1
|
Hwang SH, Yang Y, Jung JH, Kim JW, Kim Y. Stearoyl-CoA desaturase in CD4 + T cells suppresses tumor growth through activation of the CXCR3/CXCL11 axis in CD8 + T cells. Cell Biosci 2024; 14:137. [PMID: 39543650 PMCID: PMC11566202 DOI: 10.1186/s13578-024-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Within the tumor microenvironment, altered lipid metabolism promotes cancer cell malignancy by activating oncogenic cascades; however, impact of lipid metabolism in CD4+ tumor-infiltrating lymphocytes (TILs) remains poorly understood. Here, we elucidated that role of stearoyl-CoA desaturase (SCD) increased by treatment with cancer-associated fibroblast (CAF) supernatant in CD4+ T cells on their subset differentiation and activity of CD8+ T cells. RESULTS In our study, we observed that CD4+ TILs had higher lipid droplet content than CD4+ splenic T cells. In tumor tissue, CAF-derived supernatant provided fatty acids to CD4+ TILs, which increased the expression of SCD and oleic acid (OA) content. Increased SCD expression by OA treatment enhanced the levels of Th1 cell markers TBX21, interleukin-2, and interferon-γ. However, SCD inhibition upregulated the expression of regulatory T (Treg) cell markers, FOXP3 and transforming growth factor-β. Comparative fatty acid analysis of genetically engineered Jurkat cells revealed that OA level was significantly higher in SCD-overexpressing cells. Overexpression of SCD increased expression of Th1 cell markers, while treatment with OA enhanced the transcriptional level of TBX21 in Jurkat cells. In contrast, palmitic acid which is higher in SCD-KO cells than other subclones enhanced the expression of Treg cell markers through upregulation of mitochondrial superoxide. Furthermore, SCD increased the secretion of the C-X-C motif chemokine ligand 11 (CXCL11) from CD4+ T cells. The binding of CXCL11 to CXCR3 on CD8+ T cells augmented their cytotoxic activity. In a mouse tumor model, the suppressive effect of CD8+ T cells on tumor growth was dependent on CXCR3 expression. CONCLUSION These findings illustrate that SCD not only orchestrates the differentiation of T helper cells, but also promotes the antitumor activity of CD8+ T cells, suggesting its function in adverse tumor microenvironments.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- BK21 Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jae-Ha Jung
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Guo M, Peng R, Jin K, Zhang X, Mo H, Li X, Qu F, Tang J, Cao S, Zhou Y, He Z, Mao Z, Fan J, Li J, Liu Z. Effects of Aeromonas infection on the immune system, physical barriers and microflora structure in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109790. [PMID: 39059563 DOI: 10.1016/j.fsi.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) is an intensively cultured and economically important herbivorous fish species in China, but its culture is often impacted by Aeromonas pathogens such as Aeromonas hydrophila and Aeromonas veronii. In this study, healthy grass carp were separately infected with A. hydrophila or A. veronii for 12, 24, 48 or 72 h. The results showed that the mRNA expression levels of intestinal inflammatory factors (tnf-α, il-1β and il-8), complement factors (c3 and c4), antimicrobial peptides (hepcidin, nk-lysin and β-defensin-1), immunoglobulins (igm and igt), and immune pathway-related signaling molecules (tlr1, tlr2, tlr4, myd88, irak4, irak1, traf6, nf-κb p65 and ap-1) were differentially upregulated in response to A. hydrophila and A. veronii challenge. Additionally, the expression levels of the intestinal pro-apoptotic genes tnfr1, tnfr2, tradd, caspase-8, caspase-3 and bax were significantly increased, whereas the expression of the inhibitory factor bcl-2 was significantly downregulated, indicating that Aeromonas infection significantly induced apoptosis in the intestine of grass carp. Moreover, the expression of intestinal tight junction proteins (occludin, zo-1, claudin b and claudin c) was significantly decreased after infection with Aeromonas. Histopathological analysis indicated the Aeromonas challenge caused severe damage to the intestinal villi with adhesions and detachment of intestinal villi accompanied by severe inflammatory cell infiltration at 12 h and 72 h. The 16S rRNA sequencing results showed that Aeromonas infection significantly altered the structure of the intestinal microflora of the grass carp at the phylum (Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes) and genus (Proteus, Cetobacterium, Bacteroides, and Aeromonas) levels. Take together, the findings of this study revealed that Aeromonas infection induces an intestinal immune response, triggers cell apoptosis, destroys physical barriers and alters microflora structure in the intestine of juvenile grass carp; the results will help to reveal the pathogenesis of intestinal bacterial diseases in grass carp.
