1
|
Bleuzé M, Lavoie JP, Bédard C, Gottschalk M, Segura M. Encapsulated Streptococcus suis impairs optimal neutrophil functions which are not rescued by priming with colony-stimulating factors. PLoS One 2024; 19:e0296844. [PMID: 38261585 PMCID: PMC10805302 DOI: 10.1371/journal.pone.0296844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The porcine pathogen and zoonotic agent Streptococcus suis induces an exacerbated inflammation in the infected hosts that leads to sepsis, meningitis, and sudden death. Several virulence factors were described for S. suis of which the capsular polysaccharide (CPS) conceals it from the immune system, and the suilysin exhibits cytotoxic activity. Although neutrophils are recruited rapidly upon S. suis infection, their microbicidal functions appear to be poorly activated against the bacteria. However, during disease, the inflammatory environment could promote neutrophil activation as mediators such as the granulocyte colony-stimulating factor granulocyte (G-CSF) and the granulocyte-macrophages colony-stimulating factor (GM-CSF) prime neutrophils and enhance their responsiveness to bacterial detection. Thus, we hypothesized that CPS and suilysin prevent an efficient activation of neutrophils by S. suis, but that G-CSF and GM-CSF rescue neutrophil activation, leading to S. suis elimination. We evaluated the functions of porcine neutrophils in vitro in response to S. suis and investigated the role of the CPS and suilysin on cell activation using isogenic mutants of the bacteria. We also studied the influence of G-CSF and GM-CSF on neutrophil response to S. suis by priming the cells with recombinant proteins. Our study confirmed that CPS prevents S. suis-induced activation of most neutrophil functions but participates in the release of neutrophil-extracellular traps (NETs). Priming with G-CSF did not influence cell activation, but GM-CSF strongly promote IL-8 release, indicating its involvement in immunomodulation. However, priming did not enhance microbicidal functions. Studying the interaction between S. suis and neutrophils-first responders in host defense-remains fundamental to understand the immunopathogenesis of the infection and to develop therapeutical strategies related to neutrophils' defense against this bacterium.
Collapse
Affiliation(s)
- Marêva Bleuzé
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Christian Bédard
- Faculty of Veterinary Medicine, Department of Pathology and Microbiology, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
2
|
Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev 2023; 314:93-110. [PMID: 36271881 PMCID: PMC10049968 DOI: 10.1111/imr.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.
Collapse
Affiliation(s)
- Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Mangar M, Mishra A, Yang Z, Deivanayagam C, Fletcher HM. Characterization of FA1654: A putative DPS protein in Filifactor alocis. Mol Oral Microbiol 2023; 38:23-33. [PMID: 36412172 PMCID: PMC9905271 DOI: 10.1111/omi.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
The survival/adaptation of Filifactor alocis, a fastidious Gram-positive asaccharolytic anaerobe, to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Moreover, its pathogenic characteristics are highlighted by its capacity to survive in the oxidative-stress microenvironment of the periodontal pocket and a likely ability to modulate the microbial community dynamics. There is still a significant gap in our understanding of its mechanism of oxidative stress resistance and its impact on the virulence and pathogenicity of the microbial biofilm. Coinfection of epithelial cells with F. alocis and Porphyromonas gingivalis resulted in the upregulation of several genes, including HMPREF0389_01654 (FA1654). Bioinformatics analysis indicates that FA1654 has a "di-iron binding domain" and could function as a DNA starvation and stationary phase protection (DPS) protein. We have further characterized the FA1654 protein to determine its role in oxidative stress resistance in F. alocis. In the presence of hydrogen peroxide-induced oxidative stress, there was an ∼1.3 fold upregulation of the FA1654 gene in F. alocis. Incubation of the purified FA1654 protein with DNA in the presence of hydrogen peroxide and iron resulted in the protection of the DNA from Fenton-mediated degradation. Circular dichroism and differential scanning fluorimetry studies have documented the intrinsic ability of rFA1654 protein to bind iron; however, the rFA1654 protein is missing the intrinsic ability to reduce hydrogen peroxide. Collectively, the data may suggest that FA1654 in F. alocis is involved in oxidative stress resistance via an ability to protect against Fenton-mediated oxidative stress-induced damage.
