1
|
Liu W, Cai X, Duan S, Shen J, Wu J, Zhou Z, Yu K, He C, Wang Y. E3 ubiquitin ligase Smurf1 promotes cardiomyocyte pyroptosis by mediating ubiquitin-dependent degradation of TRIB2 in a rat model of heart failure. Int Rev Immunol 2025:1-15. [PMID: 39749701 DOI: 10.1080/08830185.2024.2434058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF. METHODS HF rat/H9C2 cell models were established by doxorubicin intraperitoneal injections/hypoxia-reoxygenation (H/R), and treated with Smurf1 siRNA and oe-TRIB2 lentivirus plasmids or the NF-κB pathway inhibitor PDTC/si-smurf1, si-TRIB2, protease inhibitor MG132, or lysosomal inhibitor NH4Cl. The cardiac function/cardiac tissue pathological changes/fibrosis in HF rats were evaluated by echocardiography/H&E and Masson staining. GSDMD-N expression was determined by immunohistochemistry. Cell viability/lactate dehydrogenase (LDH) activity/IL-1β and IL-18 levels were measured by CCK-8/LDH kit/ELISA. The interaction between TRIB2 and Smurf1/TRIB2 ubiquitination levels was assessed by co-immunoprecipitation assay. The expression levels of Smurf1 and TRIB2 messenger RNA (mRNA) were determined by RT-qPCR. Levels of Smurf1/TRIB2/the NF-κB pathway-related factors/pyroptosis-related factors and TRIB2 mRNA were determined by Western blot/RT-qPCR. RESULTS Smurf1 was highly expressed in H/R-induced H9C2 cells/HF rats, while its knockdown up-regulated TRIB2 and repressed the NF-κB pathway, reduced cardiomyocyte pyroptosis, and attenuated HF. Mechanistically, Smurf1 promoted TRIB2 degradation through an ubiquitin-dependent manner and activated the NF-κB pathway under H/R conditions. TRIB2 silencing annulled Smurf1 knockdown-regulated NF-κB pathway and cardiomyocyte pyroptosis. TRIB2 overexpression inactivated the NF-κB pathway and reduced cardiomyocyte pyroptosis, thus retarding HF. CONCLUSION Smurf1 was highly expressed in HF rats, which promoted TRIB2 ubiquitination degradation and activated the NF-κB pathway, thereby promoting cardiomyocyte pyroptosis in HF rats.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Xin Cai
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Shiying Duan
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Jihua Shen
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Jiayuan Wu
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Zhengwei Zhou
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Kaili Yu
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Caihong He
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| | - Yuqin Wang
- Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China
| |
Collapse
|
2
|
Shen W, Wu T, Liu Q, Ke B. Analysis of regulatory patterns of NLRP3 corpuscles and related genes and the role of macrophage polarization in atherosclerosis based on online database. Mol Genet Genomics 2024; 300:7. [PMID: 39725776 DOI: 10.1007/s00438-024-02216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis. We identified differential expression in 20 genes, five of which were significantly upregulated: P2RX7, CASP1, CD36, GBP5, and PYCARD. We also observed a strong positive association between P2RX7 and PYCARD and as a notable negative association between RELA and CD36. Furthermore, our analysis revealed a clear association between the expression of inflammasome-associated genes and immune cell infiltration in disease specimens. To diagnose AS, a logistic regression model based on six inflammasome-related genes, achieved an Area under the curve of 0.996, indicating excellent diagnostic performance. Genomic enrichment analysis indicated that inflammasome-related genes were primarily involved in various pathways, such as hypertrophic cardiomyopathy and ribosomal function. To validate our findings, we confirmed the expression of risk genes in AS cells using qRT-PCR and Western blot techniques. Additionally, we observed a shift toward M2 polarization in THP-1 macrophages upon P2RX7 knockdown, further supporting our findings.
