that chronic inflammatory periodontal disease involves a failure of resolution pathways to restore homeostasis. This article reviews the resolution of inflammation in the context of periodontal disease and the potential for the modification of resolution pathways for the prevention and treatment of periodontal diseases. Proof-of-concept studies in the 1980s demonstrated that pharmacologic anti-inflammation prevented and slowed the progression of periodontal diseases in animals and man. However, the side-effect profile of such therapies precluded the use of non-steroidal anti-inflammatory drugs or other enzyme inhibitors or receptor antagonists in periodontal therapy. The isolation and characterization of resolving agonist molecules has opened a new area of research using endogenous lipid mediators of resolution as potential therapeutic agents for the management of inflammatory periodontitis. Work in animal models of periodontitis has revealed the potential of this therapeutic approach for its prevention and treatment and forced the reconsideration of our understanding of the pathogenesis of human periodontal diseases.
Collapse
Affiliation(s)
- Thomas E Van Dyke
- Division of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, 100 E. Newton Street, Boston, MA 02118, USA.
| |
Collapse
|
34
|
Weinberger B, Quizon C, Vetrano AM, Archer F, Laskin JD, Laskin DL. Mechanisms mediating reduced responsiveness of neonatal neutrophils to lipoxin A4. Pediatr Res 2008; 64:393-8. [PMID: 18535486 PMCID: PMC2651411 DOI: 10.1203/pdr.0b013e318180e4af] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipoxin A4 is an eicosanoid that plays a key role in the resolution of neutrophilic inflammation. In these studies, we investigated the hypothesis that responses to lipoxin A4 are impaired in neonates, relative to adults. Lipoxin A4 was found to inhibit chemotaxis and respiratory burst in adult neutrophils. In contrast, it had no effect on these activities in neonatal neutrophils. In addition, while lipoxin A4 augmented apoptosis in LPS-treated adult neutrophils, apoptosis in neonatal cells was not affected by lipoxin A4 alone or in combination with LPS. The biologic actions of anti-inflammatory eicosanoids are mediated, in part, via the transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Expression of PPAR-gamma mRNA and its target gene, neutrophil gelatinase-associated lipocalin (NGAL), were significantly reduced in neonatal cells when compared with adult cells. Moreover, whereas treatment of adult neutrophils with lipoxin A4 increased PPAR-gamma expression, no effects were observed in neonatal cells. 5- and 15-lipoxygenase, enzymes required for the synthesis of lipoxin A4, were also reduced in neonatal neutrophils. These findings suggest that the anti-inflammatory activity of lipoxin A4 is impaired in neonatal neutrophils and that this is due, in part, to reduced PPAR-gamma signaling. This may contribute to diseases associated with chronic inflammation in neonates.
Collapse
Affiliation(s)
- Barry Weinberger
- Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.
| | | | | | | | | | | |
Collapse
|
35
|
O'Meara SJ, Rodgers K, Godson C. Lipoxins: update and impact of endogenous pro-resolution lipid mediators. Rev Physiol Biochem Pharmacol 2008; 160:47-70. [PMID: 18481030 DOI: 10.1007/112_2006_0606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoxins (LXs) are endogenously produced eicosanoids that are typically generated by transcellular biosynthesis. These trihydroxytetraene-containing lipid mediators and their stable synthetic analogues possess a wide spectrum of anti-inflammatory and pro-resolution bioactions both in vitro and in vivo. More recently, LXs have emerged as potential anti-fibrotic mediators that may influence pro-fibrotic cytokines and matrix-associated gene expression in response to platelet-derived growth factor (PDGF). Here we review the biosynthesis, metabolism and bioactions of LXs and LX analogues and their therapeutic potential.
