1
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. Neurobehavioral Effects of Restricted and Unpredictable Environmental Enrichment in Rats. Front Pharmacol 2020; 11:674. [PMID: 32477137 PMCID: PMC7235364 DOI: 10.3389/fphar.2020.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
To study how motivational factors modulate experience-dependent neurobehavioral plasticity, we modify a protocol of environmental enrichment (EE) in rats. We assumed that the benefits derived from EE might vary according to the level of incentive salience attributed to it. To enhance the rewarding properties of EE, access to the EE cage varied randomly from 2 to 48 h for 30 days (REE). The REE group was enriched only 50% of the time and was compared to standard housing and continuous EE (CEE) groups. As behavioral readout, we analyzed the spontaneous activity and the ultrasonic vocalizations (USVs) within the EE cage weekly, and in the open field test at the end of the experiment. In the cage, REE increased the utilization of materials, physical activity, and the rate of appetitive USVs. In the OF, the CEE-induced enhancements in novelty habituation and social signaling were equaled by the REE. At the neural level, we measured the expression of genes related to neural plasticity and epigenetic regulations in different brain regions. In the dorsal striatum and hippocampus, REE upregulated the expression of the brain-derived neurotrophic factor, its tropomyosin kinase B receptor, and the DNA methyltransferase 3A. Altogether, our results suggest that the higher activity within the cage and the augmented incentive motivation provoked by the REE boosted its neurobehavioral effects equaling or surpassing those observed in the CEE condition. As constant exposures to treatments or stimulating environments are virtually impossible for humans, restricted EE protocols would have greater translational value than traditional ones.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Health Research, University of Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
3
|
Morelli ME, Baldini S, Sartori A, D'Acunto L, Dinoto A, Bosco A, Bratina A, Manganotti P. Early putamen hypertrophy and ongoing hippocampus atrophy predict cognitive performance in the first ten years of relapsing-remitting multiple sclerosis. Neurol Sci 2020; 41:2893-2904. [PMID: 32333180 DOI: 10.1007/s10072-020-04395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/03/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The first years of relapsing-remitting multiple sclerosis (RRMS) constitute the most vulnerable phase for the progression of cognitive impairment (CImp), due to a gradual decrease of compensatory mechanisms. In the first 10 years of RRMS, the temporal volumetric changes of deep gray matter structures must be clarified, since they could constitute reliable cognitive biomarkers for diagnostic, prognostic, and therapeutic purposes. METHODS Forty-five cognitively asymptomatic patients with RRMS lasting ≤ 10 years, and with a brain MRI performed in a year from the neuropsychological evaluation (Te-MRI), were included. They performed the Brief International Cognitive Assessment battery for MS. Thirty-one brain MRIs performed in the year of diagnosis (Td-MRI) and 13 brain MRIs of age- and sex-matched healthy controls (HCs) were also included in the study. The relationships between clinical features, cognitive performances, and Te- and Td-MRI volumes were statistically analyzed. RESULTS Cognitively preserved (CP) patients had significantly increased Td-L-putamen (P = 0.035) and Td-R-putamen volume (P = 0.027) with respect to cognitively impaired (CI) ones. CI patients had significantly reduced Te-L-hippocampus (P = 0.019) and Te-R-hippocampus volume (P = 0.042) compared, respectively, with Td-L-hippocampus and Td-R-hippocampus volume. Td-L-putamen volume (P = 0.011) and Te-L-hippocampus volume (P = 0.023) were independent predictors of the Symbol Digit Modalities Test score in all patients (r2 = 0.31, F = 6.175, P = 0.001). CONCLUSION In the first years of RRMS, putamen hypertrophy and hippocampus atrophy could represent promising indices of cognitive performance and reserve, and become potentially useful tools for diagnostic, prognostic, and therapeutic purposes.
