1
|
Bao ZD, Wan J, Zhu W, Shen JX, Yang Y, Zhou XY. Differentially Expressed Circulating Long-Noncoding RNAS in Premature Infants with Respiratory Distress Syndrome. Balkan J Med Genet 2023; 26:11-20. [PMID: 37576795 PMCID: PMC10413991 DOI: 10.2478/bjmg-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Purpose Recent studies have addressed the association between lung development and long-noncoding RNAs (lncRNAs). But few studies have investigated the role of lncRNAs in neonatal respiratory distress syndrome (RDS). Thus, this study aimed to compare the expression profile of circulating lncRNAs between RDS infants and controls. Methods 10 RDS infants and 5 controls were enrolled. RDS patients were further divided into mild and severe RDS subgroups. Blood samples were collected for the lncRNA expression profile. Subsequently, differentially expressed lncRNAs were screened out. Bioinformatics analysis was applied to establish a co-expression network of differential lncRNAs and mRNAs, and predict the underlying biological functions. Results A total of 135 differentially expressed lncRNAs were identified, including 108 upregulated and 27 downregulated lncRNAs (fold-change>2 and P<0.05) among the three groups (non-RDS, mild RDS and severe RDS groups). Of these lncRNAs, four were selected as showing higher fold changes and validated by qRT-PCR. ENST00000470527.1, ENST00000504497.1, ENST00000417781.5, and ENST00000440408.5 were increased not only in the plasma of total RDS patients but also in the severe RDS subgroup. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses showed that differentially expressed lncRNAs may play important roles in RDS through regulating PI3KAkt, RAS, MAPK, and TGF-β signaling pathways. Conclusion The present results found that ENST00000470527.1, ENST00000504497.1, ENST00000417781.5, and ENST00000440408.5 may be invol ved in RDS. This could provide new insight into research of the potential pathophysiological mechanisms of preterm RDS.
Collapse
Affiliation(s)
- ZD Bao
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu210008, P.R. China
- Department of Neonatology, Jiangyin People’s Hospital of Nantong University, Jiangyin, Jiangsu214400, P.R. China
| | - J Wan
- Department of Neonatology, Jiangyin People’s Hospital of Nantong University, Jiangyin, Jiangsu214400, P.R. China
| | - W Zhu
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu210008, P.R. China
| | - JX Shen
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu210008, P.R. China
| | - Y Yang
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu210008, P.R. China
| | - XY Zhou
- Department of Neonatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu210008, P.R. China
| |
Collapse
|
2
|
Ran R, Cai D, King SD, Que X, Bath JM, Chen SY. Surfactant Protein A, a Novel Regulator for Smooth Muscle Phenotypic Modulation and Vascular Remodeling-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:808-814. [PMID: 33267655 PMCID: PMC8105259 DOI: 10.1161/atvbaha.120.314622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The objective of this study is to determine the role of SPA (surfactant protein A) in vascular smooth muscle cell (SMC) phenotypic modulation and vascular remodeling. Approach and Results: PDGF-BB (Platelet-derived growth factor-BB) and serum induced SPA expression while downregulating SMC marker gene expression in SMCs. SPA deficiency increased the contractile protein expression. Mechanistically, SPA deficiency enhanced the expression of myocardin and TGF (transforming growth factor)-β, the key regulators for contractile SMC phenotype. In vivo, SPA was induced in medial and neointimal SMCs following mechanical injury in both rat and mouse carotid arteries. SPA knockout in mice dramatically attenuated the wire injury-induced intimal hyperplasia while restoring SMC contractile protein expression in medial SMCs. These data indicate that SPA plays an important role in SMC phenotype modulation and vascular remodeling in vivo. CONCLUSIONS SPA is a novel protein factor modulating SMC phenotype. Blocking the abnormal elevation of SPA may be a potential strategy to inhibit the development of proliferative vascular diseases.