Collapse
Affiliation(s)
- S J O'Meara
- UCD Conway Institute of Biomolecular and Biomedical Research and UCB Diabetes Research Center, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
36
|
Sakallioğlu EE, Lütfioğlu M, Sakallioğlu U, Diraman E, Keskiner I. Fluid dynamics of gingiva in diabetic and systemically healthy periodontitis patients. Arch Oral Biol 2008; 53:646-51. [PMID: 18281015 DOI: 10.1016/j.archoralbio.2007.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The influence of diabetes mellitus (DM) on the fluid dynamics of periodontium has not been reported in periodontal disease. The objectives of this study were (i) to investigate the alterations in the fluid dynamics of periodontium in diabetic periodontitis patients, and present the association of this phenomenon with the metabolic control of DM; (ii) to reveal any correlation between the fluid dynamics of periodontium and clinical signs of periodontal disease in DM and periodontitis. DESIGN Fifteen well-controlled diabetic chronic periodontitis patients (Group 1), 14 systemically healthy chronic periodontitis patients (Group 2), and 14 systemically and periodontally healthy individuals were included in the study. Gingival crevicular fluid volume (GCF-V) and gingival tissue osmotic pressure (GOP) were used as the parameters of periodontal fluid dynamics. GCF-V was measured by a Periotron device, while GOP was measured by a digital osmometer. Silness-Löe plaque index (PI), Löe-Silness gingival index (GI) and clinical attachment loss (AL) levels were recorded to determine the periodontal health status. RESULTS PI, GI and AL were higher in Groups 1 and 2 than in Group 3 (P<0.05), but similar between Groups 1 and 2 (P>0.05). Increased GCF-V and GOP were observed in Groups 1 and 2 compared with Group 3 (P<0.01), and the increase in Group 1 was greater than that in Group 2 (P<0.01). There were strong positive correlations between GCF-V and GOP in all three groups: between GI and GCF-V and GI and GOP in Groups 1 and 2; and between AL and GCF-V and AL and GOP in Groups 2 and 3. CONCLUSION The results suggest that (i) DM may have an additive influence on the fluid dynamics of periodontium in the presence of periodontal disease; (ii) this phenomenon may not be prevented by the metabolic control of DM; (iii) the clinical signs of periodontal disease may be affected by the fluid dynamics of periodontium in both DM and periodontitis.
Collapse
Affiliation(s)
- Elif Eser Sakallioğlu
- Department of Periodontology, Faculty of Dentistry, University of Ondokuz Mayis, Kurupelit, Samsun, Turkey.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Blood platelets, apart from their traditional and well-recognised function in haemostasis, play an essential and active role in allergic inflammation e.g. through their participation in cell recruitment from blood to site of immune reactivity as a result of direct interactions with leukocytes, and through the release of inflammatory mediators. Platelet activation may occur during human allergic reactions both systemically and locally at the site of allergic inflammation as a result of an IgE-dependent process and as a secondary event caused by other inflammatory or immune stimuli. Altered platelet function as measured by platelet secretion, expression of surface molecules, aggregation, adhesion or arachidonic acid metabolism has been found in patients suffering from allergic diseases. These blood elements have been implicated in the pathogenesis of allergic diseases associated with the so-called atopic diathesis. This paper reviews the platelet activity and reactivity in allergic inflammation, along with our own findings concerning platelet release reaction and the phenomenon of platelet aggregation in patients with different clinical forms of allergy.
Collapse
Affiliation(s)
- Alicja Kasperska-Zajac
- Clinical Department of Internal Diseases, Allergology and Clinical Immunology, Medical University of Silesia, Zabrze, Poland.
| | | |
Collapse
|
38
|
Celik GE, Erkekol FO, Misirligil Z, Melli M. Lipoxin A4 levels in asthma: relation with disease severity and aspirin sensitivity. Clin Exp Allergy 2007; 37:1494-501. [PMID: 17883729 DOI: 10.1111/j.1365-2222.2007.02806.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Lipoxin (LX) A4, an endogenous anti-inflammatory eicosanoid, has been found to be low in patients with severe asthma. However, few studies also suggested more diminished LX A4 levels in aspirin-exacerbated respiratory disease (AERD) when compared with aspirin-tolerant asthma (ATA). It is, therefore, currently not clear whether the asthma severity or the presence of AERD has a primary role in the disturbed LX metabolism. OBJECTIVE To detect LX A4 and 15-epi-LX A4 levels in asthma patients with and without AERD of comparable severity. METHODS The study groups consisted of 22 subjects with AERD, 22 subjects with ATA and 10 volunteers without asthma and aspirin sensitivity. Whole-blood samples were stimulated with calcium ionophore, A23187 (5 x 10(-5) m) and A23187 (5 x 10(-5) m)+aspirin (10(-4) m). LX A4 and 15-epi-LX A4 levels were analysed by the enzyme immune assay method. RESULTS Severe asthma patients in both AERD [0.5 (0.8)] ng/mL and ATA [0.5 (0.45) ng/mL] groups showed diminished generation for LX A4 to stimulation with A23187 in comparison with other severity degrees in their groups (P=0.02 and 0.046, respectively). LX A4 generation in both severe groups was comparable with each other (P>0.05). Although severe cases with AERD showed a diminished capacity to generate 15-epi-LX A4, this did not reach statistical significance. CONCLUSION This study indicated that diminished LX A4 generation was unique to severe asthma phenotype regardless of comorbid aspirin sensitivity. Clinical Implications Lower LX A4 levels in severe asthma would suggest a possibility for LX analogues as future treatment options in these patients.