Collapse
Affiliation(s)
- Wen Shen
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
| | - Tao Wu
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China
| | - Qiang Liu
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China
- Department of Cardiovascular Medicne, Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Ben Ke
- Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
| |
Collapse
|
3
|
Liao L, Tao P, Xu Q, Chen J, Liu W, Hu J, Lu J. Bushen Huoxue formula protects against renal fibrosis and pyroptosis in chronic kidney disease by inhibiting ROS/NLRP3-mediated inflammasome activation. Ren Fail 2024; 46:2354444. [PMID: 38785272 PMCID: PMC11132749 DOI: 10.1080/0886022x.2024.2354444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Renal fibrosis contributes to chronic renal failure and a decline in the quality of life. Bushen Huoxue (BSHX) formula is a Traditional Chinese Medicine used to treat chronic renal failure. However, its mechanisms of action remain unclear. METHODS AND RESULTS In this study, a rat model of renal fibrosis was constructed by 5/6 nephrectomy in vivo, and histopathological changes were analyzed using hematoxylin-eosin and Masson's trichrome staining. Angiotensin II (Ang II) was used to establish an in vitro renal fibrosis cell model in vitro. Pyroptosis was measured using flow cytometry. Related markers of fibrosis and NOD-like receptor protein 3 (NLRP3) inflammasome activation were measured using western blotting and enzyme-linked immunosorbent assay. Treatment with BSHX (0.25, 0.5, and 1 g/kg) significantly inhibited renal fibrosis and damage in 5/6 nephrectomized rats and simultaneously reduced oxidative stress and NLRP3 inflammasome activation. Similarly, BSHX treatment reduced the levels of hydroxyproline, transforming growth factor-β, matrix metalloproteinase 2, and matrix metalloproteinase 9 and inactivated the Smad2/3 signaling pathway in Ang II-treated HK-2 cells. Our data also showed that treatment with BSHX reduced NLRP3 inflammasome activation and pyroptosis in Ang II-treated HK-2 cells. Moreover, fibrosis and pyroptosis in HK-2 cells induced by NLRP3 overexpression were reduced by treatment with BSHX. CONCLUSIONS BSHX significantly reduced renal fibrosis and pyroptosis, and its mechanism was mainly associated with the inhibition of reactive oxygen species (ROS)/NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Lin Liao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiming Xu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrao Lu
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Kim WI, Pak SW, Lee SJ, Park SH, Lim JO, Kim DI, Shin IS, Kim SH, Kim JC. Copper oxide nanoparticles exacerbate chronic obstructive pulmonary disease by activating the TXNIP-NLRP3 signaling pathway. Part Fibre Toxicol 2024; 21:46. [PMID: 39529109 PMCID: PMC11552314 DOI: 10.1186/s12989-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although copper oxide nanoparticles (CuONPs) offer certain benefits to humans, they can be toxic to organs and exacerbate underlying diseases upon exposure. Chronic obstructive pulmonary disease (COPD), induced by smoking, can worsen with exposure to various harmful particles. However, the specific impact of CuONPs on COPD and the underlying mechanisms remain unknown. In this study, we investigated the toxic effects of CuONPs on the respiratory tract, the pathophysiology of CuONPs exposure-induced COPD, and the mechanism of CuONPs toxicity, focusing on thioredoxin-interacting protein (TXNIP) signaling using a cigarette smoke condensate (CSC)-induced COPD model. RESULTS In the toxicity study, CuONPs exposure induced an inflammatory response in the respiratory tract, including inflammatory cell infiltration, cytokine production, and mucus secretion, which were accompanied by increased TXNIP, NOD-like receptor protein 3 (NLRP3), caspase-1, and interleukin (IL)-1β. In the COPD model, CuONPs exposure induced the elevation of various indexes related to COPD, as well as increased TXNIP expression. Additionally, TNXIP-knockout (KO) mice showed a significantly decreased expression of NLRP3, caspase-1, and IL-1β and inflammatory responses in CuONPs-exposed COPD mice. These results were consistent with the results of an in vitro experiment using H292 cells. By contrast, TNXIP-overexpressed mice had a markedly increased expression of NLRP3, caspase-1, and IL-1β and inflammatory responses in CuONPs-exposed COPD mice. CONCLUSIONS We elucidated the exacerbating effect of CuONPs exposure on the respiratory tract with underlying COPD, as well as related signaling transduction via TXNIP regulation. CuONPs exposure significantly increased inflammatory responses in the respiratory tract, which was correlated with elevated TXNIP-NLRP3 signaling.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Oh Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Dong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
