1
|
Pang Y, Zhao L, Ji X, Guo K, Yin X. Analyses of Transcriptomics upon IL-1β-Stimulated Mouse Chondrocytes and the Protective Effect of Catalpol through the NOD2/NF-κB/MAPK Signaling Pathway. Molecules 2023; 28:molecules28041606. [PMID: 36838594 PMCID: PMC9962284 DOI: 10.3390/molecules28041606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The overall objective of this study was to investigate the mechanism of inflammation on chondrocyte injury and the protective effect of catalpol on chondrocytes in an inflammatory environment. Chondrocytes were isolated and cultured from the knee joints of three-day-old newborn mice. Alcian Blue staining and the immunocytochemistry staining of type II collagen were used to identify the purity of chondrocytes. Primary chondrocytes were stimulated by IL-1β (10 ng/mL) and subjected to transcriptome analysis. Differentially expressed genes (DEGs) were further analyzed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. In this experimental study, we performed the viability assay to determine the effects of different concentrations of catalpol on the cell viability of chondrocytes. Chondrocytes were seeded in six-well plates and exposed to 10 μM catalpol 2 h prior to treatment with IL-1β (10 ng/mL). Quantitative real-time (qPCR) and Western blotting were performed to evaluate the RNA and protein expression, respectively. Based on the results of transcriptomics analysis, we found the NOD2 signaling pathway, the NF-kappa B signaling pathway, and the MAPK signaling pathway showed significant changes in chondrocyte damage caused by inflammation. Catalpol (10 μM and 100 μM) could significantly reduce NO, IL-6, IL-1β, and TNF-α in supernatant of chondrocytes. Catalpol significantly inhibited the mRNA expression of IL-1, IL-6, and IL-12 in chondrocytes induced by IL-1β. Catalpol markedly inhibited MMP3, MMP13 mRNA, and protein levels. Catalpol could significantly reduce TNF-α mRNA levels in inflammatory chondrocytes. Inflammation causes significant increases in mRNA levels and protein levels of NOD2, mRNA levels, and protein levels were markedly suppressed by catalpol. In addition, catalpol could significantly increase IKBα protein levels and significantly lower intranuclear P65 levels. Catalpol significantly lowered the phosphorylation protein levels of ERK, p38, and JNK. Our transcriptomic analysis demonstrated that the activation of NOD2 and its downstream pathways, NF-κB and MAPK, is an important cause of the inflammatory injury to chondrocytes induced by IL-1β. Catalpol inhibited the activation of the NOD2 signaling pathway, which reduced the phosphorylation of ERK, p38, and JNK, inhibited the degradation of IκBα, inhibited p65 translocation into the nucleus, reduced the release of inflammatory cytokines, and attenuated the inflammatory damage to chondrocytes.
Collapse
Affiliation(s)
- Yong Pang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Kaijin Guo
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Correspondence: (K.G.); (X.Y.)
| | - Xiaoxing Yin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Correspondence: (K.G.); (X.Y.)
| |
Collapse
|
2
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
4
|
Elleisy N, Rohde S, Huth A, Gittel N, Glass Ä, Möller S, Lamprecht G, Schäffler H, Jaster R. Genetic association analysis of CLEC5A and CLEC7A gene single-nucleotide polymorphisms and Crohn’s disease. World J Gastroenterol 2020; 26:2194-2202. [PMID: 32476786 PMCID: PMC7235209 DOI: 10.3748/wjg.v26.i18.2194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Crohn’s disease (CD) is characterized by a multifactorial etiology and a significant impact of genetic traits. While NOD2 mutations represent well established risk factors of CD, the role of other genes is incompletely understood.
AIM To challenge the hypothesis that single nucleotide polymorphisms (SNPs) in the genes CLEC5A and CLEC7A, two members of the C-type lectin domain family of pattern recognition receptors, may be associated with CD.
METHODS SNPs in CLEC5A, CLEC7A and the known CD risk gene NOD2 were studied using real time PCR-based SNP assays. Therefore, DNA samples from 175 patients and 157 healthy donors were employed. Genotyping data were correlated with clinical characteristics of the patients and the results of gene expression data analyses.
RESULTS In accordance with previous studies, rs2066844 and rs2066847 in NOD2 were found to be significantly associated with CD (allelic P values = 0.0368 and 0.0474, respectively). Intriguingly, for genotype AA of rs1285933 in CLEC5A, a potential association with CD (recessive P = 0.0523; odds ratio = 1.90) was observed. There were no associations between CD and SNPs rs2078178 and rs16910631 in CLEC7A. Variants of rs1285933 had no impact on CLEC5A gene expression. In contrast, genotype-dependent differences of CXCL5 expression in peripheral blood mononuclear cells were observed. There is no statistical interaction between the tested SNPs of NOD2 and CLEC5A, suggesting of a novel pathway contributing to the disease.
CONCLUSION Our data encourage enlarged follow-up studies to further address an association of SNP rs1285933 in CLEC5A with CD. The C-type lectin domain family member also deserves attention regarding a potential role in the pathophysiology of CD.
Collapse
Affiliation(s)
- Nagi Elleisy
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Astrid Huth
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Nicole Gittel
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock 18057, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock 18057, Germany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Holger Schäffler
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| |
Collapse
|
5
|
Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7420189. [PMID: 31396533 PMCID: PMC6668540 DOI: 10.1155/2019/7420189] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors mediate important cellular immune responses upon activation via various pathogenic stimuli such as bacterial or viral components. The activation and subsequent secretion of cytokines and proinflammatory factors occurs in the whole body including the brain. The subsequent inflammatory response is crucial for the immune system to clear the pathogen(s) from the body via the innate and adaptive immune response. Within the brain, astrocytes, neurons, microglia, and oligodendrocytes all bear unique compositions of Toll-like receptors. Besides pathogens, cellular damage and abnormally folded protein aggregates, such as tau and Amyloid beta peptides, have been shown to activate Toll-like receptors in neurodegenerative diseases such as Alzheimer's disease. This review provides an overview of the different cell type-specific Toll-like receptors of the human brain, their activation mode, and subsequent cellular response, as well as their activation in Alzheimer's disease. Finally, we critically evaluate the therapeutic potential of targeting Toll-like receptors for treatment of Alzheimer's disease as well as discussing the limitation of mouse models in understanding Toll-like receptor function in general and in Alzheimer's disease.