Collapse
Affiliation(s)
- Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huilan Mo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
3
|
Huang C, Yu X, Shi C, Wang M, Li A, Wang F. Pyrroloquinoline quinone supplementation attenuates inflammatory liver injury by STAT3/TGF-β1 pathway in weaned piglets challenged with lipopolysaccharide. Br J Nutr 2024; 131:1352-1361. [PMID: 38155410 DOI: 10.1017/s0007114523002970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
This study is aimed to evaluate the effect and underling mechanism of dietary supplementation with pyrroloquinoline quinone (PQQ) disodium on improving inflammatory liver injury in piglets challenged with lipopolysaccharide (LPS). A total of seventy-two crossbred barrows were allotted into four groups as follows: the CTRL group (basal diet + saline injection); the PQQ group (3 mg/kg PQQ diet + saline injection); the CTRL + LPS group (basal diet + LPS injection) and the PQQ + LPS group (3 mg/kg PQQ diet + LPS injection). On days 7, 11 and 14, piglets were challenged with LPS or saline. Blood was sampled at 4 h after the last LPS injection (day 14), and then the piglets were slaughtered and liver tissue was harvested. The results showed that the hepatic morphology was improved in the PQQ + LPS group compared with the CTRL + LPS group. PQQ supplementation decreased the level of serum inflammatory factors, aspartate aminotransferase and alanine transaminase, and increased the HDL-cholesterol concentration in piglets challenged with LPS; piglets in the PQQ + LPS group had lower liver mRNA level of inflammatory factors and protein level of α-smooth muscle actin than in the CTRL + LPS group. Besides, mRNA expression of STAT3/TGF-β1 pathway and protein level of p-STAT3(Tyr 705) were decreased, and mRNA level of PPARα and protein expression of p-AMPK in liver were increased in the PQQ + LPS group compared with the CTRL + LPS group (P < 0·05). In conclusion, dietary supplementation with PQQ alleviated inflammatory liver injury might partly via inhibition of the STAT3/TGF-β1 pathway in piglets challenged with LPS.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Chenyu Shi
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing100193, People's Republic of China
| | - Mengshi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou350002, People's Republic of China
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing100193, People's Republic of China
| |
Collapse
|
4
|
Xu A, Han F, Zhang Y, Chen S, Bian L, Gao T. Transcriptomic profiling reveals the immune response mechanism of the Thamnaconus modestus induced by the poly (I:C) and LPS. Gene 2024; 897:148065. [PMID: 38070789 DOI: 10.1016/j.gene.2023.148065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Aquatic animals immune response to pathogenic is a hotspot and related to high-quality development of aquaculture industry and the conservation of fisheries resources. Thamnaconus modestus is an important commercial and economical species which is suffering from various pathogens but by now lack relevant research about revealing the immune response mechanism to the pathogens invasion. In the study, the polyriboinosinic polyribocytidylic acid [poly (I:C)] and Lipopolysaccharides (LPS), respective mimics of viral and bacterial infections, were used to demonstrate the immune response of the species via transcriptome analysis. The results showed that T. modestus had sensitive responses to the viral analog infection at 6 h and 48 h, and at 6 h, the first five major functional genes were NFKBIA, IL1B, JUN, IGH, FOS, and at 48 h, the genes were NFKBIA, IL1B, JUN, IGH, FOS. The genes IL1B, IRF3, PTGS2, THBS1 could helping the fish to fight against the bacterial infection in both the times. Similarly for the bacterial infection, the species had a sensitive response at 6 h, and the first five major functional genes were NFKBIA, JUN, FOS, L1B, GRIN2C. Our study provided an insight about the immune response mechanism of this species and demonstrated that if need for treatment of the virus and bacteria by the biotechnology, the artificial interferential time would be suggested before 6 h since the pathological features occur and the genes NFKBIA, JUN, IL1B, FOS, TRAF2, IL8, SOCS3, PTGS2 should be payed more attention.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Fei Han
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuan Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Siqing Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Li Bian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
5
|
