1
|
Ding S, Li J, Fang Y, Zhuo X, Gu L, Zhang X, Yang Y, Wei M, Liao Z, Li Q. Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:35-45. [PMID: 39277139 DOI: 10.1016/j.pbiomolbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
Collapse
Affiliation(s)
- Shuxian Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Xingjie Zhuo
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuanxiao Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Wei
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Zhongcai Liao
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China.
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Alashram AR. Effects of robotic therapy associated with noninvasive brain stimulation on motor function in individuals with incomplete spinal cord injury: A systematic review of randomized controlled trials. J Spinal Cord Med 2024:1-16. [PMID: 38265422 DOI: 10.1080/10790268.2024.2304921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
CONTEXT Motor deficits are among the most common consequences of incomplete spinal cord injury (SCI). These impairments can affect patients' levels of functioning and quality of life. Combined robotic therapy and non-invasive brain stimulation (NIBS) have been used to improve motor impairments in patients with corticospinal tract lesions. OBJECTIVES To examine the effects of combined robotic therapy and NIBS on motor function post incomplete SCI. METHODS PubMed, SCOPUS, MEDLINE, PEDro, Web of Science, REHABDATA, CINAHL, and EMBASE were searched from inception until July 2023. The Physiotherapy Evidence Database (PEDro) scale was employed to evaluate the selected studies quality. RESULTS Of 557 studies, five randomized trials (n = 122), with 25% of participants being females, were included in this review. The PEDro scores ranged from eight to nine, with a median score of nine. There were variations in treatment protocols and outcome measures, resulting in heterogeneous findings. The findings showed revealed evidence for the impacts of combined robotic therapy and NIBS on motor function in individuals with incomplete SCI. CONCLUSIONS Combined robotic training and NIBS may be safe for individuals with incomplete SCI. The existing evidence concerning its effects on motor outcomes in individuals with SCI is limited. Further experimental studies are needed to understand the effects of combined robotic training and NIBS on motor impairments in SCI populations.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
3
|
Stulberg EL, Sachdev PS, Murray AM, Cramer SC, Sorond FA, Lakshminarayan K, Sabayan B. Post-Stroke Brain Health Monitoring and Optimization: A Narrative Review. J Clin Med 2023; 12:7413. [PMID: 38068464 PMCID: PMC10706919 DOI: 10.3390/jcm12237413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Significant advancements have been made in recent years in the acute treatment and secondary prevention of stroke. However, a large proportion of stroke survivors will go on to have enduring physical, cognitive, and psychological disabilities from suboptimal post-stroke brain health. Impaired brain health following stroke thus warrants increased attention from clinicians and researchers alike. In this narrative review based on an open timeframe search of the PubMed, Scopus, and Web of Science databases, we define post-stroke brain health and appraise the body of research focused on modifiable vascular, lifestyle, and psychosocial factors for optimizing post-stroke brain health. In addition, we make clinical recommendations for the monitoring and management of post-stroke brain health at major post-stroke transition points centered on four key intertwined domains: cognition, psychosocial health, physical functioning, and global vascular health. Finally, we discuss potential future work in the field of post-stroke brain health, including the use of remote monitoring and interventions, neuromodulation, multi-morbidity interventions, enriched environments, and the need to address inequities in post-stroke brain health. As post-stroke brain health is a relatively new, rapidly evolving, and broad clinical and research field, this narrative review aims to identify and summarize the evidence base to help clinicians and researchers tailor their own approach to integrating post-stroke brain health into their practices.
Collapse
Affiliation(s)
- Eric L. Stulberg
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, NSW 2052, Australia;
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anne M. Murray
- Berman Center for Outcomes and Clinical Research, Minneapolis, MN 55415, USA;
- Department of Medicine, Geriatrics Division, Hennepin Healthcare Research Institute, Minneapolis, MN 55404, USA
| | - Steven C. Cramer
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- California Rehabilitation Institute, Los Angeles, CA 90067, USA
| | - Farzaneh A. Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Kamakshi Lakshminarayan
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Behnam Sabayan
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Neurology, Hennepin Healthcare Research Institute, Minneapolis, MN 55404, USA
| |
Collapse
|
4
|
Chiang JK, Lin YC, Kao YH. Oscillation of Sympathetic Activity in Patients with Obstructive Sleep Apnea during the First Hour of Sleep. Healthcare (Basel) 2023; 11:2701. [PMID: 37830738 PMCID: PMC10572314 DOI: 10.3390/healthcare11192701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
(1) Background: Snoring is a cardinal symptom of obstructive sleep apnea (OSA) and has been suggested to potentially increase sympathetic activity. On the other hand, sleep itself usually leads to a decrease in sympathetic activity. Heart rate variability (HRV) analysis is a non-invasive technique used to assess autonomic nervous system function. However, there is limited research on the combined impact of sleep and snoring on sympathetic activity in individuals with OSA, particularly during the first hour of sleep (non-rapid eye movement sleep). The current study aims to investigate the net effect of sleep and snoring on sympathetic activity and explore factors that might contribute to increased sympathetic activity in individuals with OSA during the first hour of sleep. (2) Methods: The participants were referred from the outpatient department for OSA diagnosis and underwent whole-night polysomnography (PSG). Electrocardiogram (EKG) data from the PSG were downloaded for HRV analysis. HRV measurements were conducted in both the time and frequency domain, including the root mean square of successive differences between normal heartbeats (RMSSD) and the ratio of the absolute power of the low-frequency (LF) band (0.04-0.15 Hz) to the absolute power of the high-frequency (HF) band (0.15-0.4 Hz) (LF/HF ratio), respectively. (3) Results: A total of 45 participants (38 men and 7 women) were included in the analysis. The RMSSD gradually increased from 0-5 min to 50-60 min (p = 0.024), while the LF/HF ratio decreased (p < 0.001) during the first hour of sleep (non-rapid eye movement sleep). The LF/HF ratios of the "S" (snoring) episodes were compared with those of the pre-S episodes. An elevated LF/HF ratio during the S episode was associated with the first snoring episode occurring more than 20 min after lying down to sleep (Odds ratio, OR = 10.9, p = 0.004) and with patients diagnosed with severe OSA (OR = 5.01, p = 0.045), as determined by logistic regression. (4) Conclusions: The study observed an increase in the value of RMSSD and a decrease in the value of the LF/HF ratio during the first hour of sleep for patients with OSA. Higher LF/HF ratios were associated with the first occurrence of snoring while lying down for more than 20 min and with patients with severe OSA.
Collapse
Affiliation(s)
- Jui-Kun Chiang
- Department of Family Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi 622, Taiwan;
| | - Yen-Chang Lin
- Nature Dental Clinic, Puli Township, Nantou 404, Taiwan;
| | - Yee-Hsin Kao
- Department of Family Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), 670 Chung-Te Road, Tainan 701, Taiwan
| |
Collapse
|
5
|
Chen R, Zhang Y, Wang X, Zhao Y, Fan S, Xue Y, Zhao J, Liu Y, Wang P. Treatment effects of low-frequency repetitive transcranial magnetic stimulation combined with motor relearning procedure on spasticity and limb motor function in stroke patients. Front Neurol 2023; 14:1213624. [PMID: 37638202 PMCID: PMC10456998 DOI: 10.3389/fneur.2023.1213624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Limb paralysis, which is a sequela of stroke, limits patients' activities of daily living and lowers their quality of life. The purpose of this study was to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) combined with a motor relearning procedure (MRP) on motor function and limb spasticity in stroke patients. Methods Stroke patients were randomly divided into a combined treatment group (rTMS + MRP) and a control group (MRP) (n = 30 per group). The control group was given MRP in addition to conventional rehabilitation, and the combined treatment group was given 1 Hz rTMS combined with MRP. The treatment efficacy was assessed by the modified Ashworth scale (MAS), Fugl-Meyer motor function scale, and motor evoked potential (MEP) testing. Results After 4 weeks of treatment, the Brunnstrom score, Fugl-Meyer lower extremity motor function, and Fugl-Meyer balance function were significantly higher in the combination treatment group compared to the control group, while the MAS score was lower in the combination treatment group compared to the control group. The MEP extraction rate was higher in the combined treatment group compared to the control group, while the threshold and central motor conduction time (CMCT) were lower in the combined treatment group compared to the control group. Conclusion Low-frequency rTMS combined with MRP had better efficacy on spasticity and motor function in stroke patients with hemiparesis than MRP alone.
Collapse
Affiliation(s)
- Ruijun Chen
- Department of Rehabilitation, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Traditional Chinese Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocheng Wang
- Department of Medical Record and Statistics, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yunfei Zhao
- College of Sports Rehabilitation, Shanxi Medical University, Jinzhong, China
| | - Shasha Fan
- Department of Rehabilitation, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanping Xue
- Department of Rehabilitation, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Medical Record Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Medical Record Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinlian Liu
- Department of Rehabilitation, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingzhi Wang
- Department of Rehabilitation, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
7
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
8
|
Champagne PL, Blanchette AK, Schneider C. Continuous, and not intermittent, theta-burst stimulation of the unlesioned hemisphere improved brain and hand function in chronic stroke: A case study. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
9
|
Kuwahara W, Sasaki S, Yamamoto R, Kawakami M, Kaneko F. The effects of robot-assisted gait training combined with non-invasive brain stimulation on lower limb function in patients with stroke and spinal cord injury: A systematic review and meta-analysis. Front Hum Neurosci 2022; 16:969036. [PMID: 36051968 PMCID: PMC9426300 DOI: 10.3389/fnhum.2022.969036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: This study aimed to investigate the effect of robot-assisted gait training (RAGT) therapy combined with non-invasive brain stimulation (NIBS) on lower limb function in patients with stroke and spinal cord injury (SCI). Data sources PubMed, Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Web of Science were searched. Study selection Randomized controlled trials (RCTs) published as of 3 March 2021. RCTs evaluating RAGT combined with NIBS, such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), for lower limb function (e.g., Fugl-Meyer assessment for patients with stroke) and activities (i.e., gait velocity) in patients with stroke and SCI were included. Data extraction Two reviewers independently screened the records, extracted the data, and assessed the risk of bias. Data synthesis A meta-analysis of five studies (104 participants) and risk of bias were conducted. Pooled estimates demonstrated that RAGT combined with NIBS significantly improved lower limb function [standardized mean difference (SMD) = 0.52; 95% confidence interval (CI) = 0.06–0.99] but not lower limb activities (SMD = −0.13; 95% CI = −0.63–0.38). Subgroup analyses also failed to find a greater improvement in lower limb function of RAGT with tDCS compared to sham stimulation. No significant differences between participant characteristics or types of NIBS were observed. Conclusion This meta-analysis demonstrated that RAGT therapy in combination with NIBS was effective in patients with stroke and SCI. However, a greater improvement in lower limb function and activities were not observed using RAGT with tDCS compared to sham stimulation.