Collapse
Affiliation(s)
- G E Celik
- Department of Chest Diseases, Division of Allergy, Ankara University School of Medicine, Ankara, Turkey.
| | | | | | | |
Collapse
|
39
|
Zhang L, Wan J, Li H, Wu P, Jin S, Zhou X, Yuan P, Xiong W, Li Y, Ye D. Protective effects of BML-111, a lipoxin A(4) receptor agonist, on carbon tetrachloride-induced liver injury in mice. Hepatol Res 2007; 37:948-56. [PMID: 17610505 DOI: 10.1111/j.1872-034x.2007.00154.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lipoxins (LX) are trihydroxytetraene-containing eicosanoids that display unique anti-inflammatory and pro-resolving actions during various inflammatory conditions, but the pathophysiological significance of LX in liver disorders remains unknown. METHODS In the present study, we used a murine model of carbon tetrachloride (CCl(4))-induced acute liver injury to investigate the effects of LX on the progression of acute liver injury. RESULTS The results indicated that the lipoxin A(4) receptor (ALX) was upregulated after giving CCl(4). BML-111, a commercially available ALX agonist, effectively protected the liver from CCl(4)-induced injury as evidenced by decreased serum aminotransferase (ALT, AST) levels and improved histological damage. The dampened liver injury was accompanied byreduced malondialdehyde (MDA) content in liver homogenates and decreased concentration of tumor necrosis factor-alpha (TNF-alpha) in the serum. Most interestingly, BML-111 markedly upregulated hepatic heme oxygenase-1 (HO-1) expression in CCl(4)-treated mice, which might provide antioxidative activities in the liver. CONCLUSION These data indicate that ALX agonist BML-111 plays a critical protective role in CCl(4)-induced acute liver injury through limiting the inflammatory response and promoting antioxidative protein expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Weinberger B, Vetrano AM, Syed K, Murthy S, Hanna N, Laskin JD, Laskin DL. Influence of labor on neonatal neutrophil apoptosis, and inflammatory activity. Pediatr Res 2007; 61:572-7. [PMID: 17413861 DOI: 10.1203/pdr.0b013e318045be38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neutrophil apoptosis is impaired in neonates, and this contributes to prolonged inflammation and tissue injury in infants after infection or trauma. In the present studies, we investigated whether labor generates mediators that further suppress apoptosis. We found that neutrophil apoptosis was reduced in neonates exposed to labor, when compared with infants delivered by cesarean section before labor. This was not due to alterations in caspase-3 or inhibitor of apoptosis protein-2 (IAP-2). In contrast, labor primed neutrophils to express tumor necrosis factor alpha (TNF-alpha), suggesting that proinflammatory mediators contribute to reduced apoptosis after labor. Eicosanoids generated via cyclooxygenase-2 (Cox-2) and lipoxygenase (Lox) also regulate neutrophil apoptosis. 15-Lox, which generates proapoptotic lipoxins, but not Cox-2, was greater in neutrophils before labor, relative to cells exposed to labor. Anti-inflammatory eicosanoids exert their effects in part via peroxisome proliferator-activated receptor gamma (PPAR-gamma). Expression of gelatinase-associated lipocalin and catalase, two markers of PPAR-gamma activity, were increased in neonatal neutrophils before labor, relative to cells exposed to labor. These findings suggest that the anti-inflammatory environment is maintained before labor, in part, by eicosanoids. Although increased neutrophil longevity after labor is important for host defense in the immediate newborn period, it may contribute to inflammatory or oxidative injury in susceptible infants.