Zhang J, Xue Z, Zhao Q, Zhang K, Zhou A, Shi L, Liu Y. RNA-Sequencing Characterization of lncRNA and mRNA Functions in Septic Pig Liver Injury. Genes (Basel) 2023; 14:genes14040945. [PMID: 37107704 PMCID: PMC10137529 DOI: 10.3390/genes14040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We assessed differentially expressed (DE) mRNAs and lncRNAs in the liver of septic pigs to explore the key factors regulating lipopolysaccharide (LPS)-induced liver injury. We identified 543 DE lncRNAs and 3642 DE mRNAs responsive to LPS. Functional enrichment analysis revealed the DE mRNAs were involved in liver metabolism and other pathways related to inflammation and apoptosis. We also found significantly upregulated endoplasmic reticulum stress (ERS)-associated genes, including the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), the eukaryotic translation initiation factor 2α (EIF2S1), the transcription factor C/EBP homologous protein (CHOP), and activating transcription factor 4 (ATF4). In addition, we predicted 247 differentially expressed target genes (DETG) of DE lncRNAs. The analysis of protein-protein interactions (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway detected key DETGs that are involved in metabolic pathways, such as N-Acetylgalactosaminyltransferase 2 (GALNT2), argininosuccinate synthetase 1 (ASS1), and fructose 1,6-bisphosphatase 1 (FBP1). LNC_003307 was the most abundant DE lncRNA in the pig liver, with a marked upregulation of >10-fold after LPS stimulation. We identified three transcripts for this gene using the rapid amplification of the cDNA ends (RACE) technique and obtained the shortest transcript sequence. This gene likely derives from the nicotinamide N-methyltransferase (NNMT) gene in pigs. According to the identified DETGs of LNC_003307, we hypothesize that this gene regulates inflammation and endoplasmic reticulum stress in LPS-induced liver damage in pigs. This study provides a transcriptomic reference for further understanding of the regulatory mechanisms underlying septic hepatic injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Keke Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liangyu Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
6
|
Transcriptome profile of skeletal muscle using different sources of dietary fatty acids in male pigs. Funct Integr Genomics 2023; 23:73. [PMID: 36867299 DOI: 10.1007/s10142-023-00997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Pork is of great importance in world trade and represents the largest source of fatty acids in the human diet. Lipid sources such as soybean oil (SOY), canola (CO), and fish oil (FO) are used in pig diets and influence blood parameters and the ratio of deposited fatty acids. In this study, the main objective was to evaluate changes in gene expression in porcine skeletal muscle tissue resulting from the dietary oil sources and to identify metabolic pathways and biological process networks through RNA-Seq. The addition of FO in the diet of pigs led to intramuscular lipid with a higher FA profile composition of C20:5 n-3, C22:6 n-3, and SFA (C16:0 and C18:0). Blood parameters for the FO group showed lower cholesterol and HDL content compared with CO and SOY groups. Skeletal muscle transcriptome analyses revealed 65 differentially expressed genes (DEG, FDR 10%) between CO vs SOY, and 32 DEG for CO vs FO, and 531 DEG for SOY vs FO comparison. Several genes, including AZGP1, PDE3B, APOE, PLIN1, and LIPS, were found to be down-regulated in the diet of the SOY group compared to the FO group. The enrichment analysis revealed DEG involved in lipid metabolism, metabolic diseases, and inflammation between the oil groups, with specific gene functions in each group and altered blood parameters. The results provide mechanisms to help us understand the behavior of genes according to fatty acids.
Collapse
|
7
|
Lai L, Wang G, Xu L, Fu Y. CEBPB promotes gastrointestinal motility dysfunction after severe acute pancreatitis via the MALAT1/CIRBP/ERK axis. Mol Immunol 2023; 156:1-9. [PMID: 36842228 DOI: 10.1016/j.molimm.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 02/27/2023]
Abstract
Severe acute pancreatitis (SAP) is a kind of reversible inflammatory process of the exocrine pancreas with gastrointestinal motility dysfunction involved. Studies have highlighted the role of long noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in AP. However, the mechanism underlying its role in the gastrointestinal motility dysfunction remains undefined. Hence, we explored the regulatory role of MALAT1 in gastrointestinal motility dysfunction following SAP. Then, the expression of CCAAT/enhancer-binding protein beta (CEBPB), MALAT1 and cold-inducible RNA binding protein (CIRBP) was detected in plasma of SAP patients and pancreatic and intestinal tissues of SAP mouse models with their correlation analyzed also. Additionally, the effect of MALAT1 on the pancreatic and intestinal injury, expression of inflammatory factors and the ERK pathway-related genes as well as gastrointestinal motility dysfunction was assessed using ectopic expression and depletion experiments. CEBPB, MALAT1 and CIRBP were highly expressed in plasma of SAP patients and pancreatic and intestinal tissues of SAP mice. Further analysis showed that knockdown of MALAT1 could alleviate pancreatic and intestinal injury, reduce inflammation, and prevent gastrointestinal motility dysfunction in SAP mice. The transcription factor CEBPB could bind to the promoter region of MALAT1, thus activating the transcription of MALAT1. MALAT1 interacted with CIRBP and inhibited the degradation of CIRBP, leading to activated extracellular signal-regulated kinase (ERK) pathway and the resultant gastrointestinal motility dysfunction. In conclusion, CEBPB exhibits a promoting activity towards gastrointestinal motility dysfunction in SAP by pumping up MALAT1 expression and activating the CIRBP-dependent ERK pathway.
Collapse
Affiliation(s)
- Lixia Lai
- Department of Gastroenterology, Pingxiang People's Hospital, Pingxiang 337055, PR China.
