1
|
Ganie MR, Khan N, Shukla M, Sood S, Devi S, Arora P, Kumar M, Najar IA, Tang J. Okanin alleviates symptoms of nociceptive-like responses in diabetic peripheral neuropathy in type 1 diabetic Wistar rats by regulating the AGEs/NF-κB/Nrf-2 pathway. J Pharmacol Sci 2025; 157:12-24. [PMID: 39706641 DOI: 10.1016/j.jphs.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024] Open
Abstract
Elevated reactive species and AGEs contribute to deregulation of transcription factors e.g., NF-κB and Nrf2 in diabetic peripheral neuropathy (DPN). Okanin, a bioactive chalcone, is active against redox imbalance, immune response, and pro-inflammatory events. The current investigation assessed effects of okanin in streptozotocin-induced DPN in rats. Wistar rats were divided into 6 groups (n = 6): Control, DPN, Okanin 2.5, Okanin 5, Okanin 10, and Gpn (Gabapentin). After 6 weeks of streptozotocin (55 mg/kg) injection, okanin (2.5, 5, 10 mg/kg), and gabapentin (50 mg/kg), were administered for 4 weeks. The streptozotocin-induced reduction in body weight, and increased feed/water intake, insulin, glucose, and HbA1c levels were mitigated by okanin or gabapentin. In DPN rats, Okanin or gabapentin ameliorated insulin resistance and β-cell function, inflammatory indices, and oxidative stress in the sciatic nerve of rodents thereby culminating in a decrease in hyperalgesia and allodynia. Okanin and streptozotocin-treated rats had significantly declined levels of AGEs, the receptor for AGEs, and NF-κB, and an upsurge in Nrf2 expression. In streptozotocin-induced DPN model, okanin ameliorates nociceptive-like responses by regulating the AGEs/NF-κB/Nrf2 pathway, suggesting that okanin has therapeutic value against DPN which needs further studies involving human subjects.
Collapse
Affiliation(s)
- Mohammad Rafiq Ganie
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, 140401, India
| | - Nadeem Khan
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, 140401, India; Guru Nanak Institute of Technology, Mullana, Ambala, 133203, India
| | - Manish Shukla
- Department of Neurosurgery, Penn State College of Medicine, Penn State Health Milton S. Hershey Medical Center, PA, 17033, USA
| | - Shreya Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Imtiyaz Ahmed Najar
- Department of Pharmacology, University School of Pharmaceutical Sciences, Rayat-Bahra University, Chandigarh-Ropar NH 205, Greater Mohali, Punjab, 140103, India
| | - Jianlei Tang
- Department of Endocrinology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, China.
| |
Collapse
|
2
|
Setiawan E, Ginting CN, Jonny J, Hernowo BA, Putranto TA. Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy. Curr Issues Mol Biol 2024; 46:14366-14380. [PMID: 39727989 DOI: 10.3390/cimb46120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global health concern, with diabetic neuropathy (DN) being a prevalent complication. Current DN treatments focus on blood glucose control and pain management, which show limited efficacy. This study explored the effects of autologous dendritic cell (DC) administration on improving DN symptoms. A quasi-experimental clinical trial was conducted on 28 DN patients at Gatot Soebroto Army Hospital. Patients received autologous DC administration, with their Toronto Clinical Neuropathy Score (TCNS), Transforming Growth Factor-β (TGF-β), and Vascular Cell Adhesion Molecule-1 (VCAM-1) levels measured before and at four weeks after treatment. The results show an average TCNS reduction from 8.93 to 7.5 (p < 0.001). TGF-β levels increased slightly from 41.16 ng/mL to 44.18 ng/mL (p > 0.05). VCAM-1 levels increased from 1389.75 ng/mL to 1403.85 ng/mL. Correlation analysis showed that TGF-β levels had a significant negative correlation with the TCNS (r = -0.353; p = 0.033) and VCAM-1 levels (r = -0.521; p = 0.002). Autologous DC administration significantly improves DN. While the changes in TGF-β and VCAM-1 levels were not statistically significant, their trends suggest that there was an anti-inflammatory effect. These findings highlight the potential of autologous DC therapy as a complementary approach to manage DN through inflammation reduction and nerve repair.
Collapse
Affiliation(s)
- Erwin Setiawan
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Department of Neurology, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | | | - Jonny Jonny
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defence University, Bogor 16810, Indonesia
- Faculty of Medicine, Universitas Pembangunan Nasional "Veteran" Jakarta, Jakarta 12450, Indonesia
- Nephrology Division, Department of Internal Medicine, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | - Bhimo Aji Hernowo
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
| | - Terawan Agus Putranto
- Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, Indonesia
- Faculty of Medicine, Universitas Pembangunan Nasional "Veteran" Jakarta, Jakarta 12450, Indonesia
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia
- Department of Radiology, Gatot Soebroto Army Central Hospital, Jakarta 10410, Indonesia
| |
Collapse
|
3
|
Hu N, Liu J, Luo Y, Li Y. A comprehensive review of traditional Chinese medicine in treating neuropathic pain. Heliyon 2024; 10:e37350. [PMID: 39296122 PMCID: PMC11407996 DOI: 10.1016/j.heliyon.2024.e37350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Neuropathic pain (NP) is a common, intractable chronic pain caused by nerve dysfunction and primary lesion of the nervous system. The etiology and pathogenesis of NP have not yet been clarified, so there is a lack of precise and effective clinical treatments. In recent years, traditional Chinese medicine (TCM) has shown increasing advantages in alleviating NP. Our review aimed to define the therapeutic effect of TCM (including TCM prescriptions, TCM extracts and natural products from TCM) on NP and reveal the underlying mechanisms. Literature from 2018 to 2024 was collected from databases including Web of Science, PubMed, ScienceDirect, Google academic and CNKI databases. Herbal medicine, Traditional Chinese medicines (TCM), neuropathic pain, neuralgia and peripheral neuropathy were used as the search terms. The anti-NP activity of TCM is clarified to propose strategies for discovering active compounds against NP, and provide reference to screen anti-NP drugs from TCM. We concluded that TCM has the characteristics of multi-level, multi-component, multi-target and multi-pathway, which can alleviate NP through various pathways such as anti-inflammation, anti-oxidant, anti-apoptotic pathway, regulating autophagy, regulating intestinal flora, and influencing ion channels. Based on the experimental study and anti-NP mechanism of TCM, this paper can offer analytical evidence to support the effectiveness in treating NP. These references will be helpful to the research and development of innovative TCM with multiple levels and multiple targets. TCM can be an effective treatment for NP and can serve as a treasure house for new drug development.