Collapse
|
6
|
Zom GG, Willems MMJHP, Meeuwenoord NJ, Reintjens NRM, Tondini E, Khan S, Overkleeft HS, van der Marel GA, Codee JDC, Ossendorp F, Filippov DV. Dual Synthetic Peptide Conjugate Vaccine Simultaneously Triggers TLR2 and NOD2 and Activates Human Dendritic Cells. Bioconjug Chem 2019; 30:1150-1161. [PMID: 30865430 DOI: 10.1021/acs.bioconjchem.9b00087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simultaneous triggering of Toll-like receptors (TLRs) and NOD-like receptors (NLRs) has previously been shown to synergistically activate monocytes, dendritic cells, and macrophages. We applied these properties in a T-cell vaccine setting by conjugating the NOD2-ligand muramyl-dipeptide (MDP) and TLR2-ligand Pam3CSK4 to a synthetic peptide derived from a model antigen. Stimulation of human DCs with the MDP-peptide-Pam3CSK4 conjugate led to a strongly increased secretion of pro-inflammatory and Th1-type cytokines and chemokines. We further show that the conjugated ligands retain their ability to trigger their respective receptors, while even improving NOD2-triggering. Also, activation of murine DCs was enhanced by the dual triggering, ultimately leading to effective induction of vaccine-specific T cells expressing IFNγ, IL-2, and TNFα. Together, these data indicate that the dual MDP-SLP-Pam3CSK4 conjugate constitutes a chemically well-defined vaccine approach that holds promise for the use in the treatment of virus infections and cancer.
Collapse
Affiliation(s)
- Gijs G Zom
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Marian M J H P Willems
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Nico J Meeuwenoord
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Niels R M Reintjens
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Elena Tondini
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Selina Khan
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Jeroen D C Codee
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , P.O. Box 9600, 2300 RC Leiden , The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| |
Collapse
|
7
|
Dong Y, Speer CP, Glaser K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 2018; 9:621-633. [PMID: 29405832 PMCID: PMC5955464 DOI: 10.1080/21505594.2017.1419117] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus epidermidis accounts for the majority of cases of neonatal sepsis. Moreover, it has been demonstrated to be associated with neonatal morbidities, such as bronchopulmonary dysplasia (BPD), white matter injury (WMI), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP), which affect short-term and long-term neonatal outcome. Imbalanced inflammation has been considered to be a major underlying mechanism of each entity. Conventionally regarded as a harmless commensal on human skin, S. epidermidis has received less attention than its more virulent relative Staphylococcus aureus. Particularities of neonatal innate immunity and nosocomial environmental factors, however, may contribute to the emergence of S. epidermidis as a significant nosocomial pathogen. Neonatal host response to S. epidermidis sepsis has not been fully elucidated. Evidence is emerging regarding the implication of S. epidermidis sepsis in the pathogenesis of neonatal inflammatory diseases. This review focuses on the interplay among S. epidermidis, neonatal innate immunity and inflammation-driven organ injury.
Collapse
Affiliation(s)
- Ying Dong
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany.,b Department of Neonatology , Children's Hospital of Fudan University , Shanghai , China
| | - Christian P Speer
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany
| | - Kirsten Glaser
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany
| |
Collapse
|
8
|
Peng Y, Bishop KS, Ferguson LR, Quek SY. Screening of Cytotoxicity and Anti-Inflammatory Properties of Feijoa Extracts Using Genetically Modified Cell Models Targeting TLR2, TLR4 and NOD2 Pathways, and the Implication for Inflammatory Bowel Disease. Nutrients 2018; 10:nu10091188. [PMID: 30200338 PMCID: PMC6164462 DOI: 10.3390/nu10091188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Feijoa has been increasingly studied in the recent decade, while investigations into its bioactivities including anti-inflammatory activity are lacking. In this article, the cytotoxicity and anti-inflammatory properties of feijoa extracts, from flesh, peel and whole fruit, from four cultivars namely APOLLO, UNIQUE, OPAL STAR and WIKI TU are presented. Three inflammatory pathways, Toll-like receptor 2 (TLR2), TLR4 and nucleotide-binding oligomerization domain-containing protein 2 (NOD2), were investigated using genetically modified cell models namely HEK-Blue™ hTLR2, HEK-Blue™ hTLR4, NOD2-WT and NOD2-G908R. Results show that feijoa peel extract induced higher cytotoxicity than flesh and whole fruit extracts, and the APOLLO cultivar was the most anti-inflammatory among the four tested cultivars. The anti-inflammatory activity of feijoa flesh was detected only through the TLR2 pathway, and the activity of feijoa peel and whole fruit was evident mainly through the TLR2 and NOD2 pathways. Most notably, feijoa anti-inflammatory activity was superior to ibuprofen particularly through the TLR2 pathway, with significantly lower secreted embryonic alkaline phosphatase IC50 concentrations (7.88, 12.81, 30.84 and 442.90 μg/mL for APOLLO flesh, peel, whole fruit extract and ibuprofen respectively). These findings indicate that feijoa has great potential to be used in the treatment and prevention of inflammation-related diseases including inflammatory bowel disease.
Collapse
Affiliation(s)
- Yaoyao Peng
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Karen Suzanne Bishop
- Discipline of Nutrition and Dietetics, School of Medical Science, Faculty of Medicine and Health Science, The University of Auckland, Auckland 1023, New Zealand.
| | - Lynnette Robin Ferguson
- Discipline of Nutrition and Dietetics, School of Medical Science, Faculty of Medicine and Health Science, The University of Auckland, Auckland 1023, New Zealand.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
- Riddet Institute, New Zealand Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
9
|
Schäffler H, Rohde M, Rohde S, Huth A, Gittel N, Hollborn H, Koczan D, Glass Ä, Lamprecht G, Jaster R. NOD2- and disease-specific gene expression profiles of peripheral blood mononuclear cells from Crohn’s disease patients. World J Gastroenterol 2018; 24:1196-1205. [PMID: 29568200 PMCID: PMC5859222 DOI: 10.3748/wjg.v24.i11.1196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate disease-specific gene expression profiles of peripheral blood mononuclear cells (PBMCs) from Crohn’s disease (CD) patients in clinical remission.