Collapse
Affiliation(s)
- Wataru Kuwahara
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shun Sasaki
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rieko Yamamoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Artificial Environment, Safety, Environment and System Engineering, Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- *Correspondence: Fuminari Kaneko
| |
Collapse
|
10
|
The Relation between Induced Electric Field and TMS-Evoked Potentials: A Deep TMS-EEG Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) in humans induces electric fields (E-fields, EF) that perturb and modulate the brain’s endogenous neuronal activity and result in the generation of TMS-evoked potentials (TEPs). The exact relation of the characteristics of the induced E-field and the intensity of the brains’ response, as measured by electroencephalography (EEG), is presently unclear. In this pilot study, conducted on three healthy subjects and two patients with generalized epilepsy (total: 3 males, 2 females, mean age of 26 years; healthy: 2 males, 1 female, mean age of 25.7 years; patients: 1 male, 1 female, mean age of 26.5 years), we investigated the temporal and spatial relations of the E-field, induced by single-pulse stimuli, and the brain’s response to TMS. Brain stimulation was performed with a deep TMS device (BrainsWay Ltd., Jerusalem, Israel) and an H7 coil placed over the central area. The induced EF was computed on personalized anatomical models of the subjects through magneto quasi-static simulations. We identified specific time instances and brain regions that exhibit high positive or negative associations of the E-field with brain activity. In addition, we identified significant correlations of the brain’s response intensity with the strength of the induced E-field and finally prove that TEPs are better correlated with E-field characteristics than with the stimulator’s output. These observations provide further insight in the relation between E-field and the ensuing cortical activation, validate in a clinically relevant manner the results of E-field modeling and reinforce the view that personalized approaches should be adopted in the field of non-invasive brain stimulation.
Collapse
|
11
|
Wong PL, Yang YR, Tang SC, Huang SF, Wang RY. Comparing different montages of transcranial direct current stimulation on dual-task walking and cortical activity in chronic stroke: double-blinded randomized controlled trial. BMC Neurol 2022; 22:119. [PMID: 35337288 PMCID: PMC8951706 DOI: 10.1186/s12883-022-02644-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation to modulate cortical activity for improving motor function. However, the different tDCS applications for modulating cortical activity and dual task gait performance in chronic stroke have not yet been investigated. This study investigated the effects of different tDCS applications on dual task gait performance and contralesional M1 activation in chronic stroke. METHODS Forty-eight participants were randomized to anodal, bilateral, cathodal, and sham tDCS groups. Each group received 20 min of tDCS stimulation, except the sham group. Gait performance was measured by GaitRite system during cognitive dual task (CDT) walking, motor dual task (MDT) walking, and single walking (SW). Contralesional M1 activity of unaffected tibialis anterior (TA) was measured using transcranial magnetic stimulation (TMS). Intragroup difference was analyzed by Wilconxon sign ranks test with Bonferroni correction, and Kruskal-Wallis one-way analysis of variance by ranks was used for intergroup comparisons, followed by post-hoc Mann-Whitney U tests with Bonferroni correction. RESULTS The bilateral tDCS (p = 0.017) and cathodal tDCS (p = 0.010) improved the CDT walking speed more than sham group. The bilateral tDCS (p = 0.048) and cathodal tDCS (p = 0.048) also improved the MDT walking speed more than sham group. Furthermore, bilateral tDCS (p = 0.012) and cathodal tDCS (p = 0.040) increased the silent period (SP) more than the anodal and sham group. Thus, one-session of bilateral and cathodal tDCS improved dual task walking performance paralleled with increasing contralesional corticomotor inhibition in chronic stroke. CONCLUSIONS Our results indicate that one-session of bilateral and cathodal tDCS increased contralesional corticomotor inhibition and improved dual task gait performance in chronic stroke. TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR20180116001). Registered prospectively on 16th Jan, 2018 at http://www.thaiclinicaltrials.org .
Collapse
Affiliation(s)
- Pei-Ling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shun-Chang Tang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shi-Fong Huang
- Division of Nerve Repair- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
12
|
EEG as a marker of brain plasticity in clinical applications. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:91-104. [PMID: 35034760 DOI: 10.1016/b978-0-12-819410-2.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neural networks are dynamic, and the brain has the capacity to reorganize itself. This capacity is named neuroplasticity and is fundamental for many processes ranging from learning and adaptation to new environments to the response to brain injuries. Measures of brain plasticity involve several techniques, including neuroimaging and neurophysiology. Electroencephalography, often used together with other techniques, is a common tool for prognostic and diagnostic purposes, and cortical reorganization is reflected by EEG measurements. Changes of power bands in different cortical areas occur with fatigue and in response to training stimuli leading to learning processes. Sleep has a fundamental role in brain plasticity, restoring EEG bands alterations and promoting consolidation of learning. Exercise and physical inactivity have been extensively studied as both strongly impact brain plasticity. Indeed, EEG studies showed the importance of the physical activity to promote learning and the effects of inactivity or microgravity on cortical reorganization to cope with absent or altered sensorimotor stimuli. Finally, this chapter will describe some of the EEG changes as markers of neural plasticity in neurologic conditions, focusing on cerebrovascular and neurodegenerative diseases. In conclusion, neuroplasticity is the fundamental mechanism necessary to ensure adaptation to new stimuli and situations, as part of the dynamicity of life.
Collapse
|
13
|
Pastore-Wapp M, Lehnick D, Nef T, Bohlhalter S, Vanbellingen T. Combining Repetitive Transcranial Magnetic Stimulation and Video Game-Based Training to Improve Dexterity in Parkinson's Disease: Study Protocol of a Randomized Controlled Trial. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:777981. [PMID: 36188867 PMCID: PMC9397672 DOI: 10.3389/fresc.2021.777981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Introduction: Patients with Parkinson's disease (PD) often exhibit difficulties with dexterity during the performance of activities of daily living (ADL) due to dysfunctional supplementary motor area (SMA). The aim of this clinical trial protocol work is to describe how the effectiveness of a combined repetitive transcranial magnetic stimulation (rTMS) over SMA and video-game-based skill training (VBT) in PD will be evaluated. The short and long-term benefits are assessed. Methods and analysis: A single-blind (patients) stratified (based on Hoehn & Yahr) parallel randomized sham-controlled rTMS-VBT study with a baseline and two follow-up measurements (3 and 12 weeks) is being conducted. These measurements include the dexterity questionnaire 24 (DextQ-24) as a primary outcome, and nine hole peg test and coin rotation task as main secondary dexterity outcomes. Further secondary outcomes will be the subscale II of the movement disorders society unified PD rating scale (MDS-UPDRS) to assess improvements on overall ADL and the Parkinson's Disease Questionnaire-39 to assess quality of life. Thirty-six outpatients (from one neurorehabilitation center) with PD (diagnosis based on brain bank criteria) will be recruited who report difficulties with dexterity in performing ADL. All PD patients will receive a 45-min VBT three times a week for 3 weeks. The PD patients randomized in the experimental group will receive VBT preceded by real rTMS, being intermittent theta burst (iTBS) stimulation sessions. The PD patients randomized to the control group receive a VBT with sham rTMS. Discussion: The study will provide evidence to determine whether a combined iTBS and VBT skill intervention is more effective than a VBT intervention alone to improve dexterity in PD. Ethics and dissemination: The study was approved by the Ethics Committee for Northwest and Central Switzerland (EKNZ), Switzerland 2019–00433. The study will be conducted in accordance with the Helsinki Declaration and the Guidelines of Good Clinical Practice. Informed consent will be signed prior to subject enrolment. Dissemination will include submission to international peer-reviewed professional journals and presentation at international congresses. The study protocol has been registered in the clinicaltrials.gov registry with the identification code: NCT04699149.
Collapse
Affiliation(s)
- Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Dirk Lehnick
- Biostatistics and Methodology, Clinical Trials Unit Central Switzerland, Lucerne, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
- *Correspondence: Tim Vanbellingen ;
| |
Collapse
|
14
|
Non-invasive brain stimulation for treating neurogenic dysarthria: A systematic review. Ann Phys Rehabil Med 2021; 65:101580. [PMID: 34626861 DOI: 10.1016/j.rehab.2021.101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although non-invasive central and peripheral stimulations are accruing support as promising treatments in different neurological conditions, their effects on dysarthria have not been systematically investigated. OBJECTIVE The purpose of this review was to examine the evidence base of non-invasive stimulation for treating dysarthria, identify which stimulation parameters have the most potential for treatment and determine safety risks. METHODS A systematic review with meta-analysis, when possible, involving publications indexed in MEDLINE, PsychINFO, EMBASE CINHAL the Linguistics and Language Behavioral Abstracts, Web of Science, Cochrane Register of Control Trials and 2 trial registries was completed. Articles were searched in December 2018 and updated in June 2021 using keywords related to brain and electrical stimulation, dysarthria and research design. We included trials with randomised, cross-over or quasi-experimental designs; involving a control group; and investigating treatment of neurogenic dysarthria with non-invasive stimulation. Methodological quality was determined with the Cochrane's Risk of Bias-2 tool. RESULTS In total, 6186 studies were identified; 10 studies (6 randomised controlled trials and 4 cross-over studies) fulfilled the inclusion criteria. All 10 trials (268 adults with Parkinson's disease, stroke and neurodegenerative cerebellar ataxia) focused on brain stimulation (6 repetitive transcranial magnetic stimulation; 3 transcranial direct current stimulation; and 1 repetitive transorbital alternating current stimulation). Adjunct speech-language therapy was delivered in 2 trials. Most trials reported one or more positive effects of stimulation on dysarthria-related features; however, given the overall high risk of bias and heterogeneity in participant, trial and outcome measurement characteristics, no conclusions can be drawn. Post-treatment size effects for 2 stroke trials demonstrated no statistically significant differences between active and sham stimulation across 3 dysarthria outcomes. CONCLUSIONS Evidence for use of non-invasive brain stimulation in treating dysarthria remains inconclusive. Research trials that provide reliable and replicable findings are required.