Collapse
Affiliation(s)
- Maria Elisa Morelli
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
| | - Sara Baldini
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Arianna Sartori
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Laura D'Acunto
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Alessandro Dinoto
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Antonio Bosco
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Alessio Bratina
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| | - Paolo Manganotti
- Multiple Sclerosis Center, Neurology Unit, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy
| |
Collapse
|
4
|
Anodal Transcranial Direct Current Stimulation Enhances Survival and Integration of Dopaminergic Cell Transplants in a Rat Parkinson Model. eNeuro 2017; 4:eN-NWR-0063-17. [PMID: 28966974 PMCID: PMC5617080 DOI: 10.1523/eneuro.0063-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
Restorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of the trophic factor BDNF in the motor cortex. Transcranial DCS applied to the motor cortex transiently improves motor symptoms in Parkinson’s disease (PD) patients. In this proof-of-concept study, we combine cell based therapy and noninvasive neuromodulation to assess whether neurotrophic support via transcranial DCS would enhance the restitution of striatal neurotransmission by fetal dopaminergic transplants in a rat Parkinson model. Transcranial DCS was applied daily for 20 min on 14 consecutive days following striatal transplantation of fetal ventral mesencephalic (fVM) cells derived from transgenic rat embryos ubiquitously expressing GFP. Anodal but not cathodal transcranial DCS significantly enhanced graft survival and dopaminergic reinnervation of the surrounding striatal tissue relative to sham stimulation. Behavioral recovery was more pronounced following anodal transcranial DCS, and behavioral effects correlated with the degree of striatal innervation. Our results suggest anodal transcranial DCS may help advance cell-based restorative therapies in neurodegenerative diseases. In particular, such an assistive approach may be beneficial for the already established cell transplantation therapy in PD.
Collapse
|
5
|
Dunnett SB, Björklund A. Mechanisms and use of neural transplants for brain repair. PROGRESS IN BRAIN RESEARCH 2017; 230:1-51. [PMID: 28552225 DOI: 10.1016/bs.pbr.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Under appropriate conditions, neural tissues transplanted into the adult mammalian brain can survive, integrate, and function so as to influence the behavior of the host, opening the prospect of repairing neuronal damage, and alleviating symptoms associated with neuronal injury or neurodegenerative disease. Alternative mechanisms of action have been postulated: nonspecific effects of surgery; neurotrophic and neuroprotective influences on disease progression and host plasticity; diffuse or locally regulated pharmacological delivery of deficient neurochemicals, neurotransmitters, or neurohormones; restitution of the neuronal and glial environment necessary for proper host neuronal support and processing; promoting local and long-distance host and graft axon growth; formation of reciprocal connections and reconstruction of local circuits within the host brain; and up to full integration and reconstruction of fully functional host neuronal networks. Analysis of neural transplants in a broad range of anatomical systems and disease models, on simple and complex classes of behavioral function and information processing, have indicated that all of these alternative mechanisms are likely to contribute in different circumstances. Thus, there is not a single or typical mode of graft function; rather grafts can and do function in multiple ways, specific to each particular context. Consequently, to develop an effective cell-based therapy, multiple dimensions must be considered: the target disease pathogenesis; the neurodegenerative basis of each type of physiological dysfunction or behavioral symptom; the nature of the repair required to alleviate or remediate the functional impairments of particular clinical relevance; and identification of a suitable cell source or delivery system, along with the site and method of implantation, that can achieve the sought for repair and recovery.
Collapse
|
6
|
Abstract
Over the last decade, neural transplantation has emerged as one of the more promising, albeit highly experimental, potential therapeutics in neurodegenerative disease. Preclinical studies in rat lesion models of Huntington's disease (HD) and Parkinson's disease (PD) have shown that transplanted precursor neuronal tissue from a fetus into the lesioned striatum can survive, integrate, and reconnect circuitry. Importantly, specific training on behavioral tasks that target striatal function is required to encourage functional integration of the graft to the host tissue. Indeed, "learning to use the graft" is a concept recently adopted in preclinical studies to account for unpredicted profiles of recovery posttransplantation and is an emerging strategy for improving graft functionality. Clinical transplant studies in HD and PD have resulted in mixed outcomes. Small sample sizes and nonstandardized experimental procedures from trial to trial may explain some of this variability. However, it is becoming increasingly apparent that simply replacing the lost neurons may not be sufficient to ensure the optimal graft effects. The knowledge gained from preclinical grafting and training studies suggests that lifestyle factors, including physical activity and specific cognitive and/or motor training, may be required to drive the functional integration of grafted cells and to facilitate the development of compensatory neural networks. The clear implications of preclinical studies are that physical activity and cognitive training strategies are likely to be crucial components of clinical cell replacement therapies in the future. In this chapter, we evaluate the role of general activity in mediating the physical ability of cells to survive, sprout, and extend processes following transplantation in the adult mammalian brain, and we consider the impact of general and specific activity at the behavioral level on functional integration at the cellular and physiological level. We then highlight specific research questions related to timing, intensity, and specificity of training in preclinical models and synthesize the current state of knowledge in clinical populations to inform the development of a strategy for neural transplantation rehabilitation training.