Collapse
Affiliation(s)
- Naihua Hu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Jie Liu
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yong Luo
- Deyang Hospital of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, No. 159, Section 2, Tianshan South Road, Deyang, 618000, Sichuan, China
| | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
4
|
Norazman SI, Mohd Zaffarin AS, Shuid AN, Hassan H, Soleiman IN, Kuan WS, Alias E. A Review of Animal Models for Studying Bone Health in Type-2 Diabetes Mellitus (T2DM) and Obesity. Int J Mol Sci 2024; 25:9399. [PMID: 39273348 PMCID: PMC11394783 DOI: 10.3390/ijms25179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Preclinical research on diabetes and obesity has been carried out in various animal models over the years. These animal models are developed from genetic manipulation that affects their body metabolism, chemical-induced procedures, diet alteration/modifications, or combinations of the aforementioned approaches. The diabetic and obesity animal models have allowed researchers to not only study the pathological aspect of the diseases but also enable them to screen and explore potential therapeutic compounds. Besides several widely known complications such as macrovascular diseases, diabetic neuropathy, nephropathy and retinopathy, type 2 diabetes mellitus is also known to affect bone health. There is also evidence to suggest obesity affects bone health. Therefore, continuous research needs to be conducted to find a remedy or solution to this matter. Previous literature reported evidence of bone loss in animal models of diabetes and obesity. These findings, as highlighted in this review, further augment the suggestion of an inter-relationship between diabetes, obesity and bone loss.
Collapse
Affiliation(s)
- Saiful Iqbal Norazman
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Anis Syauqina Mohd Zaffarin
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh 47000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ima Nirwana Soleiman
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Wong Sok Kuan
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
El-Marasy SA, AbouSamra MM, Moustafa PE, Mabrok HB, Ahmed-Farid OA, Galal AF, Farouk H. Anti-depressant effect of Naringenin-loaded hybridized nanoparticles in diabetic rats via PPARγ/NLRP3 pathway. Sci Rep 2024; 14:13559. [PMID: 38866877 PMCID: PMC11169681 DOI: 10.1038/s41598-024-62676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Naringenin (NAR) has various biological activities but low bioavailability. The current study examines the effect of Naringenin-loaded hybridized nanoparticles (NAR-HNPs) and NAR on depression induced by streptozotocin (STZ) in rats. NAR-HNPs formula with the highest in vitro NAR released profile, lowest polydispersity index value (0.21 ± 0.02), highest entrapment efficiency (98.7 ± 2.01%), as well as an acceptable particle size and zeta potential of 415.2 ± 9.54 nm and 52.8 ± 1.04 mV, respectively, was considered the optimum formulation. It was characterized by differential scanning calorimetry, examined using a transmission electron microscope, and a stability study was conducted at different temperatures to monitor its stability efficiency showing that NAR-HNP formulation maintains stability at 4 °C. The selected formulation was subjected to an acute toxicological test, a pharmacokinetic analysis, and a Diabetes mellitus (DM) experimental model. STZ (50 mg/kg) given as a single i.p. rendered rats diabetic. Diabetic rat groups were allocated into 4 groups: one group received no treatment, while the remaining three received oral doses of unloaded HNPs, NAR (50 mg/kg), NAR-HNPs (50 mg/kg) and NAR (50 mg/kg) + peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662 (1mg/kg, i.p.) for three weeks. Additional four non-diabetic rat groups received: distilled water (normal), free NAR, and NAR-HNPs, respectively for three weeks. NAR and NAR-HNPs reduced immobility time in forced swimming test and serum blood glucose while increasing serum insulin level. They also reduced cortical and hippocampal 5-hydroxyindoeacetic acid, 3,4-Dihydroxy-phenylacetic acid, malondialdehyde, NLR family pyrin domain containing-3 (NLRP3) and interleukin-1beta content while raised serotonin, nor-epinephrine, dopamine and glutathione level. PPAR-γ gene expression was elevated too. So, NAR and NAR-HNPs reduced DM-induced depression by influencing brain neurotransmitters and exhibiting anti-oxidant and anti-inflammatory effects through the activation PPAR-γ/ NLRP3 pathway. NAR-HNPs showed the best pharmacokinetic and therapeutic results.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | | | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
6
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
7
|