Collapse
|
15
|
Moslemi Haghighi F, Kordi Yoosefinejad A, Razeghi M, Shariat A, Bagheri Z, Rezaei K. The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Functional Indices of Affected Upper Limb in Patients with Subacute Stroke. J Biomed Phys Eng 2021; 11:175-184. [PMID: 33937125 PMCID: PMC8064128 DOI: 10.31661/jbpe.v0i0.879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/28/2018] [Indexed: 01/23/2023]
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) is a novel technique that may improve recovery in patients with stoke, but the role of rTMS as an applied and practical treatment modality for stroke rehabilitation has not been established yet. Objective: This study was conducted to determine the effects of a rehabilitation program (RP) in conjunction with rTMS on functional indices of the paretic upper limb in the subacute phase of stroke. Material and Methods: In this experimental study, twenty patients in the subacute phase of stroke were randomly assigned into two groups: The high frequency rTMS (HF-rTMS) in conjunction with RP (experimental group), and the RP group (control group). The experimental group received 10 sessions of 20 Hz rTMS on the affected primary motor cortex and the other group received 10 sessions of RP. In experimental group, RP for the paretic hand was conducted following rTMS session. Box and block test (BBT), Fugl-Meyer Motor Assessment for upper limb (FMA-UL), grip strength and pinch strength were used to assess motor function before the first session and after the last session of treatment. Results: Significant improvement in BBT, FMA-UL, grip strength and pinch strength was observed in both groups. Improvement of BBT and grip strength was significantly greater in the experimental group rather than the control group (p<0.05). FMA-UL score and the pinch strength were greater in the experimental group, although the differences were not statistically significant. Conclusion: HF-rTMS in conjunction with RP is effective to improve the function of upper limb. It seems HF-rTMS is a novel feasible and safe technique for hemiparesis patients in the subacute phase of stroke.
Collapse
Affiliation(s)
- Farzaneh Moslemi Haghighi
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Student Research Committee, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Kordi Yoosefinejad
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Razeghi
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolhamid Shariat
- MD, Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- MD, Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Bagheri
- PhD, Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoon Rezaei
- PhD, Department of Physiotherapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Student Research Committee, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Bhagat NA, Yozbatiran N, Sullivan JL, Paranjape R, Losey C, Hernandez Z, Keser Z, Grossman R, Francisco GE, O'Malley MK, Contreras-Vidal JL. Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation. NEUROIMAGE-CLINICAL 2020; 28:102502. [PMID: 33395991 PMCID: PMC7749405 DOI: 10.1016/j.nicl.2020.102502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023]
Abstract
Motor intention based arm training targets activity-dependent neuroplasticity. 80% of stroke participants recovered clinically relevant functional movements. Ipsi-lesional, delta-band EEG activity was highly correlated with motor recovery. Results suggest higher activation of ipsi-lesional hemisphere post-intervention.
Brain-machine interfaces (BMI) based on scalp EEG have the potential to promote cortical plasticity following stroke, which has been shown to improve motor recovery outcomes. However, the efficacy of BMI enabled robotic training for upper-limb recovery is seldom quantified using clinical, EEG-based, and kinematics-based metrics. Further, a movement related neural correlate that can predict the extent of motor recovery still remains elusive, which impedes the clinical translation of BMI-based stroke rehabilitation. To address above knowledge gaps, 10 chronic stroke individuals with stable baseline clinical scores were recruited to participate in 12 therapy sessions involving a BMI enabled powered exoskeleton for elbow training. On average, 132 ± 22 repetitions were performed per participant, per session. BMI accuracy across all sessions and subjects was 79 ± 18% with a false positives rate of 23 ± 20%. Post-training clinical assessments found that FMA for upper extremity and ARAT scores significantly improved over baseline by 3.92 ± 3.73 and 5.35 ± 4.62 points, respectively. Also, 80% participants (7 with moderate-mild impairment, 1 with severe impairment) achieved minimal clinically important difference (MCID: FMA-UE >5.2 or ARAT >5.7) during the course of the study. Kinematic measures indicate that, on average, participants’ movements became faster and smoother. Moreover, modulations in movement related cortical potentials, an EEG-based neural correlate measured contralateral to the impaired arm, were significantly correlated with ARAT scores (ρ = 0.72, p < 0.05) and marginally correlated with FMA-UE (ρ = 0.63, p = 0.051). This suggests higher activation of ipsi-lesional hemisphere post-intervention or inhibition of competing contra-lesional hemisphere, which may be evidence of neuroplasticity and cortical reorganization following BMI mediated rehabilitation therapy.
Collapse
Affiliation(s)
- Nikunj A Bhagat
- Non-Invasive Brain Machine Interface Systems Laboratory, University of Houston, Houston, TX 77004, USA.
| | - Nuray Yozbatiran
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, NeuroRecovery Research Center at TIRR Memorial Hermann, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Jennifer L Sullivan
- Mechatronics and Haptic Interfaces Laboratory, Rice University, Houston, TX 77005, USA
| | - Ruta Paranjape
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, NeuroRecovery Research Center at TIRR Memorial Hermann, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Colin Losey
- Mechatronics and Haptic Interfaces Laboratory, Rice University, Houston, TX 77005, USA
| | - Zachary Hernandez
- Non-Invasive Brain Machine Interface Systems Laboratory, University of Houston, Houston, TX 77004, USA
| | - Zafer Keser
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, NeuroRecovery Research Center at TIRR Memorial Hermann, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Robert Grossman
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, NeuroRecovery Research Center at TIRR Memorial Hermann, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Marcia K O'Malley
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, NeuroRecovery Research Center at TIRR Memorial Hermann, University of Texas Health Science Center at Houston, TX 77030, USA; Mechatronics and Haptic Interfaces Laboratory, Rice University, Houston, TX 77005, USA
| | - Jose L Contreras-Vidal
- Non-Invasive Brain Machine Interface Systems Laboratory, University of Houston, Houston, TX 77004, USA; Houston Methodist Research Institute, Houston, TX 77030, USA; NSF IUCRC BRAIN, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
17
|
Bembenek JP, Kurczych K, Kłysz B, Cudna A, Antczak J, Członkowska A. Prediction of Recovery and Outcome Using Motor Evoked Potentials and Brain Derived Neurotrophic Factor in Subacute Stroke. J Stroke Cerebrovasc Dis 2020; 29:105202. [PMID: 33066924 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Motor evoked potentials (MEPs) have been postulated to be useful in predicting recovery in patients with motor impairment. We aimed to investigate whether MEPs elicited by transcranial magnetic stimulation (TMS), serum brain derived neurotrophic factor (BDNF) and its genotype have prognostic value on stroke recovery in patients with hand paresis due to stroke. METHODS This was an observational cohort study. Patients underwent TMS with MEPs from abductor digiti minimi evaluation between 2-14 (D0) and 30 days (D30) after stroke and their impact on motor function of the upper limb and general outcome was assessed after 3 months (D90). The presence of a BDNF gene polymorphism was determined and serum BDNF concentrations were measured at D0, D30 and D90. RESULTS The presence of MEPs and their amplitude at rest and in effort significantly correlated with improvement of upper-limb paresis and general outcome after 3 months. Resting motor threshold did not have prognostic value. Central motor conduction time and MEP latency less consistently predicted stroke outcome or motor deficit improvement. Neither BDNF polymorphisms nor BDNF concentration at D0, D30 and D90 corresponded with the degree of paresis or the independence of patients 3 months after stroke. CONCLUSIONS The presence of MEPs and their amplitude are useful predictors of upper-limb motor function recovery and general outcome after stroke. BDNF concentration and its genotype had no prognostic value. Further studies conducted on large cohorts are necessary to determine the usefulness of these methods in motor recovery and stroke outcome prediction.
Collapse
Affiliation(s)
- Jan P Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Katarzyna Kurczych
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Bożena Kłysz
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Agnieszka Cudna
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Jakub Antczak
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Anna Członkowska
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
18
|
The Analgesic Effect of Transcranial Direct Current Stimulation (tDCS) combined with Physical Therapy on Common Musculoskeletal Conditions: A Systematic Review and Meta-Analysis. ACTA ACUST UNITED AC 2020; 6:23-26. [PMID: 32766451 DOI: 10.21801/ppcrj.2020.61.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The analgesic effects of transcranial Direct Current Stimulation (tDCS) combined with physical therapy remain unclear. OBJECTIVE To systematically review available evidence comparing tDCS with any physical therapy modality (PTM) to PTM alone or PTM with sham tDCS on pain relief on common musculoskeletal (MSK) conditions, namely knee osteoarthritis (KOA), chronic low back pain (CLBP), myofascial pain syndrome (MPS) and fibromyalgia. METHODS EMBASE and MEDLINE were searched from inception to April 2019 for randomized controlled trials. Reviewers independently assessed the studies quality and extracted data according to the PRISMA protocol. The GRADE approach was used to asses quality of evidence and a "Summary of Findings" table was created. The analyses used random-effects model. The primary outcome was pain reduction after treatment. RESULTS Eight articles were included. Only one study had low risk of bias. Quality of evidence was considered low or very low. Significant reduction in pain scores were found for fibromyalgia and KOA (Standardized mean difference (SMD) = -1.94 [95% CI: -3.37 to -0.49; I 2=76.4%] and SMD = -2.35 [95% CI: -3.63 to -1.06; I 2=69.7%] respectively). Subgroup analysis considering the type of PTM despite MSK condition revealed significant reduction in pain scores for exercise, SMD = -1.20 [95% CI: -1.683 to -0.717; I 2=10.8%]. CONCLUSIONS Large heterogeneity and low quality of evidence and limited number of studies were found. Results suggest a potential analgesic effect of tDCS in combination with a PTM for fibromyalgia and KOA. Subgroup analysis suggests a stronger effect of tDCS when combined with an exercise based PTM.
Collapse
|
19
|
Li X, Morton SM. Effects of chronic antidepressant use on neurophysiological responses to tDCS post-stroke. Neurosci Lett 2019; 717:134723. [PMID: 31881255 DOI: 10.1016/j.neulet.2019.134723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) induces neuroplastic changes in the motor cortex of healthy individuals and has become a candidate intervention to promote recovery post-stroke. However, neurophysiological effects of tDCS in stroke are poorly understood. Antidepressant medications, which are commonly prescribed post-stroke, have the potential to significantly affect cortical excitability and alter responsiveness to tDCS interventions, yet these effects have not previously been examined. OBJECTIVE/HYPOTHESIS To examine the effects of chronic antidepressant use, tDCS, and the interaction of the two on motor cortical excitability in people with chronic stroke. Based on previous literature in nondisabled adults, we hypothesized that post-stroke, antidepressant-takers would show decreased baseline motor cortical excitability but enhanced responsiveness to anodal tDCS. METHODS Twenty-six participants with chronic stroke (17 control, 9 antidepressant) received real and sham anodal tDCS during separate sessions at least a week apart. Motor cortical excitability was measured before and after tDCS was applied to the lesioned hemisphere primary motor cortex. We compared baseline cortical excitability and neurophysiological responses to tDCS between groups and sessions. RESULTS Baseline motor cortical excitability was not different between control and antidepressant groups. Following anodal tDCS over the ipsilesional primary motor cortex, cortical excitability in the non-lesioned hemisphere decreased in controls, but, surprisingly, increased in antidepressant-takers. CONCLUSIONS Chronic antidepressant use may not affect motor cortical excitability post-stroke, however it appears to reverse some of the expected effects of tDCS. Therefore future utilization of tDCS in post-stroke neurorehabilitation research should take antidepressant medication status into account.