Collapse
Affiliation(s)
- Barry Weinberger
- Department of Pediatrics/Neonatology, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Neuroinflammation is a host defense mechanism associated with neutralization of an insult and restoration of normal structure and function of brain. Neuroinflammation is a hallmark of all major CNS diseases. The main mediators of neuroinflammation are microglial cells. These cells are activated during a CNS injury. Microglial cells initiate a rapid response that involves cell migration, proliferation, release of cytokines/chemokines and trophic and/or toxic effects. Cytokines/chemokines stimulate phospholipases A2 and cyclooxygenases. This results in breakdown of membrane glycerophospholipids with the release of arachidonic acid (AA) and docosahexaenoic acid (DHA). Oxidation of AA produces pro-inflammatory prostaglandins, leukotrienes, and thromboxanes. One of the lyso-glycerophospholipids, the other products of reactions catalyzed by phospholipase A2, is used for the synthesis of pro-inflammatory platelet-activating factor. These pro-inflammatory mediators intensify neuroinflammation. Lipoxin, an oxidized product of AA through 5-lipoxygenase, is involved in the resolution of inflammation and is anti-inflammatory. Docosahexaenoic acid is metabolized to resolvins and neuroprotectins. These lipid mediators inhibit the generation of prostaglandins, leukotrienes, and thromboxanes. Levels of prostaglandins, leukotrienes, and thromboxanes are markedly increased in acute neural trauma and neurodegenerative diseases. Docosahexaenoic acid and its lipid mediators prevent neuroinflammation by inhibiting transcription factor NFkappaB, preventing cytokine secretion, blocking the synthesis of prostaglandins, leukotrienes, and thromboxanes, and modulating leukocyte trafficking. Depending on its timing and magnitude in brain tissue, inflammation serves multiple purposes. It is involved in the protection of uninjured neurons and removal of degenerating neuronal debris and also in assisting repair and recovery processes. The dietary ratio of AA to DHA may affect neurodegeneration associated with acute neural trauma and neurodegenerative diseases. The dietary intake of docosahexaenoic acid offers the possibility of counter-balancing the harmful effects of high levels of AA-derived pro-inflammatory lipid mediators.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
42
|
Kantarci A, Hasturk H, Van Dyke TE. Host-mediated resolution of inflammation in periodontal diseases. Periodontol 2000 2006; 40:144-63. [PMID: 16398691 DOI: 10.1111/j.1600-0757.2005.00145.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alpdogan Kantarci
- Department of Peridontics and Oral Biology, Boston University, Massachusetts, USA
| | | | | |
Collapse
|
43
|
Abstract
Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have impacts on the periodontium, and reciprocal effects of periodontal diseases are being considered as factors potentially affecting the progression of these diseases. Successful management of the inflammatory disorders in the human body depends on the identification of common pathways that would lead to a better understanding of the disease processes and development of novel treatment strategies. In this review, our objective is to identify the inflammatory basis of periodontal disease and common inflammatory mechanisms underlying several disorders elsewhere in the body, with an emphasis on how the potential extrinsic and intrinsic control methods could be used to prevent or treat the harmful effects linked to inflammation.
Collapse
Affiliation(s)
- Alpdogan Kantarci
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| | - Thomas E. Van Dyke
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| |
Collapse
|
44
|
Kannan S. Therapeutic significance of aspirin mediated lipoxin biosynthesis in attenuation of chronic inflammation. Med Hypotheses 2006; 66:442. [PMID: 16188395 DOI: 10.1016/j.mehy.2005.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 08/03/2005] [Accepted: 08/15/2005] [Indexed: 11/21/2022]
|
45
|
Abstract
OBJECTIVE To review the biological mechanisms and clinical utility of therapeutic modulation of the host response in the management of periodontal diseases. MATERIAL AND METHODS A search of MEDLINE-PubMed was performed up to and including December 2004. The search was limited to in vitro, experimental animal and clinical studies published in English. The selection criteria included all levels of available evidence: systematic reviews, randomised-controlled clinical trials, controlled clinical trials, prospective and retrospective cohort studies and case reports of human and experimental animal studies. RESULTS Six targets for non-microbial chemotherapeutic intervention were identified. Clinical trials have demonstrated the ability of non-steroidal anti-inflammatory drugs to slow periodontal disease progression. However, recently reported serious adverse effects preclude the use of cyclooxygenase-2 inhibitors as an adjunct to periodontal therapy. Adjunctive use of subantimicrobial dose doxycycline to non-surgical periodontal therapy is beneficial in the management of chronic periodontitis over 12 months. Controversial data exist on the effects of bisphosphonate administration as an adjunct to periodontal therapy. Evidence on modulation of other host mediators including lipoxins, cytokines and nitric oxide synthase is limited to animal research. CONCLUSION After validation in long-term clinical trials, adjunctive host modulation therapy may prove advantageous in the management of periodontal diseases.