Jivad N, Heidari-Soureshjani S, Bagheri H, Sherwin CMT, Rostamian S. Anti-seizure Effects and Mechanisms of Berberine: A Systematic Review. Curr Pharm Biotechnol 2024; 25:2253-2265. [PMID: 38385486 DOI: 10.2174/0113892010283237240107121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Epilepsy is one of the most common in all age groups and disabling neurologic disorders around the world. OBJECTIVES This systematic review was to explore whether berberine (BBR) has any anti-seizure or anti-epileptic effects and also reviewed this possible mechanism. METHODS The EMBASE, Scopus, Cochrane Library, PubMed, and Web of Science databases were searched before Sep 2023. All types of studies that investigated the effects of BBR on epilepsy or chemical-induced seizures were eligible for inclusion. Two authors independently evaluated and reviewed titles/abstracts to identify publications for potential eligibility, and a third team member resolved discrepancies. Data were extracted in an Excel form, and the outcomes were discussed. RESULTS BBR showed its neuroprotective properties by reducing oxidative stress, neuroinflammation, and anti-apoptosis effects. It also increases brain-derived neurotrophic factor (BDNF) release and reduces transforming growth factor-beta (TGF-β1) and hypoxia-inducible factor 1α (HIF-1α). BBR by increasing scavenging reactive oxygen species (ROS), nuclear factor erythroid 2-related factor 2 (Nrf2), endogenous antioxidant enzymes, heme oxygenase-1 (HO-1), and inhibition of lipid peroxidation insert its antioxidant activity. Moreover, BBR showed antiinflammatory activity by reducing Interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels and through inhibiting cyclooxygenase-2 (COX-2), and including nuclear factor κB (NF-κB). In addition, it modulated c-fos expression and neuronal excitability in the brain. CONCLUSION BBR indicated promising anti-seizure effects with remarkable antioxidant, antiinflammatory, anti-apoptotic, and neuroprotective activity. Future studies should be based on well-designed clinical trial studies that are integrated with new methods related to increasing bioavailability.
Collapse
Affiliation(s)
- Nahid Jivad
- Department of Neurology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hesamaldin Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Catherine M T Sherwin
- Professor and Vice-Chair for Research, Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | | |
Collapse
|
8
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Zhang J, Song J, Li H, Li Z, Chen M, Ma S, Shen R, Lou X. Berberine protects against neomycin-induced ototoxicity by reducing ROS generation and activating the PI3K/AKT pathway. Neurosci Lett 2023; 817:137518. [PMID: 37844727 DOI: 10.1016/j.neulet.2023.137518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
In mammals, aminoglycoside antibiotic-induced injury to hair cells (HCs) and associated spiral ganglion neurons (SGNs) is irreversible and eventually leads to permanent hearing loss. Efforts have been directed towards the advancement of efficacious therapeutic treatments to protect hearing loss, but the ideal substance for treating the damaged cochlear sensory epithelium has yet to be identified. Berberine (BBR), a quaternary ammonium hydroxide extracted from Coptis chinensis, has been found to display potential anti-oxidant and neuroprotective properties. However, its involvement in aminoglycoside antibiotic-induced ototoxicity has yet to be explored or assessed. In the present study, we explored the possible anti-oxidative properties of BBR in mitigating neomycin-triggered ototoxicity. An improved survival of HCs and SGN nerve fibers (NFs) in organ of Corti (OC) explants after neomycin with BBR co-treatment was observed, and BBR treatment attenuated reactive oxygen species (ROS) generation and reduced cleaved caspase-3 signaling by activating six phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling relative subtypes, and the addition of PI3K/AKT suppressor LY294002 resulted in a decrease in the protective effect. The protective effect of BBR against ototoxicity was also evident in a neomycin-injured animal model, as evidenced by the preservation of HC and SGN in mice administered subcutaneous BBR for 7 days. In summary, all results suggest that BBR has potential as a new and effective otoprotective agent, operating via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Junming Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Jianhao Song
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Haobo Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Zhaoxia Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Mengyu Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Shutao Ma
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hosptial of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiangxin Lou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China.
