1
|
Mostajeran M, Alizadeh S, Rostami HR, Ghaffari A, Adibi I. Feasibility and efficacy of an early sensory-motor rehabilitation program on hand function in patients with stroke: a pilot, single-subject experimental design. Neurol Sci 2024; 45:2737-2746. [PMID: 38158472 DOI: 10.1007/s10072-023-07288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Hand and upper limb functional impairments following stroke lead to limitations in performing activities of daily living. We aimed to investigate feasibility and efficacy of an early sensory-motor rehabilitation program on hand and upper limb function in patients with acute stroke. DESIGN A pilot, single-subject experimental, A-B-A study. SETTING Stroke unit of an educational hospital and an outpatient occupational therapy clinic. PARTICIPANTS A convenience sample including five people with acute stroke. PROCEDURES Participants received 3 h of an intensive hand and upper limb sensory and motor rehabilitation program, 5 days per week for 3 months (15-min mental imagery, 15-min action observation, 30-min mirror therapy, 1.5-h constraint-induced movement therapy, and 30-min bilateral arm training). Activities were chosen based on the task-oriented occupational therapy approach. OUTCOME MEASURES An assessor blinded to intervention program measured sensory and motor functions using action research arm test, box and block test, Semmes-Weinstein monofilaments, and upper extremity section of Fugl-Meyer assessment. RESULTS Assessment data points in intervention and follow-up phases compared to baseline were in higher levels, sloped upwardly, and increased significantly for all participants in all outcome measures. CONCLUSIONS The present pilot study showed that a package of nowadays evidence-based rehabilitation methods including mental imagery, action observation, mirror therapy, modified constraint-induced movement therapy, bilateral arm training, and task-oriented occupational therapy approach is able to improve sensory and motor functions of the hand and upper limb in patients with acute stroke.
Collapse
Affiliation(s)
- Maryam Mostajeran
- Department of Cognitive Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran
| | - Saeed Alizadeh
- Department of Occupational Therapy, Faculty of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Rostami
- Department of Occupational Therapy, Musculoskeletal Research Center, Faculty of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ghaffari
- Department of Occupational Therapy, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
He LW, Guo XJ, Zhao C, Rao JS. Rehabilitation Training after Spinal Cord Injury Affects Brain Structure and Function: From Mechanisms to Methods. Biomedicines 2023; 12:41. [PMID: 38255148 PMCID: PMC10813763 DOI: 10.3390/biomedicines12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal cord injury (SCI) is a serious neurological insult that disrupts the ascending and descending neural pathways between the peripheral nerves and the brain, leading to not only functional deficits in the injured area and below the level of the lesion but also morphological, structural, and functional reorganization of the brain. These changes introduce new challenges and uncertainties into the treatment of SCI. Rehabilitation training, a clinical intervention designed to promote functional recovery after spinal cord and brain injuries, has been reported to promote activation and functional reorganization of the cerebral cortex through multiple physiological mechanisms. In this review, we evaluate the potential mechanisms of exercise that affect the brain structure and function, as well as the rehabilitation training process for the brain after SCI. Additionally, we compare and discuss the principles, effects, and future directions of several rehabilitation training methods that facilitate cerebral cortex activation and recovery after SCI. Understanding the regulatory role of rehabilitation training at the supraspinal center is of great significance for clinicians to develop SCI treatment strategies and optimize rehabilitation plans.
Collapse
Affiliation(s)
- Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| |
Collapse
|
3
|
Xie H, Li X, Xu G, Huo C, Fan Y, Li Z, Dou Z. Effects of transcranial magnetic stimulation on dynamic functional networks in stroke patients as assessed by functional near-infrared spectroscopy: a randomized controlled clinical trial. Cereb Cortex 2023; 33:11668-11678. [PMID: 37885140 DOI: 10.1093/cercor/bhad404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Studies have shown that there is heterogeneity in the efficacy bewteen the low-frequency (LF) and high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS), but the neural mechanisms underlying the differences in efficacy remain unclear. This study aimed to investigate the specific effects of LF- and HF-rTMS on cortial functional network and the process of neural regulation. A total of sixty-eight patients with hemiplegic motor impairment after stroke were randomly allocated to one of three groups: the LF-rTMS, HF-rTMS, and sham groups. Tissue concentrations of oxyhaemoglobin and deoxyhaemoglobin oscillations in cerebral cortex regions were measured by functional near-infrared spectroscopy (fNIRS) in the resting and rTMS states. Four specific time-windows were divided from the trial duration to observe dynamic changes in cortical haemodynamic responses. Compared with sham, LF-rTMS significantly induced the activation of the contralesional superior frontal cortex and premotor cortex, and continuously regulated ipsilesional hemisphere functional networks in stroke patients. However, HF-rTMS did not induce a significant neurovascular coupling response. Our study provided evidence that LF- and HF-rTMS interventions induced different neurovascular coupling responses and demonstrated the cortical functional network change process of rTMS in specific time-windows. These findings may help to understand the differences in the efficacy of rTMS modalities.
Collapse
Affiliation(s)
- Hui Xie
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100086, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100086, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Congcong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100086, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100086, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
4
|
He YZ, Huang ZM, Deng HY, Huang J, Wu JH, Wu JS. Feasibility, safety, and efficacy of task-oriented mirrored robotic training on upper-limb functions and activities of daily living in subacute poststroke patients: a pilot study. Eur J Phys Rehabil Med 2023; 59:660-668. [PMID: 37869761 PMCID: PMC10795073 DOI: 10.23736/s1973-9087.23.08018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Robotic training with high repetitions facilitates upper-limb movements but provides fewer benefits for activities of daily living. Integrating activities of daily living training tasks and mirror therapy into a robot may enhance the functional gains of robotic training. AIM The aim of this study was to investigate the feasibility, safety, and efficacy of the task-oriented mirrored upper-limb robotic training on the upper-limb functions and activities of daily living of subacute poststroke patients. DESIGN This study is a single-blinded, active-controlled pilot study. SETTING The study was carried out at rehabilitation outpatient clinic and ward. POPULATION A total of 32 subacute poststroke patients were enrolled in the study. METHODS The enrolled patients were allocated into two groups in a ratio of 1:1. The experimental group received 4 weeks of task-oriented mirrored upper-limb robotic training, consisting of five sessions of 30-minute duration, along with 30 minutes of conventional training. The control group only received 60 minutes of conventional training. The outcome measures were the Fugl-Meyer Assessment Scale for Upper Extremity, Modified Barthel Index, Stroke Self-Efficacy Scale, System Usability Scale, and Quebec User Evaluation with Assistive Technology. RESULTS All patients completed the full training sessions without significant adverse events related to robotic training. The task-oriented mirrored upper-limb robotic training led to increased Fugl-Meyer Assessment Scale for Upper Extremity (difference: 10.38 points, P<0.001) and Modified Barthel Index (difference: 18.38 points, P<0.001) scores, both of which exceeded the minimal clinically important difference. Intergroup analysis showed significantly higher improvements in the Fugl-Meyer Assessment Scale for Upper Extremity total scores, shoulder, wrist, and hand scores; and Modified Barthel Index scores in the experimental group than in conventional training (all P<0.05). Both groups showed significant improvements in Stroke Self-Efficacy Scale scores after the intervention (both P<0.001), but without a statistically significant intergroup difference (P>0.05). Participants in the experimental group scored an average usability perception score of 74.74 (good) and an average satisfaction score of four or more out of five. CONCLUSIONS In general, task-oriented mirrored upper-limb robotic training appears feasible and safe for subacute poststroke rehabilitation, facilitating the recovery of upper-limb functions and activities of daily living. CLINICAL REHABILITATION IMPACT Task-oriented mirrored upper-limb robotic training shows promise for future clinical rehabilitation and clinical trials involving subacute poststroke patients.
Collapse
Affiliation(s)
- You-Ze He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| | - Zhen-Ming Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hai-Yin Deng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| | - Jian-Huang Wu
- Shenzhen Wisemen Medical Technologies Co., Ltd, Shenzhen, China
| | - Jing-Song Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China -
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| |
Collapse
|
5
|
Talhada D, Ruscher K. Performing Enriched Environment Studies to Improve Functional Recovery. Methods Mol Biol 2023; 2616:355-366. [PMID: 36715945 DOI: 10.1007/978-1-0716-2926-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Physical therapy and social interactions between the stroke patient and healthcare professionals or relatives facilitate the process of recovery and promote improvement of lost neurological function after stroke. These observations can be mimicked in an experimental setting by multimodal stimulation provided in the concept of enriched environment. The enriched environment is a housing condition combining social interactions and sensorimotor stimulation that improves lost neurological function without affecting the extent of brain damage after experimental stroke. This chapter provides a detailed protocol on how to perform enriched housing experiments including conceptual and technical considerations as a tool to investigate mechanisms of recovery after brain injury.