METHODS Patients with CD in clinical remission or with very low disease activity according to the Crohn’s disease activity index were genotyped regarding nucleotide-binding oligomerization domain 2 (NOD2), and PBMCs from wild-type (WT)-NOD2 patients, patients with homozygous or heterozygous NOD2 mutations and healthy donors were isolated for further analysis. The cells were cultured with vitamin D, peptidoglycan (PGN) and lipopolysaccharide (LPS) for defined periods of time before RNA was isolated and subjected to microarray analysis using Clariom S assays and quantitative real-time PCR. NOD2- and disease-specific gene expression profiles were evaluated with repeated measure ANOVA by a general linear model.
RESULTS Employing microarray assays, a total of 267 genes were identified that were significantly up- or downregulated in PBMCs of WT-NOD2 patients, compared to healthy donors after challenge with vitamin D and/or a combination of LPS and PGN (P < 0.05; threshold: ≥ 2-fold change). For further analysis by real-time PCR, genes with known impact on inflammation and immunity were selected that fulfilled predefined expression criteria. In a larger cohort of patients and controls, a disease-associated expression pattern, with higher transcript levels in vitamin D-treated PBMCs from patients, was observed for three of these genes, CLEC5A (P < 0.030), lysozyme (LYZ; P < 0.047) and TREM1 (P < 0.023). Six genes were found to be expressed in a NOD2-dependent manner (CD101, P < 0.002; CLEC5A, P < 0.020; CXCL5, P < 0.009; IL-24, P < 0.044; ITGB2, P < 0.041; LYZ, P < 0.042). Interestingly, the highest transcript levels were observed in patients with heterozygous NOD2 mutations.
CONCLUSION Our data identify CLEC5A and LYZ as CD- and NOD2-associated genes of PBMCs and encourage further studies on their pathomechanistic roles.
Collapse
Affiliation(s)
- Holger Schäffler
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Maria Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Astrid Huth
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Nicole Gittel
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Hannes Hollborn
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Rostock 18057, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock 18057, Germany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock 18057, Germany
| |
Collapse
|
10
|
Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L, Richards RG, Moriarty TF. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol 2017; 8:1401. [PMID: 28824556 PMCID: PMC5539136 DOI: 10.3389/fmicb.2017.01401] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus. This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.
Collapse
Affiliation(s)
- Marina Sabaté Brescó
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland.,Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical SchoolSwansea, United Kingdom
| | - Keith Thompson
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Barbara Stanic
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital BaselBasel, Switzerland
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - R Geoff Richards
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - T Fintan Moriarty
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| |
Collapse
|
11
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Cole LE, Zhang J, Kesselly A, Anosova NG, Lam H, Kleanthous H, Yethon JA. Limitations of Murine Models for Assessment of Antibody-Mediated Therapies or Vaccine Candidates against Staphylococcus epidermidis Bloodstream Infection. Infect Immun 2016; 84:1143-1149. [PMID: 26857577 PMCID: PMC4807487 DOI: 10.1128/iai.01472-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/29/2016] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus epidermidis is normally a commensal colonizer of human skin and mucus membranes, but, due to its ability to form biofilms on indwelling medical devices, it has emerged as a leading cause of nosocomial infections. Bacteremia or bloodstream infection is a frequent and costly complication resulting from biofilm fouling of medical devices. Our goal was to develop a murine model of S. epidermidis infection to identify potential vaccine targets for the prevention of S. epidermidis bacteremia. However, assessing the contribution of adaptive immunity to protection against S. epidermidis challenge was complicated by a highly efficacious innate immune response in mice. Naive mice rapidly cleared S. epidermidis infections from blood and solid organs, even when the animals were immunocompromised. Cyclophosphamide-mediated leukopenia reduced the size of the bacterial challenge dose required to cause lethality but did not impair clearance after a nonlethal challenge. Nonspecific innate immune stimulation, such as treatment with a Toll-like receptor 4 (TLR4) agonist, enhanced bacterial clearance. TLR2 signaling was confirmed to accelerate the clearance of S. epidermidis bacteremia, but TLR2(-/-)mice could still resolve a bloodstream infection. Furthermore, TLR2 signaling played no role in the clearance of bacteria from the spleen. In conclusion, these data suggest that S. epidermidis bloodstream infection is cleared in a highly efficient manner that is mediated by both TLR2-dependent and -independent innate immune mechanisms. The inability to establish a persistent infection in mice, even in immunocompromised animals, rendered these murine models unsuitable for meaningful assessment of antibody-mediated therapies or vaccine candidates.
Collapse
Affiliation(s)
- Leah E Cole
- Sanofi Pasteur, Cambridge, Massachusetts, USA
| | | | | | | | - Hubert Lam
- Sanofi Pasteur, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Pardo-Ruiz Z, Menéndez-Sardiñas DE, Pacios-Michelena A, Gabilondo-Ramírez T, Montero-Alejo V, Perdomo-Morales R. Soluble β-(1,3)-glucans enhance LPS-induced response in the monocyte activation test, but inhibit LPS-mediated febrile response in rabbits: Implications for pyrogenicity tests. Eur J Pharm Sci 2015; 81:18-26. [PMID: 26428698 DOI: 10.1016/j.ejps.2015.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 02/02/2023]
Abstract
In the present study, we aimed to determine the influence of β-(1,3)-d-glucans on the LPS-induced pro-inflammatory cytokine response in the Monocyte Activation Test (MAT) for pyrogens, and on the LPS-induced febrile response in the Rabbit Pyrogen Test (RPT), thus evaluating the resulting effect in the outcome of each test. It was found that β-(1,3)-d-glucans elicited the production of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, also known as endogenous pyrogens, but not enough to classify them as pyrogenic according to MAT. The same β-(1,3)-d-glucans samples were non-pyrogenic by RPT. However, β-(1,3)-d-glucans significantly enhanced the LPS-induced pro-inflammatory cytokines response in MAT, insomuch that samples containing non-pyrogenic concentrations of LPS become pyrogenic. On the other hand, β-(1,3)-d-glucans had no effect on sub-pyrogenic LPS doses in the RPT, but surprisingly, inhibited the LPS-induced febrile response of pyrogenic LPS concentrations. Thus, while β-(1,3)-d-glucans could mask the LPS pyrogenic activity in the RPT, they exerted an overstimulation of pro-inflammatory cytokines in the MAT. Hence, MAT provides higher safety since it evidences an unwanted biological response, which is not completely controlled and is overlooked by the RPT.