| |
Collapse
|
10
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
HAN S, MAO H, JIN T, YAN R, WANG Z, ZHANG J, SHI J, LIANG Y. Inhibitory effect of berberine on morphine tolerance and hyperalgesia in mice. J TRADIT CHIN MED 2023; 43:915-924. [PMID: 37679979 PMCID: PMC10465842 DOI: 10.19852/j.cnki.jtcm.20230802.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/12/2022] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To evaluate the effect of berberine on morphine analgesia, tolerance, and hyperalgesia. METHODS Morphine-induced acute tolerance model: mice received intraperitoneal berberine at doses of 2.5, 5.0, and 10 mg/kg; 30 min later, subcutaneous morphine 10 mg/kg was injected every hour for nine continuous h. Morphine 10 mg/kg alone was administered at 24 and 48 h. Morphine-induced chronic tolerance model: mice received intraperitoneal berberine 2.5, 5.0, and 10 mg/kg; 30 min later, 10 mg/kg morphine was injected subcutaneously for eight consecutive days. On the ninth day, morphine 10 mg/kg was given alone. Morphine-induced established tolerance model: mice were injected subcutaneously with morphine 10 mg/kg once a day for eight consecutive days. Berberine 2.5 mg/kg was administered on day one, four, and seven and morphine 10 mg/kg alone on day nine. The baseline latency (T0) and post-treatment latency (T1) were determined by the hot plate test, and the maximum possible analgesic effect (MPAE) was calculated. Nitric oxide synthase (NOS) activity and nitric oxide (NO) content in the spinal cord were measured by spectrophotometer. Verification of berberine analgesic effect by blocking N-methyl-D-aspartate (NMDA) receptor: HT-22 and HEK-293 cells transfected with NMDA plasmid were randomly divided into five groups: control group, NMDA group, berberine low-dose, medium-dose, and high-dose groups (5, 10, 20 μmol/L, respectively). Except for the control group, cells were treated with NMDA (HT-22 cells: 20 mmol/L; HEK-293 cells: 50 μmol/L). After 24 h, cell viability was detected by cell counting kit-8. The molecular mechanism between berberine and the NMDA receptor was studied by molecular docking. RESULTS Berberine 2.5 and 5.0 mg/kg could prolong the analgesic time of morphine. In acute and chronic morphine tolerance models, berberine could inhibit the decrease of MPAE and baseline latency (0.05). In the established tolerance model, berberine could rapidly reverse the decreased MPAE (0.05). The combination of berberine and morphine on day one could effectively inhibit the morphine-induced increase of NOS activity and NO content in the spinal cord (0.05). Berberine significantly increased the cell viability of NMDA-induced nerve injury in HT-22 and HEK-293 cells (0.05). Molecular docking showed that berberine binds to the receptor pocket of NMDA. CONCLUSIONS Berberine could effectively enhance and prolong the duration of morphine analgesia and inhibit the development of morphine-induced tolerance and hyperalgesia. Furthermore, berberine has a certain neuroprotective effect, which may be related to the inhibition of NMDA activity.
Collapse
Affiliation(s)
- Shuai HAN
- 1 Department of Anesthesiology, Women’s and Children’s Hospital Affiliated to Qingdao University, Qingdao 266034, China
- 2 Yangzhou University, Yangzhou 225009, China
| | - Hua MAO
- 3 Department of Anesthesiology, Women’s and Children’s Hospital Affiliated to Qingdao University, Qingdao 266034, China
| | | | - Rubing YAN
- 4 Qingdao University, Qingdao 266071, China
| | - Ziyi WANG
- 4 Qingdao University, Qingdao 266071, China
| | - Jie ZHANG
- 5 Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao 266075, China
| | - Jianwen SHI
- 6 Department of Anesthesiology, Women’s and Children’s Hospital Affiliated to Qingdao University, Qingdao 266034, China
| | - Yongxin LIANG
- 6 Department of Anesthesiology, Women’s and Children’s Hospital Affiliated to Qingdao University, Qingdao 266034, China
| |
Collapse
|
12
|
Jadhav VB, Vaghela JS. Sphaeranthus indicus Linn ameliorates streptozotocin-induced experimental diabetic neuropathy by targeting oxidative stress-mediated alterations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Diabetes-induced neuropathic pain is manifested as a lowering of nerve transmission rate, increased discomfort, sensual loss, and axonal degradation, and is the most prevalent secondary consequence of diabetes. Diabetes is a devitalizing disease affecting people from diverse groups in both developing and industrialized countries. The inflammation pathway and oxidative stress both contribute considerably to diabetic peripheral neuropathy via the activation of inflammatory cytokines. Hyperglycemia-mediated neural oxidative stress and damage activates a number of metabolic pathways, causing diabetic neuropathy. The current study investigated the neuroprotective potential of methanolic extract of Sphaeranthus indicus Linn (MESI) in ameliorating diabetic neuropathic pain induced by administration of streptozotocin in rats.
Results
Four weeks after intraperitoneal treatment of streptozotocin (STZ), there was a significant decrease in mechano-tactile allodynia and mechanical and thermal hyperalgesia. Furthermore, STZ-induced oxidative stress increases the extent of neural lipid peroxidation (LPO), as evidenced by increased MDA levels, decreases the activities of endogenous antioxidants such as superoxide dismutase (SOD) and glutathione (GSH), and alters sciatic neural histoarchitecture. Chronic administration of methanolic extract of Sphaeranthus indicus Linn (MESI) for 4 weeks significantly and dose-dependently attenuated the decrease in levels of nociceptive thresholds, endogenous antioxidants (SOD and GSH), and increase in LPO. Furthermore, MESI significantly restored sciatic neural histoarchitecture.
Conclusion
The amelioration of streptozotocin-induced diabetic neuropathy by methanolic extract of Sphaeranthus indicus Linn (MESI) could be attributed to its antinociceptive, antioxidant, and neuroprotective properties.
Collapse
|
13
|
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Al-Hamash SM, Jean-Marc S, Negm WA, Batiha GES. The role of berberine in Covid-19: potential adjunct therapy. Inflammopharmacology 2022; 30:2003-2016. [PMID: 36183284 PMCID: PMC9526677 DOI: 10.1007/s10787-022-01080-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a global diastrophic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19 leads to inflammatory, immunological, and oxidative changes, by which SARS-CoV-2 leads to endothelial dysfunction (ED), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and multi-organ failure (MOF). Despite evidence illustrating that some drugs and vaccines effectively manage and prevent Covid-19, complementary herbal medicines are urgently needed to control this pandemic disease. One of the most used herbal medicines is berberine (BBR), which has anti-inflammatory, antioxidant, antiviral, and immune-regulatory effects; thus, BBR may be a prospective candidate against SARS-CoV-2 infection. This review found that BBR has anti-SARS-CoV-2 effects with mitigation of associated inflammatory changes. BBR also reduces the risk of ALI/ARDS in Covid-19 patients by inhibiting the release of pro-inflammatory cytokines and inflammatory signaling pathways. In conclusion, BBR has potent anti-inflammatory, antioxidant, and antiviral effects. Therefore, it can be utilized as a possible anti-SARS-CoV-2 agent. BBR inhibits the proliferation of SARS-CoV-2 and attenuates the associated inflammatory disorders linked by the activation of inflammatory signaling pathways. Indeed, BBR can alleviate ALI/ARDS in patients with severe Covid-19. In this sense, clinical trials and prospective studies are suggested to illustrate the potential role of BBR in treating Covid-19.