Collapse
Affiliation(s)
- Malissa Mangar
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Zhengrong Yang
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL USA
| | - Hansel M. Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA,Corresponding author: Phone: (909) 558-8497, FAX: (909) 558-4035,
| |
Collapse
|
4
|
Razooqi Z, Höglund Åberg C, Kwamin F, Claesson R, Haubek D, Oscarsson J, Johansson A. Aggregatibacter actinomycetemcomitans and Filifactor alocis as Associated with Periodontal Attachment Loss in a Cohort of Ghanaian Adolescents. Microorganisms 2022; 10:microorganisms10122511. [PMID: 36557764 PMCID: PMC9781193 DOI: 10.3390/microorganisms10122511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The aims of the present study were to document the presence of Aggregatibacter actinomyctemcomitans and the emerging oral pathogen Filifactor alocis, as well as to identify genotypes of these bacterial species with enhanced virulence. In addition, these data were analyzed in relation to periodontal pocket depth (PPD) and the progression of PPD from the sampled periodontal sites during a two-year period. Subgingival plaque samples were collected from 172 periodontal pockets of 68 Ghanaian adolescents. PPD at sampling varied from 3-14 mm and the progression from baseline, i.e., two years earlier up to 8 mm. The levels of A. actinomycetemcomitans and F. alocis were determined with quantitative PCR. The highly leukotoxic JP2-genotype of A. actinomycetemcomitans and the ftxA a gene of F. alocis, encoding a putative Repeats-in-Toxin (RTX) protein, were detected with conventional PCR. The prevalence of A. actinomycetemcomitans was 57%, and 14% of the samples contained the JP2 genotype. F. alocis was detected in 92% of the samples and the ftxA gene in 52%. The levels of these bacterial species were significantly associated with enhanced PPD and progression, with a more pronounced impact in sites positive for the JP2 genotype or the ftxA gene. Taken together, the results indicate that the presence of both A. actinomycetemcomitans and F. alocis with their RTX proteins are linked to increased PPD and progression of disease.
Collapse
Affiliation(s)
- Zeinab Razooqi
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | | | - Francis Kwamin
- Dental School University of Ghana, Korle-Bu, Accra KB 460, Ghana
| | - Rolf Claesson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Skolevej 1, DK-9460 Brovst, Denmark
| | - Jan Oscarsson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | - Anders Johansson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
- Correspondence: ; Tel.: +46-90-8856291
| |
Collapse
|
5
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
6
|
Bao K, Claesson R, Belibasakis GN, Oscarsson J. Extracellular Vesicle Subproteome Differences among Filifactor alocis Clinical Isolates. Microorganisms 2022; 10:microorganisms10091826. [PMID: 36144428 PMCID: PMC9503520 DOI: 10.3390/microorganisms10091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod of the Firmicutes phylum, which has recently been implicated in oral infections. Extracellular vesicles (EVs) are crucial conveyors of microbial virulence in bacteria and archaea. Previously, in highly purified EVs from the F. alocis reference strain ATCC 35896 (CCUG 47790), 28 proteins were identified. The present study aimed to use label-free quantification proteomics in order to chart these EV proteins, in the reference strain, and in nine less-well-characterized clinical F. alocis isolates. In total, 25 of the EV proteins were identified and 24 were quantified. Sixteen of those were differentially expressed between the ten strains and the novel FtxA RTX toxin and one lipoprotein were among them. Consistent expression was observed among ribosomal proteins and proteins involved in L-arginine biosynthesis and type IV pilin, demonstrating a degree of EV protein expression preservation among strains. In terms of protein–protein interaction analysis, 21 functional associations were revealed between 19 EV proteins. Interestingly, FtxA did not display predicted interactions with any other EV protein. In conclusion, the present study charted 25 EV proteins in ten F. alocis strains. While most EV proteins were consistently identified among the strains, several of them were also differentially expressed, which justifies that there may be potential variations in the virulence potential among EVs of different F. alocis strains.
