1
|
Palmer JA, Payne AM, Mirdamadi JL, Ting LH, Borich MR. Delayed Cortical Responses During Reactive Balance After Stroke Associated With Slower Kinetics and Clinical Balance Dysfunction. Neurorehabil Neural Repair 2025; 39:16-30. [PMID: 39328051 PMCID: PMC11723813 DOI: 10.1177/15459683241282786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Slowed balance and mobility after stroke have been well-characterized. Yet the effects of unilateral cortical lesions on whole-body neuromechanical control is poorly understood, despite increased reliance on cortical resources for balance and mobility with aging. Objective. We tested whether individuals post stroke show impaired cortical responses evoked during reactive balance, and the effect of asymmetrical interlimb contributions to balance recovery and the evoked cortical response. METHODS Using electroencephalography, we assessed cortical N1 responses evoked over fronto-midline regions (Cz) during backward support-surface perturbations loading both legs and posterior-lateral directions that preferentially load the paretic or nonparetic leg in individuals' post-stroke and age-matched controls. We tested relationships between cortical responses and clinical balance/mobility function, as well as to center of pressure (CoP) rate of rise (RoR) during balance recovery. RESULTS Cortical N1 responses were smaller and delayed after stroke (P < .047), regardless of perturbation condition. In contrast to controls, slower cortical response latencies associated with lower clinical function in stroke (Mini Balance Evaluation Systems Test: r = -.61, P = .007; Timed-Up-and-Go: r = .53, P = .024; walking speed: r = -.46, P = .055). Paretic-loaded balance recovery revealed slower CoP RoR (P = .012) that was associated with delayed cortical response latencies (r = -.70, P = .003); these relationships were not present during bilateral and nonparetic-loaded conditions, nor in the older adults control group. CONCLUSIONS Individuals after stroke may be limited in their balance ability by the slowed speed of their cortical responses to destabilization. In particular, paretic leg loading may reveal cortical response impairments that reflect reduced paretic motor capacity.
Collapse
Affiliation(s)
- Jacqueline A. Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| | - Aiden M. Payne
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, USA
| | - Jasmine L. Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| | - Lena H. Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
- Department of Biomedical Engineering, Emory and Georgia Tech, 1760 Haygood Road, Atlanta, GA, 30322, USA
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| |
Collapse
|
2
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
3
|
Palmer JA, Whitaker AA, Payne AM, Bartsch BL, Reisman DS, Boyne PE, Billinger SA. Aerobic Exercise Improves Cortical Inhibitory Function After Stroke: A Preliminary Investigation. J Neurol Phys Ther 2024; 48:83-93. [PMID: 37436187 PMCID: PMC10776819 DOI: 10.1097/npt.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND PURPOSE Aerobic exercise can elicit positive effects on neuroplasticity and cognitive executive function but is poorly understood after stroke. We tested the effect of 4 weeks of aerobic exercise training on inhibitory and facilitatory elements of cognitive executive function and electroencephalography markers of cortical inhibition and facilitation. We investigated relationships between stimulus-evoked cortical responses, blood lactate levels during training, and aerobic fitness postintervention. METHODS Twelve individuals with chronic (>6 months) stroke completed an aerobic exercise intervention (40 minutes, 3×/wk). Electroencephalography and motor response times were assessed during congruent (response facilitation) and incongruent (response inhibition) stimuli of a Flanker task. Aerobic fitness capacity was assessed as o2peak during a treadmill test pre- and postintervention. Blood lactate was assessed acutely (<1 minute) after exercise each week. Cortical inhibition (N2) and facilitation (frontal P3) were quantified as peak amplitudes and latencies of stimulus-evoked electroencephalographic activity over the frontal cortical region. RESULTS Following exercise training, the response inhibition speed increased while response facilitation remained unchanged. A relationship between earlier cortical N2 response and faster response inhibition emerged postintervention. Individuals who produced higher lactate during exercise training achieved faster response inhibition and tended to show earlier cortical N2 responses postintervention. There were no associations between o2peak and metrics of behavioral or neurophysiologic function. DISCUSSION AND CONCLUSIONS These preliminary findings provide novel evidence for selective benefits of aerobic exercise on inhibitory control during the initial 4-week period after initiation of exercise training and implicate a potential therapeutic effect of lactate on poststroke inhibitory control.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology (J.A.P., S.A.B.), School of Medicine, University of Kansas Medical Center, Kansas City; University of Kansas Alzheimer's Disease Research Center (J.A.P., S.A.B.), Fairway; Department of Physical Therapy, Rehabilitation Science, and Athletic Training (A.A.W., B.L.B.), University of Kansas Medical Center, Kansas City; Department of Psychology (A.M.P.), College of Arts and Sciences, Florida State University, Tallahassee; Department of Physical Therapy (D.S.R.), College of Health Sciences, University of Delaware, Newark; and Department of Rehabilitation, Exercise and Nutrition Sciences (P.E.B.), College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
4
|
Artoni F, Cometa A, Dalise S, Azzollini V, Micera S, Chisari C. Cortico-muscular connectivity is modulated by passive and active Lokomat-assisted Gait. Sci Rep 2023; 13:21618. [PMID: 38062035 PMCID: PMC10703891 DOI: 10.1038/s41598-023-48072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The effects of robotic-assisted gait (RAG) training, besides conventional therapy, on neuroplasticity mechanisms and cortical integration in locomotion are still uncertain. To advance our knowledge on the matter, we determined the involvement of motor cortical areas in the control of muscle activity in healthy subjects, during RAG with Lokomat, both with maximal guidance force (100 GF-passive RAG) and without guidance force (0 GF-active RAG) as customary in rehabilitation treatments. We applied a novel cortico-muscular connectivity estimation procedure, based on Partial Directed Coherence, to jointly study source localized EEG and EMG activity during rest (standing) and active/passive RAG. We found greater cortico-cortical connectivity, with higher path length and tendency toward segregation during rest than in both RAG conditions, for all frequency bands except for delta. We also found higher cortico-muscular connectivity in distal muscles during swing (0 GF), and stance (100 GF), highlighting the importance of direct supraspinal control to maintain balance, even when gait is supported by a robotic exoskeleton. Source-localized connectivity shows that this control is driven mainly by the parietal and frontal lobes. The involvement of many cortical areas also in passive RAG (100 GF) justifies the use of the 100 GF RAG training for neurorehabilitation, with the aim of enhancing cortical-muscle connections and driving neural plasticity in neurological patients.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Department of Clinical Neurosciences, University of Genève, Faculty of Medicine, 1211, Geneva, Switzerland.