| | - Guiliang Wang
- Department of Gastroenterology, Pingxiang People's Hospital, Pingxiang 337055, PR China
| | - Linfang Xu
- Department of Gastroenterology, Pingxiang People's Hospital, Pingxiang 337055, PR China
| | - Yunhui Fu
- Department of Gastroenterology, Pingxiang People's Hospital, Pingxiang 337055, PR China
| |
Collapse
|
8
|
Fanalli SL, da Silva BPM, Gomes JD, Durval MC, de Almeida VV, Moreira GCM, Silva-Vignato B, Afonso J, Freitas FAO, Reecy JM, Koltes JE, Koltes D, Garrick D, Correia de Almeida Regitano L, Balieiro JCDC, Mourão GB, Coutinho LL, Fukumasu H, de Alencar SM, Luchiari Filho A, Cesar ASM. RNA-seq transcriptome profiling of pigs' liver in response to diet with different sources of fatty acids. Front Genet 2023; 14:1053021. [PMID: 36816031 PMCID: PMC9936315 DOI: 10.3389/fgene.2023.1053021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pigs (Sus scrofa) are an animal model for metabolic diseases in humans. Pork is an important source of fatty acids (FAs) in the human diet, as it is one of the most consumed meats worldwide. The effects of dietary inclusion of oils such as canola, fish, and soybean oils on pig gene expression are mostly unknown. Our objective was to evaluate FA composition, identify changes in gene expression in the liver of male pigs fed diets enriched with different FA profiles, and identify impacted metabolic pathways and gene networks to enlighten the biological mechanisms' variation. Large White male pigs were randomly allocated to one of three diets with 18 pigs in each; all diets comprised a base of corn and soybean meal to which either 3% of soybean oil (SOY), 3% canola oil (CO), or 3% fish oil (FO) was added for a 98-day trial during the growing and finishing phases. RNA sequencing was performed on the liver samples of each animal by Illumina technology for differential gene expression analyses, using the R package DESeq2. The diets modified the FA profile, mainly in relation to polyunsaturated and saturated FAs. Comparing SOY vs. FO, 143 differentially expressed genes (DEGs) were identified as being associated with metabolism, metabolic and neurodegenerative disease pathways, inflammatory processes, and immune response networks. Comparing CO vs. SOY, 148 DEGs were identified, with pathways related to FA oxidation, regulation of lipid metabolism, and metabolic and neurodegenerative diseases. Our results help explain the behavior of genes with differential expression in metabolic pathways resulting from feeding different types of oils in pig diets.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | - Julia Dezen Gomes
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Mariah Castro Durval
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | | | - Bárbara Silva-Vignato
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | - Felipe André Oliveira Freitas
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - James Mark Reecy
- Animal Science Department, Iowa State University, Ames, IA, United States
| | | | - Dawn Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Dorian Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | | | | | - Gerson Barreto Mourão
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Luiz Lehmann Coutinho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | - Severino Matias de Alencar
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Albino Luchiari Filho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil,Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil,*Correspondence: Aline Silva Mello Cesar,
| |
Collapse
|
9
|
Effects of Continuous LPS Induction on Oxidative Stress and Liver Injury in Weaned Piglets. Vet Sci 2022; 10:vetsci10010022. [PMID: 36669023 PMCID: PMC9865882 DOI: 10.3390/vetsci10010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Due to imperfections in their immune and digestive systems, weaned piglets are susceptible to invasions of the external environment and diseases, especially bacterial infections, which lead to slow growth, tissue damage, and even the death of piglets. Here, a model of weaned piglets induced by Escherichia coli lipopolysaccharide (LPS) was established to explore the effects of continuous low-dose LPS induction on the mechanism of liver injury. A total of forty-eight healthy 28-day-old weaned piglets (weight = 6.65 ± 1.19 kg) were randomly divided into two groups: the CON group and LPS group. During the experimental period of thirteen days, the LPS group was injected intraperitoneally with LPS (100 μg/kg) once per day, and the CON group was treated with the same volume of 0.9% NaCl solution. On the 1st, 5th, 9th, and 13th days, the serum and liver of the piglets were collected for the determination of serum biochemical indexes, an antioxidant capacity evaluation, and histopathological examinations. In addition, the mRNA expression levels of the TLR4 pathway and inflammatory cytokines were detected. The results showed that the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in the serum increased after LPS induction. The activities of total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) in the serum and liver homogenate of the LPS group were lower than those of the CON group, while the malondialdehyde (MDA) content in the serum and the activities of catalase (CAT) and superoxide dismutase (SOD) in the liver of the LPS group were higher than those in the CON group. At the same time, morphological impairment of the livers occurred, including hepatocyte caryolysis, hepatocyte vacuolization, karyopycnosis, and inflammatory cell infiltration, and the mRNA expression levels of TLR4, MyD88, NF-κB, TNF-α, IL-6, and IL-10 were upregulated in the livers after LPS induction. The above results were more obvious on the 1st and 5th days of LPS induction, while the trend during the later period was not significant. It was concluded that the oxidative stress and liver injury occurred at the early stage of LPS induction, while the liver damage weakened at the later stage. The weaned piglets probably gradually developed tolerance to the endotoxin after the continuous low-dose induction of LPS.
Collapse
|
10
|
M 6A RNA Methylation Mediates NOD1/NF-kB Signaling Activation in the Liver of Piglets Challenged with Lipopolysaccharide. Antioxidants (Basel) 2022; 11:antiox11101954. [PMID: 36290677 PMCID: PMC9598714 DOI: 10.3390/antiox11101954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification that widely participates in various immune and inflammatory responses; however, its regulatory mechanisms in the inflammation of liver induced by lipopolysaccharide in piglets remain largely unknown. In the present study, piglets were intraperitoneally injected with 80 μg/kg LPS or an equal dose of sterile saline. Results indicated that LPS administration increased activities of serum alanine aminotransferase (ALT), induced M1 macrophage polarization and promoted secretion of inflammatory cytokines, and finally led to hepatic lesions in piglets. The NOD1/NF-κB signaling pathway was activated in the livers of the LPS group. Moreover, the total m6A level was significantly elevated after LPS treatment. MeRIP-seq showed that 1166 and 1344 transcripts contained m6A methylation in control and LPS groups, respectively. The m6A methylation sites of these transcripts mainly distributes in the 5′ untranslated region (5′UTR), the coding sequence (CDS), and the 3′ untranslated region (3′UTR). Interestingly, these genes were mostly enriched in the NF-κB signaling pathway, and LPS treatment significantly changed the m6A modification in NOD1, RIPK2, NFKBIA, NFKBIB, and TNFAIP3 mRNAs. In addition, knockdown of METTL3 or overexpression of FTO both changed gene levels in the NOD1/NF-κB pathway, suggesting that activation of this pathway was regulated by m6A RNA methylation. Moreover, the alteration of m6A RNA methylation profile may be associated with the increase of reactive oxygen species (ROS), HIF-1α, and MAT2A. In conclusion, LPS activated the NOD1/NF-κB pathway at post-transcriptional regulation through changing m6A RNA methylation, and then promoted the overproduction of proinflammatory cytokines, ultimately resulting in liver inflammation and damage.