Guo F, Han X, You Y, Xu SJ, Zhang YH, Chen YY, Xin GJ, Liu ZX, Ren JG, Cao C, Li LM, Fu JH. Hydroxysafflor Yellow A Inhibits Pyroptosis and Protecting HUVECs from OGD/R via NLRP3/Caspase-1/GSDMD Pathway. Chin J Integr Med 2024; 30:1027-1034. [PMID: 38319525 DOI: 10.1007/s11655-023-3716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVE To observe the protective effect and mechanism of hydroxyl safflower yellow A (HSYA) from myocardial ischemia-reperfusion injury on human umbilical vein endothelial cells (HUVECs). METHODS HUVECs were treated with oxygen-glucose deprivation reperfusion (OGD/R) to simulate the ischemia reperfusion model, and cell counting kit-8 was used to detect the protective effect of different concentrations (1.25-160 µ mol/L) of HSYA on HUVECs after OGD/R. HSYA 80 µ mol/L was used for follow-up experiments. The contents of inflammatory cytokines interleukin (IL)-18, IL-1 β, monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor α (TNF-α) and IL-6 before and after administration were measured by enzyme-linked immunosorbent assay. The protein expressions of toll-like receptor, NOD-like receptor containing pyrin domain 3 (NLRP3), gasdermin D (GSDMD) and GSDMD-N-terminal domain (GSDMD-N) before and after administration were detected by Western blot. NLRP3 inflammasome inhibitor cytokine release inhibitory drug 3 sodium salt (CRID3 sodium salt, also known as MCC950) and agonist were added, and the changes of NLRP3, cysteine-aspartic acid protease 1 (Caspase-1), GSDMD and GSDMD-N protein expressions were detected by Western blot. RESULTS HSYA inhibited OGD/R-induced inflammation and significantly decreased the contents of inflammatory cytokines IL-18, IL-1 β, MCP-1, TNF-α and IL-6 (P<0.01 or P<0.05). At the same time, by inhibiting NLRP3/Caspase-1/GSDMD pathway, HSYA can reduce the occurrence of pyroptosis after OGD/R and reduce the expression of NLRP3, Caspase-1, GSDMD and GSDMD-N proteins (P<0.01). CONCLUSIONS The protective effect of HSYA on HUVECs after OGD/R is related to down-regulating the expression of NLRP3 inflammasome and inhibiting pyroptosis.
Collapse
Affiliation(s)
- Fan Guo
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Xiao Han
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Yue You
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Shu-Juan Xu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Ye-Hao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Yuan-Yuan Chen
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Gao-Jie Xin
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Zi-Xin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Jun-Guo Ren
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| | - Ling-Mei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China.
- Department of Central Laboratory, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu Province, 215300, China.
| | - Jian-Hua Fu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Chinese Materia Pharmacology, Beijing, 100091, China
| |
Collapse
|
6
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
8
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
10
|
Luo J, Luo Y, Chen J, Gao Y, Tan J, Yang Y, Yang C, Jiang N, Luo Y. Intestinal metabolite UroB alleviates cerebral ischemia/reperfusion injury by promoting competition between TRIM65 and TXNIP for binding to NLRP3 inflammasome in response to neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167056. [PMID: 38360072 DOI: 10.1016/j.bbadis.2024.167056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Our previous research suggests that targeting NLRP3 inflammasomes holds promise for mitigating cerebral ischemia/reperfusion injury. The gut metabolite Urolithin B (UroB) has been shown to inhibit the neuroinflammation. However, the specific role of UroB in cerebral ischemia/reperfusion injury and its potential impact on NLRP3 inflammasome remain unclear. In this study, acute stroke was simulated using the MCAO model in male Sprague-Dawley rats. UroB was intraperitoneally administered after 1 h of reperfusion. The effects of UroB on brain tissue were evaluated, including infarct volume, brain edema, and neurobehavioral changes. Western blotting and immunofluorescence were performed to investigate the effect of UroB on inflammation-related proteins. Furthermore, TRIM65 knockdown and TXNIP overexpression experiments elucidated the role of UroB in NLRP3 inflammasome activation. The ( demonstrate the neuroprotective effect of UroB in acute stroke, reducing brain tissue damage and improving motor function. Mechanistically, UroB modulated neuroinflammation by influencing TXNIP and TRIM65 protein expression, as well as competitive binding to the NLRP3 inflammasome, attenuating cerebral ischemia/reperfusion injury. In conclusion, the potential of UroB as a protective agent against cerebral ischemia/reperfusion injury in acute stroke stands out as it regulates TRIM65 and TXNIP competitive binding to the NLRP3 inflammasome. These findings suggest that UroB is a promising drug candidate for the treatment of acute stroke.