Collapse
Affiliation(s)
- Zenia Pardo-Ruiz
- Biochemistry Department, Center for Pharmaceutical Research and Development, Ave. 26 No. 1605 e/ Ave. 51 y Boyeros, Plaza, CP 10600 Havana, Cuba
| | - Dalia E Menéndez-Sardiñas
- Biological Control Laboratory, Center for Pharmaceutical Research and Development, 17 St. No. 6208 e/ 62 y 64, Playa, CP 11300 Havana, Cuba
| | - Anabel Pacios-Michelena
- Biochemistry Department, Center for Pharmaceutical Research and Development, Ave. 26 No. 1605 e/ Ave. 51 y Boyeros, Plaza, CP 10600 Havana, Cuba
| | - Tatiana Gabilondo-Ramírez
- Biological Control Laboratory, Center for Pharmaceutical Research and Development, 17 St. No. 6208 e/ 62 y 64, Playa, CP 11300 Havana, Cuba
| | - Vivian Montero-Alejo
- Biochemistry Department, Center for Pharmaceutical Research and Development, Ave. 26 No. 1605 e/ Ave. 51 y Boyeros, Plaza, CP 10600 Havana, Cuba
| | - Rolando Perdomo-Morales
- Biochemistry Department, Center for Pharmaceutical Research and Development, Ave. 26 No. 1605 e/ Ave. 51 y Boyeros, Plaza, CP 10600 Havana, Cuba.
| |
Collapse
|
14
|
Bertsche U, Mayer C, Götz F, Gust AA. Peptidoglycan perception--sensing bacteria by their common envelope structure. Int J Med Microbiol 2014; 305:217-23. [PMID: 25596887 DOI: 10.1016/j.ijmm.2014.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most Eubacteria possess peptidoglycan (PGN) or murein that surrounds the cytoplasmic membrane. While on the one hand this PGN sacculus is a very protective shield that provides resistance to the internal turgor and adverse effects of the environment, it serves on the other hand as a major pattern of recognition due to its unique structure. Eukaryotes harness this particular bacterial macromolecule to perceive (pathogenic) microorganisms and initiate their immune defence. PGN fragments are generated by bacteria as turnover products during bacterial cell wall growth and these fragments can be sensed by plants and animals to assess a potential bacterial threat. To increase the sensitivity the concentration of PGN fragments can be amplified by host hydrolytic enzymes such as lysozyme or amidase. But also bacteria themselves are able to perceive information about the state of their cell wall by sensing small soluble fragments released from its PGN, which eventually leads to the induction of antibiotic responses or cell differentiation. How PGN is sensed by bacteria, plants and animals, and how the antibacterial defence is modulated by PGN perception is the issue of this review.
Collapse
Affiliation(s)
- Ute Bertsche
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Mayer
- Microbiology/Biotechnology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Andrea A Gust
- Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Wang C, Dong L. Exploring 'new' bioactivities of polymers at the nano-bio interface. Trends Biotechnol 2014; 33:10-4. [PMID: 25441258 DOI: 10.1016/j.tibtech.2014.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/29/2023]
Abstract
A biological system is essentially an elegant assembly of polymeric nanostructures. The polymers in the body, biomacromolecules, are both building blocks and versatile messengers. We propose that non-biologically derived polymers can be potential therapeutic candidates with unique advantages. Emerging findings about polycations, polysaccharides, immobilised multivalent ligands, and biomolecular coronas provide evidence that polymers are activated at the nano-bio interface, while emphasising the current theoretical and practical challenges. Our increasing understanding of the nano-bio interface and evolving approaches to establish the therapeutic potential of polymers enable the development of polymer drugs with high specificities for broad applications.
Collapse
Affiliation(s)
- Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093 China.
| |
Collapse
|
16
|
NOD2 stimulation by Staphylococcus aureus-derived peptidoglycan is boosted by Toll-like receptor 2 costimulation with lipoproteins in dendritic cells. Infect Immun 2014; 82:4681-8. [PMID: 25156723 DOI: 10.1128/iai.02043-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) play an important role in the pathogenesis of Crohn's disease. NOD2 is an intracellular pattern recognition receptor (PRR) that senses bacterial peptidoglycan (PGN) structures, e.g., muramyl dipeptide (MDP). Here we focused on the effect of more-cross-linked, polymeric PGN fragments (PGNpol) in the activation of the innate immune system. In this study, the effect of combined NOD2 and Toll-like receptor 2 (TLR2) stimulation was examined compared to single stimulation of the NOD2 receptor alone. PGNpol species derived from a lipoprotein-containing Staphylococcus aureus strain (SA113) and a lipoprotein-deficient strain (SA113 Δlgt) were isolated. While PGNpol constitutes a combined NOD2 and TLR2 ligand, lipoprotein-deficient PGNpolΔlgt leads to activation of the immune system only via the NOD2 receptor. Murine bone marrow-derived dendritic cells (BMDCs), J774 cells, and Mono Mac 6 (MM6) cells were stimulated with these ligands. Cytokines (interleukin-6 [IL-6], IL-12p40, and tumor necrosis factor alpha [TNF-α]) as well as DC activation and maturation parameters were measured. Stimulation with PGNpolΔlgt did not lead to enhanced cytokine secretion or DC activation and maturation. However, stimulation with PGNpol led to strong cytokine secretion and subsequent DC maturation. These results were confirmed in MM6 and J774 cells. We showed that the NOD2-mediated activation of DCs with PGNpol was dependent on TLR2 costimulation. Therefore, signaling via both receptors leads to a more potent activation of the immune system than that with stimulation via each receptor alone.