Collapse
|
11
|
EPA and DHA confer protection against deoxynivalenol-induced endoplasmic reticulum stress and iron imbalance in IPEC-1 cells. Br J Nutr 2022; 128:161-171. [PMID: 34519265 DOI: 10.1017/s0007114521003688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study assessed the molecular mechanism of EPA or DHA protection against intestinal porcine epithelial cell line 1 (IPEC-1) cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA + DON group and the DHA + DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+ and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.
Collapse
|
12
|
Du L, Zheng Y, Yang YH, Huang YJ, Hao YM, Chen C, Wang BZ, Guo X, Wu H, Su GH. Krill oil prevents lipopolysaccharide-evoked acute liver injury in mice through inhibition of oxidative stress and inflammation. Food Funct 2022; 13:3853-3864. [PMID: 35274650 DOI: 10.1039/d1fo04136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury is a life-threatening syndrome that often results from the actions of viruses, drugs and toxins. Herein, the protective effect and potential mechanism of krill oil (KO), a novel natural product rich in long-chain n-3 polyunsaturated fatty acids bound to phospholipids and astaxanthin, on lipopolysaccharide (LPS)-evoked acute liver injury in mice were investigated. Male C57BL/6J mice were administered intragastrically with 400 mg kg-1 KO or fish oil (FO) once per day for 28 consecutive days prior to LPS exposure (10 mg kg-1, intraperitoneally injected). The results revealed that KO pretreatment significantly ameliorated LPS-evoked hepatic dysfunction indicated by reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and attenuated hepatic histopathological damage. KO pretreatment also mitigated LPS-induced hepatic oxidative stress, as evidenced by decreased malondialdehyde (MDA) contents, elevated glutathione (GSH) levels, and elevated catalase (CAT) and superoxide dismutase (SOD) activities. Additionally, LPS-evoked overproduction of pro-inflammatory mediators in serum and the liver was inhibited by KO pretreatment. Furthermore, KO pretreatment suppressed LPS-induced activation of the hepatic toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling pathway. Interestingly, the hepatoprotective effect of KO was superior to that of FO. Collectively, the current findings suggest that KO protects against LPS-evoked acute liver injury via inhibition of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| | - Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, Shandong, 250353, China
| | - Yu-Jie Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Guo-Hai Su
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
13
|
Harikrishnan R, Devi G, Van Doan H, Arockiaraj J, Jawahar S, Balasundaram C, Balamurugan P, Soltani M, Jaturasitha S. Influence of bamboo vinegar powder (BVP) enriched diet on antioxidant status, immunity level, and pro-anti-inflammatory cytokines modulation in Asian sea bass, Lates calcarifer (Bloch 1790) against Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2021; 119:462-477. [PMID: 34688863 DOI: 10.1016/j.fsi.2021.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Effect of bamboo vinegar powder (BVP) on growth, immunity, disease resistance, and immune-related gene expressions in juvenile Asian sea bass (barramundi), Lates calcarifer against Vibrio anguillarum was investigated. V. anguillarum infected fish fed by 2g BVP kg-1 diet exhibited significant growth, albumin (AB), serum total protein (TP), and globulin (GB) levels. Similarly, enhanced lysozyme (LZM), phagocytic (PC), anti-protease (AP), respiratory burst (RB), bactericidal (BC) activities and total immunoglobulin (Ig) levels were observed in fish fed 2g BVP kg-1. In addition, use of 2g BVP kg-1 in diet modulated several immune related gene expressions against Vibrio disease. This study exhibited a positive effect of dietary 2g BVP kg-1 diet on hemato-biochemical and immunological responses, which enhance the immunocompetence and health status of L. calcarifer against V. anguillarum infection.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Affiliated to University of Madras, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Sundaram Jawahar
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Paramaraj Balamurugan
- Department of Biotechnology, St. Michael College of Engineering and Technology, Kalayarkoil, 630 551, Tamil Nadu, India
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, WA, Australia
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| |
Collapse
|
14
|
Aydin Cil M, Ghosi Ghareaghaji A, Bayir Y, Buyuktuncer Z, Besler HT. Efficacy of krill oil versus fish oil on obesity-related parameters and lipid gene expression in rats: randomized controlled study. PeerJ 2021; 9:e12009. [PMID: 34692241 PMCID: PMC8483003 DOI: 10.7717/peerj.12009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Backround This study aimed to determine the effects of LC n-3 PUFA supplementation on the prevention and treatment of obesity and obesity-related diseases, and to compare the efficiency of different LC n-3 PUFA sources via biochemical and genetic mechanisms in rats. Methods Male Wistar rats were randomized into four study groups, and fed with a standard diet, High Fat Diet (HFD), HFD+%2.5 Fish Oil (FO-HFD) or HFD+%2.5 Krill Oil (KO-HFD) for eight weeks. Food consumption, weight gain, serum glucose, insulin, ghrelin and leptin concentrations, lipid profile, liver fatty acid composition, and FADS1 and FADS2 mRNA gene expression levels were measured. Results Weight gain in each HFD group was significantly higher than control group (p < 0.001), without any differences among them (p < 0.05). LC n-3 PUFAs modified lipid profile, but not glucose tolerance. Serum leptin levels were significantly higher in HFD groups than in the control group, however, no difference in serum ghrelin levels was observed among the groups. Liver n-3 fatty acid desaturation activity was higher (p = 0.74), and liver total lipid content was lower (p = 0.86) in KO-HFD compared to FO-HFD. FADS1 gene expression was highest in the HFD group (p < 0.001) while FADS2 gene expression was highest in the FO-HFD group (p < 0.001). Conclusion LC n-3 PUFAs, especially krill oil, had moderate effects on lipid profile, but limited effects on obesity related parameters, suggesting different effects of different sources on gene expression levels. Further randomized controlled trials are needed to determine the efficacy of different LC n-3 PUFA sources in the prevention and treatment of obesity in humans.