Collapse
Affiliation(s)
- Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China; Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Tan
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongkang Yang
- Department of Clinical Medicine, Clinical Medical College of Chengdu University, Chengdu, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Li J, Wang X, Bai J, Wei H, Wang W, Wang S. Fucoidan modulates SIRT1 and NLRP3 to alleviate hypertensive retinopathy: in vivo and in vitro insights. J Transl Med 2024; 22:155. [PMID: 38360728 PMCID: PMC10868079 DOI: 10.1186/s12967-024-04877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Hypertension influences the inflammatory pathological changes in the retina. The function of the inflammasomes is significant. To see if Sirtuin 1 (SIRT1) regulates angiotensin II (Ang II)-induced hypertensive retinopathy and inflammation by modulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation and the potential protective effects of fucoidan (FO) in mouse retinal vascular endothelial cells (mRECs) and mice retina. METHODS The diagnosis of hypertensive retinopathy was made after three weeks of Ang II infusion (3000 ng/kg/min). One day prior to the commencement of Ang II infusion, the mice were treatment with NLRP3 inhibitor MCC950 (10 mg/kg/day, intraperitoneal injections) or FO (300 mg/kg/day, oral gavage). A blood pressure was recorded. Hematoxylin and eosin (H&E) staining was used to conduct pathological alterations, dihydroethidium bromide (DHE) was utilized to assess oxidative stress damage in the retina, and fluorescence angiography was used to identify vascular disorders in the eye. Using immunohistochemical labeling, NLRP3 expression was found. Reactive protein and mRNA expression levels in mouse retina and cells were assessed using Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS NLRP3 inflammasome activation and SIRT1 decrease were brought about by Ang II infusion. Retinopathy and dysfunction were lessened by MCC950 target-induced NLRP3 inflammasome activation, while overexpression of SIRT1 had the opposite impact on NLRP3 inflammasome activation, indicating that SIRT1 functions as an upstream regulator of NLRP3 activity. FO may improve SIRT1 expression and decrease NLRP3 activation in retinopathy and dysfunction brought on by Ang II, and the effects were consistent across both in vivo and in vitro models. CONCLUSIONS SIRT1 adversely regulates the NLRP3 inflammasome pathway, which in turn increases Ang II-induced inflammation and hypertensive retinopathy. FO may mitigate Ang II-induced retinopathy and dysfunction via modulating the expression of SIRT1/NLRP3. This implies practical approaches to the management of hypertensive retinopathy.
Collapse
Affiliation(s)
- Jing Li
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaochen Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jie Bai
- Department of Public Health Experimental Teaching Center, Dalian Medical University, Dalian, 116044, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenbo Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shuai Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
13
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Zhou C, Li JX, Zheng CX, Zhou XQ, Chen C, Qiu SW, Liu WH, Li H. Neuroprotective effects of Jie-du-huo-xue decoction on microglia pyroptosis after cerebral ischemia and reperfusion--From the perspective of glial-vascular unit. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116990. [PMID: 37536647 DOI: 10.1016/j.jep.2023.116990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke poses a serious risk to public health and quality of life. Jie-Du-Huo-Xue decoction (JDHXD) is a classical and well-known Chinese formula for stroke treatment, but the pharmacological mechanism is still unclear. AIM OF THE STUDY This study aims to investigate the mechanism underlying microglial pyroptosis and polarization, as well as the potential efficacy of JDHXD against cerebral ischemia-reperfusion injury (CIRI). MATERIALS AND METHODS Models of CIRI were established by the middle cerebral artery occlusion/reperfusion (MCAO/R) method in rats. In the first stage, 36 SD rats were randomly divided into sham group, I/R group, JDHXD-L group (5.36 g/kg/day), JDHXD-M group (10.71 g/kg/day), JDHXD-H group (21.42 g/kg/day), and positive drug edaravone group. The effectiveness of JDHXD on CIRI was confirmed by neurological function testing and cerebral infarct measuring. The best dose (JDXHD-M) was subsequently chosen to perform the tests that followed. In the second stage, 36 SD rats were randomly divided into the sham group, the I/R group, and the JDHXD-M group. Detection of nerve damage using Nissl staining, proteins of pyroptosis, Iba-1, and NeuN expressions were detected by western blotting, and proteins of microglial pyroptosis and M1/M2 phenotypic polarization were detected by immunofluorescence. RESULTS In rats after CIRI, JDHXD significantly reduced neurological impairment and cerebral infarction. In addition, JDHXD facilitated the M1-to-M2 transition of microglia in order to minimize neuroinflammation and improve anti-inflammatory repair. In addition, JDXHD inhibited microglial pyroptosis by blocking the cleavage of caspase-1 P10 and gasdermin D, hence reducing neuronal damage and enhancing neuronal survival following reperfusion. Interestingly, JDHXD also demonstrated a protective effect on the glial-vascular unit (GVU). CONCLUSIONS Our investigation demonstrated that JDHXD exerted a GVU-protective effect on CIRI rats by decreasing neuroinflammation-associated microglial pyroptosis, suppressing microglial M1 activation, and promoting microglial M2 activation.