Collapse
Affiliation(s)
- Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx « Ion Channels, Science and Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Sadiq Mohammed Al-Hamash
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Sabatier Jean-Marc
- Faculté des sciences médicales et paramédicales, Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS UMR, 7051, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| |
Collapse
|
14
|
SIRT1-Enriched Exosomes Derived from Bone Marrow Mesenchymal Stromal Cells Alleviate Peripheral Neuropathy via Conserving Mitochondrial Function. J Mol Neurosci 2022; 72:2507-2516. [PMID: 36534294 DOI: 10.1007/s12031-022-02091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a highly prevalent diabetic complication characterized at the molecular level by mitochondrial dysfunction and deleterious oxidative damage. No effective treatments for DPN are currently available. The present study was developed to examine the impact of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) overexpressing sirtuin 1 (SIRT1) on DPN through antioxidant activity and the preservation of mitochondrial homeostasis. A DPN model was established using 20-week-old diabetic model mice (db/db). Exosomes were prepared from control BMSCs (exo-control) and BMSCs that had been transduced with a SIRT1 lentivirus (exo-SIRT1). Sensory and motor nerve conduction velocity values were measured to assess neurological function, and mechanical and thermal sensitivity were analyzed in these animals. Exo-SIRT1 preparations exhibited a high loading capacity and readily accumulated within peripheral nerves following intravenous administration, whereupon they were able to promote improved neurological recovery relative to exo-control treatment. DPN mice exhibited significantly improved nerve conduction velocity following exo-SIRT1 treatment. Relative to exo-control-treated mice, those that underwent exo-SIRT1 treatment exhibited significantly elevated TOMM20 and Nrf2/HO-1 expression, reduced MDA levels, increased GSH and SOD activity, and increased MMP. Together, these results revealed that both exo-control and exo-SIRT1 administration was sufficient to reduce the morphological and behavioral changes observed in DPN model mice, with exo-SIRT1 treatment exhibiting superior therapeutic efficacy. These data thus provide a foundation for future efforts to explore other combinations of gene therapy and exosome treatment in an effort to alleviate DPN.
Collapse
|
15
|
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. Berberine supplementation modulates the somatotropic axis and ameliorates glucose tolerance in dairy goats during late gestation and early lactation. BMC Vet Res 2022; 18:357. [PMID: 36153497 PMCID: PMC9508731 DOI: 10.1186/s12917-022-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pregnancy, parturition, and the onset of lactation represent an enormous physiological and hormonal challenge to the homeostasis of dairy animals, being a risk for their health and reproduction. Thus, as a part of the homothetic changes in preparturition period, goats undergo a period of IR as well as uncoupled GH/IGF-1 axis. The objective for this study was to determine the effect of berberine (BBR) during the peripartal period on hormonal alteration and somatotropic axis in dairy goats as well as glucose and insulin kinetics during an intravenous glucose tolerance test (IVGTT). At 21 days before the expected kidding date, 24 primiparous Saanen goats were assigned randomly to 4 dietary treatments. Goats were fed a basal diet from wk. 3 antepartum (AP) until wk. 3 postpartum (PP) supplemented with 0 (CTRL), 1 (BBR1), 2 (BBR2), and 4 (BBR4) g/d BBR. Blood samples were collected on days - 21, - 14, - 7, 0, 7, 14, and 21 relative to the expected kidding date. An IVGTT was also performed on day 22 PP. RESULTS Compared with CTRL, supplementation with either BBR2 or BBR4 increased DMI at kidding day and PP, as well as body conditional score (BCS) and milk production (p ≤ 0.05). On d 7 and 14 PP plasma glucose was higher in BBR2- and BBR4-treated than in CTRL. The glucagon concentration was not affected by BBR during the experimental period. However, supplemental BBR indicated a tendency to decrease in cortisol concentration on days 7 (p = 0.093) and 14 (p = 0.100) PP. Lower plasma GH was observed in BBR than in non-BBR goats (p ≤ 0.05). Plasma IGF-1 concentration was enhanced in both BBR2 and BBR4 at kidding and day 7 PP (p ≤ 0.05). During the IVGTT, glucose area under the curve (AUC), clearance rate (CR), T1/2, and Tbasal was lower (p ≤ 0.05) in both BBR2 and BBR4 goats as compared with CTRL. Likewise, the insulin CR was higher (p ≤ 0.05) in goats receiving either BBR2 or BBR4 which was accompanied by a lower insulin T1/2 and AUC. CONCLUSIONS Altogether, our results indicated an improved glucose and insulin status along with the modulation of the somatotropic axis and glucose and insulin response to IVGTT in dairy goats supplemented with 2 and 4 g/d BBR.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, 97175-331, Iran.
| | | | | | - Seyyed Ehsan Ghiasi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, 97175-331, Iran
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK.