Collapse
MESH Headings
- Animals
- Becaplermin/pharmacology
- Carotid Arteries/drug effects
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cells, Cultured
- Disease Models, Animal
- Hyperplasia
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Nuclear Proteins/metabolism
- Phenotype
- Pulmonary Surfactant-Associated Protein A/genetics
- Pulmonary Surfactant-Associated Protein A/metabolism
- Rats, Sprague-Dawley
- Signal Transduction
- Trans-Activators/metabolism
- Transforming Growth Factor beta1/metabolism
- Vascular Remodeling/drug effects
- Mice
- Rats
Collapse
Affiliation(s)
- Ran Ran
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
| | - Skylar D. King
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Jonathan M. Bath
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65212
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
3
|
Legendre M, Butt A, Borie R, Debray MP, Bouvry D, Filhol-Blin E, Desroziers T, Nau V, Copin B, Dastot-Le Moal F, Héry M, Duquesnoy P, Allou N, Bergeron A, Bermudez J, Cazes A, Chene AL, Cottin V, Crestani B, Dalphin JC, Dombret C, Doray B, Dupin C, Giraud V, Gondouin A, Gouya L, Israël-Biet D, Kannengiesser C, Le Borgne A, Leroy S, Longchampt E, Lorillon G, Nunes H, Picard C, Reynaud-Gaubert M, Traclet J, de Vuyst P, Coulomb L'Hermine A, Clement A, Amselem S, Nathan N. Functional assessment and phenotypic heterogeneity of SFTPA1 and SFTPA2 mutations in interstitial lung diseases and lung cancer. Eur Respir J 2020; 56:13993003.02806-2020. [PMID: 32855221 DOI: 10.1183/13993003.02806-2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Interstitial lung diseases (ILDs) can be caused by mutations in the SFTPA1 and SFTPA2 genes, which encode the surfactant protein (SP) complex SP-A. Only 11 SFTPA1 or SFTPA2 mutations have so far been reported worldwide, of which five have been functionally assessed. In the framework of ILD molecular diagnosis, we identified 14 independent patients with pathogenic SFTPA1 or SFTPA2 mutations. The present study aimed to functionally assess the 11 different mutations identified and to accurately describe the disease phenotype of the patients and their affected relatives. METHODS The consequences of the 11 SFTPA1 or SFTPA2 mutations were analysed both in vitro, by studying the production and secretion of the corresponding mutated proteins and ex vivo, by analysing SP-A expression in lung tissue samples. The associated disease phenotypes were documented. RESULTS For the 11 identified mutations, protein production was preserved but secretion was abolished. The expression pattern of lung SP-A available in six patients was altered and the family history reported ILD and/or lung adenocarcinoma in 13 out of 14 families (93%). Among the 28 SFTPA1 or SFTPA2 mutation carriers, the mean age at ILD onset was 45 years (range 0.6-65 years) and 48% underwent lung transplantation (mean age 51 years). Seven carriers were asymptomatic. DISCUSSION This study, which expands the molecular and clinical spectrum of SP-A disorders, shows that pathogenic SFTPA1 or SFTPA2 mutations share similar consequences for SP-A secretion in cell models and in lung tissue immunostaining, whereas they are associated with a highly variable phenotypic expression of disease, ranging from severe forms requiring lung transplantation to incomplete penetrance.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.,Both authors contributed equally
| | - Afifaa Butt
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Both authors contributed equally
| | - Raphaël Borie
- Pulmonology Dept A, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Marie-Pierre Debray
- Radiology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Diane Bouvry
- Pulmonology Dept, EA 2363, Avicenne Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris 13 University, COMUE Sorbonne Paris Cité, Bobigny, France
| | - Emilie Filhol-Blin
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Tifenn Desroziers
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France
| | - Valérie Nau
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Bruno Copin
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Florence Dastot-Le Moal
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Mélanie Héry
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France
| | - Philippe Duquesnoy
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France
| | - Nathalie Allou
- Pulmonology Dept, Felix Guyon Hospital, Saint Denis de La Reunion, France
| | - Anne Bergeron
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Julien Bermudez
- Pulmonology Dept and Lung Transplant Team, North Hospital - Assistance Publique Hôpitaux de Marseille (APHM), Marseille - MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Aurélie Cazes