Collapse
|
7
|
Mazzocchi-Jones D. Impaired corticostriatal LTP and depotentiation following iPLA2 inhibition is restored following acute application of DHA. Brain Res Bull 2015; 111:69-75. [DOI: 10.1016/j.brainresbull.2014.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023]
|
8
|
Reddington AE, Rosser AE, Dunnett SB. Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Front Cell Neurosci 2014; 8:398. [PMID: 25520619 PMCID: PMC4251433 DOI: 10.3389/fncel.2014.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disorder leading to the loss inter alia of DARPP-32 positive medium spiny projection neurons ("MSNs") in the striatum. There is no known cure for HD but the relative specificity of cell loss early in the disease has made cell replacement by neural transplantation an attractive therapeutic possibility. Transplantation of human fetal striatal precursor cells has shown "proof-of-principle" in clinical trials; however, the practical and ethical difficulties associated with sourcing fetal tissues have stimulated the need to identify alternative source(s) of donor cells that are more readily available and more suitable for standardization. We now have available the first generation of protocols to generate DARPP-32 positive MSN-like neurons from pluripotent stem cells and these have been successfully grafted into animal models of HD. However, whether these grafts can provide stable functional recovery to the level that can regularly be achieved with primary fetal striatal grafts remains to be demonstrated. Of particular concern, primary fetal striatal grafts are not homogenous; they contain not only the MSN subpopulation of striatal projection neurons but also include all the different cell types that make up the mature striatum, such as the multiple populations of striatal interneurons and striatal glia, and which certainly contribute to normal striatal function. By contrast, present protocols for pluripotent stem cell differentiation are almost entirely targeted at specifying just neurons of an MSN lineage. So far, evidence for the functionality and integration of stem-cell derived grafts is correspondingly limited. Indeed, consideration of the features of full striatal reconstruction that is achieved with primary fetal striatal grafts suggests that optimal success of the next generations of stem cell-derived replacement therapy in HD will require that graft protocols be developed to allow inclusion of multiple striatal cell types, such as interneurons and/or glia. Almost certainly, therefore, more sophisticated differentiation protocols will be necessary, over and above replacement of a specific population of MSNs. A rational solution to this technical challenge requires that we re-address the underlying question-what constitutes a functional striatal graft?
Collapse
Affiliation(s)
- Amy E Reddington
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| | - Anne E Rosser
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK ; Department of Psychological Medicine and Neurology, Cardiff University Cardiff, UK
| | - Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| |
Collapse
|
9
|
Hannan AJ. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol 2014; 40:13-25. [PMID: 24354721 DOI: 10.1111/nan.12102] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022]
Abstract
Environmental enrichment (EE) increases levels of novelty and complexity, inducing enhanced sensory, cognitive and motor stimulation. In wild-type rodents, EE has been found to have a range of effects, such as enhancing experience-dependent cellular plasticity and cognitive performance, relative to standard-housed controls. Whilst environmental enrichment is of course a relative term, dependent on the nature of control environmental conditions, epidemiological studies suggest that EE has direct clinical relevance to a range of neurological and psychiatric disorders. EE has been demonstrated to induce beneficial effects in animal models of a wide variety of brain disorders. The first evidence of beneficial effects of EE in a genetically targeted animal model was generated using Huntington's disease transgenic mice. Subsequent studies found that EE was also therapeutic in mouse models of Alzheimer's disease, consistent with epidemiological studies of relevant environmental modifiers. EE has also been found to ameliorate behavioural, cellular and molecular deficits in animal models of various neurological and psychiatric disorders, including Parkinson's disease, stroke, traumatic brain injury, epilepsy, multiple sclerosis, depression, schizophrenia and autism spectrum disorders. This review will focus on the effects of EE observed in animal models of neurodegenerative brain diseases, at molecular, cellular and behavioural levels. The proposal that EE may act synergistically with other approaches, such as drug and cell therapies, to facilitate brain repair will be discussed. I will also discuss the therapeutic potential of 'enviromimetics', drugs which mimic or enhance the therapeutic effects of cognitive activity and physical exercise, for both neuroprotection and brain repair.