Collapse
Affiliation(s)
- Xin Li
- Department of Physical Therapy, University of Delaware, Newark, DE, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, DE, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA.
| |
Collapse
|
20
|
Forman CR, Svane C, Kruuse C, Gracies JM, Nielsen JB, Lorentzen J. Sustained involuntary muscle activity in cerebral palsy and stroke: same symptom, diverse mechanisms. Brain Commun 2019; 1:fcz037. [PMID: 33033798 PMCID: PMC7531180 DOI: 10.1093/braincomms/fcz037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals with lesions of central motor pathways frequently suffer from sustained
involuntary muscle activity. This symptom shares clinical characteristics with dystonia
but is observable in individuals classified as spastic. The term spastic dystonia has been
introduced, although the underlying mechanisms of involuntary activity are not clarified
and vary between individuals depending on the disorder. This study aimed to investigate
the nature and pathophysiology of sustained involuntary muscle activity in adults with
cerebral palsy and stroke. Seventeen adults with cerebral palsy (Gross Motor Function
Classification System I–V), 8 adults with chronic stroke and 14 control individuals
participated in the study. All individuals with cerebral palsy or stroke showed increased
resistance to passive movement with Modified Ashworth Scale >1. Two-minute surface EMG
recordings were obtained from the biceps muscle during attempted rest in three positions
of the elbow joint; a maximally flexed position, a 90-degree position and a maximally
extended position. Cross-correlation analysis of sustained involuntary muscle activity
from individuals with cerebral palsy and stroke, and recordings of voluntary isometric
contractions from control individuals were performed to examine common synaptic drive. In
total, 13 out of 17 individuals with cerebral palsy and all 8 individuals with stroke
contained sustained involuntary muscle activity. In individuals with cerebral palsy, the
level of muscle activity was not affected by the joint position. In individuals with
stroke, the level of muscle activity significantly (P < 0.05)
increased from the flexed position to the 90 degree and extended position. Cumulant
density function indicated significant short-term synchronization of motor unit activities
in all recordings. All groups exhibited significant coherence in the alpha (6–15 Hz), beta
(16–35 Hz) and early gamma band (36–60 Hz). The cerebral palsy group had lower alpha band
coherence estimates, but higher gamma band coherence estimates compared with the stroke
group. Individuals with increased resistance to passive movement due to cerebral palsy or
stroke frequently suffer sustained involuntary muscle activity, which cannot exclusively
be described by spasticity. The sustained involuntary muscle activity in both groups
originated from a common synaptic input to the motor neuron pool, but the generating
mechanisms could differ between groups. In cerebral palsy it seemed to originate more from
central mechanisms, whereas peripheral mechanisms likely play a larger role in stroke. The
sustained involuntary muscle activity should not be treated simply like the spinal stretch
reflex mediated symptom of spasticity and should not either be treated identically in both
groups.
Collapse
Affiliation(s)
| | - Christian Svane
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, 2730 Herlev Gentofte, Denmark
| | - Jean-Michel Gracies
- EA 7377 BIOTN, Université Paris-Est Creteil, Hospital Albert Chenevier-Henri Mondor, Service de Rééducation Neurolocomotrice, APHP, Créteil, France
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.,Elsass Institute, 2830 Charlottenlund, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.,Elsass Institute, 2830 Charlottenlund, Denmark
| |
Collapse
|
21
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
22
|
Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke. Neural Plast 2019; 2019:5271573. [PMID: 31007684 PMCID: PMC6441501 DOI: 10.1155/2019/5271573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/01/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022] Open
Abstract
Motor capability recovery after ischemic stroke involves dynamic remodeling processes of neural connectomes in the nervous system. Various neuromodulatory strategies combining direct stimulating interventions with behavioral trainings for motor recovery after ischemic stroke have been developed. However, the effectiveness of these interventions varies widely due to unspecific activation or inhibition of undefined neuronal subtypes. Optogenetics is a functional and structural connection-based approach that can selectively activate or inhibit specific subtype neurons with a higher precision, and it has been widely applied to build up neuronal plasticities of the nervous system, which shows a great potential in restoring motor functions in stroke animal models. Here, we reviewed neurobiological mechanisms of enhanced brain plasticities underlying motor recovery through the optogenetic stimulation after ischemic stroke. Several brain sites and neural circuits that have been previously proven effective for motor function rehabilitation were identified, which would be helpful for a more schematic understanding of effective neuronal connectomes in the motor function recovery after ischemic stroke.
Collapse
|
23
|
Sato S, Kakuda W, Sano M, Kitahara T, Kiko R. Therapeutic Application of Transcranial Magnetic Stimulation Combined with Rehabilitative Training for Incomplete Spinal Cord Injury: A Case Report. Prog Rehabil Med 2018; 3:20180014. [PMID: 32789239 DOI: 10.2490/prm.20180014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 11/09/2022] Open
Abstract
Background Only a few researchers have therapeutically applied transcranial magnetic stimulation (TMS) for patients with spinal cord injury. The purpose of this case study was to evaluate the safety, feasibility, and efficacy of therapeutic TMS combined with rehabilitative training for a patient with tetraparesis resulting from incomplete spinal cord injury. Case An 82-year-old male patient with incomplete spinal cord injury was admitted to our department for long-term rehabilitation. Eighteen days prior to admission, the patient sustained the injury in a fall. At admission to our department, the patient was diagnosed as having injury of the spinal cord at the C6 level. From the 76th day after admission, when the patient was considered to have attained a plateau state of recovery, application of therapeutic TMS was initiated using a double-cone coil. Two 15-min sessions of 10-Hz TMS were scheduled for daily application. Simultaneously, rehabilitative training was continuously provided. This patient received a total of 30 sessions of TMS over 19 days. Neither adverse effects nor deterioration of neurological symptoms was recognized during the intervention period. With this application of TMS, some improvements were evident in the American Spinal Injury Association motor score, the knee muscle strength, and the calf circumference. Discussion This case study demonstrated the safety and feasibility of TMS combined with rehabilitative training in a patient with incomplete spinal cord injury. Our protocol featuring TMS might constitute a novel neurorehabilitation intervention for such patients; however, the efficacy of the protocol should be confirmed in a large number of patients.
Collapse
Affiliation(s)
- Shin Sato
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Wataru Kakuda
- Department of Rehabilitation Medicine, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
| | - Mitsuhiro Sano
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Takamasa Kitahara
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Risa Kiko
- Department of Rehabilitation Medicine, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| |
Collapse
|
24
|
Leon D, Cortes M, Elder J, Kumru H, Laxe S, Edwards DJ, Tormos JM, Bernabeu M, Pascual-Leone A. tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor Neurol Neurosci 2018; 35:377-384. [PMID: 28697574 DOI: 10.3233/rnn-170734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique, which can modulate cortical excitability and combined with rehabilitation therapies may improve motor recovery after stroke. OBJECTIVE Our aim was to study the feasibility of a 4-week robotic gait training protocol combined with tDCS, and to study tDCS to the leg versus hand motor cortex or sham to improve walking ability in patients after a subacute stroke. METHODS Forty-nine subacute stroke patients underwent 20 daily sessions (5 days a week for 4 weeks) of robotic gait training combined with tDCS. Patients were assigned either to the tDCSleg group (n = 9), receiving 2 mA anodal tDCS over the motor cortex leg representation (vertex), or an active control group (n = 17) receiving anodal tDCS over the hand motor cortex area (tDCShand). In addition, we studied 23 matched patients in a control group receiving gait training without tDCS (notDCS). Study outcomes included gait speed (10-meter walking test), and quality of gait, using the Functional Ambulatory Category (FAC) before and after the 4-week training period. RESULTS Only one patient did not complete the treatment because he presented a minor side-effect. Patients in all three groups showed a significantly improvement in gait speed and FAC. The tDCSleg group did not perform better than the tDCShand or notDCS group. CONCLUSION Combined tDCS and robotic training is a safe and feasible procedure in subacute stroke patients. However, adding tDCS to robot-assisted gait training shows no benefit over robotic gait training alone.
Collapse
Affiliation(s)
- Daniel Leon
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Mar Cortes
- Human Spinal Cord Injury Laboratory, Burke Medical Research Institute, White Plains, NY, USA.,Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA.,Universitat de Barcelona, Gran Via de les Corts Catalanes, Barcelona, Spain
| | - Jessica Elder
- Department of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Sara Laxe
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Dylan James Edwards
- Brain Stimulation and Robotics Laboratory, Burke Medical Research Institute, White Plains, NY, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY, USA.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Josep Maria Tormos
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Montserrat Bernabeu
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Alvaro Pascual-Leone
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Calancie B, Wang D, Young E, Alexeeva N. Four-pulse transcranial magnetic stimulation using multiple conditioning inputs. Normative MEP responses. Exp Brain Res 2018; 236:1205-1218. [PMID: 29473092 DOI: 10.1007/s00221-018-5212-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
A four-pulse pattern of transcranial magnetic stimulation (TMS) was compared to traditional dual-pulse TMS for its ability to modulate motor cortical excitability. This novel pattern consisted of a three-pulse train of subthreshold conditioning pulses followed by a suprathreshold test pulse (i.e., SC-T). The intervals between these superconditioning (SC) pulses (1, 3, or 6 ms) and the follow-on test pulse (1, 3, 10, or 25 ms) were varied, and the resultant MEPs were compared to those elicited by: (1) single-pulse TMS; and (2) dual-pulse conditioning-test (C-T) TMS with either short (3 ms) or long (10 ms) intervals to elicit short-interval intracortical inhibition (SICI) or intracortical facilitation (ICF), respectively. Testing included abductor pollicis brevis (APB) and tibialis anterior (TA) in 15 neurologically normal adults. For superconditioning inputs, 10 ms test intervals caused especially strong facilitation of the test MEP, while 1 ms test intervals were particularly effective at causing inhibition of the test response. For both muscles and across all subjects, the most effective of the 12 SC-T inputs tested for causing either facilitation or inhibition was-with rare exception-superior to the dual-pulse TMS input for causing facilitation (i.e., ICF) or inhibition (i.e., SICI), while the overall magnitude of effect was more pronounced in APB compared to TA. Nevertheless, after normalization, the impact of a superconditioning input train on the test MEP was similar in APB and TA muscles, suggesting similar mechanisms of action. Limited findings from a single subject with amyotrophic lateral sclerosis (ALS) are included to further illustrate the potential advantages of using a train of conditioning pulses preceding a TMS test pulse to selectively investigate abnormal motor cortical excitatory and inhibitory circuitry.