Collapse
Affiliation(s)
- Daniela Talhada
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Xie H, Li X, Huang W, Yin J, Luo C, Li Z, Dou Z. Effects of robot-assisted task-oriented upper limb motor training on neuroplasticity in stroke patients with different degrees of motor dysfunction: A neuroimaging motor evaluation index. Front Neurosci 2022; 16:957972. [PMID: 36188465 PMCID: PMC9523102 DOI: 10.3389/fnins.2022.957972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough robot-assisted task-oriented upper limb (UL) motor training had been shown to be effective for UL functional rehabilitation after stroke, it did not improve UL motor function more than conventional therapy. Due to the lack of evaluation of neurological indicators, it was difficult to confirm the robot treatment parameters and clinical efficacy in a timely manner. This study aimed to explore the changes in neuroplasticity induced by robot-assisted task-oriented UL motor training in different degrees of dysfunction patients and extract neurological evaluation indicators to provide the robot with additional parameter information.Materials and methodsA total of 33 adult patients with hemiplegic motor impairment after stroke were recruited as participants in this study, and a manual muscle test divided patients into muscle strength 0–1 level (severe group, n = 10), 2–3 level (moderate group, n = 14), and 4 or above level (mild group, n = 9). Tissue concentration of oxyhemoglobin and deoxyhemoglobin oscillations in the bilateral prefrontal cortex, dorsolateral prefrontal cortex (DLPFC), superior frontal cortex (SFC), premotor cortex, primary motor cortex (M1), primary somatosensory cortex (S1), and occipital cortex were measured by functional near-infrared spectroscopy (fNIRS) in resting and motor training state. The phase information of a 0.01 −0.08 Hz signal was identified by the wavelet transform method. The wavelet amplitude, lateralization index, and wavelet phase coherence (WPCO) were calculated to describe the frequency-specific cortical changes.ResultsCompared with the resting state, significant increased cortical activation was observed in ipsilesional SFC in the mild group and bilateral SFC in the moderate group during UL motor training. Patients in the mild group demonstrated significantly decreased lateralization of activation in motor training than resting state. Moreover, the WPCO value of motor training between contralesional DLPFC and ipsilesional SFC, bilateral SFC, contralesional, S1, and ipsilesional M1 showed a significant decrease compared with the resting state in the mild group.ConclusionRobot-assisted task-oriented UL motor training could modify the neuroplasticity of SFC and contribute to control movements and continuous learning motor regularity for patients. fNIRS could provide a variety of real-time sensitive neural evaluation indicators for the robot, which was beneficial to formulating more reasonable and effective personalized prescriptions during motor training.
Collapse
Affiliation(s)
- Hui Xie
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yin
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Cailing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zengyong Li
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zulin Dou
| |
Collapse
|
7
|
Coskunsu DK, Akcay S, Ogul OE, Akyol DK, Ozturk N, Zileli F, Tuzun BB, Krespi Y. Effects of robotic rehabilitation on recovery of hand functions in acute stroke: A preliminary randomized controlled study. Acta Neurol Scand 2022; 146:499-511. [PMID: 35855628 DOI: 10.1111/ane.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of EMG-driven robotic rehabilitation on hand motor functions and daily living activities of patients with acute ischemic stroke. MATERIALS & METHOD A preliminary randomized-controlled, single-blind trial rectuited twenty-four patients with acute ischemic stroke (<1 month after cerebrovascular accident) and randomly allocated to experimental group (EG) and control group (CG). Neurophysiological rehabilitation program was performed to both EG and CG for 5 days a week and totally 15 sessions. The EG also received robotic rehabilitation with the EMG-driven exoskeleton hand robot (Hand of Hope®, Rehab-Robotics Company) 15 sessions over 3 weeks. Hand motor functions (Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT)), activities of daily living (Motor Activity Log (MAL)), force and EMG activities of extensor and flexor muscles for the cup test were evaluated before treatment (pretreatment) and after the 15th session (posttreatment). RESULTS Eleven patients (59.91 ± 14.20 yr) in the EG and 9 patients (70 ± 14.06 yr) in the CG completed the study. EG did not provide a significant advantage compared with the CG in FMA-UE, ARAT and MAL scores and cup-force and EMG activities (p > .05 for all). CONCLUSION In this preliminary study, improvement in motor functions, daily living activities and force were found in both groups. However, addition of the EMG-driven robotic treatment to the neurophysiological rehabilitation program did not provide an additional benefit to the clinical outcomes in 3 weeks in acute stroke patients.
Collapse
Affiliation(s)
- Dilber Karagozoglu Coskunsu
- Department of Physiotherapy and Rehabilitation, Institute of Health Sciences, Bahcesehir University, Istanbul, Turkey.,Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Fenerbahce University, Istanbul, Turkey
| | - Sumeyye Akcay
- Department of Physiotherapy and Rehabilitation, Institute of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Ozden Erkan Ogul
- Faculty of Health Sciences, Department of Ergotherapy, Medipol University, Istanbul, Turkey
| | - D Kubra Akyol
- Department of Physiotherapy and Rehabilitation, Institute of Health Sciences, Istanbul-Cerrahpasa University, Istanbul, Turkey
| | - Necla Ozturk
- Faculty of Medicine, Department of Biophysics, Maltepe University, Istanbul, Turkey
| | - Füsun Zileli
- Neurology Department, İstanbul Haseki Research and Education Hospital, Istanbul, Turkey
| | - Birgul Baştan Tuzun
- Neurology Department, İstanbul Haseki Research and Education Hospital, Istanbul, Turkey
| | - Yakup Krespi
- Faculty of Medicine, Department of Neurology, Istinye University, Istanbul, Turkey
| |
Collapse
|
8
|
Yazdani M, Chitsaz A, Zolaktaf V, Saadatnia M, Ghasemi M, Nazari F, Chitsaz A, Suzuki K, Nobari H. Can Early Neuromuscular Rehabilitation Protocol Improve Disability after a Hemiparetic Stroke? A Pilot Study. Brain Sci 2022; 12:brainsci12070816. [PMID: 35884625 PMCID: PMC9313239 DOI: 10.3390/brainsci12070816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The impairment of limb function and disability are among the most important consequences of stroke. To date, however, little research has been done on the early rehabilitation trial (ERT) after stroke in these patients. The purpose of this study was to evaluate the impact of ERT neuromuscular protocol on motor function soon after hemiparetic stroke. The sample included twelve hemiparetic patients (54.3 ± 15.4 years old) with ischemic stroke (n = 7 control, n = 5 intervention patients). ERT was started as early as possible after stroke and included passive range of motion exercises, resistance training, assisted standing up, and active exercises of the healthy side of the body, in addition to encouraging voluntary contraction of affected limbs as much as possible. The rehabilitation was progressive and took 3 months, 6 days per week, 2–3 hours per session. Fugle-Meyer Assessment (FMA), Box and Blocks test (BBT) and Timed up and go (TUG) assessments were conducted. There was a significantly greater improvement in the intervention group compared to control: FMA lower limbs (p = 0.001), total motor function (p = 0.002), but no significant difference in FMA upper limb between groups (p = 0.51). The analysis of data related to BBT showed no significant differences between the experimental and control groups (p = 0.3). However, TUG test showed significant differences between the experimental and control groups (p = 0.004). The most important finding of this study was to spend enough time in training sessions and provide adequate rest time for each person. Our results showed that ERT was associated with improved motor function but not with the upper limbs. This provides a basis for a definitive trial.
Collapse
Affiliation(s)
- Mahdi Yazdani
- Faculty of Sport Sciences, University of Isfahan, Isfahan 81746-7344, Iran; (V.Z.); (A.C.)
- Isfahan Neurosciences Research Centre, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran
- Correspondence: (M.Y.); (K.S.); or (H.N.)
| | - Ahmad Chitsaz
- Isfahan Neurosciences Research Centre, Alzahra Research Institute, Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.C.); (M.S.); (M.G.)
| | - Vahid Zolaktaf
- Faculty of Sport Sciences, University of Isfahan, Isfahan 81746-7344, Iran; (V.Z.); (A.C.)
| | - Mohammad Saadatnia
- Isfahan Neurosciences Research Centre, Alzahra Research Institute, Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.C.); (M.S.); (M.G.)
| | - Majid Ghasemi
- Isfahan Neurosciences Research Centre, Alzahra Research Institute, Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.C.); (M.S.); (M.G.)
| | - Fatemeh Nazari
- Isfahan Neurosciences Research Centre, Department of Adult Health Nursing, Faculty of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran;
| | - Abbas Chitsaz
- Faculty of Sport Sciences, University of Isfahan, Isfahan 81746-7344, Iran; (V.Z.); (A.C.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (M.Y.); (K.S.); or (H.N.)
| | - Hadi Nobari
- Faculty of Sport Sciences, University of Isfahan, Isfahan 81746-7344, Iran; (V.Z.); (A.C.)
- Faculty of Sport Sciences, University of Extremadura, 10003 Caceres, Spain
- Department of Motor Performance, Faculty of Physical Education and Mountain Sports, Transilvania University of Brașov, 500068 Brașov, Romania
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
- Correspondence: (M.Y.); (K.S.); or (H.N.)