Collapse
Affiliation(s)
- Mevra Aydin Cil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | - Atena Ghosi Ghareaghaji
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Zehra Buyuktuncer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Halit Tanju Besler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Istinye University, Istanbul, Turkey
| |
Collapse
|
15
|
Pan M, Liu J, Huang D, Guo Y, Luo K, Yang M, Gao W, Xu Q, Zhang W, Mai K. FoxO3 Modulates LPS-Activated Hepatic Inflammation in Turbot ( Scophthalmus maximus L.). Front Immunol 2021; 12:679704. [PMID: 34276667 PMCID: PMC8281027 DOI: 10.3389/fimmu.2021.679704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, forkhead box O3 (foxo3) plays important roles in liver immune system. The foxo3 can regulate cell cycle, DNA repair, hypoxia, apoptosis and so on. However, as such an important transcription factor, few studies on foxo3 in fish have been reported. The present study characterized the foxo3 in turbot (Scophthalmus maximus L.). Lipopolysaccharide (LPS) incubated in vitro (hepatocytes) and injected in vivo (turbot liver) were used to construct inflammatory models. The foxo3 was interfered and overexpressed to investigate its functions in liver inflammation. The open reading frame (ORF) of foxo3 was 1998 bp (base pair), encoding 665 amino acids. Sequence analysis showed that foxo3 of turbot was highly homologous to other fishes. Tissue distribution analysis revealed that the highest expression of foxo3 was in muscle. Immunofluorescence result showed that foxo3 was expressed in cytoplasm and nucleus. Knockdown of foxo3 significantly increased mRNA levels of tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), interleukin-6 (il-6), myeloid-differentiation factor 88 (myd88), cd83, toll-like receptor 2 (tlr-2) and protein level of c-Jun N-terminal kinase (JNK) in sifoxo3 + LPS (siRNA of foxo3+ LPS) group compared with NC + LPS (negative control + LPS) group in turbot hepatocytes. Overexpressed foxo3 significantly decreased mRNA levels of tnf-α, il-6, nuclear transcription factor-kappa B (nf-κb), cd83, tlr-2 and the protein level of JNK in vitro. In vivo analysis, foxo3 knockdown significantly increased levels of GOT in serum after LPS injection compared with NC+LPS group. Overexpressed foxo3 significantly decreased levels of GPT and GOT in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in vivo. Foxo3 knockdown significantly increased mRNA levels of tnf-α, il-1β, il-6, nf-κb, myd88 and protein level of JNK in vivo in sifoxo3+LPS group compared with NC+LPS group in turbot liver. Overexpressed foxo3 significantly decreased mRNA levels of il-1β, il-6, myd88, cd83, jnk and protein level of JNK in pcDNA3.1-foxo3+LPS group compared with pcDNA3.1+LPS group in turbot liver. The results indicated that foxo3 might modulate LPS-activated hepatic inflammation in turbot by decreasing the proinflammatory cytokines, the levels of GOT and GPT as well as activating JNK/caspase-3 and tlr-2/myd88/nf-κb pathways. Taken together, these findings indicated that FoxO3 may play important roles in liver immune responses to LPS in turbot and the research of FoxO3 in liver immunity enriches the studies on immune regulation, and provides theoretical basis and molecular targets for solving liver inflammation and liver injury in fish.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
| | - Weihua Gao
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Qiaoqing Xu
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, China
- Department of Fisheries, College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Duan Y, Song B, Zheng C, Zhong Y, Guo Q, Zheng J, Yin Y, Li J, Li F. Dietary Beta-Hydroxy Beta-Methyl Butyrate Supplementation Alleviates Liver Injury in Lipopolysaccharide-Challenged Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5546843. [PMID: 33868570 PMCID: PMC8035022 DOI: 10.1155/2021/5546843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
The current study was performed to investigate whether dietary β-hydroxy-β-methylbutyrate (HMB) could regulate liver injury in a lipopolysaccharide- (LPS-) challenged piglet model and to determine the mechanisms involved. Thirty piglets (21 ± 2 days old, 5.86 ± 0.18 kg body weight) were randomly divided into the control (a basal diet, saline injection), LPS (a basal diet), or LPS+HMB (a basal diet + 0.60% HMB-Ca) group. After 15 d of treatment with LPS and/or HMB, blood and liver samples were obtained. The results showed that in LPS-injected piglets, HMB supplementation ameliorated liver histomorphological abnormalities induced by LPS challenge. Compared to the control group, the activities of serum aspartate aminotransferase and alkaline phosphatase were increased in the LPS-injected piglets (P < 0.05). The LPS challenge also downregulated the mRNA expression of L-PFK, ACO, L-CPT-1, ICDH β, and AMPKα1/2 and upregulated the mRNA expression of PCNA, caspase 3, TNF-α, TLR4, MyD88, NOD1, and NF-κB p65 (P < 0.05). However, these adverse effects of the LPS challenge were reversed by HMB supplementation (P < 0.05). These results indicate that HMB may exert protective effects against LPS-induced liver injury, and the underlying mechanisms might involve the improvement of hepatic energy metabolism via regulating AMPK signaling pathway and the reduction of liver inflammation via modulating TLR4 and NOD signaling pathways.