| |
Collapse
|
16
|
Hu S, Wei P, Li W, Liu Q, Chen S, Hu C, Guo X, Ma X, Zeng J, Zhang Y. Pharmacological effects of berberine on models of ulcerative colitis: A meta-analysis and systematic review of animal studies. Front Pharmacol 2022; 13:937029. [PMID: 36147325 PMCID: PMC9486070 DOI: 10.3389/fphar.2022.937029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 12/09/2022] Open
Abstract
Berberine (BBR) is the main active constituent of the Rhizoma coptidis (Huanglian) and has multiple biological activities. Although current evidence suggests that the BBR has a multi-target effect in ulcerative colitis (UC), its action and mechanism are unclear. The purpose of this meta-analysis was to assess the pharmacological effects and potential mechanisms of BBR in UC models. Studies were searched from four databases (PubMed, Embase, Web of Science, and Cochrane Library) until March 2022. Standardized mean difference (SMD) and 95% confidence intervals (CI) were used for the adjudication of outcomes. Stata 15.0 software was used for statistical analysis. Twenty-eight publications and 29 studies involving 508 animals were included in the meta-analysis. The results showed that BBR reduced disease activity index (DAI) scores, alleviated UC-induced colon length (CL) loss, prevented weight loss, and reduced histological colitis score (HCS). Mechanistically, BBR was found to reduce myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, reduce levels of pro-inflammatory factors interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ) and mRNA expression of interleukin 17, increase levels of anti-inflammatory factor interleukin 10 (IL-10), and to increase levels of tight junction protein zonula occludens-1 (ZO-1) and occludin, which may involve antioxidant, anti-apoptotic, neuromodulation, anti-fibrotic, anti-inflammatory, barrier protection, and flora regulation aspects. However, additional attention should be paid to these outcomes due to the heterogeneity and methodological quality of the studies.
Collapse
Affiliation(s)
- Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Wei
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyu Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaochuan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| |
Collapse
|
17
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Seth E, Chopra M. Neuroprotective efficacy of berberine following developmental exposure to chlorpyrifos in F1 generation of Wistar rats: Apoptosis-autophagy interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155292. [PMID: 35439518 DOI: 10.1016/j.scitotenv.2022.155292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Chlorpyrifos (CPF), an organophosphate insecticide commonly used in agriculture and household applications, is considered a developmental neurotoxicant. This study aimed to explain the neuroprotective role of Berberine (BBR) against CPF-induced autophagy dysfunction and apoptotic neurodegeneration in the developing hippocampus. F1 generation of Wistar rats was exposed to CPF (3 mg/kg b.wt.) and co-treated with BBR (10 mg/kg b.wt) in two different exposure regimens, gestational (GD9-12 and GD17-21) and lactational (PND1-20). Our results demonstrated that CPF intoxication instigated cognitive and neurobehavioral impairment, oxidant-antioxidant imbalance, and histomorphological alterations in CA1, CA3, and DG regions of the offsprings. Furthermore, mRNA expression of pro-apoptotic genes (caspase3 and Bax) was upregulated, and that of anti-apoptotic BCl2 was downregulated. In addition, exposure to CPF also activated the autophagy inhibitor (mTOR) transcription and subsequently downregulated the expression of autophagy markers beclin1 and LC3-II. In contrast, gestational and lactational co-treatment of BBR significantly upregulated the enzymatic anti-oxidant bar of the hippocampus and attenuated histological alterations. Moreover, BBR co-treatments reduced apoptotic neurodegeneration in the hippocampal region by regulating the expression of apoptotic genes and upregulated the levels of autophagy, confirmed by ultrastructural studies, decreased gene expression and immunostaining of mTOR and increased, and increased expression gene expression and immunostaining of LC3-II positive cells. Our results confirm that treatment with BBR induces autophagy, which plays a neuroprotective role in CPF-induced developmental neuronal apoptosis in the F1 generation of Wistar rats by regulating the balance between autophagy and apoptosis.
Collapse
Affiliation(s)
- Era Seth
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Mani Chopra
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
19
|
khan A, Wang F, Shal B, Khan AU, Zahra SS, Haq IU, Khan S, Rengasamy KRR. Anti-neuropathic pain activity of Ajugarin-I via activation of Nrf2 signaling and inhibition of TRPV1/TRPM8 nociceptors in STZ-induced diabetic neuropathy. Pharmacol Res 2022; 183:106392. [DOI: 10.1016/j.phrs.2022.106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022]
|
20
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
21
|
Rauf A, Abu-Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, Mitra S, Khan Z, Alhumaydhi FA, Aljohani ASM, Khan I, Rahman MM, Jeandet P, Gondal TA. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules 2021; 26:molecules26237368. [PMID: 34885950 PMCID: PMC8658774 DOI: 10.3390/molecules26237368] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/27/2023] Open
Abstract
Berberine (BBR), a potential bioactive agent, has remarkable health benefits. A substantial amount of research has been conducted to date to establish the anticancer potential of BBR. The present review consolidates salient information concerning the promising anticancer activity of this compound. The therapeutic efficacy of BBR has been reported in several studies regarding colon, breast, pancreatic, liver, oral, bone, cutaneous, prostate, intestine, and thyroid cancers. BBR prevents cancer cell proliferation by inducing apoptosis and controlling the cell cycle as well as autophagy. BBR also hinders tumor cell invasion and metastasis by down-regulating metastasis-related proteins. Moreover, BBR is also beneficial in the early stages of cancer development by lowering epithelial–mesenchymal transition protein expression. Despite its significance as a potentially promising drug candidate, there are currently no pure berberine preparations approved to treat specific ailments. Hence, this review highlights our current comprehensive knowledge of sources, extraction methods, pharmacokinetic, and pharmacodynamic profiles of berberine, as well as the proposed mechanisms of action associated with its anticancer potential. The information presented here will help provide a baseline for researchers, scientists, and drug developers regarding the use of berberine as a promising candidate in treating different types of cancers.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
- Correspondence: (A.R.); (P.J.)