| |
Collapse
|
9
|
Kilbride C, Warland A, Stewart V, Aweid B, Samiyappan A, Ryan J, Butcher T, Athanasiou DA, Baker K, Singla-Buxarrais G, Anokye N, Pound C, Gowing F, Norris M. Rehabilitation using virtual gaming for Hospital and hOMe-Based training for the Upper limb post Stroke (RHOMBUS II): protocol of a feasibility randomised controlled trial. BMJ Open 2022; 12:e058905. [PMID: 35672074 PMCID: PMC9174817 DOI: 10.1136/bmjopen-2021-058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Upper limb (UL) rehabilitation is most effective early after stroke, with higher doses leading to improved outcomes. For the stroke survivor, the repetition may be monotonous. For clinicians, providing a clinically meaningful level of input can be challenging. As such, time spent engaged in UL activity among subacute stroke survivors remains inadequate. Opportunities for the stroke survivor to engage with UL rehabilitation in a safe, accessible and engaging way are essential to improving UL outcomes following stroke. The NeuroBall is a non-immersive virtual reality (VR) digital system designed for stroke rehabilitation, specifically for the arm and hand. The aim of the Rehabilitation using virtual gaming for Hospital and hOMe-Based training for the Upper limb post Stroke study is to determine the safety, feasibility and acceptability of the NeuroBall as a rehabilitation intervention for the UL in subacute stroke. METHODS AND ANALYSIS A feasibility randomised controlled trial (RCT) will compare the NeuroBall plus usual care with usual care only, in supporting UL rehabilitation over 7 weeks. Twenty-four participants in the subacute poststroke phase will be recruited while on the inpatient or early supported discharge (ESD) stroke pathway. Sixteen participants will be randomised to the intervention group and eight to the control group. Outcomes assessed at baseline and 7 weeks include gross level of disability, arm function, spasticity, pain, fatigue and quality of life (QoL). Safety will be assessed by recording adverse events and using pain, spasticity and fatigue scores. A parallel process evaluation will assess feasibility and acceptability of the intervention. Feasibility will also be determined by assessing fidelity to the intervention. Postintervention, semistructured interviews will be used to explore acceptability with 12 participants from the intervention group, four from the usual care group and with up to nine staff involved in delivering the intervention. ETHICS AND DISSEMINATION This trial has ethical approval from Brunel University London's Research Ethics Committee 25257-NHS-Oct/2020-28121-2 and the Wales Research Ethics Committee 5 Bangor (Health and Care Research Wales) REC ref: 20/WA/0347. The study is sponsored by Brunel University London. CONTACT Dr Derek Healy, Chair, University Research Ethics committee (Derek.healy@brunel.ac.uk). Trial results will be submitted for publication in peer-reviewed journals, presented at national and international conferences and distributed to people with stroke. TRIAL REGISTRATION NUMBER ISRCTN11440079; Pre-results.
Collapse
Affiliation(s)
- Cherry Kilbride
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Alyson Warland
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | | | - Basaam Aweid
- Stroke Unit, Hillingdon Hospitals NHS Foundation Trust, Uxbridge, Middlesex, UK
- Early Supported Discharge (Stroke), Central and North West London NHS Foundation Trust, London, UK
| | - Arul Samiyappan
- Adult Services, Central and North West London NHS Foundation Trust, London, UK
| | - Jennifer Ryan
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tom Butcher
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | | | | | | | - Nana Anokye
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Carole Pound
- Faculty of Health and Social Sciences, Bournemouth University, Poole, Dorset, UK
| | - Francesca Gowing
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Meriel Norris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| |
Collapse
|
10
|
Skidmore ER, Shih M, Terhorst L, O’Connor E. Lesion location may attenuate response to strategy training in acute stroke. PM R 2022; 14:329-336. [PMID: 33728742 PMCID: PMC8446102 DOI: 10.1002/pmrj.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Strategy training, a rehabilitation intervention, reduces disability and improves functional skills associated with goal-directed behavior. Stroke lesions impacting selected ventromedial regions of interest associated with initiation of goal-directed behavior may attenuate intervention response. If so, strategy training may not be optimal for people with stroke lesions in these regions. OBJECTIVE To examine whether ventromedial regions of interest attenuate changes in disability status attributed to strategy training. DESIGN Secondary analysis of data from two randomized controlled clinical trials. SETTING Inpatient stroke rehabilitation. PARTICIPANTS People with acute stroke diagnosis and available diagnostic studies enrolled in inpatient rehabilitation randomized controlled studies between 2009 and 2017. INTERVENTION Participants were randomized to strategy training or a control condition in addition to the usual care during inpatient rehabilitation. MAIN OUTCOME MEASURES Diagnostic magnetic resonance imaging studies were retrieved from electronic medical records, and stroke lesion location was characterized by a neuroradiologist. Intervention response was defined by Functional Independence Measure change scores of 22 points or greater. RESULTS Only 186 of 275 participants had diagnostic studies available; 13 patients showed no apparent lesion on their diagnostic study. Among 173 cases, 156 had complete data at discharge (strategy training n = 71, control n = 85). Twenty-five cases had a lesion within a region of interest (strategy training n = 14, control n = 11). Intervention response was attenuated in the strategy training group for those with lesions in regions of interest [χ2 (1, n = 71) = 4.60, P = .03], but not for those in the control group [Fisher exact test, n = 85, P = .19). CONCLUSIONS Lesions in the ventromedial regions of interest may attenuate response to strategy training.
Collapse
Affiliation(s)
- Elizabeth R. Skidmore
- Department of Occupational Therapy, University of Pittsburgh School of Health and Rehabilitation Sciences
| | - Minmei Shih
- Department of Occupational Therapy, University of Pittsburgh School of Health and Rehabilitation Sciences
| | - Lauren Terhorst
- Department of Occupational Therapy, University of Pittsburgh School of Health and Rehabilitation Sciences,Data Center, University of Pittsburgh School of Health and Rehabilitation Sciences
| | - Erin O’Connor
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine
| |
Collapse
|
11
|
Ali A S, Arumugam A, Gururaj S, Kumaran D S. Effects of game-based rehabilitation on upper limb function in adults within the first six months following stroke: protocol for a systematic review and meta-analysis. JBI Evid Synth 2021; 19:1954-1963. [PMID: 33720108 DOI: 10.11124/jbies-20-00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate and summarize the level of evidence for the immediate, short-term, and long-term effects of game-based rehabilitation on upper limb function in adults within the first six months following stroke. INTRODUCTION A game-based intervention is a valuable therapeutic tool for incorporating principles of motor learning and neuroplasticity in the rehabilitation of upper limb function post-stroke. Most of the existing reviews on game-based rehabilitation are focused on the chronic phase of stroke. However, as maximum upper limb motor recovery occurs in the first six months after stroke, further exploration of the effects of game-based rehabilitation in this phase is necessary. INCLUSION CRITERIA We will include randomized clinical trials assessing the immediate, short-term, and long-term effects of game-based rehabilitation on upper limb function in adults within the first six months following stroke. METHODS The systematic review will follow the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) checklist and JBI methodology for systematic reviews of effectiveness. A database-specific search strategy will be used in CINAHL, PubMed, Scopus, Web of Science, ProQuest, PEDro, OT Seeker, and Ovid MEDLINE to identify studies in the English language with no date limit. Two reviewers will independently screen, extract data from, and assess risk of bias in the eligible studies. Meta-analysis and publication bias evaluation will be done when adequate data are available. If a meta-analysis is precluded, then a narrative synthesis will be done. The Grading of Recommendations Assessment Development and Evaluation (GRADE) criteria will be used to assess the certainty of evidence for the outcome measures of interest. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42020190100.
Collapse
Affiliation(s)
- Sulfikar Ali A
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashokan Arumugam
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sanjana Gururaj
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Senthil Kumaran D
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Ingram LA, Butler AA, Brodie MA, Lord SR, Gandevia SC. Quantifying upper limb motor impairment in chronic stroke: a physiological profiling approach. J Appl Physiol (1985) 2021; 131:949-965. [PMID: 34264125 DOI: 10.1152/japplphysiol.00078.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upper limb motor impairments, such as muscle weakness, loss of dexterous movement, and reduced sensation, are common after a stroke. The extent and severity of these impairments differ among individuals, depending on the anatomical location and size of lesions. Identifying impairments specific to the individual is critical to optimize their functional recovery. The upper limb Physiological Profile Assessment (PPA) provides quantitative measures of key physiological domains required for adequate function in the upper limbs. The present study investigates the use of the upper limb PPA in a chronic stroke population. Fifty participants with chronic stroke completed all tests of the upper limb PPA with both their affected and less affected upper limbs. Performance in each test was compared to that of 50 age- and sex-matched control subjects with no history of a stroke. Correlations between test performance and validated measures of stroke, sensorimotor function, and disability were examined. Compared with control subjects, people with stroke demonstrated substantially impaired upper limb PPA performance for both their affected and less affected limbs. Performance in the upper limb PPA was associated with validated measures of sensorimotor function specific to the stroke population (Fugl-Meyer Assessment) and stroke-related disability (Stroke Impact Scale). The upper limb PPA shows good concurrent validity as a means to quantify upper limb function in a chronic stroke population. These tests identify domain-specific deficits and could be further tailored to an individual patient by the clinician to inform rehabilitation and track recovery.NEW & NOTEWORTHY Upper limb motor impairment is a common manifestation after stroke, compromising independence in fundamental daily activities involving the ability to reach, grasp, and manipulate objects. The upper limb Physiological Profile Assessment (PPA) offers a means of quantifying performance of the individual sensorimotor domains that are essential for upper limb function. Establishing individual performance profiles based on age- and sex-based normative scores may facilitate individualized treatment decisions by identifying the stroke patient's specific strengths and limitations.