Collapse
Affiliation(s)
- Giovanni E Salvi
- University of Berne, School of Dental Medicine, Berne, Switzerland.
| | | |
Collapse
|
46
|
Petasis NA, Akritopoulou-Zanze I, Fokin VV, Bernasconi G, Keledjian R, Yang R, Uddin J, Nagulapalli KC, Serhan CN. Design, synthesis and bioactions of novel stable mimetics of lipoxins and aspirin-triggered lipoxins. Prostaglandins Leukot Essent Fatty Acids 2005; 73:301-21. [PMID: 16098719 DOI: 10.1016/j.plefa.2005.05.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lipoxins (LX) are a class of potent endogenous oxygenated products that are enzymatically generated from arachidonic acid and have novel anti-inflammatory properties and promote resolution. Elucidation of the biochemical pathways involved in the metabolic inactivation of LX and the discovery of the aspirin-triggered lipoxins (ATL) provided the basis for the design and synthesis of stable analogs of LX and ATL. This special issue review describes the efforts that led to the design and synthesis of stable LX/ATL mimetics, which permitted the detailed elucidation of their novel biological roles, leading to the development of new anti-inflammatory agents that mimic their actions. These synthetic molecules provided the means to uncover the physiologic roles of both the LX and the ATL biosynthetic pathways which led to several unexpected discoveries. Among these findings is the involvement of polyisoprenyl phosphates (PIPP) in intracellular signaling mediated by presqualene diphosphate (PSDP), and the recognition of the novel roles of these lipid mediators in regulating cell trafficking during inflammation as well as in promoting resolution of inflammatory processes. These efforts also provided the basis for examining the potential therapeutic role of LX/ATL stable mimetics and led to the development of new analogs with improved pharmacokinetics that opened the way to potentially new approaches to treating human diseases.
Collapse
Affiliation(s)
- Nicos A Petasis
- Department of Chemistry and the Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kantarci A, Van Dyke TE. Lipoxin signaling in neutrophils and their role in periodontal disease. Prostaglandins Leukot Essent Fatty Acids 2005; 73:289-99. [PMID: 15979867 DOI: 10.1016/j.plefa.2005.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endogenous molecules involved in counterregulation of inflammatory responses provide an opportunity to explore new therapeutic approaches based on manipulation of new pathways that may reduce the possibility of unwanted toxic side effects. Lipoxins (LX) are trihydroxytetraene-containing eicosanoids that are generated within the vascular lumen during cell-cell interactions or at mucosa through leukocyte-epithelial cell interactions. Transcellular biosynthetic pathways are the major lipoxin biosynthetic routes where LX are formed in vivo during inflammation and serve as "stop signals" that regulate key steps in leukocyte trafficking. In this review, recent findings in lipoxin generation, impact on the resolution of acute inflammation, and organ protection from neutrophil-mediated injury are presented. Periodontitis, specifically localized aggressive periodontitis, which is recognized as an example of neutrophil-mediated tissue injury, is discussed as a disease model where LX and other endogenous pro-resolution pathway mediators could have potential value.