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (M.I.)
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (M.I.)
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, P.O. Box 1039, CEDEX 2, 51687 Reims, France
- Correspondence: (A.R.); (P.J.)
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Burwood, VIC 3125, Australia;
| |
Collapse
|
22
|
Seth E, Ahsan AU, Kaushal S, Mehra S, Chopra M. Berberine affords protection against oxidative stress and apoptotic damage in F1 generation of wistar rats following lactational exposure to chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104977. [PMID: 34802527 DOI: 10.1016/j.pestbp.2021.104977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl)-phosphorothioate; (CPF)) is a widely used lipophilic organophosphorus insecticide that primarily manifests into central and peripheral nervous system toxicity. However, it is poorly investigated as a developmental neurotoxicant and thus remains less explored for pharmacological interventions as well. Berberine (BBR) is a benzylisoquinoline alkaloid, primarily found in the plants of Berberidaceae family, and is used for the synthesis of several bioactive derivatives. The goal of this study was to evaluate the CPF-induced neuronal damage through lactational route and analyze the neuroprotective efficacy of berberine (BBR), a potent antioxidant compound in the F1 generation. The environmentally relevant dose of CPF (3 mg/kg b.wt.) was administered via gavage to pregnant dams from postnatal day 1 to day 20 (PND 1-20). BBR (10 mg/kg b.wt.) was administered concurrently with CPF for the same duration as a co-treatment. Levels of reactive oxygen species, lipid peroxidation, membrane bound ATPases (Na+K+ATPase, Ca2+ATPase, and Mg2+ATPase), DNA damage, histomorphological alterations, cellular apoptosis were increased, and activities of glutathione reductase, endogenous antioxidant enzymes (SOD, CAT, GST, and GR) were decreased in cerebellum and cerebrum regions of CPF exposed pups. CPF triggered neuronal apoptosis by upregulating Bax and caspase-3 and downregulating Bcl-2. Co-treatment of BBR significantly attenuated these effects of CPF signifying oxidative stress mediated chlorpyrifos induced neuronal apoptosis. Berberine treatment ameliorated the CPF-induced downregulation of Bcl-2, Bax translocation, and up-regulation of caspase-3 in F1 pups. Therefore, BBR owing to its multiple pharmacological properties can be further explored for its therapeutic potential as an alternative neuroprotective agent against lactational exposure of chlorpyrifos-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Era Seth
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Aitizaz Ul Ahsan
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Surbhi Kaushal
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sweety Mehra
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Mani Chopra
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
23
|
Wang S, Dai Y. Roles of AMPK and Its Downstream Signals in Pain Regulation. Life (Basel) 2021; 11:life11080836. [PMID: 34440581 PMCID: PMC8401922 DOI: 10.3390/life11080836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Pain is an unpleasant sensory and emotional state that decreases quality of life. A metabolic sensor, adenosine monophosphate-activated protein kinase (AMPK), which is ubiquitously expressed in mammalian cells, has recently attracted interest as a new target of pain research. Abnormal AMPK expression and function in the peripheral and central nervous systems are associated with various types of pain. AMPK and its downstream kinases participate in the regulation of neuron excitability, neuroinflammation and axonal and myelin regeneration. Numerous AMPK activators have reduced pain behavior in animal models. The current understanding of pain has been deepened by AMPK research, but certain issues, such as the interactions of AMPK at each step of pain regulation, await further investigation. This review examines the roles of AMPK and its downstream kinases in neurons and non-neuronal cells, as well as their contribution to pain regulation.
Collapse
Affiliation(s)
- Shenglan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan
- Correspondence: (S.W.); (Y.D.); Tel.: +86-10-53912197 (S.W.); +81-78-304-3147 (Y.D.)
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute, Hyogo College of Medicine, Kobe 663-8501, Japan
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
- Correspondence: (S.W.); (Y.D.); Tel.: +86-10-53912197 (S.W.); +81-78-304-3147 (Y.D.)