- Pathology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | | | - Vincent Cottin
- Pulmonology Dept and Coordinating Reference Center for Rare Pulmonary Diseases OrphaLung, Hospices Civils de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Bruno Crestani
- Radiology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Jean-Charles Dalphin
- Pulmonology Dept, UMR-CNRS Chrono-Environnement 6249, CNRS and CHU, Besançon, France
| | - Christine Dombret
- Radiology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Bérénice Doray
- Genetic Dept, Felix Guyon Hospital, Saint Denis de La Reunion, France
| | - Clairelyne Dupin
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Violaine Giraud
- Pulmonology Dept, Ambroise Paré Hospital, Assistance Publique Hôpitaux de Paris (APHP), Boulogne Billancourt, France
| | - Anne Gondouin
- Pulmonology Dept, UMR-CNRS Chrono-Environnement 6249, CNRS and CHU, Besançon, France
| | - Laurent Gouya
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Dominique Israël-Biet
- Pulmonology Dept, Georges Pompidou European Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Caroline Kannengiesser
- Genetic Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | | | - Sylvie Leroy
- Pulmonology Dept, Pasteur Hospital, Nice, France
| | | | - Gwenaël Lorillon
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Hilario Nunes
- Pulmonology Dept, EA 2363, Avicenne Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris 13 University, COMUE Sorbonne Paris Cité, Bobigny, France
| | | | - Martine Reynaud-Gaubert
- Pulmonology Dept and Lung Transplant Team, North Hospital - Assistance Publique Hôpitaux de Marseille (APHM), Marseille - MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Julie Traclet
- Pulmonology Dept and Coordinating Reference Center for Rare Pulmonary Diseases OrphaLung, Hospices Civils de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Paul de Vuyst
- Pulmonology Dept, Erasme Hospital, Brussels, Belgium
| | | | - Annick Clement
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Pediatric Pulmonology Dept and Reference Center for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, Paris, France
| | - Serge Amselem
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.,Both authors contributed equally
| | - Nadia Nathan
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Pediatric Pulmonology Dept and Reference Center for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, Paris, France.,Both authors contributed equally
| |
Collapse
|
4
|
Kurniawan W, Soesatyo MHNE, Aryandono T. The effects of docetaxel and/or captopril in expression of TGF-β1, MMP-1, CTGF, and PAI-1 as markers of anterior urethral stricture in an animal model. Ther Adv Urol 2020; 12:1756287220927994. [PMID: 35173811 PMCID: PMC8842176 DOI: 10.1177/1756287220927994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/27/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Treatment of urethral trauma is currently done after urethral stricture
occurs. Stricture therapy after occurrence gives unsatisfactory success
rates. Several genes, such as transforming growth factor beta 1 (TGF-β1),
matrix metalloproteinase 1 (MMP-1), connective tissue growth factor (CTGF),
and plasminogen activator inhibitor 1 (PAI-1), have a proven role in
urethral stricture development. The purpose of this study was to assess the
effect docetaxel and/or captopril on the RNA expression of those genes. Methods: The subjects of this research were 26 male New Zealand rabbits aged
230 ± 20 days weighing 4–5 kg that underwent urethral rupture by endoscopic
resection under anesthetized conditions. Subjects were divided into five
groups; control, stricture, captopril (captopril 0.05 mg/rabbit/day),
docetaxel (docetaxel 0.1 mg/rabbit/day), and docetaxel-captopril (docetaxel
0.1 mg/rabbit/day and captopril 0.05 mg/rabbit/day). Each group consisted of
4–6 rabbits. Each rabbit received a water-soluble transurethral gel
containing drug according to its group for 28 days. After the treatment
period, rabbits were sacrificed with 200 mg Pentothal, and the corpus
spongiosum was then prepared for real-time PCR examination. Results: TGF-β1 RNA expression in the stricture group was statistically different from
that in the control, docetaxel and docetaxel-captopril groups
(p = 0.016; p = 0.016;
p = 0.004). The stricture group did not exhibit any
statistical difference from the captopril group
(p = 0.190). The control group did not show any
statistically difference from the captopril, docetaxel, and
docetaxel-captopril groups (p = 0.114;
p = 0.190; p = 1.000). Docetaxel-captopril
suppresses expression of TGF-β1 RNA most significantly. MMP-1 RNA expression
showed no significant differences among groups (p = 0.827).