Collapse
Affiliation(s)
- Blair Calancie
- Department of Neurosurgery, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA.
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA
| | - Eufrosina Young
- Department of Neurology, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA
| | - Natalia Alexeeva
- Department of Neurosurgery, Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13104, USA
| |
Collapse
|
26
|
Lorentzen J, Pradines M, Gracies JM, Bo Nielsen J. On Denny-Brown's 'spastic dystonia' - What is it and what causes it? Clin Neurophysiol 2017; 129:89-94. [PMID: 29161622 DOI: 10.1016/j.clinph.2017.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
In this review, we will work around two simple definitions of two different entities, which most often co-exist in patients with lesions to central motor pathways: Spasticity is "Enhanced excitability of velocity-dependent responses to phasic stretch at rest", which will not be the subject of this review, while Spastic dystonia is tonic, chronic, involuntary muscle contraction in the absence of any stretch or any voluntary command (Gracies, 2005). Spastic dystonia is a much less well understood entity that will be the subject this review. Denny-Brown (1966) observed involuntary sustained muscle activity in monkeys with lesions restricted to the motor cortices . He further observed that such involuntary muscle activity persisted following abolition of sensory input to the spinal cord and concluded that a central mechanism rather than exaggerated stretch reflex activity had to be involved. He coined the term spastic dystonia to describe this involuntary tonic activity in the context of otherwise exaggerated stretch reflexes. Sustained involuntary muscle activity in the absence of any stretch or any voluntary command contributes to burdensome and disabling body deformities in patients with spastic paresis. Yet, little has been done since Denny-Brown's studies to determine the pathophysiology of this non- stretch or effort related sustained involuntary muscle activity following motor lesions and there is a clear need for research studies in order to improve current therapy. The purpose of the present review is to discuss some of the possible mechanisms that may be involved in the hope that this may guide future research. We discuss the existence of persistent inward currents in spinal motoneurones and present the evidence that the channels involved may be upregulated following central motor lesions. We also discuss a possible contribution from alterations in synaptic inputs from surviving or abnormally branched sensory and descending fibres leading to over-activity and lack of motor coordination. We finally discuss evidence of alterations in motor cortical representational maps and basal ganglia lesions.
Collapse
Affiliation(s)
- Jakob Lorentzen
- Section for Integrative Neuroscience, Center for Neuroscience, University of Copenhagen, Denmark; Elsass Institute, Holmegårdsvej 28, 2920 Charlottenlund, Denmark.
| | - Maud Pradines
- EA 7377 BIOTN, Université Paris-Est, Hospital Albert Chenevier-Henri Mondor, Service de Rééducation Neurolocomotrice, APHP, Créteil, France
| | - Jean-Michel Gracies
- EA 7377 BIOTN, Université Paris-Est, Hospital Albert Chenevier-Henri Mondor, Service de Rééducation Neurolocomotrice, APHP, Créteil, France
| | - Jens Bo Nielsen
- Section for Integrative Neuroscience, Center for Neuroscience, University of Copenhagen, Denmark; Elsass Institute, Holmegårdsvej 28, 2920 Charlottenlund, Denmark
| |
Collapse
|
27
|
Takebayashi T, Takahashi K, Moriwaki M, Sakamoto T, Domen K. Improvement of Upper Extremity Deficit after Constraint-Induced Movement Therapy Combined with and without Preconditioning Stimulation Using Dual-hemisphere Transcranial Direct Current Stimulation and Peripheral Neuromuscular Stimulation in Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Front Neurol 2017; 8:568. [PMID: 29163334 PMCID: PMC5670104 DOI: 10.3389/fneur.2017.00568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/11/2017] [Indexed: 01/10/2023] Open
Abstract
In this study, we investigated the effects of dual-hemisphere transcranial direct current stimulation (dual-tDCS) of both the affected (anodal tDCS) and non-affected (cathodal tDCS) primary motor cortex, combined with peripheral neuromuscular electrical stimulation (PNMES), on the effectiveness of constraint-induced movement therapy (CIMT) as a neurorehabilitation intervention in chronic stroke. We conducted a randomized controlled trial of feasibility, with a single blind assessor, with patients recruited from three outpatient clinics. Twenty chronic stroke patients were randomly allocated to the control group, receiving conventional CIMT, or the intervention group receiving dual-tDCS combined with PNMES before CIMT. Patients in the treatment group first underwent a 20-min period of dual-tDCS, followed immediately by PNMES, and subsequent CIMT for 2 h. Patients in the control group only received CIMT (with no pretreatment stimulation). All patients underwent two CIMT sessions, one in the morning and one in the afternoon, each lasting 2 h, for a total of 4 h of CIMT per day. Upper extremity function was assessed using the Fugl-Meyer Assessment (primary outcome), as well as the amount of use (AOU) and quality of movement (QOM) scores, obtained via the Motor Activity Log (secondary outcome). Nineteen patients completed the study, with one patient withdrawing after allocation. Compared to the control group, the treatment improvement in upper extremity function and AOU was significantly greater in the treatment than control group (change in upper extremity score, 9.20 ± 4.64 versus 4.56 ± 2.60, respectively, P < 0.01, η2 = 0.43; change in AOU score, 1.10 ± 0.65 versus 0.62 ± 0.85, respectively, P = 0.02, η2 = 0.52). There was no significant effect of the intervention on the QOM between the intervention and control groups (change in QOM score, 1.00 ± 0.62 versus 0.71 ± 0.72, respectively, P = 0.07, η2 = 0.43; treatment versus control). Our findings suggest a novel pretreatment stimulation strategy based on dual-tDCS and PNMES may enhance the therapeutic benefit of CIMT.
Collapse
Affiliation(s)
- Takashi Takebayashi
- Graduate Course of Rehabilitation Science, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| | - Kayoko Takahashi
- Department of Rehabilitation, School of Allied Health Science, Kitasato University, Sagamihara-shi, Japan
| | - Misa Moriwaki
- Department of Rehabilitation Medicine, Midorigaoka Hospital, Takatsuki, Japan
| | - Tomosaburo Sakamoto
- Department of Rehabilitation, Kansai Rehabilitation Hospital, Toyonaka, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
28
|
Nishikawa T, Saku K, Todaka K, Kuwabara Y, Arai S, Kishi T, Ide T, Tsutsui H, Sunagawa K. The challenge of magnetic vagal nerve stimulation for myocardial infarction -preliminary clinical trial. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4321-4324. [PMID: 29060853 DOI: 10.1109/embc.2017.8037812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Numerous studies have shown in animal models that vagal nerve stimulation (VNS) strikingly reduces infarct size of acute myocardial infarction (AMI) and prevents heart failure. However, the lack of techniques to noninvasively stimulate the vagal nerve hinders VNS from clinical applications. Transcranial magnetic stimulation is noninvasive and capable of stimulating central neurons in patients. In this study, we examined whether the magnetic stimulation could noninvasively activate the cervical vagal nerve in healthy human. Sixteen healthy males and 4 females were enrolled in this study. We used Magstim Rapid2 with a 70-mm double coil in the right neck. We randomly assigned the subjects to 5 Hz or 20 Hz stimulation. We defined the maximum intensity of stimulation (MAX) which is the intensity just below the threshold of adverse effects. We defined HALF as a half of MAX. Protocols comprised 2 sets of MAX and 2 sets of HALF. Each stimulation continued for 3 minutes. We monitored heart rate (HR) and assessed the bradycardic response as an index of successful VNS. Nineteen subjects completed all protocols. They had no problematic adverse events during and/or after magnetic VNS. The magnetic VNS induced transient bradycardic responses in some subjects, whereas failed to induce sustained bradycardia in pooled data in any settings. Arterial pressure did not change either. Successful magnetic stimulation requires technical improvements including narrowing the magnetic focus and optimization of stimulation site. These improvements may enable us to apply magnetic VNS in the management of AMI.
Collapse
|
29
|
Forogh B, Ahadi T, Nazari M, Sajadi S, Abdul Latif L, Akhavan Hejazi SM, Raissi G. The Effect of Repetitive Transcranial Magnetic Stimulation on Postural Stability After Acute Stroke: A Clinical Trial. Basic Clin Neurosci 2017; 8:405-411. [PMID: 29167727 PMCID: PMC5691172 DOI: 10.18869/nirp.bcn.8.5.405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction: Balance impairment is a common problem and a major cause of motor disability after stroke. Therefore, this study aimed to investigate whether low-frequency repetitive Transcranial Magnetic Stimulation (rTMS) improves the postural balance problems in stroke patients. Methods: This randomized double blind clinical trial with 12 weeks follow-up was conducted on stroke patients. Treatment was carried with 1 Hz rTMS in contralateral brain hemisphere over the primary motor area for 20 minutes (1200 pulses) for 5 consecutive days. Static postural stability, Medical Research Council (MRC), Berg Balance Scale (BBS), and Fugl-Meyer assessments were evaluated immediately, 3 weeks and 12 weeks after intervention. Results: A total of 26 patients were enrolled (age range=53 to 79 years; 61.5% were male) in this study. Administering rTMS produced a significant recovery based on BBS (df=86, 7; F=7.4; P=0.01), Fugl-Meyer Scale (df=86, 7; F=8.7; P<0.001), MRC score (df=87, 7; F=2.9; P=0.01), and static postural stability (df=87, 7; F=9.8; P<0.001) during the 12 weeks follow-up. Conclusion: According to the findings, rTMS as an adjuvant therapy may improve the static postural stability, falling risk, coordination, motor recovery, and muscle strength in patients with stroke.