Collapse
Affiliation(s)
- Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Correspondence:
| |
Collapse
|
7
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
8
|
Proteomic Characterization of the Oral Pathogen Filifactor alocis Reveals Key Inter-Protein Interactions of Its RTX Toxin: FtxA. Pathogens 2022; 11:pathogens11050590. [PMID: 35631111 PMCID: PMC9145396 DOI: 10.3390/pathogens11050590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod that has been isolated from a variety of oral infections including periodontitis, peri-implantitis, and odontogenic abscesses. As a newly emerging pathogen, its type strain has been investigated for pathogenic properties, yet little is known about its virulence variations among strains. We previously screened the whole genome of nine clinical oral isolates and a reference strain of F. alocis, and they expressed a novel RTX toxin, FtxA. In the present study, we aimed to use label-free quantification proteomics to characterize the full proteome of those ten F. alocis strains. A total of 872 proteins were quantified, and 97 among them were differentially expressed in FtxA-positive strains compared with the negative strains. In addition, 44 of these differentially expressed proteins formed 66 pairs of associations based on their predicted functions, which included clusters of proteins with DNA repair/mediated transformation and catalytic activity-related function, indicating different biosynthetic activities among strains. FtxA displayed specific interactions with another six intracellular proteins, forming a functional cluster that could discriminate between FtxA-producing and non-producing strains. Among them were FtxB and FtxD, predicted to be encoded by the same operon as FtxA. While revealing the broader qualitative and quantitative proteomic landscape of F. alocis, this study also sheds light on the deeper functional inter-relationships of FtxA, thus placing this RTX family member into context as a major virulence factor of this species.
Collapse
|
9
|
Miralda I, Vashishta A, Rogers MN, Lamont RJ, Uriarte SM. The emerging oral pathogen, Filifactor alocis, extends the functional lifespan of human neutrophil. Mol Microbiol 2022; 117:1340-1351. [PMID: 35437843 PMCID: PMC9233153 DOI: 10.1111/mmi.14911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/17/2022] [Accepted: 04/10/2022] [Indexed: 12/01/2022]
Abstract
Periodontitis is a chronic inflammatory infectious disease that affects the integrity of tooth‐supporting tissues and has adverse systemic consequences. Advances in sequencing technologies have uncovered organisms that are exclusively found in high numbers in periodontal lesions, such as the gram‐positive anaerobic rod, Filifactor alocis. F. alocis can manipulate neutrophil effector functions, which allows the organism to survive within these granulocytes. Several neutrophil functions have been tested in the context of F. alocis challenge, but the effect of the organism on neutrophil apoptosis is still unknown. RNA sequencing of human neutrophils challenged with F. alocis showed that apoptosis pathways were differentially regulated. Compared to media‐cultured controls, F. alocis‐challenged neutrophils maintain their nuclear morphology, do not stain for Annexin V or 7‐AAD, and have decreased DNA fragmentation. Inhibition of apoptosis by F. alocis involved reduced caspase‐3, −8, and − 9 activation and upregulation of important anti‐apoptotic proteins. Prolonged lifespan was dependent on contact through TLR2/6, and F. alocis‐challenged neutrophils retained their functional capacity to induce inflammation for longer timepoints. This is the first in‐depth characterization of neutrophil apoptotic programs in response to an oral pathogen and provides key information on how bacteria manipulate immune cell mechanisms to maintain a dysregulated inflammatory response.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,Present address: Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Aruna Vashishta
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Max N Rogers
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
10
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Prucsi Z, Płonczyńska A, Potempa J, Sochalska M. Uncovering the Oral Dysbiotic Microbiota as Masters of Neutrophil Responses in the Pathobiology of Periodontitis. Front Microbiol 2021; 12:729717. [PMID: 34707586 PMCID: PMC8542842 DOI: 10.3389/fmicb.2021.729717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Numerous bacterial species participate in the shift of the oral microbiome from beneficial to dysbiotic. The biggest challenge lying ahead of microbiologists, immunologists and dentists is the fact that the bacterial species act differently, although usually synergistically, on the host immune cells, including neutrophils, and on the surrounding tissues, making the investigation of single factors challenging. As biofilm is a complex community, the members interact with each other, which can be a key issue in future studies designed to develop effective treatments. To understand how a patient gets to the stage of the late-onset (previously termed chronic) periodontitis or develops other, in some cases life-threatening, diseases, it is crucial to identify the microbial composition of the biofilm and the mechanisms behind its pathogenicity. The members of the red complex (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) have long been associated as the cause of periodontitis and stayed in the focus of research. However, novel techniques, such as 16S clonal analysis, demonstrated that the oral microbiome diversity is greater than ever expected and it opened a new era in periodontal research. This review aims to summarize the current knowledge concerning bacterial participation beyond P. gingivalis and the red complex in periodontal inflammation mediated by neutrophils and to spread awareness about the associated diseases and pathological conditions.