Collapse
|
17
|
Granland C, Strunk T, Hibbert J, Prosser A, Simmer K, Burgner D, Richmond P, Currie AJ. NOD1 and NOD2 expression and function in very preterm infant mononuclear cells. Acta Paediatr 2014; 103:e212-8. [PMID: 24444388 DOI: 10.1111/apa.12559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/29/2022]
Abstract
AIM To evaluate mononuclear cell expression and function of the cytosolic nucleotide-binding oligomerization domain-containing receptors, NOD1 and NOD2, in very preterm and full-term infants. METHODS NOD1 and NOD2 gene and protein expression in very preterm infants, term infants and healthy adult, cord and peripheral blood mononuclear cells (C/PBMC) were quantified using qPCR and flow cytometry. Cytokine responses of purified infant and adult monocytes to NOD1- and NOD2-specific agonists were assessed using a multiplex immunoassay (Bioplex). RESULTS NOD1 and NOD2 were expressed by a range of infant and adult mononuclear cell types, including T- and B cells, with highest expression in classical (CD14(++) CD16(-) ) and intermediate (CD14(++) CD16(+) ) monocytes. NOD1 and NOD2 expression levels by monocytes from very preterm infant were similar to those in term infants or adults. Monocyte production of TNFα, IL-6 and IL-1β induced by activation of NOD1 and NOD2 was similar between very preterm infants, term infants and adults. CONCLUSION Monocyte expression and function of NOD1 and NOD2 in very preterm infants are intact and comparable/equivalent to term infants and adults. Functional deficiencies in monocyte NOD signalling pathways are unlikely to contribute to the increased susceptibility to bacterial sepsis in preterm infants.
Collapse
Affiliation(s)
- Caitlyn Granland
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| | - Tobias Strunk
- Centre for Neonatal Research and Education; University of Western Australia; Perth WA Australia
- School of Paediatrics and Child Health; University of Western Australia; Perth WA Australia
| | - Julie Hibbert
- School of Paediatrics and Child Health; University of Western Australia; Perth WA Australia
| | - Amy Prosser
- School of Paediatrics and Child Health; University of Western Australia; Perth WA Australia
| | - Karen Simmer
- Centre for Neonatal Research and Education; University of Western Australia; Perth WA Australia
- School of Paediatrics and Child Health; University of Western Australia; Perth WA Australia
| | - David Burgner
- School of Paediatrics and Child Health; University of Western Australia; Perth WA Australia
- Murdoch Childrens Research Institute; Royal Children's Hospital; Parkville Vic. Australia
| | - Peter Richmond
- School of Paediatrics and Child Health; University of Western Australia; Perth WA Australia
| | - Andrew J. Currie
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
- Centre for Neonatal Research and Education; University of Western Australia; Perth WA Australia
| |
Collapse
|
18
|
Moreira LO, Zamboni DS. NOD1 and NOD2 Signaling in Infection and Inflammation. Front Immunol 2012; 3:328. [PMID: 23162548 PMCID: PMC3492658 DOI: 10.3389/fimmu.2012.00328] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022] Open
Abstract
Sensing intracellular pathogens is a process mediated by innate immune cells that is crucial for the induction of inflammatory processes and effective adaptive immune responses against pathogenic microbes. NOD-like receptors (NLRs) comprise a family of intracellular pattern recognition receptors that are important for the recognition of damage and microbial-associated molecular patterns. NOD1 and NOD2 are specialized NLRs that participate in the recognition of a subset of pathogenic microorganisms that are able to invade and multiply intracellularly. Once activated, these molecules trigger intracellular signaling pathways that lead to the activation of transcriptional responses culminating in the expression of a subset of inflammatory genes. In this review, we will focus on the role of NOD1 and NOD2 in the recognition and response to intracellular pathogens, including Gram-positive and Gram-negative bacteria, and on their ability to signal in response to non-peptidoglycan-containing pathogens, such as viruses and protozoan parasites.
Collapse
Affiliation(s)
- Lilian O Moreira
- Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | |
Collapse
|
19
|
Nakayama H, Kurokawa K, Lee BL. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 2012; 279:4247-68. [PMID: 23094979 DOI: 10.1111/febs.12041] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/02/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Abstract
Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor onto bacterial cell membranes. These proteins play important roles in a wide variety of bacterial physiological processes, including virulence, and induce innate immune reactions by functioning as ligands of the mammalian Toll-like receptor 2. We review recent advances in our understanding of bacterial lipoprotein structure, biosynthesis and structure-function relationships between bacterial lipoproteins and Toll-like receptor 2. Notably, 40 years after the first report of the triacyl structure of Braun's lipoprotein in Escherichia coli, recent intensive MS-based analyses have led to the discovery of three new lipidated structures of lipoproteins in monoderm bacteria: the lyso, N-acetyl and peptidyl forms. Moreover, the bacterial lipoprotein structure is considered to be constant in each bacterium; however, lipoprotein structures in Staphylococcus aureus vary between the diacyl and triacyl forms depending on the environmental conditions. Thus, the lipidation state of bacterial lipoproteins, particularly in monoderm bacteria, is more complex than previously assumed.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
20
|
Itoh T, Miyake Y, Onda A, Kubo J, Ando M, Tsukamasa Y, Takahata M. Immunomodulatory effects of heat-killed Enterococcus faecalis TH10 on murine macrophage cells. Microbiologyopen 2012; 1:373-80. [PMID: 23233442 PMCID: PMC3535383 DOI: 10.1002/mbo3.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to investigate the immunomodulatory effects of heat-killed Enterococcus faecalis TH10 (hk-TH10) and its signal transduction on murine macrophage RAW264 cells. RAW264 cells produced nitric oxide (NO) following hk-TH10 treatment. In order to investigate the mechanisms underlying hk-TH10-stimulated NO production, we further measured NO production in RAW264 cells treated with Toll-like receptor (TLR) 4 inhibitor peptide, NF-κB inhibitor, TLR1-siRNA, TLR2-siRNA, and TLR-6 siRNA. Furthermore, the activation of TLR2-TLR1/6 pathway molecules was analyzed by Western blotting. The result of this study showed that hk-TH10 stimulates NO in RAW264 cells through the activation of the TLR2-TLR1/6 pathway. From our findings, we can conclude that hk-TH10 isolated from a traditional side-dish fermented food (tempeh) may facilitate host immunomodulation.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 in Infection and Immunity. Front Immunol 2012; 3:79. [PMID: 22566960 PMCID: PMC3342043 DOI: 10.3389/fimmu.2012.00079] [Citation(s) in RCA: 527] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/28/2012] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bacteria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which is the initial step in a cascade of events leading to significant innate immune responses, development of adaptive immunity to pathogens and protection from immune sequelae related to infection with these pathogens. This review will discuss the current status of TLR2 mediated immune responses by recognition of pathogen-associated molecular patterns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical responses to TLR2 ligands with emphasis on whether the inflammation induced by these responses contributes to the disease state or to protection from diseases.