The docetaxel group and stricture group pair was most significant
(p = 0.247), compared with other pairs of stricture
groups in MMP-1 RNA expression. CTGF RNA expression in the stricture group
was statistically different from that of control, captopril, docetaxel, and
docetaxel-captopril groups (p = 0.003;
p = 0.019; p = 0.005;
p = 0.005). The control group did not exhibit any
statistically difference from the captopril, docetaxel, and
docetaxel-captopril groups (p = 0.408;
p = 0.709; p = 0.695). There was no
statistical difference among treatment groups. Docetaxel and
docetaxel-captopril groups suppress the most significant expression of CTGF
RNA expression. PAI-1 RNA expression in the stricture group differed statistically
significantly from the control and docetaxel groups
(p = 0.044; p = 0.016). The stricture
group did not show any statistically significant difference from the
captopril and docetaxel-captopril groups (p = 0.763;
p = 0.086). The control group did not exhibit any
statistical difference with any of the treatment groups
(p = 0.101; p = 0.637;
p = 0.669). Conclusion: Docetaxel-captopril gel proved to be able to inhibit RNA expression of TGF-β1
and CTGF significantly. Captopril gel proved to be able to inhibit RNA
expression of CTGF significantly. Docetaxel gel proved to be able to inhibit
RNA expression of TGF-β1, CTGF, and PAI-1 significantly. There were no
differences in MMP-1 expression among all study groups. Longer follow up
after therapy discontinuation and greater sample size is needed to determine
the therapeutic effect.
Collapse
Affiliation(s)
- Wikan Kurniawan
- Department of Urology, Academic Hospital, Universitas Gadjah Mada, North Ring Road, Kronggahan, Trihanggo, Gamping, Sleman, Yogyakarta, 55291 Indonesia
| | | | - Teguh Aryandono
- Department of Histology and Cellular Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Surgical Oncology, Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Nathan N, Corvol H, Amselem S, Clement A. Biomarkers in Interstitial lung diseases. Paediatr Respir Rev 2015; 16:219-24. [PMID: 26027849 DOI: 10.1016/j.prrv.2015.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 01/11/2023]
Abstract
Interstitial lung diseases (ILD)s represent a heterogeneous group of rare respiratory disorders, mostly chronic and associated with high morbidity and mortality. They are complex diseases that remain, in children, largely underdiagnosed and difficult to manage. Therefore, identification of biomarkers, which could be used for ILD diagnosis, measurements of disease severity and progression, and responsiveness to treatments, is a major challenge for clinical practice and for translational research. The present review focuses on blood biomarkers and provides an overview on the current information on molecular parameters of interest for ILD patient management.
Collapse
Affiliation(s)
- Nadia Nathan
- Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Service de pneumologie pédiatrique; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 933; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06
| | - Harriet Corvol
- Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Service de pneumologie pédiatrique; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 938; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06
| | - Serge Amselem
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 933; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06; Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Unité de génétique moléculaire; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06
| | - Annick Clement
- Assistance Publique-Hopitaux de Paris (AP-HP), Hôpital Trousseau, Service de pneumologie pédiatrique; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 933; Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris06.
| |
Collapse
|