Collapse
Affiliation(s)
- Chang Zhou
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of TCM Diagnostics of Hunan Provine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha 410208, Hunan, China.
| | - Jin-Xia Li
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Cai-Xing Zheng
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Xiao-Qing Zhou
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Cong Chen
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Shi-Wei Qiu
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Wang-Hua Liu
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of TCM Diagnostics of Hunan Provine, Changsha 410208, Hunan, China; Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Changsha 410208, Hunan, China; Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha 410208, Hunan, China.
| | - Hua Li
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of TCM Diagnostics of Hunan Provine, Changsha 410208, Hunan, China.
| |
Collapse
|
15
|
Liu C, Wu B, Tao Y, Liu X, Lou X, Wang Z, Guo Z, Tang D. Identification and immunological characterization of cuproptosis-related molecular clusters in ischemic stroke. Neuroreport 2024; 35:17-26. [PMID: 37983626 PMCID: PMC10702694 DOI: 10.1097/wnr.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
The present study elucidated cuproptosis-related molecular clusters involved in ischemic stroke and developed predictive models. Transcriptomic and immunological profiles of ischemic stroke-related datasets were extracted from the Gene Expression Omnibus database. Next, we conducted weighted gene co-expression network analysis to determine cluster-specific differentially expressed genes (DEGs). Models such as random forest and eXtreme gradient boosting (XGB) were evaluated to select the best prediction performance model. Subsequently, we validated the model's predictive efficiency by using nomograms, decision curve analysis, calibration curves, and receiver operating characteristic curve analysis with an external dataset. We identified two cuproptosis-related clusters involved in ischemic stroke. The DEGs in Cluster 2 were closely associated with amino acid metabolism, various immune responses, and cell proliferation pathways. The XGB model showed lower residuals, a smaller root mean square error, and a greater area under the curve value (AUC = 0.923), thus exhibiting the best discriminative performance. The AUC value for the external validation dataset was 0.921, thus confirming the high performance of the model. NFE2L2, NLRP3, GLS, LIPT1, and MTF1 were identified as potential cuproptosis predictors, thus shedding new light on ischemic stroke pathogenesis and heterogeneity.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Binbin Wu
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Yongjun Tao
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Xiang Liu
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Xiqiang Lou
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Zhen Wang
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Zhaofu Guo
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Dongmei Tang
- Department of Rehabilitation Research, Lishui Second People’s Hospital, Zhejiang, China
| |
Collapse
|
16
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
17
|
Wang X, Zhao M, Lu X, Du P, Feng S, Gong R, Chen H, Qi G, Yang F. HuR deficiency abrogated the enhanced NLRP3 signaling in experimental ischemic stroke. FASEB J 2024; 38:e23342. [PMID: 38038724 DOI: 10.1096/fj.202300812r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/27/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Human antigen R (HuR) is a universally expressed RNA-binding protein that plays an essential role in governing the fate of mRNA transcripts. Accumulating evidence indicated that HuR is involved in the development and functions of several cell types. However, its role in cerebral ischemia/reperfusion injury (CIRI) remains unclear. In this study, we found that HuR was significantly upregulated after CIRI. Moreover, we found that silencing HuR could inhibit the inflammatory response of microglia and reduce the damage to neurons caused by oxygen-glucose deprivation/reperfusion treatment. In vivo, we found that microglial HuR deficiency significantly ameliorated CIRI and reduced NLRP3-mediated inflammasome activation. Mechanistically, we found that HuR could regulate NLRP3 mRNA stability by binding to the AU-rich element (ARE) region within the 3' untranslated region (UTR) of NLRP3 mRNA. In addition, we found that the upregulation of HuR was dependent on the upregulation of NADPH oxidase-mediated ROS accumulation. Collectively, our studies revealed that HuR could regulate NLRP3 expression and that HuR deficiency abrogated the enhanced NLRP3 signaling in experimental ischemic stroke. Targeting HuR may be a novel therapeutic strategy for cerebral ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingfeng Zhao