Collapse
Affiliation(s)
- Bijan Forogh
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Tehran, Iran
| | - Tannaz Ahadi
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Tehran, Iran
| | - Maryam Nazari
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Tehran, Iran
| | - Simin Sajadi
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Tehran, Iran
| | - Lydia Abdul Latif
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Seyed Majid Akhavan Hejazi
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gholamreza Raissi
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Tehran, Iran
| |
Collapse
|
30
|
Beaulieu LD, Milot MH. Changes in transcranial magnetic stimulation outcome measures in response to upper-limb physical training in stroke: A systematic review of randomized controlled trials. Ann Phys Rehabil Med 2017; 61:224-234. [PMID: 28579362 DOI: 10.1016/j.rehab.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Physical training is known to be an effective intervention to improve sensorimotor impairments after stroke. However, the link between brain plastic changes, assessed by transcranial magnetic stimulation (TMS), and sensorimotor recovery in response to physical training is still misunderstood. We systematically reviewed reports of randomized controlled trials (RCTs) involving the use of TMS over the primary motor cortex (M1) to probe brain plasticity after upper-limb physical training interventions in people with stroke. METHODS We searched 5 databases for articles published up to October 2016, with additional studies identified by hand-searching. RCTs had to investigate pre/post-intervention changes in at least one TMS outcome measure. Two independent raters assessed the eligibility of potential studies and reviewed the selected articles' quality by using 2 critical appraisal scales. RESULTS In total, 14 reports of RCTs (pooled participants=358; mean 26±12 per study) met the selection criteria. Overall, 11 studies detected plastic changes with TMS in the presence of clinical improvements after training, and these changes were more often detected in the affected hemisphere by using map area and motor evoked potential (MEP) latency outcome measures. Plastic changes mostly pointed to increased M1/corticospinal excitability and potential interhemispheric rebalancing of M1 excitability, despite sometimes controversial results among studies. Also, the strength of the review observations was affected by heterogeneous TMS methods and upper-limb interventions across studies as well as several sources of bias within the selected studies. CONCLUSIONS The current evidence encourages the use of TMS outcome measures, especially MEP latency and map area to investigate plastic changes in the brain after upper-limb physical training post-stroke. However, more studies involving rigorous and standardized TMS procedures are needed to validate these observations.
Collapse
Affiliation(s)
- Louis-David Beaulieu
- Centre de recherche sur le vieillissement, faculté de médecine et des sciences de la santé de l'université de Sherbrooke, Sherbrooke, Québec (QC), Canada
| | - Marie-Hélène Milot
- Centre de recherche sur le vieillissement, faculté de médecine et des sciences de la santé de l'université de Sherbrooke, Sherbrooke, Québec (QC), Canada.
| |
Collapse
|
31
|
Neuroplasticity Changes on Human Motor Cortex Induced by Acupuncture Therapy: A Preliminary Study. Neural Plast 2017; 2017:4716792. [PMID: 28293438 PMCID: PMC5331279 DOI: 10.1155/2017/4716792] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022] Open
Abstract
While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.
Collapse
|
32
|
Palmer JA, Zarzycki R, Morton SM, Kesar TM, Binder-Macleod SA. Characterizing differential poststroke corticomotor drive to the dorsi- and plantarflexor muscles during resting and volitional muscle activation. J Neurophysiol 2017; 117:1615-1624. [PMID: 28077661 DOI: 10.1152/jn.00393.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/16/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Imbalance of corticomotor excitability between the paretic and nonparetic limbs has been associated with the extent of upper extremity motor recovery poststroke, is greatly influenced by specific testing conditions such as the presence or absence of volitional muscle activation, and may vary across muscle groups. However, despite its clinical importance, poststroke corticomotor drive to lower extremity muscles has not been thoroughly investigated. Additionally, whereas conventional gait rehabilitation strategies for stroke survivors focus on paretic limb foot drop and dorsiflexion impairments, most contemporary literature has indicated that paretic limb propulsion and plantarflexion impairments are the most significant limiters to poststroke walking function. The purpose of this study was to compare corticomotor excitability of the dorsi- and plantarflexor muscles during resting and active conditions in individuals with good and poor poststroke walking recovery and in neurologically intact controls. We found that plantarflexor muscles showed reduced corticomotor symmetry between paretic and nonparetic limbs compared with dorsiflexor muscles in individuals with poor poststroke walking recovery during active muscle contraction but not during rest. Reduced plantarflexor corticomotor symmetry during active muscle contraction was a result of reduced corticomotor drive to the paretic muscles and enhanced corticomotor drive to the nonparetic muscles compared with the neurologically intact controls. These results demonstrate that atypical corticomotor drive exists in both the paretic and nonparetic lower limbs and implicate greater severity of corticomotor impairments to plantarflexor vs. dorsiflexor muscles during muscle activation in stroke survivors with poor walking recovery.NEW & NOTEWORTHY The present study observed that lower-limb corticomotor asymmetry resulted from both reduced paretic and enhanced nonparetic limb corticomotor excitability compared with neurologically intact controls. The most asymmetrical corticomotor drive was observed in the plantarflexor muscles of individuals with poor poststroke walking recovery. This suggests that neural function of dorsi- and plantarflexor muscles in both paretic and nonparetic limbs may play a role in poststroke walking function, which may have important implications when developing targeted poststroke rehabilitation programs to improve walking ability.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Division of Physical Therapy, School of Medicine, Emory University, Atlanta, Georgia
| | - Ryan Zarzycki
- Department of Physical Therapy, University of Delaware, Newark, Delaware.,Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware; and
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, Delaware.,Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware; and
| | - Trisha M Kesar
- Division of Physical Therapy, School of Medicine, Emory University, Atlanta, Georgia
| | - Stuart A Binder-Macleod
- Department of Physical Therapy, University of Delaware, Newark, Delaware.,Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, Delaware; and
| |
Collapse
|
33
|
Prediction of Walking and Arm Recovery after Stroke: A Critical Review. Brain Sci 2016; 6:brainsci6040053. [PMID: 27827835 PMCID: PMC5187567 DOI: 10.3390/brainsci6040053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
Clinicians often base their predictions of walking and arm recovery on multiple predictors. Multivariate prediction models may assist clinicians to make accurate predictions. Several reviews have been published on the prediction of motor recovery after stroke, but none have critically appraised development and validation studies of models for predicting walking and arm recovery. In this review, we highlight some common methodological limitations of models that have been developed and validated. Notable models include the proportional recovery model and the PREP algorithm. We also identify five other models based on clinical predictors that might be ready for further validation. It has been suggested that neurophysiological and neuroimaging data may be used to predict arm recovery. Current evidence suggests, but does not show conclusively, that the addition of neurophysiological and neuroimaging data to models containing clinical predictors yields clinically important increases in predictive accuracy.
Collapse
|
34
|
Kiper P, Szczudlik A, Venneri A, Stozek J, Luque-Moreno C, Opara J, Baba A, Agostini M, Turolla A. Computational models and motor learning paradigms: Could they provide insights for neuroplasticity after stroke? An overview. J Neurol Sci 2016; 369:141-148. [PMID: 27653881 DOI: 10.1016/j.jns.2016.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023]
Abstract
Computational approaches for modelling the central nervous system (CNS) aim to develop theories on processes occurring in the brain that allow the transformation of all information needed for the execution of motor acts. Computational models have been proposed in several fields, to interpret not only the CNS functioning, but also its efferent behaviour. Computational model theories can provide insights into neuromuscular and brain function allowing us to reach a deeper understanding of neuroplasticity. Neuroplasticity is the process occurring in the CNS that is able to permanently change both structure and function due to interaction with the external environment. To understand such a complex process several paradigms related to motor learning and computational modeling have been put forward. These paradigms have been explained through several internal model concepts, and supported by neurophysiological and neuroimaging studies. Therefore, it has been possible to make theories about the basis of different learning paradigms according to known computational models. Here we review the computational models and motor learning paradigms used to describe the CNS and neuromuscular functions, as well as their role in the recovery process. These theories have the potential to provide a way to rigorously explain all the potential of CNS learning, providing a basis for future clinical studies.
Collapse
Affiliation(s)
- Pawel Kiper
- Laboratory of Kinematics and Robotics, IRCCS San Camillo Hospital Foundation, via Alberoni 70, 30126 Venice, Italy.
| | - Andrzej Szczudlik
- Jagiellonian University Medical College, ul. Sw. Anny 12, 31-008 Krakow, Poland
| | - Annalena Venneri
- Laboratory of Kinematics and Robotics, IRCCS San Camillo Hospital Foundation, via Alberoni 70, 30126 Venice, Italy; Department of Neuroscience, The University of Sheffield, 385a Glossop Road, S10 2HQ Sheffield, UK
| | - Joanna Stozek
- The University of Physical Education, Al. Jana Pawla II 78, 31-571 Krakow, Poland
| | - Carlos Luque-Moreno
- Department of Physical Therapy, The University of Seville, C/Avicena S/N, 41009 Seville, Spain; Motion Analysis Laboratory, Virgen del Rocio Hospital, Avda. Manuel Siurot S/N, 41013 Seville, Spain
| | - Jozef Opara
- Academy of Physical Education, ul. Mikolowska 72a, 40-065 Katowice, Poland
| | - Alfonc Baba
- Laboratory of Kinematics and Robotics, IRCCS San Camillo Hospital Foundation, via Alberoni 70, 30126 Venice, Italy
| | - Michela Agostini
- Laboratory of Kinematics and Robotics, IRCCS San Camillo Hospital Foundation, via Alberoni 70, 30126 Venice, Italy
| | - Andrea Turolla
- Laboratory of Kinematics and Robotics, IRCCS San Camillo Hospital Foundation, via Alberoni 70, 30126 Venice, Italy; Department of Neuroscience, The University of Sheffield, 385a Glossop Road, S10 2HQ Sheffield, UK
| |
Collapse
|
35
|
Kumru H, Benito-Penalva J, Valls-Sole J, Murillo N, Tormos JM, Flores C, Vidal J. Placebo-controlled study of rTMS combined with Lokomat® gait training for treatment in subjects with motor incomplete spinal cord injury. Exp Brain Res 2016; 234:3447-3455. [DOI: 10.1007/s00221-016-4739-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
|
36
|
Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurobiol 2016; 141:45-60. [PMID: 27090751 PMCID: PMC5677601 DOI: 10.1016/j.pneurobio.2016.04.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Dandan Hong
- Department of Bioengineering, University of Pittsburgh School of Engineering, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China.