Collapse
Affiliation(s)
- Zsombor Prucsi
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Ozuna H, Uriarte SM, Demuth DR. The Hunger Games: Aggregatibacter actinomycetemcomitans Exploits Human Neutrophils As an Epinephrine Source for Survival. Front Immunol 2021; 12:707096. [PMID: 34456916 PMCID: PMC8387626 DOI: 10.3389/fimmu.2021.707096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative facultative anaerobe and an opportunistic oral pathogen, strongly associated with periodontitis and other inflammatory diseases. Periodontitis is a chronic inflammation of the periodontium resulting from the inflammatory response of the host towards the dysbiotic microbial community present at the gingival crevice. Previously, our group identified catecholamines and iron as the signals that activate the QseBC two-component system in A. actinomycetemcomitans, necessary for the organism to acquire iron as a nutrient to survive in the anaerobic environment. However, the source of catecholamines has not been identified. It has been reported that mouse neutrophils can release catecholamines. In periodontitis, large infiltration of neutrophils is found at the subgingival pocket; hence, we wanted to test the hypothesis that A. actinomycetemcomitans exploits human neutrophils as a source for catecholamines. In the present study, we showed that human neutrophils synthesize, store, and release epinephrine, one of the three main types of catecholamines. Human neutrophil challenge with A. actinomycetemcomitans induced exocytosis of neutrophil granule subtypes: secretory vesicles, specific granules, gelatinase granules, and azurophilic granules. In addition, by selectively inhibiting granule exocytosis, we present the first evidence that epinephrine is stored in azurophilic granules. Using QseC mutants, we showed that the periplasmic domain of the QseC sensor kinase is required for the interaction between A. actinomycetemcomitans and epinephrine. Finally, epinephrine-containing supernatants collected from human neutrophils promoted A. actinomycetemcomitans growth and induced the expression of the qseBC operon under anaerobic conditions. Based on our findings, we propose that A. actinomycetemcomitans promotes azurophilic granule exocytosis by neutrophils as an epinephrine source to promote bacterial survival.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Silvia M. Uriarte
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Donald R. Demuth
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
13
|
Morrissey SM, Geller AE, Hu X, Tieri D, Ding C, Klaes CK, Cooke EA, Woeste MR, Martin ZC, Chen O, Bush SE, Zhang HG, Cavallazzi R, Clifford SP, Chen J, Ghare S, Barve SS, Cai L, Kong M, Rouchka EC, McLeish KR, Uriarte SM, Watson CT, Huang J, Yan J. A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight 2021; 6:148435. [PMID: 33986193 PMCID: PMC8262329 DOI: 10.1172/jci.insight.148435] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - Anne E Geller
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - Xiaoling Hu
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - David Tieri
- Department of Biochemistry and Molecular Genetics
| | - Chuanlin Ding
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | | | | | - Matthew R Woeste
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | | | - Oscar Chen
- Department of Anesthesiology and Perioperative Medicine
| | - Sarah E Bush
- Department of Anesthesiology and Perioperative Medicine
| | | | - Rodrigo Cavallazzi
- Division of Pulmonary, Critical Care and Sleep Disorders, Department of Medicine
| | | | - James Chen
- Department of Anesthesiology and Perioperative Medicine
| | - Smita Ghare
- University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology
| | - Shirish S Barve
- University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics
| | | | | | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry
| | | | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine
| | - Jun Yan
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| |
Collapse
|
14
|
Abstract
Filifactor alocis, a fastidious Gram-positive obligate anaerobic bacterium, is a newly appreciated member of the periodontal community that is now proposed to be a diagnostic indicator of periodontal disease. Its pathogenic characteristics are highlighted by its ability to survive in the oxidative stress-rich environment of the periodontal pocket and to significantly alter the microbial community dynamics by forming biofilms and interacting with several oral bacteria. Here, we describe the current understanding of F. alocis virulence attributes, such as its comparative resistance to oxidative stress, production of unique proteases and collagenases that can cause structural damage to host cells, and dysregulation of the immune system, which enable this bacterium to colonize, survive, and outcompete other traditional pathogens in the inflammatory environment of the periodontal pocket. Furthermore, we explore the recent advancements and future directions for F. alocis research, including the potential mechanisms for oxidative stress resistance and our evolving understanding of the interactions and mechanisms of bacterial survival inside neutrophils. We also discuss the current genetic tools and challenges involved in manipulating the F. alocis genome for the functional characterization of the putative virulence genes. Collectively, this information will expedite F. alocis research and should lead to the identification of prime targets for the development of novel therapeutics to aid in the control and prevention of periodontal disease.
Collapse
Affiliation(s)
- E Aja
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - M Mangar
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A Mishra
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
15
|
Jiang Q, Zhao Y, Shui Y, Zhou X, Cheng L, Ren B, Chen Z, Li M. Interactions Between Neutrophils and Periodontal Pathogens in Late-Onset Periodontitis. Front Cell Infect Microbiol 2021; 11:627328. [PMID: 33777839 PMCID: PMC7994856 DOI: 10.3389/fcimb.2021.627328] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Late-onset periodontitis is associated with a series of inflammatory reactions induced by periodontal pathogens, such as Porphyromonas gingivalis, a keystone pathogen involved in periodontitis. Neutrophils are the most abundant leukocytes in the periodontal pocket/gingival crevice and inflamed periodontal tissues. They form a “wall” between the dental plaque and the junctional epithelium, preventing microbial invasion. The balance between neutrophils and the microbial community is essential to periodontal homeostasis. Excessive activation of neutrophils in response to periodontal pathogens can induce tissue damage and lead to periodontitis persistence. Therefore, illuminating the interactions between neutrophils and periodontal pathogens is critical for progress in the field of periodontitis. The present review aimed to summarize the interactions between neutrophils and periodontal pathogens in late-onset periodontitis, including neutrophil recruitment, neutrophil mechanisms to clear the pathogens, and pathogen strategies to evade neutrophil-mediated elimination of bacteria. The recruitment is a multi-step process, including tethering and rolling, adhesion, crawling, and transmigration. Neutrophils clear the pathogens mainly by phagocytosis, respiratory burst responses, degranulation, and neutrophil extracellular trap (NET) formation. The mechanisms that pathogens activate to evade neutrophil-mediated killing include impairing neutrophil recruitment, preventing phagocytosis, uncoupling killing from inflammation, and resistance to ROS, degranulation products, and NETs.