- Department of Pathology, Binzhou Medical University, Binzhou, China
| | - Xiulian Lu
- Cisen Pharmaceutical Co., Ltd, Jining, China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Shaobin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruo Gong
- Cisen Pharmaceutical Co., Ltd, Jining, China
| | - Hao Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guoliang Qi
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Xu Y, Yang Y, Chen X, Jiang D, Zhang F, Guo Y, Hu B, Xu G, Peng S, Wu L, Hu J. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl Neurodegener 2023; 12:49. [PMID: 37915104 PMCID: PMC10621314 DOI: 10.1186/s40035-023-00381-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cognitive impairment is a multifactorial and multi-step pathological process that places a heavy burden on patients and the society. Neuroinflammation is one of the main factors leading to cognitive impairment. The inflammasomes are multi-protein complexes that respond to various microorganisms and endogenous danger signals, helping to initiate innate protective responses in inflammatory diseases. NLRP3 inflammasomes produce proinflammatory cytokines (interleukin IL-1β and IL-18) by activating caspase-1. In this review, we comprehensively describe the structure and functions of the NLRP3 inflammasome. We also explore the intrinsic relationship between the NLRP3 inflammasome and cognitive impairment, which involves immune cell activation, cell apoptosis, oxidative stress, mitochondrial autophagy, and neuroinflammation. Finally, we describe NLRP3 inflammasome antagonists as targeted therapies to improve cognitive impairment.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Xi Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yao Guo
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
19
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
20
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Bresciani G, Manai F, Davinelli S, Tucci P, Saso L, Amadio M. Novel potential pharmacological applications of dimethyl fumarate-an overview and update. Front Pharmacol 2023; 14:1264842. [PMID: 37745068 PMCID: PMC10512734 DOI: 10.3389/fphar.2023.1264842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.
Collapse
Affiliation(s)
- Giorgia Bresciani
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, Rome, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
李 洪, 邓 宇, 王 添, 黄 克, 于 传, 陈 朝. [ Danshenxinkun B protects human umbilical vein endothelial cells against ox-LDL-induced injury by inhibiting pyroptosis and the NF-κB/NLRP3 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1425-1431. [PMID: 37712281 PMCID: PMC10505567 DOI: 10.12122/j.issn.1673-4254.2023.08.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To investigate the protective effect of Danshenxinkun B against oxidized low-density lipoprotein (ox-LDL)- induced human umbilical vein endothelial cell (HUVEC) injury and explore the underlying mechanism. METHODS HUVECs cultured in the presence of 10% fetal bovine serum were treated with ox-LDL (100 μg/mL), ox-LDL+0.1% dimethyl sulfoxide (DMSO), or ox-LDL+Danshenxinkun B (100 ng/mL, dissolved in DMSO) for 24 h. The changes in lactate dehydrogenase (LDH) release was detected, and qRT-PCR was used to detect the mRNA expressions of nuclear factor-κB1 (NF-κB1), nucleotide binding oligomerization domain-like receptor family pyrin domain protein 3 (NLRP3), gasdermin D (GSDMD) and interleukin- 1β (IL-1β). The protein expressions of NF-κB1, NLRP3, caspase-1, IL-1β and GSDMD-N were detected with Western blotting. Immunofluorescence assay was performed to examine the changes in GSDMD expression in the cells. RESULTS Compared with the normal control cells, the cells treated with ox-LDL alone or in combination with DMSO exhibited significantly increased LDH release, mRNA expressions of NF-κB1, NLRP3, GSDMD, and IL- 1β and the protein levels of NF-κB1, NLRP3, IL- 1β, GSDMD-N and caspase-1 (P<0.01), which were all significantly lowered by treatment with Danshenxinkun B (P<0.05 or 0.01). Danshenxinkun B treatment significantly inhibited GSDMD expression on the cell membrane and restricted its entry into the cell nucleus. CONCLUSION Danshenxinkun B alleviates ox-LDL-induced HUVEC injury possibly by suppressing pyroptosis mediated by NLRP3 inflammatory bodies and inhibiting the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- 洪涛 李