Collapse
Affiliation(s)
- Lewis A Ingram
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Annie A Butler
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew A Brodie
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen R Lord
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Huang M, Xiao C, Zhang L, Li L, Luo J, Chen L, Hu X, Zheng H. Bioinformatic Analysis of Exosomal MicroRNAs of Cerebrospinal Fluid in Ischemic Stroke Rats After Physical Exercise. Neurochem Res 2021; 46:1540-1553. [PMID: 33709257 DOI: 10.1007/s11064-021-03294-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
Physical exercise is beneficial to the structural and functional recovery of post-ischemic stroke, but its molecular mechanism remains obscure. Herein, we aimed to explore the underlying mechanism of exercise-induced neuroprotection from the perspective of microRNAs (miRNAs). Adult male Sprague-Dawley (SD) rats were randomly distributed into 4 groups, i.e., the physical exercise group with the transient middle cerebral artery occlusion (tMCAO) surgery (PE-IS, n = 28); the physical exercise group without tMCAO surgery (PE, n = 6); the sedentary group with tMCAO surgery (Sed-IS, n = 28); and the sedentary group without tMCAO surgery (Sed, n = 6). Notably, rats in the PE-IS and PE groups were subjected to a running exercise for 28 days while rats in the Sed-IS and Sed groups received no exercise training. After long-term exercise, exosomal miRNAs of cerebrospinal fluid (CSF) were analyzed using high-throughput sequencing. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed for the differentially expressed miRNAs. Physical exercise improved the neurological function and attenuated the lesion expansion after stroke. In total, 41 differentially expressed miRNAs were screened for the GO and KEGG analysis. GO enriched terms were associated with the central nervous system, including cellular response to retinoic acid, vagus nerve morphogenesis, cellular response to hypoxia, dendritic cell chemotaxis, cell differentiation, and regulation of neuron death. Besides, these differentially expressed miRNAs were linked to the pathophysiological process of stroke, including axon guidance, NF-kappa B signaling pathway, thiamine metabolism, and MAPK signaling pathway according to KEGG analysis. In summary, exercise training significantly alleviated the neurological damage at both functional and structural levels. Moreover, the differentially expressed miRNAs regulating multiple signal pathways were potentially involved in the neuroprotective effects of physical exercise. Therefore, these miRNAs altered by physical exercise might represent the therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Mudan Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Chongjun Xiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Lilin Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
14
|
Effectiveness of an intensive, functional, gamified Rehabilitation program in improving upper limb motor function in people with stroke: A protocol of the EnteRtain randomized clinical trial. Contemp Clin Trials 2021; 105:106381. [PMID: 33862286 DOI: 10.1016/j.cct.2021.106381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Game-based rehabilitation is an emerging therapeutic intervention that allows intensive, repetitive, task-based training to improve upper limb (UL) function following stroke, based on the principles of neuro-plasticity and motor (re)learning. Rehabilitation using commercial gaming system will be motivating, enjoyable, challenging and affordable. Therefore, the present study aims at assessing the effectiveness of an intensive, functional, gamified rehabilitation program using the ArmAble™ device in improving UL motor function in people with stroke. METHOD In this single-blinded, multi-centric, randomized clinical trial, 120 adults with acute/sub-acute unilateral stroke will be randomized to receive an intensive, functional, gamified training program using the ArmAble™ or task-based training along with a conventional therapy for 2 h/day, 6 days/week for 2 weeks, followed by a home-based, functional rehabilitation program for another 4 weeks (~30 min/day, 6 days/week). Primary outcomes evaluated by a blinded assessor at the baseline, 2 weeks and 6 weeks' post-intervention will include the Fugl-Meyer assessment - upper extremity and the action research arm test. A linear mixed effect regression model or relevant non-parametric tests will be used to analyze the data for all outcomes. An intention-to-treat analysis will be used with missing data handled by multiple imputation. DISCUSSION Rehabilitation provided with the ArmAble™ device, if found effective, can be used from the early stages post-stroke to provide intensive, repetitive, gamified training to improve UL motor function. TRIAL REGISTRATION NUMBER CTRI/2020/09/027651.
Collapse
|
15
|
Ambrosini E, Gasperini G, Zajc J, Immick N, Augsten A, Rossini M, Ballarati R, Russold M, Ferrante S, Ferrigno G, Bulgheroni M, Baccinelli W, Schauer T, Wiesener C, Gfoehler M, Puchinger M, Weber M, Weber S, Pedrocchi A, Molteni F, Krakow K. A Robotic System with EMG-Triggered Functional Eletrical Stimulation for Restoring Arm Functions in Stroke Survivors. Neurorehabil Neural Repair 2021; 35:334-345. [PMID: 33655789 DOI: 10.1177/1545968321997769] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Robotic systems combined with Functional Electrical Stimulation (FES) showed promising results on upper-limb motor recovery after stroke, but adequately-sized randomized controlled trials (RCTs) are still missing. OBJECTIVE To evaluate whether arm training supported by RETRAINER, a passive exoskeleton integrated with electromyograph-triggered functional electrical stimulation, is superior to advanced conventional therapy (ACT) of equal intensity in the recovery of arm functions, dexterity, strength, activities of daily living, and quality of life after stroke. METHODS A single-blind RCT recruiting 72 patients was conducted. Patients, randomly allocated to 2 groups, were trained for 9 weeks, 3 times per week: the experimental group performed task-oriented exercises assisted by RETRAINER for 30 minutes plus ACT (60 minutes), whereas the control group performed only ACT (90 minutes). Patients were assessed before, soon after, and 1 month after the end of the intervention. Outcome measures were as follows: Action Research Arm Test (ARAT), Motricity Index, Motor Activity Log, Box and Blocks Test (BBT), Stroke Specific Quality of Life Scale (SSQoL), and Muscle Research Council. RESULTS All outcomes but SSQoL significantly improved over time in both groups (P < .001); a significant interaction effect in favor of the experimental group was found for ARAT and BBT. ARAT showed a between-group change of 11.5 points (P = .010) at the end of the intervention, which increased to 13.6 points 1 month after. Patients considered RETRAINER moderately usable (System Usability Score of 61.5 ± 22.8). CONCLUSIONS Hybrid robotic systems, allowing to perform personalized, intensive, and task-oriented training, with an enriched sensory feedback, was superior to ACT in improving arm functions and dexterity after stroke.
Collapse
Affiliation(s)
| | | | | | - Nancy Immick
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Andreas Augsten
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| | - Mauro Rossini
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Costamasnaga, Italy
| | - Karsten Krakow
- Asklepios Neurologische Klinik Falkenstein, Königstein, Germany
| |
Collapse
|
16
|
Effectiveness of a Functional Rehabilitation Program for Upper Limb Apraxia in Poststroke Patients: A Randomized Controlled Trial. Arch Phys Med Rehabil 2021; 102:940-950. [PMID: 33485836 DOI: 10.1016/j.apmr.2020.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To analyze the effectiveness of a home-based restorative and compensatory upper limb apraxia (ULA) rehabilitation program. DESIGN Randomized controlled trial. SETTING Neurology Unit of San Cecilio Hospital and 2 private and specialized health care centers. PARTICIPANTS Community dwelling participants (N=38) between the ages of 25 and 95 years old (sex ratio, 1:1) with unilateral mild-to-moderate poststroke lesions (time of evolution since stroke, 12.03±8.98mo) and secondary ULA. INTERVENTIONS Participants were randomly assigned to an 8-week combined ULA functional rehabilitation group (n=19) 3 days per week for 30 minutes or to a traditional health care education protocol group (n=19) once a month for 8 weeks. Both interventions were conducted at home. MAIN OUTCOME MEASURES Sociodemographic and clinical data, Barthel Index (primary outcome), Lawton and Brody Scale, observation and scoring activities of daily living, the De Renzi tests for ideational and ideomotor apraxia and imitating gestures test, recognition of gestures, test for upper limb apraxia , and stroke-specific quality of life scale were assessed at 3 time points: baseline, posttreatment (8wk), and follow-up (8wk). RESULTS There were statistically significant differences among the groups regarding ideomotor apraxia, imitating gestures, global recognition of gestures, intransitive gestures, and comprehension of gesture production (P<.05) in favor of the experimental group. However, no statistically significant differences were found between the groups regarding functionality or quality of life (P>.05). Regarding the within-group effect, statistically significant differences were found in all neuropsychological outcomes at posttreatment and follow-up (P<.05). CONCLUSION A functional rehabilitation program was found to be superior to a traditional health care education program and resulted in improvements in neuropsychological functioning in ULA poststroke. Conventional education showed an insufficient effect on apraxia recovery. Further studies with larger sample sizes are needed to determine the effect of rehabilitation strategies on functionality and quality of life of poststroke ULA patients.
Collapse
|
17
|
Pan G, Cheng J, Shen W, Lin Y, Zhu A, Jin L, Xie Q, Zhu M, Liu C, Tu F, Chen X. Intensive treadmill training promotes cognitive recovery after cerebral ischemia-reperfusion in juvenile rats. Behav Brain Res 2020; 401:113085. [PMID: 33358915 DOI: 10.1016/j.bbr.2020.113085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Rehabilitation training is routine for children who experience stroke, but its protective mechanism remains unclear. To study the effect of treadmill training intensity on hippocampal synaptic plasticity after cerebral ischemia, a model of middle cerebral artery occlusion (MCAO)/reperfusion was established in young rats to simulate childhood ischemic stroke. The rats were randomly allocated into five groups: sham operation, MCAO, low-intensity exercise and MCAO (5 m/min), medium-intensity exercise and MCAO (10 m/min), and high-intensity exercise and MCAO (15 m/min). Intervention was continued for 14 days, and a series of experimental tests were conducted. After MCAO, the juvenile rats exhibited a series of morphological and functional alterations, including changes in their neurobehavior and cerebral infarct volumes. Compared with control rats, MCAO rats had a longer escape latency and crossed fewer platforms in the water maze test and exhibited decreased hippocampal neuron density and Synapsin I and PSD95 expression. Furthermore, MCAO rats exhibited synapse morphology changes and abnormal serum levels of lactic acid and corticosterone. Treadmill training effectively reduced the neurobehavioral scores and cerebral infarction volumes, with medium-intensity training showing the best effect. Treadmill training shortened the escape latency, increased the number of platform crossings, and improved the spatial cognitive abilities of the rats, with the medium intensity training having the best effect on spatial learning/memory efficiency. Treadmill training increased the neuron density in the hippocampus, with the medium-intensity training resulting in the highest density. Treadmill training had a positive effect on the expression of Synapsin I and PSD95, with the medium-intensity training showing the strongest effect. Treadmill training improved the sub-microstructure synapse morphology, with the medium-intensity training demonstrating the best effect. Treadmill training increased the plasma levels of lactic acid and corticosterone, with the high-intensity training having the most obvious effect. Treadmill training can provide neuroprotection by promoting hippocampal synaptic plasticity, with medium-intensity training showing the most optimal effects.