Collapse
Affiliation(s)
- Qingsong Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhu Chen
- Department of Conservative Dentistry and Endodontics, Guiyang Hospital of Stomatology, Guiyang, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Miralda I, Uriarte SM. Periodontal Pathogens' strategies disarm neutrophils to promote dysregulated inflammation. Mol Oral Microbiol 2020; 36:103-120. [PMID: 33128827 PMCID: PMC8048607 DOI: 10.1111/omi.12321] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Periodontitis is an irreversible, chronic inflammatory disease where inflammophilic pathogenic microbial communities accumulate in the gingival crevice. Neutrophils are a major component of the innate host response against bacterial challenge, and under homeostatic conditions, their microbicidal functions typically protect the host against periodontitis. However, a number of periodontal pathogens developed survival strategies to evade neutrophil microbicidal functions while promoting inflammation, which provides a source of nutrients for bacterial growth. Research on periodontal pathogens has largely focused on a few established species: Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. However, advances in culture-independent techniques have facilitated the identification of new bacterial species in periodontal lesions, such as the two Gram-positive anaerobes, Filifactor alocis and Peptoanaerobacter stomatis, whose characterization of pathogenic potential has not been fully described. Additionally, there is not a full understanding of the pathogenic mechanisms used against neutrophils by organisms that are abundant in periodontal lesions. This presents a substantial barrier to the development of new approaches to prevent or ameliorate the disease. In this review, we first summarize the neutrophil functions affected by the established periodontal pathogens listed above, denoting unknown areas that still merit a closer look. Then, we review the literature on neutrophil functions and the emerging periodontal pathogens, F. alocis and P. stomatis, comparing the effects of the emerging microbes to that of established pathogens, and speculate on the contribution of these putative pathogens to the progression of periodontal disease.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
17
|
Oscarsson J, Claesson R, Bao K, Brundin M, Belibasakis GN. Phylogenetic Analysis of Filifactor alocis Strains Isolated from Several Oral Infections Identified a Novel RTX Toxin, FtxA. Toxins (Basel) 2020; 12:toxins12110687. [PMID: 33143036 PMCID: PMC7692872 DOI: 10.3390/toxins12110687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod of the phylum Firmicutes, and is considered an emerging pathogen in various oral infections, including periodontitis. We here aimed to perform phylogenetic analysis of a genome-sequenced F. alocis type strain (ATCC 35896; CCUG 47790), as well as nine clinical oral strains that we have independently isolated and sequenced, for identification and deeper characterization of novel genomic elements of virulence in this species. We identified that 60% of the strains carried a gene encoding a hitherto unrecognized member of the large repeats-in-toxins (RTX) family, which we have designated as FtxA. The clinical infection origin of the ftxA-positive isolates largely varied. However, according to MLST, a clear monophylogeny was reveled for all ftxA-positive strains, along with a high co-occurrence of lactate dehydrogenase (ldh)-positivity. Cloning and expression of ftxA in E. coli, and purification of soluble FtxA yielded a protein of the predicted molecular size of approximately 250 kDa. Additional functional and proteomics analyses using both the recombinant protein and the ftxA-positive, and -negative isolates may reveal a possible role and mechanism(s) of FtxA in the virulence properties of F.alocis, and whether the gene might be a candidate diagnostic marker for more virulent strains.
Collapse
Affiliation(s)
- Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
- Correspondence:
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (G.N.B.)
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (G.N.B.)
| |
Collapse
|
18
|
Balmasova IP, Tsarev VN, Arutyunov SD, Babayev EA. [Filifactor alocis and its role in the etiology of chronic periodontitis]. STOMATOLOGII︠A︡ 2020; 99:78-82. [PMID: 32608955 DOI: 10.17116/stomat20209903178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to the analysis of modern ideas about the role of bacteria Filifactor alocis in the etiology of chronic periodontitis. The study of these bacteria, discovered in 1985, is complicated by the difficulty of their detection with cultural methods. According to modern researches, the bacteria F.alocis with good reason can be included in the red complex of periodontal pathogens as the most important pathogens of chronic periodontitis. F.alocis is a synergist of such a key pathogen Porphyromonas gingivalis, as well as a frequent satellite of Fusobacterium nucleatum and, somewhat less frequently, Aggregatibacter actinomycetemcomitans. F.alocis is practically not found in healthy people (except for smokers), with a high frequency accompanies the aggressive course of periodontal disease, and also recorded in endodontitis. Due to the ability to participate in the metabolism of arginine, expressed protease activity, a wide range of virulence factors, F.alocis not only colonizes the periodontal tissues, but also significantly affects the formation of the community of periodontal microorganisms (including viruses), contributing to their invasion of epithelial tissues. F. alocis has a number of unique properties, including resistance to oxidative stress conditions in the home defeat, induction of apoptosis of epithelial cells, extracellular matrix degradation of periodontal tissues, activation of proinflammatory cytokines formulation in sites of its presence, suppression of protective reactions of neutrophilic granulocytes, inhibition of the process of complement activation.