- 广州中医药大学,广东 广州 510006Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - 宇 邓
- 广州中医药大学,广东 广州 510006Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - 添乐 王
- 广州中医药大学,广东 广州 510006Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - 克勇 黄
- 连山县小三江镇中心卫生院,广东 清远 513224Township Center Hospital of Xiaosanjiang Town, Qingyuan 513224, China
| | - 传沛 于
- 连山县小三江镇中心卫生院,广东 清远 513224Township Center Hospital of Xiaosanjiang Town, Qingyuan 513224, China
| | - 朝俊 陈
- 广州中医药大学附属广州中西医结合医院脑病科,广东 广州 510800Department of Neurology, Guangzhou Hospital of Integrated Traditional and West Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510800, China
| |
Collapse
|
23
|
Wu J, Ma W, Qiu Z, Zhou Z. Roles and mechanism of IL-11 in vascular diseases. Front Cardiovasc Med 2023; 10:1171697. [PMID: 37304948 PMCID: PMC10250654 DOI: 10.3389/fcvm.2023.1171697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, effective treatment strategies that can reduce the risk of vascular diseases are urgently needed. The relationship between Interleukin-11 (IL-11) and development of vascular diseases has gained increasing attention. IL-11, a target for therapeutic research, was initially thought to participate in stimulating platelet production. Additional research concluded that IL-11 is effective in treating several vascular diseases. However, the function and mechanism of IL-11 in these diseases remain unknown. This review summarizes IL-11 expression, function, and signal transduction mechanism. This study also focuses on the role of IL-11 in coronary artery disease, hypertension, pulmonary hypertension, cerebrovascular disease, aortic disease, and other vascular diseases and its potential as a therapeutic target. Consequently, this study provides new insight into the clinical diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Prakash R, Vyawahare A, Sakla R, Kumari N, Kumar A, Ansari MM, Jori C, Waseem A, Siddiqui AJ, Khan MA, Robertson AAB, Khan R, Raza SS. NLRP3 Inflammasome-Targeting Nanomicelles for Preventing Ischemia-Reperfusion-Induced Inflammatory Injury. ACS NANO 2023; 17:8680-8693. [PMID: 37102996 DOI: 10.1021/acsnano.3c01760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Rahul Sakla
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Neha Kumari
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | - Abu Junaid Siddiqui
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| | | | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow 226003, India
| |
Collapse
|
25
|
Lian L, Le Z, Wang Z, Chen YA, Jiao X, Qi H, Hejtmancik JF, Ma X, Zheng Q, Ren Y. SIRT1 Inhibits High Glucose-Induced TXNIP/NLRP3 Inflammasome Activation and Cataract Formation. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 36881408 PMCID: PMC10007902 DOI: 10.1167/iovs.64.3.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Purpose To determine whether SIRT1 regulates high glucose (HG)-induced inflammation and cataract formation through modulating TXNIP/NLRP3 inflammasome activation in human lens epithelial cells (HLECs) and rat lenses. Methods HG stress from 25 to 150 mM was imposed on HLECs, with treatments using small interfering RNAs (siRNAs) targeting NLRP3, TXNIP, and SIRT1, as well as a lentiviral vector (LV) for SIRT1. Rat lenses were cultivated with HG media, with or without the addition of NLRP3 inhibitor MCC950 or SIRT1 agonist SRT1720. High mannitol groups were applied as the osmotic controls. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of SIRT1, TXNIP, NLRP3, ASC, and IL-1β. Reactive oxygen species (ROS) generation, cell viability, and death were also assessed. Results HG stress induced a decline in SIRT1 expression and caused TXNIP/NLRP3 inflammasome activation in a concentration-dependent manner in HLECs, which was not observed in the high mannitol-treated groups. Knocking down NLRP3 or TXNIP inhibited NLRP3 inflammasome-induced IL-1β p17 secretion under HG stress. Transfections of si-SIRT1 and LV-SIRT1 exerted inverse effects on NLRP3 inflammasome activation, suggesting that SIRT1 acts as an upstream regulator of TXNIP/NLRP3 activity. HG stress induced lens opacity and cataract formation in cultivated rat lenses, which was prevented by MCC950 or SRT1720 treatment, with concomitant reductions in ROS production and TXNIP/NLRP3/IL-1β expression levels. Conclusions The TXNIP/NLRP3 inflammasome pathway promotes HG-induced inflammation and HLEC pyroptosis, which is negatively regulated by SIRT1. This suggests viable strategies for treating diabetic cataract.