Collapse
Affiliation(s)
- Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bo Song
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Changbing Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Fengna Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
17
|
Li R, Fang H, Shen J, Jin Y, Zhao Y, Wang R, Fu Y, Tian Y, Yu H, Zhang J. Curcumin Alleviates LPS-Induced Oxidative Stress, Inflammation and Apoptosis in Bovine Mammary Epithelial Cells via the NFE2L2 Signaling Pathway. Toxins (Basel) 2021; 13:208. [PMID: 33809242 PMCID: PMC7999830 DOI: 10.3390/toxins13030208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin, which may cause immune response and inflammation of bovine mammary glands. Mastitis impairs animal health and results in economic loss. Curcumin (CUR) is a naturally occurring diketone compound, which has attracted widespread attention as a potential anti-inflammatory antioxidant. The purpose of this study is to investigate whether CUR can reduce the damage of bovine mammary epithelial cells (MAC-T) induced by LPS and its underlying molecular mechanism. The MAC-T cell line was treated with different concentrations of LPS and CUR for 24 h. The results showed that CUR rescued the decrease of MAC-T cell viability and cell damage induced by LPS. At the same time, 10 µM CUR and 100 µg/mL LPS were used to treat the cells in the follow-up study. The results showed CUR treatment reduced the accumulation of reactive oxygen species (ROS), the expression of inflammatory cytokines (tumor necrosis factor-a (TNF-α), interleukin-8 (IL-8), IL-6 and IL-1β) and the rate of apoptosis induced by LPS. These effects were associated with the activation of the nuclear factor E2-related factor 2 (NFE2L2)-antioxidant response element (ARE) pathway coupled with inactivation of the nuclear factor-κB (NF-κB) inflammatory and caspase/Bcl2 apoptotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Animal Science, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.L.); (H.F.); (J.S.); (Y.J.); (Y.Z.); (R.W.); (Y.F.); (Y.T.)
| | - Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Animal Science, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.L.); (H.F.); (J.S.); (Y.J.); (Y.Z.); (R.W.); (Y.F.); (Y.T.)
| |
Collapse
|
18
|
Zhang J, Xu X, Chen H, Kang P, Zhu H, Ren H, Liu Y. Construction and analysis for dys-regulated lncRNAs and mRNAs in LPS-induced porcine PBMCs. Innate Immun 2021; 27:170-183. [PMID: 33504244 PMCID: PMC7882806 DOI: 10.1177/1753425920983869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key regulators in inflammation. However, their functions and profiles in LPS-induced inflammation in pigs are largely unknown. In this study, we profiled global lncRNA and mRNA expression changes in PBMCs treated with LPS using the lncRNA-seq technique. In total 43 differentially expressed (DE) lncRNAs and 1082 DE mRNAs were identified in porcine PBMCs after LPS stimulation. Functional enrichment analysis on DE mRNAs indicated these genes were involved in inflammation-related signaling pathways, including cytokine–cytokine receptor interaction, TNF-α, NF-κB, Jak-STAT and TLR signaling pathways. In addition, co-expression network and function analysis identified the potential lncRNAs related to inflammatory response and immune response. The expressions of eight lncRNAs (ENSSSCT00000045208, ENSSSCT00000051636, ENSSSCT00000049770, ENSSSCT00000050966, ENSSSCT00000047491, ENSSSCT00000049750, ENSSSCT00000054262 and ENSSSCT00000044651) were validated in the LPS-treated PBMCs by quantitative real-time PCR (qRT-PCR). In LPS-challenged piglets, we identified that expression of three lncRNAs (ENSSSCT00000051636, ENSSSCT00000049770, and ENSSSCT00000047491) was significantly up-regulated in liver, spleen and jejunum tissues after LPS challenge, which indicated that these lncRNAs might be important regulators for inflammation. This study provides the first lncRNA and mRNA transcriptomic landscape of LPS-mediated changes in porcine PBMCs, which might provide potential insights into lncRNAs involved in regulating inflammation in pigs.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xin Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ping Kang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongyan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
19
|