Collapse
Affiliation(s)
- I P Balmasova
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - V N Tsarev
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - S D Arutyunov
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - E A Babayev
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| |
Collapse
|
19
|
Miralda I, Vashishta A, Rogers MN, Rouchka EC, Li X, Waigel S, Lamont RJ, Uriarte SM. Whole Transcriptome Analysis Reveals That Filifactor alocis Modulates TNFα-Stimulated MAPK Activation in Human Neutrophils. Front Immunol 2020; 11:497. [PMID: 32373107 PMCID: PMC7179764 DOI: 10.3389/fimmu.2020.00497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is an irreversible, bacteria-induced, chronic inflammatory disease that compromises the integrity of tooth-supporting tissues and adversely affects systemic health. As the immune system's first line of defense against bacteria, neutrophils use their microbicidal functions in the oral cavity to protect the host against periodontal disease. However, periodontal pathogens have adapted to resist neutrophil microbicidal mechanisms while still propagating inflammation, which provides essential nutrients for the bacteria to proliferate and cause disease. Advances in sequencing technologies have recognized several newly appreciated bacteria associated with periodontal lesions such as the Gram-positive anaerobic rod, Filifactor alocis. With the discovery of these oral bacterial species, there is also a growing need to assess their pathogenic potential and determine their contribution to disease progression. Currently, few studies have addressed the pathogenic mechanisms used by oral bacteria to manipulate the neutrophil functional responses at the level of the transcriptome. Thus, this study aims to characterize the global changes at the gene expression level in human neutrophils during infection with F. alocis. Our results indicate that the challenge of human neutrophils with F. alocis results in the differential expression of genes involved in multiple neutrophil effector functions such as chemotaxis, cytokine and chemokine signaling pathways, and apoptosis. Moreover, F. alocis challenges affected the expression of components from the TNF and MAPK kinase signaling pathways. This resulted in transient, dampened p38 MAPK activation by secondary stimuli TNFα but not by fMLF. Functionally, the F. alocis-mediated inhibition of p38 activation by TNFα resulted in decreased cytokine production but had no effect on the priming of the respiratory burst response or the delay of apoptosis by TNFα. Since the modulatory effect was characteristic of viable F. alocis only, we propose this as one of F. alocis' mechanisms to control neutrophils and their functional responses.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Aruna Vashishta
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Max N Rogers
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | - Eric C Rouchka
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States.,KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - Xiaohong Li
- KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, United States.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Sabine Waigel
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville Genomics Facility, Louisville, KY, United States
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Silvia M Uriarte
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Miralda I, Vashishta A, Uriarte SM. Neutrophil Interaction with Emerging Oral Pathogens: A Novel View of the Disease Paradigm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:165-178. [PMID: 31732941 DOI: 10.1007/978-3-030-28524-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Periodontitis is a multifactorial chronic inflammatory infectious disease that compromises the integrity of tooth-supporting tissues. The disease progression depends on the disruption of host-microbe homeostasis in the periodontal tissue. This disruption is marked by a shift in the composition of the polymicrobial oral community from a symbiotic to a dysbiotic, more complex community that is capable of evading killing while promoting inflammation. Neutrophils are the main phagocytic cell in the periodontal pocket, and the outcome of the interaction with the oral microbiota is an important determinant of oral health. Novel culture-independent techniques have facilitated the identification of new bacterial species at periodontal lesions and induced a reappraisal of the microbial etiology of periodontitis. In this chapter, we discuss how neutrophils interact with two emerging oral pathogens, Filifactor alocis and Peptoanaerobacter stomatis, and the different strategies deploy by these organisms to modulate neutrophil effector functions, with the goal to outline a new paradigm in our knowledge about neutrophil responses to putative periodontal pathogens and their contribution to disease progression.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruna Vashishta
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|