Collapse
Affiliation(s)
- Guoyuan Pan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China; Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, Zhejiang, China
| | - Jingyan Cheng
- The Second Hospital Affiliated to Anhui University of Chinese Medicine, No.300, Shouchun Road, Hefei, Anhui, China
| | - Weimin Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Yao Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Anqi Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Lingqin Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Qingfeng Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Mingjin Zhu
- Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, Zhejiang, China
| | - Chan Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Fengxia Tu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Xiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuanxi Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
18
|
Allegra Mascaro AL, Conti E, Lai S, Di Giovanna AP, Spalletti C, Alia C, Panarese A, Scaglione A, Sacconi L, Micera S, Caleo M, Pavone FS. Combined Rehabilitation Promotes the Recovery of Structural and Functional Features of Healthy Neuronal Networks after Stroke. Cell Rep 2020; 28:3474-3485.e6. [PMID: 31553915 DOI: 10.1016/j.celrep.2019.08.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
Abstract
Rehabilitation is considered the most effective treatment for promoting the recovery of motor deficits after stroke. One of the most challenging experimental goals is to unambiguously link brain rewiring to motor improvement prompted by rehabilitative therapy. Previous work showed that robotic training combined with transient inactivation of the contralesional cortex promotes a generalized recovery in a mouse model of stroke. Here, we use advanced optical imaging and manipulation tools to study cortical remodeling induced by this rehabilitation paradigm. We show that the stabilization of peri-infarct synaptic contacts accompanies increased vascular density induced by angiogenesis. Furthermore, temporal and spatial features of cortical activation recover toward pre-stroke conditions through the progressive formation of a new motor representation in the peri-infarct area. In the same animals, we observe reinforcement of inter-hemispheric connectivity. Our results provide evidence that combined rehabilitation promotes the restoration of structural and functional features distinctive of healthy neuronal networks.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy.
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Stefano Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | | | | | - Claudia Alia
- Neuroscience Institute, National Research Council, Pisa 56124, Italy
| | - Alessandro Panarese
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| | - Silvestro Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; Department of Biomedical Sciences, University of Padua, Padova 35131, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| |
Collapse
|
19
|
A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol 2020; 57:4218-4231. [PMID: 32691303 DOI: 10.1007/s12035-020-02021-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
After ischemic stroke, survivors experience motor dysfunction and deterioration of memory and cognition. These symptoms are associated with the disruption of normal neuronal function, i.e., the secretion of neurotrophic factors, interhemispheric connections, and synaptic activity, and hence the disruption of the normal neural circuit. Exercise is considered an effective and feasible rehabilitation strategy for improving cognitive and motor recovery following ischemic stroke through the facilitation of neuroplasticity. In this review, our aim was to discuss the mechanisms by which exercise-induced neuroplasticity improves motor function and cognitive ability after ischemic stroke. The associated mechanisms include increases in neurotrophins, improvements in synaptic structure and function, the enhancement of interhemispheric connections, the promotion of neural regeneration, the acceleration of neural function reorganization, and the facilitation of compensation beyond the infarcted tissue. We also discuss some common exercise strategies and a novel exercise therapy, robot-assisted movement, which might be widely applied in the clinic to help stroke patients in the future.
Collapse
|
20
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
21
|
Saunders DH, Sanderson M, Hayes S, Johnson L, Kramer S, Carter DD, Jarvis H, Brazzelli M, Mead GE. Physical fitness training for stroke patients. Cochrane Database Syst Rev 2020; 3:CD003316. [PMID: 32196635 PMCID: PMC7083515 DOI: 10.1002/14651858.cd003316.pub7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Levels of physical activity and physical fitness are low after stroke. Interventions to increase physical fitness could reduce mortality and reduce disability through increased function. OBJECTIVES The primary objectives of this updated review were to determine whether fitness training after stroke reduces death, death or dependence, and disability. The secondary objectives were to determine the effects of training on adverse events, risk factors, physical fitness, mobility, physical function, health status and quality of life, mood, and cognitive function. SEARCH METHODS In July 2018 we searched the Cochrane Stroke Trials Register, CENTRAL, MEDLINE, Embase, CINAHL, SPORTDiscus, PsycINFO, and four additional databases. We also searched ongoing trials registers and conference proceedings, screened reference lists, and contacted experts in the field. SELECTION CRITERIA Randomised trials comparing either cardiorespiratory training or resistance training, or both (mixed training), with usual care, no intervention, or a non-exercise intervention in stroke survivors. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, assessed quality and risk of bias, and extracted data. We analysed data using random-effects meta-analyses and assessed the quality of the evidence using the GRADE approach. Diverse outcome measures limited the intended analyses. MAIN RESULTS We included 75 studies, involving 3017 mostly ambulatory participants, which comprised cardiorespiratory (32 studies, 1631 participants), resistance (20 studies, 779 participants), and mixed training interventions (23 studies, 1207 participants). Death was not influenced by any intervention; risk differences were all 0.00 (low-certainty evidence). There were few deaths overall (19/3017 at end of intervention and 19/1469 at end of follow-up). None of the studies assessed death or dependence as a composite outcome. Disability scores were improved at end of intervention by cardiorespiratory training (standardised mean difference (SMD) 0.52, 95% CI 0.19 to 0.84; 8 studies, 462 participants; P = 0.002; moderate-certainty evidence) and mixed training (SMD 0.23, 95% CI 0.03 to 0.42; 9 studies, 604 participants; P = 0.02; low-certainty evidence). There were too few data to assess the effects of resistance training on disability. Secondary outcomes showed multiple benefits for physical fitness (VO2 peak and strength), mobility (walking speed) and physical function (balance). These physical effects tended to be intervention-specific with the evidence mostly low or moderate certainty. Risk factor data were limited or showed no effects apart from cardiorespiratory fitness (VO2 peak), which increased after cardiorespiratory training (mean difference (MD) 3.40 mL/kg/min, 95% CI 2.98 to 3.83; 9 studies, 438 participants; moderate-certainty evidence). There was no evidence of any serious adverse events. Lack of data prevents conclusions about effects of training on mood, quality of life, and cognition. Lack of data also meant benefits at follow-up (i.e. after training had stopped) were unclear but some mobility benefits did persist. Risk of bias varied across studies but imbalanced amounts of exposure in control and intervention groups was a common issue affecting many comparisons. AUTHORS' CONCLUSIONS Few deaths overall suggest exercise is a safe intervention but means we cannot determine whether exercise reduces mortality or the chance of death or dependency. Cardiorespiratory training and, to a lesser extent mixed training, reduce disability during or after usual stroke care; this could be mediated by improved mobility and balance. There is sufficient evidence to incorporate cardiorespiratory and mixed training, involving walking, within post-stroke rehabilitation programmes to improve fitness, balance and the speed and capacity of walking. The magnitude of VO2 peak increase after cardiorespiratory training has been suggested to reduce risk of stroke hospitalisation by ˜7%. Cognitive function is under-investigated despite being a key outcome of interest for patients. Further well-designed randomised trials are needed to determine the optimal exercise prescription, the range of benefits and any long-term benefits.
Collapse
Affiliation(s)
- David H Saunders
- University of EdinburghPhysical Activity for Health Research Centre (PAHRC)St Leonards LandHolyrood RoadEdinburghMidlothianUKEH8 8AQ
| | - Mark Sanderson
- University of the West of ScotlandInstitute of Clinical Exercise and Health ScienceRoom A071A, Almada BuildingHamiltonUKML3 0JB
| | - Sara Hayes
- University of LimerickSchool of Allied Health, Ageing Research Centre, Health Research InstituteLimerickIreland
| | - Liam Johnson
- University of MelbourneThe Florey Institute of Neuroscience and Mental HealthHeidelbergAustralia3084
| | - Sharon Kramer
- University of MelbourneThe Florey Institute of Neuroscience and Mental HealthHeidelbergAustralia3084
| | - Daniel D Carter
- University of LimerickSchool of Allied Health, Faculty of Education and Health SciencesLimerickIreland
| | - Hannah Jarvis
- Manchester Metropolitan UniversityResearch Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and EngineeringJohn Dalton BuildingChester StreetManchesterUKM1 5GD
| | - Miriam Brazzelli
- University of AberdeenHealth Services Research UnitHealth Sciences BuildingForesterhillAberdeenUKAB25 2ZD
| | - Gillian E Mead
- University of EdinburghCentre for Clinical Brain SciencesRoom S1642, Royal InfirmaryLittle France CrescentEdinburghUKEH16 4SA
| | | |
Collapse
|
22
|
Chen PM, Kwong PWH, Lai CKY, Ng SSM. Comparison of bilateral and unilateral upper limb training in people with stroke: A systematic review and meta-analysis. PLoS One 2019; 14:e0216357. [PMID: 31120910 PMCID: PMC6532847 DOI: 10.1371/journal.pone.0216357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Background and objectives Bilateral upper limb training (BULT) and unilateral upper limb training (UULT) are two effective strategies for the recovery of upper limb motor function after stroke. This meta-analysis aimed to compare the improvements in motor impairment and functional performances of people with stroke after BULT and UULT. Research design and methods This systematic review and meta-analysis identified 21 randomized controlled trials (RCTs) met the eligibility criteria from CINAHL, Medline, Embase, Cochrane Library and PubMed. The outcome measures were the Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Wolf Motor Function Test (WMFT), Action Research Arm Test (ARAT) and Box and Block Test (BBT), which are validated measures of upper limb function. Results Twenty-one studies involving 842 subjects with stroke were included. Compared with UULT, BULT yielded a significantly greater mean difference (MD) in the FMA-UE (MD = 2.21, 95% Confidence Interval (CI), 0.12 to 4.30, p = 0.04; I2 = 86%, p<0.001). However, a comparison of BULT and UULT yielded insignificant mean difference (MD) in terms of the time required to complete the WMFT (MD = 0.44; 95%CI, -2.22 to 3.10, p = 0.75; I2 = 55%, p = 0.06) and standard mean difference (SMD) in terms of the functional ability scores on the WMFT, ARAT and BBT (SMD = 0.25; 95%CI, -0.02 to 0.52, p = 0.07; I2 = 54%, p = 0.02). Discussion and implications Compared to UULT, BULT yielded superior improvements in the improving motor impairment of people with stroke, as measured by the FMA-UE. However, these strategies did not yield significant differences in terms of the functional performance of people with stroke, as measured by the WMFT, ARAT and BBT. More comparative studies of the effects of BULT and UULT are needed to increase the reliability of these conclusions.