Collapse
Affiliation(s)
- Laura Oliveira-Nascimento
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine Boston, MA, USA
| | | | | |
Collapse
|
22
|
Rockel C, Hartung T. Systematic review of membrane components of gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Front Pharmacol 2012; 3:56. [PMID: 22529809 PMCID: PMC3328207 DOI: 10.3389/fphar.2012.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/17/2012] [Indexed: 01/01/2023] Open
Abstract
Fifty years after the elucidation of lipopolysaccharides (LPS, endotoxin) as the principal structure of Gram-negative bacteria activating the human immune system, its Gram-positive counterpart is still under debate. Pyrogen tests based on the human monocyte activation have been validated for LPS detection as an alternative to the rabbit test and, increasingly, the limulus amebocyte lysate test. For full replacement, international validations with non-endotoxin pyrogens are in preparation. Following evidence-based medicine approaches, a systematic review of existing evidence as to the structural nature of the Gram-positive pyrogen was undertaken. For the three major constituents suggested, i.e., peptidoglycan, lipoteichoic acids (LTA), and bacterial lipoproteins (LP), the questions to be answered and a search strategy for relevant literature was developed, starting in MedLine. The evaluation was based on the Koch–Dale criteria for a mediator of an effect. A total of 380 articles for peptidoglycan, 391 for LP, and 285 for LTA were retrieved of which 12, 8, and 24, respectively, fulfilled inclusion criteria. The compiled data suggest that for peptidoglycan two Koch–Dale criteria are fulfilled, four for LTA, and two for bacterial LP. In conclusion, based on the best currently available evidence, LTA is the only substance that fulfills all criteria. LTA has been isolated from a large number of bacteria, results in cytokine release patterns inducible also with synthetic LTA. Reduction in bacterial cytokine induction with an inhibitor for LTA was shown. However, this systematic review cannot exclude the possibility that other stimulatory compounds complement or substitute for LTA in being the counterpart to LPS in some Gram-positive bacteria.
Collapse
Affiliation(s)
- Christoph Rockel
- Biochemical Pharmacology, University of Konstanz Konstanz, Germany
| | | |
Collapse
|
23
|
Nischalke HD, Berger C, Aldenhoff K, Thyssen L, Gentemann M, Grünhage F, Lammert F, Nattermann J, Sauerbruch T, Spengler U, Appenrodt B. Toll-like receptor (TLR) 2 promoter and intron 2 polymorphisms are associated with increased risk for spontaneous bacterial peritonitis in liver cirrhosis. J Hepatol 2011; 55:1010-6. [PMID: 21356257 DOI: 10.1016/j.jhep.2011.02.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Toll-like receptor (TLR) 2 and nucleotide-binding oligomerisation domain (NOD) 2 recognize distinct pathogen-associated molecular patterns (PAMS) on the cell surface and in the cytoplasm, respectively. Since they may contribute to susceptibility to spontaneous bacterial peritonitis (SBP), we studied the effects of TLR2 gene variants on susceptibility for SBP in relation to the previously reported NOD2 alleles. METHODS Overall, 150 patients with liver cirrhosis and ascites were genotyped for TLR2 gene variants -16934 (rs4696480), Arg753Gln (rs5743708), Pro631His (rs5743704) and the TLR2 GT microsatellite polymorphism in intron 2. Patients were monitored for SBP over two years. TLR2 SNPs were identified by hybridization probe assays on a LightCycler system. Numbers of GT repeats were determined with an ABI310 sequencer and Genescan Analysis 2.1 software. RESULTS Fifty two patients (35%) had SBP. Unlike the TLR2 Arg753Gln and Pro631His mutations, SBP was significantly more frequent in patients with the TLR2 -16934 TT genotype (38.5% vs. 15.3%; p = 0.002) and in carriers with two long tandem GT repeat alleles (>20) (53.8% vs. 25.5%; p = 0.001). A multivariate analysis confirmed TLR2 GT microsatellite polymorphism (OR = 3.8, p = 0.002) and NOD2 variants (OR = 3.3, p = 0.011) as independent predictors of SBP, and the simultaneous presence of both risk factors indicated a particularly high risk for SBP (OR = 11.3, p = 0.00002). CONCLUSIONS Analogous to NOD2 risk variants, TLR2 polymorphisms indicate increased susceptibility toward SBP in cirrhotic patients with ascites, and the combination of the TLR2 GT microsatellite polymorphism with at least one NOD2 risk variant enables improved identification of patients with a high risk for SBP.