| |
Collapse
|
24
|
Ben Y, Hao J, Zhang Z, Xiong Y, Zhang C, Chang Y, Yang F, Li H, Zhang T, Wang X, Xu Q. Astragaloside IV Inhibits Mitochondrial-Dependent Apoptosis of the Dorsal Root Ganglion in Diabetic Peripheral Neuropathy Rats Through Modulation of the SIRT1/p53 Signaling Pathway. Diabetes Metab Syndr Obes 2021; 14:1647-1661. [PMID: 33883914 PMCID: PMC8055373 DOI: 10.2147/dmso.s301068] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To investigate the effect of astragaloside IV (AS-IV) on mitochondrial-dependent apoptosis in the dorsal root ganglion of diabetic peripheral neuropathy (DPN) rats through the SIRT1/p53 pathway. METHODS Diabetic rat model was induced by high-carbohydrate/high-fat diet and intraperitoneal injection of STZ. Diabetic rats were divided into three groups (n =16 per group): DPN group, AS-IV group (60mg/kg/d) and α-lipoic acid (ALA) group (60mg/kg/d). Weight and blood glucose levels were monitored every 4 weeks for 12 weeks. DPN was evaluated using the Von Frey Filaments Test and nerve conduction velocity. The dorsal root ganglia of rats were isolated and the pathological changes of mitochondria were observed by electron microscopy. The activity of mitochondrial electron transport chain complex, mitochondrial membrane potential, malonaldehyde (MDA) and glutathione (GSH) levels were measured. Neural apoptosis was detected using the Terminal Deoxynucleotidyl Nick-End Labeling (TUNEL) assay kit. The cleaved caspase-3, major proteins in the SIRT1/p53 pathway, including SIRT1, acetyl p53, Drp1, BAX, and BCL-2, were detected using immunohistochemistry and Western blot. Gene expression of major proteins in the SIRT1/p53 pathway was also detected. RESULTS After 12 weeks of treatment, AS-IV and ALA did not significantly affect body weight or fasting glucose levels, but reduced mechanical abnormal pain in DPN and improved nerve conduction velocity. AS-IV and ALA increased the level of GSH and decreased the level of MDA. Both AS-IV and ALA can reduce mitochondrial damage, improve mitochondrial electron transport chain complex activity and mitochondrial membrane potential, and reduce the percentages of positive cells with DNA fragmentation and the expression of cleaved caspase-3 protein. AS-IV and ALA up-regulated the expression of SIRT1 and down-regulated the expression of acetyl-p53, Drp1 and the ratio of BAX to BCL-2. Changes in gene expression were similar. CONCLUSION AS-IV can reduce the occurrence of mitochondrial-dependent apoptosis by regulating the SIRT1/p53 pathway. It has a similar therapeutic effect as ALA and is therefore a promising drug for the potential treatment of DPN.
Collapse
Affiliation(s)
- Ying Ben
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Juan Hao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhihong Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yunzhao Xiong
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Cuijuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Yi Chang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Fan Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Hui Li
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Tianya Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
| | - Qingyou Xu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Qingyou Xu Hebei University of Chinese Medicine, No. 326 Xinshinan Road, Qiaoxi District, Shijiazhuang, Hebei Province, 050090, People’s Republic of ChinaTel +86 13832368865Fax +86 311 89926000 Email
| |
Collapse
|
25
|
Hashemzaei M, Rezaee R. A review on pain‐relieving activity of berberine. Phytother Res 2020; 35:2846-2853. [DOI: 10.1002/ptr.6984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Zabol University of Medical Sciences Zabol Iran
- Toxicology and Addiction Research Center Zabol University of Medical Sciences Zabol Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
26
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
27
|
Albasher G, Aljarba N, Al Sultan N, Alqahtani WS, Alkahtani S. Evaluation of the neuro-protective effect of Artemisia judaica extract in a murine diabetic model. J Food Biochem 2020; 44:e13337. [PMID: 32588466 DOI: 10.1111/jfbc.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
Chronic hyperglycemia is associated with several negative outcomes including neuronal injury. Medicinal plants supplementation has been widely applied to treat or decrease diabetic complications. Here, the possible neuroprotective effect of Artemisia judaica extract (AjE. 300 mg kg-1 day-1 ) against neuronal deficits in diabetes model induced by high-fat diet (HFD) administration and streptozotocin (STZ, 30 mg/Kg) injection in rats was investigated. Diabetic rats showed a disturbance in the neuronal redox homeostasis as confirmed by the elevated lipoperoxidation and nitric oxide formation along with the decreased antioxidant molecules. In addition, a state of neuroinflammation and apoptosis were recorded in the brain tissue in diabetic rats. Furthermore, HFD/STZ provoked neurochemical alterations. However, AjE administration was found to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, antiapoptotic, and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients. PRACTICAL APPLICATIONS: Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose level comes from the dysregulation of insulin production and/or its action. The persisted hyperglycemia is correlated with the progression of several physical complications including renal, hepatic, vascular, retinal, and neuronal dysfunction. Artemisia is used in the nutritional and medicinal proposes due to the enriched bioactive molecules such as essential oil, flavonoids, phenolics, sesquiterpenoids, triterpenoids, and artemisinin. And we found that Artemisia judaica extract (AjE) administration was able to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, anti-apoptotic and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada Aljarba
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Al Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Sunnetci Silistre E, Erbas O. The Ameliorative Effects of Ascorbic Acid on Critical Illness Polyneuropathy in Rodent Sepsis Model. J Pediatr Intensive Care 2020; 9:265-270. [PMID: 33133742 DOI: 10.1055/s-0040-1710587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022] Open
Abstract
Although the exact pathophysiology of critical illness polyneuropathy (CIP) is still unknown, there are several hypotheses, some of which are increased inflammation and oxidative stress. We used rodent sepsis model in which we induced sepsis through cecal ligation followed by cecal puncture. We then administered ascorbic acid (AA) and evaluated outcomes. The levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukins (IL)-6 in the plasma, and heat shock protein-70 (HSP-70) levels in the sciatic nerve were measured, and also electromyography analyses were performed. While plasma MDA, TNF-α, and IL-6 levels were decreased significantly with AA treatment, sciatic nerve levels of HSP-70 were significantly elevated in the AA group. A significant increase in compound muscle action potential (CMAP) amplitude and a significant decrease in CMAP latency were detected in the AA group. We observed healing effects of AA on a rat model of CIP and these effects seem to be related to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
| | - Oytun Erbas
- Department of Physiology, Bilim University Medical Faculty, Istanbul, Turkey
| |
Collapse
|