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
37
|
Park W, Kwon GH, Kim YH, Lee JH, Kim L. EEG response varies with lesion location in patients with chronic stroke. J Neuroeng Rehabil 2016; 13:21. [PMID: 26935230 PMCID: PMC4776402 DOI: 10.1186/s12984-016-0120-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 11/23/2022] Open
Abstract
Background Brain activation differs according to lesion location in functional magnetic resonance imaging (fMRI) studies, but lesion location-dependent electroencephalographic (EEG) alterations are unclear. Because of the increasing use of EEG-based brain-computer-interface rehabilitation, we examined lesion location-dependent EEG patterns in patients with stroke while they performed motor tasks. Methods Twelve patients with chronic stroke were divided into three subgroups according to their lesion locations: supratentorial lesions that included M1 (SM1+), supratentorial lesions that excluded M1 (SM1-), and infratentorial (INF) lesions. Participants performed three motor tasks [active, passive, and motor imagery (MI)] with supination and grasping movements. The hemispheric asymmetric indexes, which were calculated with laterality coefficients (LCs), the temporal changes in the event-related desynchronization (ERD) patterns in the bilateral motor cortex, and the topographical distributions in the 28-channel EEG patterns around the supplementary motor area and bilateral motor cortex of the three participant subgroups were compared with those of the 12 age-matched healthy controls. Results The SM1+ group exhibited negative LC values in the active and MI motor tasks, while the other patient subgroups exhibited positive LC values. Negative LC values indicate that the ERD/ERS intensity of the ipsilateral hemisphere is higher than the contralateral hemisphere, whereas positive LC values indicate that the ERD/ERS intensity of the contralateral hemisphere is higher than the ipsilateral hemisphere. The LC values of SM1+ and healthy controls differed significantly (rank-sum test, p < 0.05) in both the supination and grasping movements in the active task. The three patient subgroups differed distinctly from each other in the topography analysis. Conclusions The hemispheric asymmetry and topographic characteristics of the beta band power patterns in the patients with stroke differed according to the location of the lesion, which suggested that EEG analyses of neurorehabilitation should be implemented according to lesion location. Electronic supplementary material The online version of this article (doi:10.1186/s12984-016-0120-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanjoo Park
- Center for Bionics, Korea Institute of Science and Technology, Seoul, 02792, Korea.,Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Gyu Hyun Kwon
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, 04763, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
| | - Laehyun Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul, 02792, Korea. .,Department of HCI & Robotics, University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
38
|
Furlan L, Conforto AB, Cohen LG, Sterr A. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation. Neural Plast 2015; 2016:8176217. [PMID: 26843992 PMCID: PMC4710952 DOI: 10.1155/2016/8176217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022] Open
Abstract
Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well.
Collapse
Affiliation(s)
- Leonardo Furlan
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Adriana Bastos Conforto
- Neurology Clinical Division, Clinics Hospital, São Paulo University, Avenida Dr. Enéas C. Aguiar 255/5084, 05403-010 São Paulo, SP, Brazil
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Avenida Albert Einstein 627/701, 05601-901 São Paulo, SP, Brazil
| | - Leonardo G. Cohen
- Human Cortical Physiology and Stroke Rehabilitation Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 7D54, Bethesda, MD 20892, USA
| | - Annette Sterr
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Neurology Clinical Division, Clinics Hospital, São Paulo University, Avenida Dr. Enéas C. Aguiar 255/5084, 05403-010 São Paulo, SP, Brazil
| |
Collapse
|
39
|
Palmer JA, Hsiao H, Awad LN, Binder-Macleod SA. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clin Neurophysiol 2015; 127:1837-44. [PMID: 26724913 DOI: 10.1016/j.clinph.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/28/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE A deficit in paretic limb propulsion has been identified as a major biomechanical factor limiting walking speed after stroke. The purpose of this study was to determine the influence of corticomotor symmetry between paretic and nonparetic plantarflexors on the propulsive strategy used to increase walking speed. METHODS Twenty-three participants with post-stroke hemiparesis underwent transcranial magnetic stimulation and biomechanical testing at their self-selected and fastest walking speeds. Plantarflexor corticomotor symmetry (CS(PF)) was calculated as a ratio of the average paretic versus nonparetic soleus motor evoked potential amplitude. The ratio of the paretic and nonparetic peak ankle plantarflexion moments (PF(sym)) was calculated at each speed. RESULTS CS(PF) predicted the ΔPF(sym) from self-selected and fastest speeds (R(2)=.629, F(1,21)=35.56, p<.001). An interaction between CS(PF) and ΔPF(sym) (β=.596, p=.04) was observed when predicting Δspeed ((adj)R(2)=.772, F(3,19)=20.48, p<.001). Specifically, the ΔPF(sym) with speed modulation was positively related to the Δspeed (p=.03) in those with greater CS(PF), but was not related in those with poor CS(PF) (p=.30). CONCLUSIONS Symmetry of the corticomotor input to the plantarflexors influences the propulsive strategy used to increase post-stroke walking speed. SIGNIFICANCE Rehabilitation strategies that promote corticomotor symmetry may positively influence gait mechanics and enhance post-stroke walking function.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE 19713, USA.
| | - HaoYuan Hsiao
- Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE 19713, USA
| | - Louis N Awad
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Stuart A Binder-Macleod
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE 19713, USA
| |
Collapse
|
40
|
Naghdi S, Ansari NN, Rastgoo M, Forogh B, Jalaie S, Olyaei G. A pilot study on the effects of low frequency repetitive transcranial magnetic stimulation on lower extremity spasticity and motor neuron excitability in patients after stroke. J Bodyw Mov Ther 2015; 19:616-23. [PMID: 26592218 DOI: 10.1016/j.jbmt.2014.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the effect of low frequency, repetitive transcranial magnetic stimulation (rTMS) on the lower extremity spasticity and motor neuron excitability in patients after stroke. METHODS Seven patients after stroke aged 42-78 years were included in this pretest-posttest clinical trial. The rTMS at 1 Hz and duration of 20 min was applied to the intact leg motor cortex for five consecutive sessions. Primary outcome measures were the Modified Modified Ashwoth Scale (MMAS) and the H(max)/M(max) ratio. Measurements were taken at baseline (T0), after the last treatment (5th) session (T1), and at 1 week follow up (T2). RESULTS Clinically assessed ankle plantar flexor spasticity (p = 0.05) improved significantly after treatment at T1. Knee extensor spasticity scored 0 after treatment at T1 and T2. The H(max)/M(max) ratio showed no statistically significant improvement after treatment. CONCLUSION The pilot data indicate that the inhibitory rTMS of the intact leg motor cortex in patients after stroke may improve the lower extremity spasticity.
Collapse
Affiliation(s)
- Soofia Naghdi
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rastgoo
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Bijan Forogh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shohreh Jalaie
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Olyaei
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Palmer JA, Needle AR, Pohlig RT, Binder-Macleod SA. Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke. Clin Neurophysiol 2015; 127:716-723. [PMID: 26142877 DOI: 10.1016/j.clinph.2015.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The role of cortical drive in stroke recovery for the lower extremity remains ambiguous. The purpose of this study was to investigate the relationship between cortical drive and gait speed in a group of stroke survivors. METHODS Eighteen individuals with stroke were dichotomized into fast or slow walking groups. Transcranial magnetic stimulation (TMS) was used to collect motor evoked potentials (MEPs) from the tibialis anterior of each lower extremity during rest, paretic muscle contractions, and nonparetic muscle contractions. An asymmetry-index (AI) was calculated using motor thresholds and compared between groups. The average MEP of the paretic leg during TMS at maximal intensity (MEP100) for each condition was compared within and between groups. RESULTS A significant positive correlation was found between AI and walking speed. Slow-walkers had greater MEP100s during the nonparetic contraction than during the paretic contraction or rest conditions. In contrast, fast-walkers had greatest MEP100s during the paretic contraction. CONCLUSIONS Alterations in the balance of corticomotor excitability occur in the lower extremity of individuals with poor motor recovery post-stroke. This atypical cortical drive is dependent on activation of the unaffected hemisphere and contraction of the nonparetic leg. SIGNIFICANCE Understanding mechanisms underlying motor function can help to identify specific patient deficits that impair function.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE 19713, USA.
| | - Alan R Needle
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Ryan T Pohlig
- Biostatistics Core Facility, University of Delaware, Newark, DE 19713, USA
| | - Stuart A Binder-Macleod
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA; Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE 19713, USA
| |
Collapse
|
42
|
Kornfeld S, Delgado Rodríguez JA, Everts R, Kaelin-Lang A, Wiest R, Weisstanner C, Mordasini P, Steinlin M, Grunt S. Cortical reorganisation of cerebral networks after childhood stroke: impact on outcome. BMC Neurol 2015; 15:90. [PMID: 26058895 PMCID: PMC4466862 DOI: 10.1186/s12883-015-0309-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/17/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. METHODS The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2 years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9 months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. DISCUSSION This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric population diagnosed with arterial ischaemic stroke. Thus, this study has the potential to uniquely contribute to the understanding of neuronal plasticity in the brains of healthy children and those with acute or chronic brain injury. It is expected that the results will lead to the development of optimal interventions after arterial ischaemic stroke.
Collapse
Affiliation(s)
- Salome Kornfeld
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland.
| | - Juan Antonio Delgado Rodríguez
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Regula Everts
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland.
| | | | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Inselspital, Bern, Switzerland.
| | - Christian Weisstanner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Inselspital, Bern, Switzerland.
| | - Pasquale Mordasini
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Inselspital, Bern, Switzerland.
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland.
| | - Sebastian Grunt
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
43
|
Gillick BT, Krach LE, Feyma T, Rich TL, Moberg K, Menk J, Cassidy J, Kimberley T, Carey JR. Safety of primed repetitive transcranial magnetic stimulation and modified constraint-induced movement therapy in a randomized controlled trial in pediatric hemiparesis. Arch Phys Med Rehabil 2015; 96:S104-13. [PMID: 25283350 PMCID: PMC4380609 DOI: 10.1016/j.apmr.2014.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the safety of combining a 6-Hz primed low-frequency repetitive transcranial magnetic stimulation (rTMS) intervention in the contralesional hemisphere with a modified constraint-induced movement therapy (mCIMT) program in children with congenital hemiparesis. DESIGN Phase 1 randomized, double-blinded, placebo-controlled pretest/posttest trial. SETTING University academic facility and pediatric specialty hospital. PARTICIPANTS Subjects (N = 19; age range, 8-17 y) with congenital hemiparesis caused by ischemic stroke or periventricular leukomalacia. No subject withdrew because of adverse events. All subjects included completed the study. INTERVENTIONS Subjects were randomized to 1 of 2 groups: either real rTMS plus mCIMT (n = 10) or sham rTMS plus mCIMT (n = 9). MAIN OUTCOME MEASURES Adverse events, physician assessment, ipsilateral hand function, stereognosis, cognitive function, subject report of symptoms assessment, and subject questionnaire. RESULTS No major adverse events occurred. Minor adverse events were found in both groups. The most common events were headaches (real: 50%, sham: 89%; P = .14) and cast irritation (real: 30%, sham: 44%; P = .65). No differences between groups in secondary cognitive and unaffected hand motor measures were found. CONCLUSIONS Primed rTMS can be used safely with mCIMT in congenital hemiparesis. We provide new information on the use of rTMS in combination with mCIMT in children. These findings could be useful in research and future clinical applications in advancing function in congenital hemiparesis.