Lauridsen C. Effects of dietary fatty acids on gut health and function of pigs pre- and post-weaning. J Anim Sci 2020; 98:skaa086. [PMID: 32215565 PMCID: PMC7323257 DOI: 10.1093/jas/skaa086] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Fatty acids (FA) play a major role in relation to mucosal immune responses, epithelial barrier functions, oxidative stress, and inflammatory reactions. The dietary FA composition and the molecular structures (chain length and number of double bonds) influence digestion, absorption and metabolism, and the bioactivity of the FA. Piglets post-weaning having an immature intestine and not fully formed immune functions are very vulnerable to invading microorganisms. Manipulation of the milk FA composition via sow nutrition, or inclusion of dietary fat sources in the feed for newly weaned pigs, may be used as a strategic tool to enhance pig performance and their gut health and function pre- and post-weaning. Medium-chain fatty acids (MCFA) are absorbed directly into the portal blood and may contribute to immediate energy for the enterocytes. In addition, the MCFA, similarly to the short-chain fatty acids (SCFA), possess antibacterial effects and may thereby prevent overgrowth of pathogenic bacteria in the gastrointestinal tract. The essential FA, linoleic (LA) and α-linolenic (ALA) FA, form the building blocks for the long-chain polyunsaturated n-3 and n-6 FA. The conversion of ALA and LA into n-3 and n-6 eicosanoids, respectively, influences the molecular structures of metabolites and inflammatory reactions and other immune responses upon bacterial challenges. Dietary manipulation of the lactating sow influences the transfer of the n-3 and n-6 polyunsaturated fatty acids (PUFA) from the sow milk to the piglet and the incorporation of the FA into piglet enteric tissues and cell membranes, which exerts bioactivity of importance for immune responses and the epithelial barrier function. Especially, the n-3 PUFA present in fish oil seem to influence the gut health and function of pigs, and this is of importance during the transition periods such as post-weaning in which piglets are prone to inflammation. The proportion of unsaturated FA in the cell membranes influences the susceptibility to oxidative stress. Oxidative stress accompanies infectious diseases, and the development of lipid peroxides and other reactive oxygen products may be harmful to the epithelial barrier function. Fatty acid peroxides from the feed may also be absorbed with other lipid-solubles and thereby harm the intestinal function. Hence, antioxidative protection is important for the enteric cells. In conclusion, manipulation of the dietary FA composition can influence the gut health and function in pigs and may support a normal immune system and modulate resistance to infectious diseases during especially stressful phases of a pig's life such as post-weaning.
Collapse
Affiliation(s)
- Charlotte Lauridsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
- Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
| |
Collapse
|
20
|
Effects of Dietary Fat Sources during Late Gestation on Colostrum Quality and Mammary Gland Inflammation in Lipopolysaccharide-Challenged Sows. Animals (Basel) 2020; 10:ani10020319. [PMID: 32085517 PMCID: PMC7070580 DOI: 10.3390/ani10020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In the present study, late gestating sows were challenged with lipopolysaccharide (LPS) endotoxin, which can impair the immune system of mammary gland cells and result in an inflammatory response. Additionally, the LPS-treated sows were fed 3% soybean oil (SO), 3% coconut oil (CO) or 3% fish oil (FO) diets and were used to study the effect of fat sources on the colostrum quality and mammary gland inflammation of sows exposed to immune challenge. The results show that FO inclusion exerted anti-inflammatory effects in mammary glands and counteracted the LPS-induced damaged colostrum synthesis and pro-inflammatory response when compared to CO diets. These findings suggest that fatty acid profiles of different oil types in late gestation differentially affect metabolic health in sows, but a longer period of FO supplementation to sows is needed to determine a positive effect on piglets. Abstract This study aimed to investigate the effects of maternal lipopolysaccharide (LPS) challenge and dietary fat sources on colostrum quality and inflammatory response in sows. Sixty Landrace × Yorkshire sows were randomly assigned to three dietary treatments supplemented with 3% soybean oil (SO), 3% coconut oil (CO) or 3% fish oil (FO), respectively, from Day 90 of gestation until parturition. On Day 112 of gestation, half the sows from each dietary treatment were challenged with LPS (10 μg/kg BW) or saline. The results showed that maternal LPS challenge decreased colostrum yield and dry matter content. A similar pattern of changes was observed for body weight gain and colostrum intake in piglets from LPS-challenged sows. Maternal LPS challenge increased the levels of tumor necrosis factor α (TNFα), interleukin 1β (IL1β) and IL6 in colostum, and the mRNA abundance of IL6, IL1β and TNFα and the phosphorylation level of p65 in mammary glands. However, the responses of these variables to LPS treatment were lower in sows fed a FO diet. In conclusion, maternal immune challenge reduced the growth performance of piglets by decreasing colostrum yield and intake by piglets, and dietary supplementation with FO in sows attenuates the LPS-induced inflammatory response in mammary glands.
Collapse
|