Collapse
Affiliation(s)
- Pei-ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Patrick W. H. Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Claudia K. Y. Lai
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Shamay S. M. Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
- * E-mail:
| |
Collapse
|
23
|
Lin IH, Tsai HT, Wang CY, Hsu CY, Liou TH, Lin YN. Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review. Arch Phys Med Rehabil 2018; 100:366-378. [PMID: 30686327 DOI: 10.1016/j.apmr.2018.09.123] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/19/2018] [Accepted: 09/21/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the effects of various rehabilitative interventions aimed at enhancing poststroke motor recovery by assessing their effectiveness when compared with no treatment or placebo and their superiority when compared with conventional training program (CTP). DATA SOURCE A literature search was based on 19 Cochrane reviews and 26 other reviews. We also updated the searches in PubMed up to September 30, 2017. STUDY SELECTION Randomized controlled trials associated with 18 experimented training programs (ETP) were included if they evaluated the effects of the programs on either upper extremity (UE) or lower extremity (LE) motor recovery among adults within 6 months poststroke; included ≥10 participants in each arm; and had an intervention duration of ≥10 consecutive weekdays. DATA EXTRACTION Four reviewers evaluated the eligibility and quality of literature. Methodological quality was assessed using the PEDro scale. DATA SYNTHESIS Among the 178 included studies, 129 including 7450 participants were analyzed in this meta-analysis. Six ETPs were significantly effective in enhancing UE motor recovery, with the standard mean differences (SMDs) and 95% confidence intervals outlined as follow: constraint-induced movement therapy (0.82, 0.45-1.19), electrostimulation (ES)-motor (0.42, 0.22-0.63), mirror therapy (0.71, 0.22-1.20), mixed approach (0.21, 0.01-0.41), robot-assisted training (0.51, 0.22-0.80), and task-oriented training (0.57, 0.16-0.99). Six ETPs were significantly effective in enhancing LE motor recovery: body-weight-supported treadmill training (0.27, 0.01-0.52), caregiver-mediated training (0.64, 0.20-1.08), ES-motor (0.55, 0.27-0.83), mixed approach (0.35, 0.15-0.54), mirror therapy (0.56, 0.13-1.00), and virtual reality (0.60, 0.15-1.05). However, compared with CTPs, almost none of the ETPs exhibited significant SMDs for superiority. CONCLUSIONS Certain experimented interventions were effective in enhancing poststroke motor recovery, but little evidence supported the superiority of experimented interventions over conventional rehabilitation.
Collapse
Affiliation(s)
- I-Hsien Lin
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Han-Ting Tsai
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yung Wang
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Hsu
- Department of Physical Medicine and Rehabilitation, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Nung Lin
- Department of Physical Medicine and Rehabilitation, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan; Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Lannin NA, Ada L, English C, Ratcliffe J, Crotty M. Effect of adding upper limb rehabilitation to botulinum toxin-A on upper limb activity after stroke: Protocol for the InTENSE trial. Int J Stroke 2018; 13:648-653. [PMID: 29553309 DOI: 10.1177/1747493018765228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Rationale Although clinical practice guidelines recommend that management of moderate to severe spasticity include the use of botulinum toxin-A in conjunction with therapy, there is currently no evidence to support the addition of therapy. Aims To determine the effect and cost-benefit of adding evidence-based movement training to botulinum toxin-A. Sample size estimate A total of 136 participants will be recruited in order to be able to detect a between-group difference of seven points on the Goal Attainment Scale T-score with 80% power at a two-tailed significance level of 0.05. Methods and design The InTENSE trial is a national, multicenter, Phase III randomized trial with concealed allocation, blinded assessment and intention-to-treat analysis. Stroke survivors who are scheduled to receive botulinum toxin-A in any muscle(s) that cross the wrist because of moderate to severe spasticity after a stroke greater than three months ago, who have completed formal rehabilitation and have no significant cognitive impairment will be randomly allocated to receive botulinum toxin-A plus evidence-based movement training or botulinum toxin-A alone. Study outcomes The primary outcomes are goal attainment (Goal Attainment Scaling) and upper limb activity (Box and Block Test) at three months (end of intervention) and at 12 months (beyond the intervention). Secondary outcomes are spasticity, range of motion, strength, pain, burden of care and health-related quality of life. Direct costs, personal costs and health system costs will be collected at 12 months. Discussion The results of the InTENSE trial are anticipated to directly influence intervention for moderate to severe spasticity after stroke. Trial Registration ANZCTR12615000616572.
Collapse
Affiliation(s)
- Natasha A Lannin
- 1 Department of Occupational Therapy, School of Allied Health, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
- 2 Alfred Health, Melbourne, Australia
- 3 John Walsh Centre for Rehabilitation Research, The University of Sydney, Sydney, Australia
| | - Louise Ada
- 4 School of Physiotherapy, The University of Sydney, Sydney, Australia
| | - Coralie English
- 5 School of Health Sciences and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Julie Ratcliffe
- 6 Institute for Choice, UniSA Business School, University of South Australia, Adelaide, Australia
| | - Maria Crotty
- 7 Faculty of Medicine, Flinders University, Adelaide, Australia
- 8 Repatriation General Hospital, Adelaide, Australia
| |
Collapse
|
25
|
The beneficial role of early exercise training following stroke and possible mechanisms. Life Sci 2018; 198:32-37. [DOI: 10.1016/j.lfs.2018.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
|
26
|
Coleman ER, Moudgal R, Lang K, Hyacinth HI, Awosika OO, Kissela BM, Feng W. Early Rehabilitation After Stroke: a Narrative Review. Curr Atheroscler Rep 2017; 19:59. [PMID: 29116473 PMCID: PMC5802378 DOI: 10.1007/s11883-017-0686-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Despite current rehabilitative strategies, stroke remains a leading cause of disability in the USA. There is a window of enhanced neuroplasticity early after stroke, during which the brain's dynamic response to injury is heightened and rehabilitation might be particularly effective. This review summarizes the evidence of the existence of this plastic window, and the evidence regarding safety and efficacy of early rehabilitative strategies for several stroke domain-specific deficits. RECENT FINDINGS Overall, trials of rehabilitation in the first 2 weeks after stroke are scarce. In the realm of very early mobilization, one large and one small trial found potential harm from mobilizing patients within the first 24 h after stroke, and only one small trial found benefit in doing so. For the upper extremity, constraint-induced movement therapy appears to have benefit when started within 2 weeks of stroke. Evidence for non-invasive brain stimulation in the acute period remains scant and inconclusive. For aphasia, the evidence is mixed, but intensive early therapy might be of benefit for patients with severe aphasia. Mirror therapy begun early after stroke shows promise for the alleviation of neglect. Novel approaches to treating dysphagia early after stroke appear promising, but the high rate of spontaneous improvement makes their benefit difficult to gauge. The optimal time to begin rehabilitation after a stroke remains unsettled, though the evidence is mounting that for at least some deficits, initiation of rehabilitative strategies within the first 2 weeks of stroke is beneficial. Commencing intensive therapy in the first 24 h may be harmful.
Collapse
Affiliation(s)
- Elisheva R Coleman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA.
| | - Rohitha Moudgal
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathryn Lang
- Department of Rehabilitation Services, University of Cincinnati, Cincinnati, OH, USA
| | - Hyacinth I Hyacinth
- Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA
| | - Brett M Kissela
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
27
|
Brain motor functional changes after somatosensory discrimination training. Brain Imaging Behav 2017; 12:1011-1021. [DOI: 10.1007/s11682-017-9763-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Toward precision medicine: tailoring interventional strategies based on noninvasive brain stimulation for motor recovery after stroke. Curr Opin Neurol 2017; 30:388-397. [DOI: 10.1097/wco.0000000000000462] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Wattchow KA, McDonnell MN, Hillier SL. Rehabilitation Interventions for Upper Limb Function in the First Four Weeks Following Stroke: A Systematic Review and Meta-Analysis of the Evidence. Arch Phys Med Rehabil 2017; 99:367-382. [PMID: 28734936 DOI: 10.1016/j.apmr.2017.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the therapeutic interventions reported in the research literature and synthesize their effectiveness in improving upper limb (UL) function in the first 4 weeks poststroke. DATA SOURCES Electronic databases and trial registries were searched from inception until June 2016, in addition to searching systematic reviews by hand. STUDY SELECTION Randomized controlled trials (RCTs), controlled trials, and interventional studies with pre/posttest design were included for adults within 4 weeks of any type of stroke with UL impairment. Participants all received an intervention of any physiotherapeutic or occupational therapeutic technique designed to address impairment or activity of the affected UL, which could be compared with usual care, sham, or another technique. DATA EXTRACTION Two reviewers independently assessed eligibility of full texts, and methodological quality of included studies was assessed using the Cochrane Risk of Bias Tool. DATA SYNTHESIS A total of 104 trials (83 RCTs, 21 nonrandomized studies) were included (N=5225 participants). Meta-analyses of RCTs only (20 comparisons) and narrative syntheses were completed. Key findings included significant positive effects for modified constraint-induced movement therapy (mCIMT) (standardized mean difference [SMD]=1.09; 95% confidence interval [CI], .21-1.97) and task-specific training (SMD=.37; 95% CI, .05-.68). Evidence was found to support supplementary use of biofeedback and electrical stimulation. Use of Bobath therapy was not supported. CONCLUSIONS Use of mCIMT and task-specific training was supported, as was supplementary use of biofeedback and electrical simulation, within the acute phase poststroke. Further high-quality studies into the initial 4 weeks poststroke are needed to determine therapies for targeted functional UL outcomes.