Collapse
Affiliation(s)
- H D Nischalke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Efferson CL, Ramesh R, Peoples GE, Hwu P, Ioannides CG. A peptidoglycan monomer with the glutamine to serine change and basic peptides bind in silico to TLR-2 (403-455). Cancer Immunol Immunother 2011; 60:515-24. [PMID: 21188584 PMCID: PMC11028711 DOI: 10.1007/s00262-010-0959-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 12/08/2010] [Indexed: 12/30/2022]
Abstract
Bacterial cell wall polysaccharides, such as PGN, bind and activate TLR-2, NOD2 and PGRP on monocytes/macrophages and activate inflammation. We found that the peptides containing basic amino acids (cations) at N -terminus and tyrosine at C-terminus interfered with activating ability of PGN. This finding is significant because the ECD of TLR-2 in vivo encounters a large number of proteins or peptides. Some should bind ECD and "pre-form" TLR-2 to respond or not to its activators, although they cannot activate TLR-2 alone. TLR-2 is receptor for a large number of ligands, including lipopeptides and bacterial cell wall glycoproteins. A binding site for lipopeptides has been identified; however, a binding site for soluble or multimeric PGN has not been proposed. To identify the candidate binding sites of peptides and PGN on TLR-2, we modeled docking of peptides and of the PGN monomer (PGN-S-monomer) to extracellular domain (ECD-TLR-2) of the unbound TLR-2. Quantification, in silico, of free energy of binding (DG) identified 2 close sites for peptides and PGN. The PGN-S-monomer binding site is between amino acids TLR-2, 404-430 or more closely TLR-2, 417-428. The peptide-binding site is between amino acids TLR-2, 434-455. Molecular models show PGN-S-monomer inserts its N -acetyl-glucosamine (NAG) deep in the TLR-2 coil, while its terminal lysine interacts with inside (Glu(403)) and outside pocket (Tyr(378)). Peptides insert their two N -terminal arginines or their C-terminal tyrosines in the TLR-2 coil. PGN did not bind the lipopeptide-binding site in the TLR-2. It can bind the C-terminus, 572-586 (DG = 0.026 kcal), of "lipopeptide-bound" TLR-2. An additional, low-affinity PGN-binding site is TLR-2 (227-237). MTP, MDP, and lysine-less PGN bind to TLR-2, 87-113. This is the first report identifying candidate binding sites of monomer PGN and peptides on TLR-2. Experimental verification of our findings is needed to create synthetic adjuvant for vaccines. Such synthetic PGN can direct both adjuvant and cancer antigen to TLR-2.
Collapse
Affiliation(s)
- Yufeng Li
- Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, P.O. Box 304, Houston, TX 77030 USA
| | - Clay L. Efferson
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
- Present Address: Merck Corporation, Boston, MA USA
| | - Rajagopal Ramesh
- Departments of Thoracic Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - George E. Peoples
- Department of Surgery, General Surgery Service, Brooke Army Medical Center, 3851 Roger Brooke Drive, Fort Sam, Houston, TX 78234 USA
| | - Patrick Hwu
- Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Constantin G. Ioannides
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, P.O. Box 304, Houston, TX 77030 USA
| |
Collapse
|
25
|
Enoksson M, Ejendal KF, McAlpine S, Nilsson G, Lunderius-Andersson C. Human Cord Blood-Derived Mast Cells Are Activated by the Nod1 Agonist M-TriDAP to Release Pro-Inflammatory Cytokines and Chemokines. J Innate Immun 2011; 3:142-9. [DOI: 10.1159/000321933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/12/2010] [Indexed: 12/23/2022] Open
|
26
|
Abstract
Psoriasis is one of the commonest chronic inflammatory disorders. Its cause is unknown, but a wealth of studies indicate that the disease results from a complex and dynamic interplay between genetic and environmental factors that trigger an excessive inflammatory response in the skin. Dendritic cells and effector T-cells are central in the development of the psoriastic lesion, and cytokines produced by these cells stimulate keratinocytes to proliferate and increase the migration of inflammatory cells into the skin, promoting epidermal hyperplasia and inflammation. Understanding the immunology of the psoriatic plaque has led to new therapeutic options and novel candidates for immunomodulation, and has changed the ways psoriatic patients are managed.
Collapse
|
27
|
Müller-Anstett MA, Müller P, Albrecht T, Nega M, Wagener J, Gao Q, Kaesler S, Schaller M, Biedermann T, Götz F. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One 2010; 5:e13153. [PMID: 20949035 PMCID: PMC2951902 DOI: 10.1371/journal.pone.0013153] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/24/2010] [Indexed: 01/01/2023] Open
Abstract
In mammalian host cells staphylococcal peptidoglycan (PGN) is recognized by Nod2. Whether PGN is also recognized by TLR2 is disputed. Here we carried out PGN co-localization and stimulation studies with TLR2 and Nod2 in wild type and mutant host cells. To exclude contamination with lipoproteins, polymeric staphylococcal PGN (PGN(pol)) was isolated from Staphylococcus aureus Δlgt (lacking lipidated prelipoproteins). PGN(pol) was biotinylated (PGN-Bio) for fluorescence monitoring with specific antibodies. Keratinocytes from murine oral epithelium (MK) readily internalized PGN-Bio in an endocytosis-like process. In wt MK, PGN(pol) induced intracellular accumulation of Nod2 and TLR2 and co-localized with Nod2 and TLR2, but not with TLR4. In TLR2-deficient MK Nod2 and in Nod2-deficient MK TLR2 was induced, indicating that PGN(pol) recognition by Nod2 is independent of TLR2 and vice versa. In both mutants IL-6 and IL-1B release was decreased by approximately 50% compared to wt MK, suggesting that the immune responses induced by Nod2 and TLR2 are comparable and that the two receptors act additively in MK. In TLR2-transfected HEK293 cells PGN(pol) induced NFkB-promoter fused luciferase expression. To support the data, co-localization and signaling studies were carried out with SHL-PGN, a lipase protein covalently tethered to PGN-fragments of varying sizes at its C-terminus. SHL-PGN also co-localized with Nod2 or TLR2 and induced their accumulation, while SHL without PGN did not. The results show that staphylococcal PGN not only co-localizes with Nod2 but also with TLR2. PGN is able to stimulate the immune system via both receptors.
Collapse
Affiliation(s)
| | - Patrick Müller
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Till Albrecht
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mulugeta Nega
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Jeanette Wagener
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Qiang Gao
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Susanne Kaesler
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tilo Biedermann
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
The Staphylococcus aureus lipoprotein SitC colocalizes with Toll-like receptor 2 (TLR2) in murine keratinocytes and elicits intracellular TLR2 accumulation. Infect Immun 2010; 78:4243-50. [PMID: 20679445 DOI: 10.1128/iai.00538-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SitC is one of the predominant lipoproteins in Staphylococcus aureus. Recently, SitC was shown to be capable of stimulating Toll-like receptor 2 (TLR2), but the mechanism of TLR2 activation by SitC has not been analyzed in detail so far. In this study, we purified C-terminally His-tagged SitC (SitC-His) from Staphylococcus aureus. SitC-His induced interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) release in human monocytes and also NF-κB activation in TLR2-transfected HEK293 cells, indicating TLR2-specific activation. SitC not only induced a TLR2-dependent release of IL-6 in primary murine keratinocytes (MKs) but also induced intracellular accumulation of TLR2, which was time and concentration dependent. Cy2-labeled SitC-His colocalized specifically with TLR2 in MKs and was also internalized in TLR2 knockout MKs, suggesting a TLR2-independent uptake. Neither activation nor colocalization of SitC-His was observed with TLR4 or Nod2. The results show that the native lipoprotein SitC-His specifically colocalizes with TLR2, is internalized by host cells, induces proinflammatory cytokines, and triggers intracellular accumulation of TLR2.