Collapse
Affiliation(s)
- Bernadette T Gillick
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN.
| | - Linda E Krach
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN; Gillette Children's Specialty Healthcare, St Paul, MN
| | - Tim Feyma
- Gillette Children's Specialty Healthcare, St Paul, MN
| | - Tonya L Rich
- Gillette Children's Specialty Healthcare, St Paul, MN
| | - Kelli Moberg
- Gillette Children's Specialty Healthcare, St Paul, MN
| | - Jeremiah Menk
- University of Minnesota Clinical and Translational Science Institute Biostatistical Design and Analysis Center, Minneapolis, MN
| | - Jessica Cassidy
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| | - Teresa Kimberley
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| | - James R Carey
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
44
|
Carey JR, Deng H, Gillick BT, Cassidy JM, Anderson DC, Zhang L, Thomas W. Serial treatments of primed low-frequency rTMS in stroke: characteristics of responders vs. nonresponders. Restor Neurol Neurosci 2014; 32:323-35. [PMID: 24401168 DOI: 10.3233/rnn-130358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE This study analyzed the characteristics of responders vs. nonresponders in people with stroke receiving a novel form of repetitive transcranial magnetic stimulation (rTMS) to improve hand function. METHODS Twelve people with stroke received five treatments of 6-Hz primed low-frequency rTMS to the contralesional primary motor area. We compared demographic factors, clinical features, and the ipsilesional/contralesional volume ratio of selected brain regions in those who improved hand performance (N = 7) on the single-hand component of the Test Évaluant la performance des Membres supérieurs des Personnes Âgées (TEMPA) and those who showed no improvement (N = 5). RESULTS Responders showed significantly greater baseline paretic hand function on the TEMPA, greater preservation volume of the ipsilesional posterior limb of the internal capsule (PLIC), and lower scores (i.e., less depression) on the Beck Depression Inventory than nonresponders. There were no differences in age, sex, stroke duration, paretic side, stroke hemisphere, baseline resting motor threshold for ipsilesional primary motor area (M1), NIH Stroke Scale, Upper Extremity Fugl-Meyer, Mini-Mental State Examination, or preservation volume of M1, primary somatosensory area, premotor cortex, or supplementary motor area. CONCLUSION Our results support that preserved PLIC volume is an important influential factor affecting responsiveness to rTMS.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Zhang
- University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
45
|
Stinear C, Byblow W, Ward S. An update on predicting motor recovery after stroke. Ann Phys Rehabil Med 2014; 57:489-498. [DOI: 10.1016/j.rehab.2014.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
|
46
|
Wittenberg GF, Dimyan MA. How do the physiology and transcallosal effects of the unaffected hemisphere change during inpatient rehabilitation after stroke? Clin Neurophysiol 2014; 125:1932-3. [DOI: 10.1016/j.clinph.2014.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
47
|
Motamed Vaziri P, Bahrpeyma F, Firoozabadi M, Forough B, Hatef B, Sheikhhoseini R, Shamili A. Low frequency repetitive transcranial magnetic stimulation to improve motor function and grip force of upper limbs of patients with hemiplegia. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e13579. [PMID: 25389476 PMCID: PMC4222002 DOI: 10.5812/ircmj.13579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 01/12/2014] [Accepted: 02/09/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stroke is the most common and debilitating neurological disorder among adults, and is a sudden onset of neurological signs caused by brain blood vessels impairments. OBJECTIVES Some new therapeutic methods focus on the use of magnetic stimulation to produce therapeutic effects by inducing the currents. The aim of this study is to determine the effects of rTMS plus routine rehabilitation on hand grip and wrist motor functions in patients with hemiplegia, and compare with pure routine rehabilitation programs. PATIENTS AND METHODS In this study, 12 patients with hemiplegia were randomly divided in two groups. Control group, received the rehabilitation program with placebo magnetic stimulation, and the experimental group, received magnetic stimulation with routine rehabilitation program for 10 sessions for three times per week. Pre and post evaluations of treatment performed using Barthel and Fugl-Meyer indices and dynamometers. RESULTS In the control group, Barthel and Fugl-Meyer indices showed significant improvement (P = 0.01, P = 0.00), while in the experimental group, significant improvement in Barthel and Fugl-Meyer indices and dynamometers has been observed (P = 0.01, P = 0.00, P = 0.007). CONCLUSIONS rTMS can improve hand muscle force and functions of patients with chronic hemiplegia, while conventional treatment is not effective.
Collapse
Affiliation(s)
| | - Farid Bahrpeyma
- Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | | | - Bijan Forough
- School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Boshra Hatef
- Neuroscience Research Center, Baghiyatallah University on Medical Sciences, Tehran, IR Iran
| | - Rahman Sheikhhoseini
- Department of Physical Education and Sport Sciences, University of Tehran, Tehran, IR Iran
- Corresponding Author: Rahman Sheikhhoseini, Department of Physical Education and Sport Sciences, University of Tehran, Tehran, IR Iran. Tel: +98-2122790724, +98-9188668284, E-mail:
| | - Aryan Shamili
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| |
Collapse
|
48
|
Liew SL, Santarnecchi E, Buch ER, Cohen LG. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 2014; 8:378. [PMID: 25018714 PMCID: PMC4072967 DOI: 10.3389/fnhum.2014.00378] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/14/2014] [Indexed: 01/01/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) may enhance motor recovery after neurological injury through the causal induction of plasticity processes. Neurological injury, such as stroke, often results in serious long-term physical disabilities, and despite intensive therapy, a large majority of brain injury survivors fail to regain full motor function. Emerging research suggests that NIBS techniques, such as transcranial magnetic (TMS) and direct current (tDCS) stimulation, in association with customarily used neurorehabilitative treatments, may enhance motor recovery. This paper provides a general review on TMS and tDCS paradigms, the mechanisms by which they operate and the stimulation techniques used in neurorehabilitation, specifically stroke. TMS and tDCS influence regional neural activity underlying the stimulation location and also distant interconnected network activity throughout the brain. We discuss recent studies that document NIBS effects on global brain activity measured with various neuroimaging techniques, which help to characterize better strategies for more accurate NIBS stimulation. These rapidly growing areas of inquiry may hold potential for improving the effectiveness of NIBS-based interventions for clinical rehabilitation.
Collapse
Affiliation(s)
- Sook-Lei Liew
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA
| | | | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| |
Collapse
|
49
|
Burke E, Dodakian L, See J, McKenzie A, Riley JD, Le V, Cramer SC. A multimodal approach to understanding motor impairment and disability after stroke. J Neurol 2014; 261:1178-86. [PMID: 24728337 DOI: 10.1007/s00415-014-7341-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/20/2023]
Abstract
Many different measures have been found to be related to behavioral outcome after stroke. Preclinical studies emphasize the importance of brain injury and neural function. However, the measures most important to human outcomes remain uncertain, in part because studies often examine one measure at a time or enroll only mildly impaired patients. The current study addressed this by performing multimodal evaluation in a heterogeneous population. Patients (n = 36) with stable arm paresis 3-6 months post-stroke were assessed across 6 categories of measures related to stroke outcome: demographics/medical history, cognitive/mood status, genetics, neurophysiology, brain injury, and cortical function. Multivariate modeling identified measures independently related to an impairment-based outcome (arm Fugl-Meyer motor score). Analyses were repeated (1) identifying measures related to disability (modified Rankin Scale score), describing independence in daily functions and (2) using only patients with mild deficits. Across patients, greater impairment was related to measures of injury (reduced corticospinal tract integrity) and neurophysiology (absence of motor evoked potential). In contrast, (1) greater disability was related to greater injury and poorer cognitive status (MMSE score) and (2) among patients with mild deficits, greater impairment was related to cortical function (greater contralesional motor/premotor cortex activation). Impairment after stroke is most related to injury and neurophysiology, consistent with preclinical studies. These relationships vary according to the patient subgroup or the behavioral endpoint studied. One potential implication of these results is that choice of biomarker or stratifying variable in a clinical stroke study might vary according to patient characteristics.
Collapse
Affiliation(s)
- Erin Burke
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA,
| | | | | | | | | | | | | |
Collapse
|
50
|
Dimyan MA, Perez MA, Auh S, Tarula E, Wilson M, Cohen LG. Nonparetic arm force does not overinhibit the paretic arm in chronic poststroke hemiparesis. Arch Phys Med Rehabil 2014; 95:849-56. [PMID: 24440364 DOI: 10.1016/j.apmr.2013.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/27/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To determine whether nonparetic arm force overinhibits the paretic arm in patients with chronic unilateral poststroke hemiparesis. DESIGN Case-control neurophysiological and behavioral study of patients with chronic stroke. SETTING Research institution. PARTICIPANTS Eighty-six referred patients were screened to enroll 9 participants (N=9) with a >6 month history of 1 unilateral ischemic infarct that resulted in arm hemiparesis with residual ability to produce 1Nm of wrist flexion torque and without contraindication to transcranial magnetic stimulation. Eight age- and handedness-matched healthy volunteers without neurologic diagnosis were studied for comparison. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE Change in interhemispheric inhibition targeting the ipsilesional primary motor cortex (M1) during nonparetic arm force. We hypothesized that interhemispheric inhibition would increase more in healthy controls than in patients with hemiparesis. RESULTS Healthy age-matched controls had significantly greater increases in inhibition from their active to resting M1 than patients with stroke from their active contralesional to resting ipsilesional M1 in the same scenario (20%±7% vs -1%±4%, F1,12=6.61, P=.025). Patients with greater increases in contralesional to ipsilesional inhibition were better performers on the 9-hole peg test of paretic arm function. CONCLUSIONS Our findings reveal that producing force with the nonparetic arm does not necessarily overinhibit the paretic arm. Though our study is limited in generalizability by the small sample size, we found that greater active contralesional to resting ipsilesional M1 inhibition was related with better recovery in this subset of patients with chronic poststroke.
Collapse
Affiliation(s)
- Michael A Dimyan
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.
| | - Monica A Perez
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sungyoung Auh
- Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Erick Tarula
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew Wilson
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Leonardo G Cohen
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|