Collapse
Affiliation(s)
- A J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Abstract
Huntington disease (HD) is associated with decline in cognition and progressive morphological changes in brain structures. Cognitive reserve may represent a mechanism by which disease-related decline may be delayed or slowed. The current study examined the relationship between cognitive reserve and longitudinal change in cognitive functioning and brain volumes among prodromal (gene expansion-positive) HD individuals. Participants were genetically confirmed individuals with prodromal HD enrolled in the PREDICT-HD study. Cognitive reserve was computed as the composite of performance on a lexical task estimating premorbid intellectual level, occupational status, and years of education. Linear mixed effects regression (LMER) was used to examine longitudinal changes on four cognitive measures and three brain volumes over approximately 6 years. Higher cognitive reserve was significantly associated with a slower rate of change on one cognitive measure (Trail Making Test, Part B) and slower rate of volume loss in two brain structures (caudate, putamen) for those estimated to be closest to motor disease onset. This relationship was not observed among those estimated to be further from motor disease onset. Our findings demonstrate a relationship between cognitive reserve and both a measure of executive functioning and integrity of certain brain structures in prodromal HD individuals.
Collapse
|
11
|
Trueman RC, Klein A, Lindgren HS, Lelos MJ, Dunnett SB. Repair of the CNS using endogenous and transplanted neural stem cells. Curr Top Behav Neurosci 2013; 15:357-98. [PMID: 22907556 DOI: 10.1007/7854_2012_223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Restoration of the damaged central nervous system is a vast challenge. However, there is a great need for research into this topic, due to the prevalence of central nervous system disorders and the devastating impact they have on people's lives. A number of strategies are being examined to achieve this goal, including cell replacement therapy, enhancement of endogenous plasticity and the recruitment of endogenous neurogenesis. The current chapter reviews this topic within the context of Parkinson's disease, Huntington's disease and stroke. For each disease exogenous cell therapies are discussed including primary (foetal) cell transplants, neural stem cells, induced pluripotent stem cells and marrow stromal cells. This chapter highlights the different mechanistic approaches of cell replacement therapy versus cells that deliver neurotropic factors, or enhance the endogenous production of these factors. Evidence of exogenously transplanted cells functionally integrating into the host brain, replacing cells, and having a behavioural benefit are discussed, along with the ability of some cell sources to stimulate endogenous neuroprotective and restorative events. Alongside exogenous cell therapy, the role of endogenous neurogenesis in each of the three diseases is outlined and methods to enhance this phenomenon are discussed.