- Ago Neurotechnologies Sàrl, 1201, Geneva, Switzerland.
| | - Andrea Cometa
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- University School for Advanced Studies IUSS Pavia, 27100, Pavia, Italy
| | - Stefania Dalise
- Unit of Neurorehabilitation, Pisa University Hospital, Pisa, Italy
| | - Valentina Azzollini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Translational Neural Engineering Laboratory (TNE), École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Pisa University Hospital, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Palmer JA, Payne AM, Mirdamadi JL, Ting LH, Borich MR. Delayed cortical engagement associated with balance dysfunction after stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23299035. [PMID: 38076827 PMCID: PMC10705625 DOI: 10.1101/2023.11.28.23299035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cortical resources are typically engaged for balance and mobility in older adults, but these resources are impaired post-stroke. Although slowed balance and mobility after stroke have been well-characterized, the effects of unilateral cortical lesions due to stroke on neuromechanical control of balance is poorly understood. Our central hypothesis is that stroke impairs the ability to rapidly and effectively engage the cerebral cortex during balance and mobility behaviors, resulting in asymmetrical contributions of each limb to balance control. Using electroencephalography (EEG), we assessed cortical N1 responses evoked over fronto-midline regions (Cz) during balance recovery in response to backward support-surface perturbations loading both legs, as well as posterior-lateral directions that preferentially load the paretic or nonparetic leg. Cortical N1 responses were smaller and delayed in the stroke group. While older adults exhibited weak or absent relationships between cortical responses and clinical function, stroke survivors exhibited strong associations between slower N1 latencies and slower walking, lower clinical mobility, and lower balance function. We further assessed kinetics of balance recovery during perturbations using center of pressure rate of rise. During backward support-surface perturbations that loaded the legs bilaterally, balance recovery kinetics were not different between stroke and control groups and were not associated with cortical response latency. However, lateralized perturbations revealed slower kinetic reactions during paretic loading compared to controls, and to non-paretic loading within stroke participants. Individuals post stroke had similar nonparetic-loaded kinetic reactions to controls implicating that they effectively compensate for impaired paretic leg kinetics when relying on the non-paretic leg. In contrast, paretic-loaded balance recovery revealed time-synchronized associations between slower cortical responses and slower kinetic reactions only in the stroke group, potentially reflecting the limits of cortical engagement for balance recovery revealed within the behavioral context of paretic motor capacity. Overall, our results implicate individuals after stroke may be uniquely limited in their balance ability by the slowed speed of their cortical engagement, particularly under challenging balance conditions that rely on the paretic leg. We expect this neuromechanical insight will enable progress toward an individualized framework for the assessment and treatment of balance impairments based on the interaction between neuropathology and behavioral context.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| | - Aiden M Payne
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, USA
| | - Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| | - Lena H Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
- Department of Biomedical Engineering, Emory and Georgia Tech, 1760 Haygood Road, Atlanta, GA, 30322, USA
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| |
Collapse
|
6
|
Cash JJ, Bowden MG, Boan AD, McTeague LM, Kindred JH. Systematic Evaluation of the Effects of Voluntary Activation on Lower Extremity Motor Thresholds. J Clin Med 2023; 12:5993. [PMID: 37762933 PMCID: PMC10531833 DOI: 10.3390/jcm12185993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of this investigation was to elucidate the relationship between the resting motor threshold (rMT) and active motor threshold (aMT). A cross-sectional comparison of MTs measured at four states of lower extremity muscle activation was conducted: resting, 5% maximal voluntary contraction (MVC), 10%MVC, and standing. MTs were measured at the tibialis anterior in the ipsilesional and contralesional limbs in participants in the chronic phase (>6 months) of stroke (n = 11) and in the dominant limb of healthy controls (n = 11). To compare across activation levels, the responses were standardized using averaged peak-to-peak background electromyography (EMG) activity measured at 10%MVC + 2SD for each participant, in addition to the traditional 0.05 mV criterion for rMT (rMT50). In all participants, as muscle activation increased, the least square mean estimates of MTs decreased (contralesional: p = 0.008; ipsilesional: p = 0.0015, healthy dominant: p < 0.0001). In healthy controls, rMT50 was significantly different from all other MTs (p < 0.0344), while in stroke, there were no differences in either limb (p > 0.10). This investigation highlights the relationship between rMT and aMTs, which is important as many stroke survivors do not present with an rMT, necessitating the use of an aMT. Future works may consider the use of the standardized criterion that accounted for background EMG activity across activation levels.
Collapse
Affiliation(s)
- Jasmine J. Cash
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Mark G. Bowden
- Department of Clinical Integration and Research, Brooks Rehabilitation, Jacksonville, FL 32216, USA;
| | - Andrea D. Boan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Lisa M. McTeague
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H Johnson VA Health Care System, Charleston, SC 29401, USA
| | - John H. Kindred
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H Johnson VA Health Care System, Charleston, SC 29401, USA
| |
Collapse
|