Collapse
Affiliation(s)
- Kimberley A Wattchow
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michelle N McDonnell
- Stroke and Rehabilitation Research Group, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.
| | - Susan L Hillier
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Wilkins KB, Owen M, Ingo C, Carmona C, Dewald JPA, Yao J. Neural Plasticity in Moderate to Severe Chronic Stroke Following a Device-Assisted Task-Specific Arm/Hand Intervention. Front Neurol 2017; 8:284. [PMID: 28659863 PMCID: PMC5469871 DOI: 10.3389/fneur.2017.00284] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/01/2017] [Indexed: 01/17/2023] Open
Abstract
Currently, hand rehabilitation following stroke tends to focus on mildly impaired individuals, partially due to the inability for severely impaired subjects to sufficiently use the paretic hand. Device-assisted interventions offer a means to include this more severe population and show promising behavioral results. However, the ability for this population to demonstrate neural plasticity, a crucial factor in functional recovery following effective post-stroke interventions, remains unclear. This study aimed to investigate neural changes related to hand function induced by a device-assisted task-specific intervention in individuals with moderate to severe chronic stroke (upper extremity Fugl-Meyer < 30). We examined functional cortical reorganization related to paretic hand opening and gray matter (GM) structural changes using a multimodal imaging approach. Individuals demonstrated a shift in cortical activity related to hand opening from the contralesional to the ipsilesional hemisphere following the intervention. This was driven by decreased activity in contralesional primary sensorimotor cortex and increased activity in ipsilesional secondary motor cortex. Additionally, subjects displayed increased GM density in ipsilesional primary sensorimotor cortex and decreased GM density in contralesional primary sensorimotor cortex. These findings suggest that despite moderate to severe chronic impairments, post-stroke participants maintain ability to show cortical reorganization and GM structural changes following a device-assisted task-specific arm/hand intervention. These changes are similar as those reported in post-stroke individuals with mild impairment, suggesting that residual neural plasticity in more severely impaired individuals may have the potential to support improved hand function.
Collapse
Affiliation(s)
- Kevin B Wilkins
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
| | - Meriel Owen
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
| | - Carson Ingo
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Carolina Carmona
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
| |
Collapse
|
31
|
Abstract
Stroke instigates a dynamic process of repair and remodelling of remaining neural circuits, and this process is shaped by behavioural experiences. The onset of motor disability simultaneously creates a powerful incentive to develop new, compensatory ways of performing daily activities. Compensatory movement strategies that are developed in response to motor impairments can be a dominant force in shaping post-stroke neural remodelling responses and can have mixed effects on functional outcome. The possibility of selectively harnessing the effects of compensatory behaviour on neural reorganization is still an insufficiently explored route for optimizing functional outcome after stroke.
Collapse
Affiliation(s)
- Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Texas 78712, USA
| |
Collapse
|
32
|
Israely S, Leisman G, Carmeli E. Improvement in arm and hand function after a stroke with task-oriented training. BMJ Case Rep 2017; 2017:bcr-2017-219250. [PMID: 28314812 DOI: 10.1136/bcr-2017-219250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A man aged 77 years sustained a left-hemisphere stroke with right hemiparesis. After spending 10 days in the hospital, he was referred to an area rehabilitation centre. There he carried out daily physical, occupational and speech therapy, with an emphasis on task-oriented treatment. The patient's upper-extremity motor performance was evaluated at admission to the rehabilitation centre and before leaving the hospital by 3 different measurement tools: the upper-extremity motor part of the Fugl-Meyer assessment scale, electromyography in hand-reach and grasp and object manipulation and handwriting tasks. Significant improvement in hand function was observed in proximal as well as in distal skills. Significant improvement in handwriting skills and decreased impairment level of the upper extremity had considerable effects on the quality of life of the patient. The case report emphasises the importance of intensive task-oriented training during the first 3 months after stroke to support the natural recovery of the lesioned area.
Collapse
Affiliation(s)
- Sharon Israely
- Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Gerry Leisman
- Department of Physical Therapy, University of Haifa, Haifa, Israel.,Department of Neuroscience, The National Institute for Brain and Rehabilitation Sciences, Nazareth, Israel.,Department of Clinical Neurophysiology, Universidad de Ciencias Medicas de La Habana, La Habana, Cuba
| | - Eli Carmeli
- Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
33
|
French B, Thomas LH, Coupe J, McMahon NE, Connell L, Harrison J, Sutton CJ, Tishkovskaya S, Watkins CL. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 2016; 11:CD006073. [PMID: 27841442 PMCID: PMC6464929 DOI: 10.1002/14651858.cd006073.pub3] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Repetitive task training (RTT) involves the active practice of task-specific motor activities and is a component of current therapy approaches in stroke rehabilitation. OBJECTIVES Primary objective: To determine if RTT improves upper limb function/reach and lower limb function/balance in adults after stroke. Secondary objectives: 1) To determine the effect of RTT on secondary outcome measures including activities of daily living, global motor function, quality of life/health status and adverse events. 2) To determine the factors that could influence primary and secondary outcome measures, including the effect of 'dose' of task practice; type of task (whole therapy, mixed or single task); timing of the intervention and type of intervention. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (4 March 2016); the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 5: 1 October 2006 to 24 June 2016); MEDLINE (1 October 2006 to 8 March 2016); Embase (1 October 2006 to 8 March 2016); CINAHL (2006 to 23 June 2016); AMED (2006 to 21 June 2016) and SPORTSDiscus (2006 to 21 June 2016). SELECTION CRITERIA Randomised/quasi-randomised trials in adults after stroke, where the intervention was an active motor sequence performed repetitively within a single training session, aimed towards a clear functional goal. DATA COLLECTION AND ANALYSIS Two review authors independently screened abstracts, extracted data and appraised trials. We determined the quality of evidence within each study and outcome group using the Cochrane 'Risk of bias' tool and GRADE (Grades of Recommendation, Assessment, Development and Evaluation) criteria. We did not assess follow-up outcome data using GRADE. We contacted trial authors for additional information. MAIN RESULTS We included 33 trials with 36 intervention-control pairs and 1853 participants. The risk of bias present in many studies was unclear due to poor reporting; the evidence has therefore been rated 'moderate' or 'low' when using the GRADE system. There is low-quality evidence that RTT improves arm function (standardised mean difference (SMD) 0.25, 95% confidence interval (CI) 0.01 to 0.49; 11 studies, number of participants analysed = 749), hand function (SMD 0.25, 95% CI 0.00 to 0.51; eight studies, number of participants analysed = 619), and lower limb functional measures (SMD 0.29, 95% CI 0.10 to 0.48; five trials, number of participants analysed = 419). There is moderate-quality evidence that RTT improves walking distance (mean difference (MD) 34.80, 95% CI 18.19 to 51.41; nine studies, number of participants analysed = 610) and functional ambulation (SMD 0.35, 95% CI 0.04 to 0.66; eight studies, number of participants analysed = 525). We found significant differences between groups for both upper-limb (SMD 0.92, 95% CI 0.58 to 1.26; three studies, number of participants analysed = 153) and lower-limb (SMD 0.34, 95% CI 0.16 to 0.52; eight studies, number of participants analysed = 471) outcomes up to six months post treatment but not after six months. Effects were not modified by intervention type, dosage of task practice or time since stroke for upper or lower limb. There was insufficient evidence to be certain about the risk of adverse events. AUTHORS' CONCLUSIONS There is low- to moderate-quality evidence that RTT improves upper and lower limb function; improvements were sustained up to six months post treatment. Further research should focus on the type and amount of training, including ways of measuring the number of repetitions actually performed by participants. The definition of RTT will need revisiting prior to further updates of this review in order to ensure it remains clinically meaningful and distinguishable from other interventions.