Collapse
|
29
|
Strunk T, Power Coombs MR, Currie AJ, Richmond P, Golenbock DT, Stoler-Barak L, Gallington LC, Otto M, Burgner D, Levy O. TLR2 mediates recognition of live Staphylococcus epidermidis and clearance of bacteremia. PLoS One 2010; 5:e10111. [PMID: 20404927 PMCID: PMC2852418 DOI: 10.1371/journal.pone.0010111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/19/2010] [Indexed: 12/12/2022] Open
Abstract
Background Staphylococcus epidermidis (SE) is a nosocomial pathogen that causes catheter-associated bacteremia in the immunocompromised, including those at the extremes of age, motivating study of host clearance mechanisms. SE-derived soluble components engage TLR2; but additional signaling pathways have also been implicated, and TLR2 can play complex, at times detrimental, roles in host defense against other Staphylococcal spp. The role of TLR2 in responses of primary blood leukocytes to live SE and in clearance of SE bacteremia, the most common clinical manifestation of SE infection, is unknown. Methodology/Principal Findings We studied TLR2-mediated recognition of live clinical SE strain 1457 employing TLR2-transfected cells, neutralizing anti-TLR antibodies and TLR2-deficient mice. TLR2 mediated SE-induced cytokine production in human embryonic kidney cells, human whole blood and murine primary macrophages, in part via recognition of a soluble TLR2 agonist. After i.v. challenge with SE, early (1 h) cytokine/chemokine production and subsequent clearance of bacteremia (24–48 h) were markedly impaired in TLR2-deficient mice. Conclusions/Significance TLR2 mediates recognition of live SE and clearance of SE bacteremia in vivo.
Collapse
Affiliation(s)
- Tobias Strunk
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Melanie R. Power Coombs
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Currie
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Peter Richmond
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Douglas T. Golenbock
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Liat Stoler-Barak
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Leighanne C. Gallington
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Michael Otto
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Burgner
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Victoria, Australia
| | - Ofer Levy
- Division Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Jørgensen ALW, Juul-Madsen HR, Stagsted J. Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells. J Pept Sci 2009; 16:21-30. [DOI: 10.1002/psc.1190] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Rose WA, McGowin CL, Pyles RB. FSL-1, a bacterial-derived toll-like receptor 2/6 agonist, enhances resistance to experimental HSV-2 infection. Virol J 2009; 6:195. [PMID: 19903337 PMCID: PMC2780411 DOI: 10.1186/1743-422x-6-195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022] Open
Abstract
Background Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulceration that can predispose individuals to an increased risk of acquiring other sexually transmitted infections. There are no approved HSV-2 vaccines and current suppressive therapies require daily compound administration that does not prevent all recurrences. A promising experimental strategy is the use of toll-like receptor (TLR) agonists to induce an innate immune response that provides resistance to HSV-2 infection. Previous studies showed that anti-herpetic activity varied based on origin of the agonists and activation of different TLR indicating that activity likely occurs through elaboration of a specific innate immune response. To test the hypothesis, we evaluated the ability of a bacterial-derived TLR2/6 agonist (FSL-1) to increase resistance to experimental genital HSV-2 infection. Methods Vaginal application of FSL-1 at selected doses and times was evaluated to identify potential increased resistance to genital HSV-2 infection in the mouse model. The FSL-1 induced cytokine profile was quantified using kinetically collected vaginal lavages. Additionally, cytokine elaboration and organ weights were evaluated after single or multiple FSL-1 doses to establish a preliminary safety profile. Human vaginal EC cultures were used to confirm the mouse model outcomes. Results The results showed that vaginally-applied FSL-1 created an environment resistant to a 25-fold higher HSV-2 challenge dose. Mechanistically, vaginal FSL-1 application led to transient elaboration of cytokines linked to anti-herpetic innate immune responses. No gross local or peripheral immunotoxicity was observed even after multiple dosing. FSL-1 also created an anti-herpetic environment in cultures of human vaginal epithelial cells (EC). Conclusion The results showed, for the first time, that the bacterial-derived TLR2/6 agonist FSL-1 induced significant resistance to HSV-2 infection when applied in mice or human vaginal EC cultures. Cytokine evaluation illustrated that anti-herpetic activity correlated with induction of a specific profile. The identified anti-herpetic profile provides an invaluable resource for the future design of novel compounds to reduce genital HSV-2 transmission and improves understanding of the complex innate immune response to potential pathogens elicited by the vaginal mucosa.
Collapse
Affiliation(s)
- William A Rose
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
32
|
Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A. Psoriasis--as an autoimmune disease caused by molecular mimicry. Trends Immunol 2009; 30:494-501. [PMID: 19781993 DOI: 10.1016/j.it.2009.07.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 02/06/2023]
Abstract
Psoriasis is strongly associated with streptococcal throat infection, and patients have increased occurrence of such infections. Psoriatic lesional T cells are oligoclonal, and T cells recognizing determinants common to streptococcal M-protein and keratin have been detected in patients' blood. We propose that CD8(+) T cells in psoriatic epidermis respond mainly to such determinants, whereas CD4(+) T cells in the dermis preferentially recognize determinants on the streptococcal peptidoglycan that might itself act as an adjuvant. The streptococcal association might reflect the concurrence of superantigen production promoting skin-homing of tonsil T cells, M-protein mimicking keratin determinants, and adjuvant effects of the peptidoglycan. Accordingly, improvement of psoriasis after tonsillectomy should be associated with fewer T cells that recognize keratin and streptococcal determinants.
Collapse
Affiliation(s)
- Helgi Valdimarsson
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland.
| | | | | | | | | |
Collapse
|