Collapse
Affiliation(s)
- R C Trueman
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
12
|
Klein A, Lane EL, Dunnett SB. Brain repair in a unilateral rat model of Huntington's disease: new insights into impairment and restoration of forelimb movement patterns. Cell Transplant 2012; 22:1735-51. [PMID: 23067670 DOI: 10.3727/096368912x657918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) produces severe neurodegeneration in the striatum leading to disabling motor impairments, including the loss of control of skilled reaching movements. Fetal GABAergic transplants can physically replace the lost striatal cells but with only partial success in functional recovery. Here, we aimed to determine the extent and quality of the repair produced by fetal cell transplantation through an in-depth analysis of reaching behavior in the quinolinic acid-lesioned rat model of HD. Control, quinolinic acid-lesioned plus sham graft, and quinolinic acid-lesioned plus graft groups of rats were assessed in skilled reaching performance prior to and following lesion surgery and 3 months following injection of 400,000 fetal whole ganglionic eminence-derived cells into the striatum. This was compared to their performance in two more rudimentary tests of motor function (the adjusting step and vibrissae-evoked hand-placing tests). Grafted rats demonstrated a significant improvement in reaching success rate (graft +59%, shamTX +3%). Importantly, the quality of reaching behavior, including all components of the movement, was fully restored with no identifiable differences in the normal behavior shown by control rats. Postmortem immunohistochemical examination verified the survival of large intrastriatal grafts, and Fluoro-Gold tracing indicated appropriate outgrowth to the globus pallidus. Our study illustrates for the first time the detailed analysis of qualitative improvement of motor function following brain repair in a rat model of HD. The results demonstrate significant improvements not only in gross movements but also in the skilled motor patterns lost during HD. Fetal GABAergic cell transplantation showed a demonstrable ability to restore motor function to near normal levels, such that there were few differences from intact control animals, an effect not observed in standard tests of motor function.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
13
|
Pauly MC, Piroth T, Döbrössy M, Nikkhah G. Restoration of the striatal circuitry: from developmental aspects toward clinical applications. Front Cell Neurosci 2012; 6:16. [PMID: 22529778 PMCID: PMC3329876 DOI: 10.3389/fncel.2012.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/23/2012] [Indexed: 12/20/2022] Open
Abstract
In the basal ganglia circuitry, the striatum is a highly complex structure coordinating motor and cognitive functions and it is severely affected in Huntington's disease (HD) patients. Transplantation of fetal ganglionic eminence (GE) derived precursor cells aims to restore neural circuitry in the degenerated striatum of HD patients. Pre-clinical transplantation in genetic and lesion HD animal models has increased our knowledge of graft vs. host interactions, and clinical studies have been shown to successfully reduce motor and cognitive effects caused by the disease. Investigating the molecular mechanisms of striatal neurogenesis is a key research target, since novel strategies aim on generating striatal neurons by differentiating embryonic stem cells or by reprogramming somatic cells as alternative cell source for neural transplantation.
Collapse
Affiliation(s)
- Marie-Christin Pauly
- Division of Stereotactic Neurosurgery, Department of General Neurosurgery, University Freiburg - Medical Center Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
14
|
Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X, Zhang SC. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 2012; 10:455-64. [PMID: 22424902 DOI: 10.1016/j.stem.2012.01.021] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/07/2011] [Accepted: 01/27/2012] [Indexed: 11/15/2022]
Abstract
Degeneration of medium spiny GABA neurons in the basal ganglia underlies motor dysfunction in Huntington's disease (HD), which presently lacks effective therapy. In this study, we have successfully directed human embryonic stem cells (hESCs) to enriched populations of DARPP32-expressing forebrain GABA neurons. Transplantation of these human forebrain GABA neurons and their progenitors, but not spinal GABA cells, into the striatum of quinolinic acid-lesioned mice results in generation of large populations of DARPP32(+) GABA neurons, which project to the substantia nigra as well as receiving glutamatergic and dopaminergic inputs, corresponding to correction of motor deficits. This finding raises hopes for cell therapy for HD.
Collapse
Affiliation(s)
- Lixiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Döbrössy MD, Nikkhah G. Role of experience, training, and plasticity in the functional efficacy of striatal transplants. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195425 DOI: 10.1016/b978-0-444-59575-1.00014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cell-based treatments of neurodegenerative diseases have been tested clinically with partial success. In the context of Huntington's disease (HD), experimental studies show that the grafted embryonic striatal cells survive, integrate within the host brain, and reverse some functional deficits. Importantly, once transplanted, the grafted striatal neurons retain a significant level of cellular, morphological, and functional plasticity which allows the experimental modification of their character through the manipulation of environmental cues or learning protocols. Using embryonic striatal grafts in the rodent model of HD as the principal example, this chapter summarizes seminal experiments that demonstrate that environmental factors, training, and activity can tap into mechanisms that influence the development of the grafted cells and can change the profile of graft-mediated behavioral recovery. Although currently there is limited understanding of the biological rationale behind the recovery, we put forward experimental data indicating that striatal grafts can express experience-dependent physiological plasticity at the synaptic as well as at the systemic functional level.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Molecular Neurosurgery, Division of Stereotactic Neurosurgery, Department of General Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany.
| | | |
Collapse
|