Collapse
Affiliation(s)
- Beverley French
- University of Central LancashireDepartment of Nursing and Caring SciencesRoom 434Brook BuildingPrestonLancashireUKPR1 2HE
| | - Lois H Thomas
- University of Central LancashireCollege of Health and WellbeingRoom 326Brook BuildingPrestonLancashireUKPR1 2HE
| | - Jacqueline Coupe
- University of Central LancashireCollege of Health and WellbeingRoom 326Brook BuildingPrestonLancashireUKPR1 2HE
| | - Naoimh E McMahon
- University of Central LancashireCollege of Health and WellbeingRoom 326Brook BuildingPrestonLancashireUKPR1 2HE
| | - Louise Connell
- University of Central LancashireCollege of Health and WellbeingRoom 326Brook BuildingPrestonLancashireUKPR1 2HE
| | - Joanna Harrison
- University of Central LancashireDepartment of NursingPrestonLancashireUKPR1 2HE
| | - Christopher J Sutton
- University of Central LancashireCollege of Health and WellbeingRoom 326Brook BuildingPrestonLancashireUKPR1 2HE
| | | | - Caroline L Watkins
- University of Central LancashireCollege of Health and WellbeingRoom 326Brook BuildingPrestonLancashireUKPR1 2HE
| | | |
Collapse
|
34
|
Cassidy JM, Cramer SC. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl Stroke Res 2016; 8:33-46. [PMID: 27109642 DOI: 10.1007/s12975-016-0467-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Abstract
With increasing rates of survival throughout the past several years, stroke remains one of the leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery is generally incomplete and variable among individuals. Typically, the best recovery outcomes entail the restitution of function in injured but surviving neural matter. An assortment of restorative therapies exists or is under development with the goal of potentiating restitution of function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, which often rely on mechanisms similar to those observed during spontaneous recovery. Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in research and clinical settings will enable a multimodal approach to probing brain state and predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring several potential restorative therapies and biomarkers.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine & Rehabilitation, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 210, Orange, CA, 92868-5397, USA. .,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Rd, Irvine, 92697, CA, USA.
| |
Collapse
|
35
|
Buma FE, van Kordelaar J, Raemaekers M, van Wegen EEH, Ramsey NF, Kwakkel G. Brain activation is related to smoothness of upper limb movements after stroke. Exp Brain Res 2016; 234:2077-2089. [PMID: 26979435 PMCID: PMC4893073 DOI: 10.1007/s00221-015-4538-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/20/2015] [Indexed: 12/01/2022]
Abstract
It is unclear whether additionally recruited sensorimotor areas in the ipsilesional and contralesional hemisphere and the cerebellum can compensate for lost neuronal functions after stroke. The objective of this study was to investigate how increased recruitment of secondary sensorimotor areas is associated with quality of motor control after stroke. In seventeen patients (three females, fourteen males; age: 59.9 ± 12.6 years), cortical activation levels were determined with functional magnetic resonance imaging (fMRI) in 12 regions of interest during a finger flexion–extension task in weeks 6 and 29 after stroke. At the same time points and by using 3D kinematics, the quality of motor control was assessed by smoothness of the grasp aperture during a reach-to-grasp task, quantified by normalized jerk. Ipsilesional premotor cortex, insula and cerebellum, as well as the contralesional supplementary motor area, insula and cerebellum, correlated significantly and positively with the normalized jerk of grasp aperture at week 6 after stroke. A positive trend towards this correlation was observed in week 29. This study suggests that recruitment of secondary motor areas at 6 weeks after stroke is highly associated with increased jerk during reaching and grasping. As jerk represents the change in acceleration, the recruitment of additional sensorimotor areas seems to reflect a type of control in which deviations from an optimal movement pattern are continuously corrected. This relationship suggests that additional recruitment of sensorimotor areas after stroke may not correspond to restitution of motor function, but more likely to adaptive motor learning strategies to compensate for motor impairments.
Collapse
Affiliation(s)
- Floor E Buma
- Center of Excellence for Rehabilitation, Rehabilitation Centre De Hoogstraat, Rembrandtkade 10, 3583TM, Utrecht, The Netherlands. .,Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, PO Box 85060, 3508AB, Utrecht, The Netherlands.
| | - Joost van Kordelaar
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Matthijs Raemaekers
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, PO Box 85060, 3508AB, Utrecht, The Netherlands
| | - Erwin E H van Wegen
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, PO Box 85060, 3508AB, Utrecht, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands.,Amsterdam Rehabilitation Research Center, Reade Centre for Rehabilitation and Rheumatology, PO Box 58271, 1040HG, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Functional versus Nonfunctional Rehabilitation in Chronic Ischemic Stroke: Evidences from a Randomized Functional MRI Study. Neural Plast 2015; 2016:6353218. [PMID: 26839716 PMCID: PMC4709724 DOI: 10.1155/2016/6353218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
Motor rehabilitation of stroke survivors may include functional and/or nonfunctional strategy. The present study aimed to compare the effect of these two rehabilitation strategies by means of clinical scales and functional Magnetic Resonance Imaging (fMRI). Twelve hemiparetic chronic stroke patients were selected. Patients were randomly assigned a nonfunctional (NFS) or functional (FS) rehabilitation scheme. Clinical scales (Fugl-Meyer, ARA test, and modified Barthel) and fMRI were applied at four moments: before rehabilitation (P1) and immediately after (P2), 1 month after (P3), and three months after (P4) the end of rehabilitation. The NFS group improved significantly and exclusively their Fugl-Meyer scores at P2, P3, and P4, when compared to P1. On the other hand, the FS group increased significantly in Fugl-Meyer at P2, when compared to P1, and also in their ARA and Barthel scores. fMRI inspection at the individual level revealed that both rehabilitation schemes most often led to decreased activation sparseness, decreased activity of contralesional M1, increased asymmetry of M1 activity to the ipsilesional side, decreased perilesional activity, and decreased SMA activity. Increased M1 asymmetry with rehabilitation was also confirmed by Lateralization Indexes. Our clinical analysis revealed subtle differences between FS and NFS.
Collapse
|
37
|
Dromerick AW, Edwardson MA, Edwards DF, Giannetti ML, Barth J, Brady KP, Chan E, Tan MT, Tamboli I, Chia R, Orquiza M, Padilla RM, Cheema AK, Mapstone ME, Fiandaca MS, Federoff HJ, Newport EL. Critical periods after stroke study: translating animal stroke recovery experiments into a clinical trial. Front Hum Neurosci 2015; 9:231. [PMID: 25972803 PMCID: PMC4413691 DOI: 10.3389/fnhum.2015.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction: Seven hundred ninety-five thousand Americans will have a stroke this year, and half will have a chronic hemiparesis. Substantial animal literature suggests that the mammalian brain has much potential to recover from acute injury using mechanisms of neuroplasticity, and that these mechanisms can be accessed using training paradigms and neurotransmitter manipulation. However, most of these findings have not been tested or confirmed in the rehabilitation setting, in large part because of the challenges in translating a conceptually straightforward laboratory experiment into a meaningful and rigorous clinical trial in humans. Through presentation of methods for a Phase II trial, we discuss these issues and describe our approach. Methods: In rodents there is compelling evidence for timing effects in rehabilitation; motor training delivered at certain times after stroke may be more effective than the same training delivered earlier or later, suggesting that there is a critical or sensitive period for strongest rehabilitation training effects. If analogous critical/sensitive periods can be identified after human stroke, then existing clinical resources can be better utilized to promote recovery. The Critical Periods after Stroke Study (CPASS) is a phase II randomized, controlled trial designed to explore whether such a sensitive period exists. We will randomize 64 persons to receive an additional 20 h of upper extremity therapy either immediately upon rehab admission, 2–3 months after stroke onset, 6 months after onset, or to an observation-only control group. The primary outcome measure will be the Action Research Arm Test (ARAT) at 1 year. Blood will be drawn at up to 3 time points for later biomarker studies. Conclusion: CPASS is an example of the translation of rodent motor recovery experiments into the clinical setting; data obtained from this single site randomized controlled trial will be used to finalize the design of a Phase III trial.
Collapse
Affiliation(s)
- Alexander W Dromerick
- Department of Rehabilitation Medicine, Center for Brain Plasticity and Recovery, Georgetown University and MedStar National Rehabilitation Hospital Washington, DC, USA ; Department of Neurology, Georgetown University Washington, DC, USA
| | - Matthew A Edwardson
- Department of Rehabilitation Medicine, Center for Brain Plasticity and Recovery, Georgetown University and MedStar National Rehabilitation Hospital Washington, DC, USA ; Department of Neurology, Georgetown University Washington, DC, USA
| | - Dorothy F Edwards
- Department of Kinesiology and Occupational Therapy, University of Wisconsin Madison, WI, USA
| | - Margot L Giannetti
- Department of Rehabilitation Medicine, Center for Brain Plasticity and Recovery, Georgetown University and MedStar National Rehabilitation Hospital Washington, DC, USA
| | - Jessica Barth
- Department of Rehabilitation Medicine, Center for Brain Plasticity and Recovery, Georgetown University and MedStar National Rehabilitation Hospital Washington, DC, USA
| | - Kathaleen P Brady
- Department of Rehabilitation Medicine, Center for Brain Plasticity and Recovery, Georgetown University and MedStar National Rehabilitation Hospital Washington, DC, USA
| | - Evan Chan
- Department of Rehabilitation Medicine, Center for Brain Plasticity and Recovery, Georgetown University and MedStar National Rehabilitation Hospital Washington, DC, USA
| | - Ming T Tan
- Department of Biostatistics, Georgetown University Washington, DC, USA
| | - Irfan Tamboli
- Department of Neuroscience, Georgetown University Washington, DC, USA
| | - Ruth Chia
- Department of Neuroscience, Georgetown University Washington, DC, USA
| | - Michael Orquiza
- Department of Neuroscience, Georgetown University Washington, DC, USA
| | - Robert M Padilla
- Department of Neuroscience, Georgetown University Washington, DC, USA
| | - Amrita K Cheema
- Departments of Oncology and Biochemistry, Georgetown University Washington, DC, USA
| | - Mark E Mapstone
- Department of Neurology, University of Rochester Rochester, NY, USA
| | - Massimo S Fiandaca
- Department of Neurology, Georgetown University Washington, DC, USA ; Department of Neuroscience, Georgetown University Washington, DC, USA
| | - Howard J Federoff
- Department of Neurology, Georgetown University Washington, DC, USA ; Department of Neuroscience, Georgetown University Washington, DC, USA
| | - Elissa L Newport
- Department of Rehabilitation Medicine, Center for Brain Plasticity and Recovery, Georgetown University and MedStar National Rehabilitation Hospital Washington, DC, USA ; Department of Neurology, Georgetown University Washington, DC, USA
| |
Collapse
|