Collapse
Affiliation(s)
- Alpdogan Kantarci
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, 100 East Newton Street, G-05, Boston, MA 02118, USA
| | | |
Collapse
|
48
|
Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 2005; 73:141-62. [PMID: 16005201 DOI: 10.1016/j.plefa.2005.05.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoxins (LXs) or the lipoxygenase interaction products are generated from arachidonic acid via sequential actions of lipoxygenases and subsequent reactions to give specific trihydroxytetraene-containing eicosanoids. These unique structures are formed during cell-cell interactions and appear to act at both temporal and spatially distinct sites from other eicosanoids produced during the course of inflammatory responses and to stimulate natural resolution. Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are positional isomers that each possesses potent cellular and in vivo actions. These LX structures are conserved across species. The results of numerous studies reviewed in this work now confirm that they are the first recognized eicosanoid chemical mediators that display both potent anti-inflammatory and pro-resolving actions in vivo in disease models that include rabbit, rat, and mouse systems. LXs act at specific GPCRs as agonists to regulate cellular responses of interest in inflammation and resolution. Aspirin has a direct impact in the LX circuit by triggering the biosynthesis of endogenous epimers of LX, termed the aspirin-triggered 15-epi-LX, that share the potent anti-inflammatory actions of LX. Stable analogs of LXA4, LXB4, and aspirin-triggered lipoxin were prepared, and several of these display potent actions in vitro and in vivo. The results reviewed herein implicate a role of LX and their analogs in many common human diseases including airway inflammation, asthma, arthritis, cardiovascular disorders, gastrointestinal disease, periodontal disease, kidney diseases and graft-vs.-host disease, as well as others where uncontrolled inflammation plays a key role in disease pathogenesis. Hence, the LX pathways and mechanisms reviewed to date in this work provide a basis for new approaches to treatment of many common human diseases that involve inflammation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Pérez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert C. Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J Allergy Clin Immunol 2005; 115:1189-96. [PMID: 15940133 DOI: 10.1016/j.jaci.2005.02.029] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Upper airway diseases and especially the aspirin hypersensitivity syndrome have been linked to changes in the arachidonic acid cascade; however, the specificity of these changes and their relation to inflammatory reactions in these diseases still remain controversial. OBJECTIVE We aimed to study the tissue eicosanoid production in 3 subgroups of patients with chronic rhinosinusitis (CRS) and control subjects and to correlate it with the severity of inflammation and clinical manifestation of aspirin sensitivity. METHODS Samples were prepared from sinonasal tissue of patients with CRS with (CRS-NP group, n = 13) and without nasal polyposis (CRS group, n = 11), sinonasal tissue of patients with nasal polyposis and aspirin sensitivity (CRS-ASNP group, n = 13), and normal nasal mucosa from healthy subjects (NM group, n = 8). Real-time PCR was applied for mRNA quantification of COX-2, 5-lipoxygenase, leukotriene C 4 synthase, and 15-lipoxygenase. Enzyme immunoassays were used to measure IL-5, eosinophil cationic protein, and eicosanoid (leukotriene [LT] C 4 , LTD 4 , and LTE 4 ; lipoxin A 4 ; and prostaglandin E 2 [PGE 2 ]) concentrations. RESULTS COX-2 mRNA and PGE 2 concentrations were similar in the CRS and NM groups but significantly decreased in nasal polyp tissue, especially in the CRS-ASNP group. LTC 4 synthase, 5-lipoxygenase mRNA, LTC 4 , LTD 4 , and LTE 4 concentrations increased with disease severity among the patient groups. 15-Lipoxygenase and lipoxin A 4 concentrations were increased in all CRS groups compared with in the NM group but were significantly downregulated in the CRS-ASNP group when compared with the CRS-NP group. IL-5 and eosinophil cationic protein were increased in both groups of nasal polyp tissue compared with in the NM and CRS groups and correlated directly with LTC 4 , LTD 4 , and LTE 4 concentrations and inversely with PGE 2 concentrations. CONCLUSION Changes of tissue eicosanoid metabolism do occur in CRS, even in the absence of clinical aspirin sensitivity, and these changes appear to be related to the severity of eosinophilic inflammation.
Collapse
Affiliation(s)
- Claudina Angela Pérez-Novo
- Upper Airways Research Laboratory, Department of Otorhinolarynogy, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The p53 tumor suppressor protein plays a pivotal role in integrating various DNA damage response pathways and has been shown to be mutated in a variety of human cancers. In an effort to study the effects of a mutant p53 protein in a mouse model we generated a p53 targeting vector with a mutation in codon 245, equivalent to the mutational hot spot (codon 248) in humans. However, due to an aberrant gene targeting event in ES cells, we developed a p53 mutant mouse model that expressed a truncated p53 transcript that lacked the first six exons while retaining the intended mutation in exon 7. This mouse model was shown to exhibit serendipitous phenotypes that resembled premature aging as well as increased resistance to spontaneous tumors. Based on the genetic and molecular information available at that time, we hypothesized that the truncated p53 allele (m-allele) and its effect on wt p53 activity might be responsible for the observed phenotypes. However, the availability of the mouse genome data has allowed us to further characterize the genetic deletion present in the p53+/m mouse model. Our analyses indicate that there are 24 genes (including the p53 truncation) deleted in the p53+/m mouse model. These results suggest that the p53 tumor suppressor protein may not be solely responsible for the various phenotypes exhibited by p53+/m mouse model [corrected]
Collapse
Affiliation(s)
- Amanda Gentry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|