Collapse
Affiliation(s)
- Lili Lian
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenmin Le
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying-Ao Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hang Qi
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaoyin Ma
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yueping Ren
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Lin G, Li N, Li D, Chen L, Deng H, Wang S, Tang J, Ouyang W. Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int Immunopharmacol 2023; 116:109819. [PMID: 36738671 DOI: 10.1016/j.intimp.2023.109819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Carnosic acid (CA) is a polyphenolic diterpene from rosemary extract with anti-tumor and anti-inflammatory activities. Numerous reports have focused on its anti-tumor ability, while the exact mechanisms underlying its anti-inflammation remains unclear. Here, we have identified that CA is a potent inhibitor of NLRP3 inflammasome in vitro and in vivo. CA not only reduces NLRP3 expression by blocking NF-κB activation, but also inhibits NLRP3 inflammasome assembly and activation by suppressing mitochondrial ROS production and interrupting NLRP3-NEK7 interaction. Furthermore, in mouse models, CA alleviates lipopolysaccharide-induced acute systemic inflammation and MSU-induced peritonitis via NLRP3. Taken together, our data demonstrated the inhibitory effect of CA on NLRP3 inflammasome and pointed out the potential application of CA in the treatment of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Guoxin Lin
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Nannan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Dan Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Lu Chen
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Saiying Wang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| |
Collapse
|
27
|
Tian K, Yang Y, Zhou K, Deng N, Tian Z, Wu Z, Liu X, Zhang F, Jiang Z. The role of ROS-induced pyroptosis in CVD. Front Cardiovasc Med 2023; 10:1116509. [PMID: 36873396 PMCID: PMC9978107 DOI: 10.3389/fcvm.2023.1116509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the world and seriously threatens human health. Pyroptosis is a new type of cell death discovered in recent years. Several studies have revealed that ROS-induced pyroptosis plays a key role in CVD. However, the signaling pathway ROS-induced pyroptosis has yet to be fully understood. This article reviews the specific mechanism of ROS-mediated pyroptosis in vascular endothelial cells, macrophages, and cardiomyocytes. Current evidence shows that ROS-mediated pyroptosis is a new target for the prevention and treatment of cardiovascular diseases such as atherosclerosis (AS), myocardial ischemia-reperfusion injury (MIRI), and heart failure (HF).
Collapse
Affiliation(s)
- Kaijiang Tian
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Yu Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Nianhua Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Zhen Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Zefan Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Xiyan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Fan Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
28
|
Fan X, Chen H, Jiang F, Xu C, Wang Y, Wang H, Li M, Wei W, Song J, Zhong D, Li G. Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke. Front Neurol 2023; 13:1077178. [PMID: 36818726 PMCID: PMC9933552 DOI: 10.3389/fneur.2022.1077178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background Immune infiltration plays an important role in the course of ischemic stroke (IS) progression. Cuproptosis is a newly discovered form of programmed cell death. To date, no studies on the mechanisms by which cuproptosis-related genes regulate immune infiltration in IS have been reported. Methods IS-related microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database and standardized. Immune infiltration was extracted and quantified based on the processed gene expression matrix. The differences between the IS group and the normal group as well as the correlation between the infiltrating immune cells and their functions were analyzed. The cuproptosis-related DEGs most related to immunity were screened out, and the risk model was constructed. Finally, Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and drug target were performed using the Enrichr website database. miRNAs were predicted using FunRich software. Finally, cuproptosis-related differentially expressed genes (DEGs) in IS samples were typed, and Gene Set Variation Analysis (GSVA) was used to analyze the differences in biological functions among the different types. Results Seven Cuproptosis-related DEGs were obtained by merging the GSE16561 and GSE37587 datasets. Correlation analysis of the immune cells showed that NLRP3, NFE2L2, ATP7A, LIPT1, GLS, and MTF1 were significantly correlated with immune cells. Subsequently, these six genes were included in the risk study, and the risk prediction model was constructed to calculate the total score to analyze the risk probability of the IS group. KEGG analysis showed that the genes were mainly enriched in the following two pathways: D-glutamine and D-glutamate metabolism; and lipids and atherosclerosis. Drug target prediction found that DMBA CTD 00007046 and Lithocholate TTD 00009000 were predicted to have potential therapeutic effects of candidate molecules. GSVA showed that the TGF-β signaling pathway and autophagy regulation pathways were upregulated in the subgroup with high expression of cuproptosis-related DEGs. Conclusions NLRP3, NFE2L2, ATP7A, LIPT1, GLS and MTF1 may serve as predictors of cuproptosis and play an important role in the pathogenesis of immune infiltration in IS.
Collapse
|
29
|
Li MC, Tian Q, Liu S, Han SM, Zhang W, Qin XY, Chen JH, Liu CL, Guo YJ. The mechanism and relevant mediators associated with neuronal apoptosis and potential therapeutic targets in subarachnoid hemorrhage. Neural Regen Res 2023; 18:244-252. [PMID: 35900398 PMCID: PMC9396483 DOI: 10.4103/1673-5374.346542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a dominant cause of death and disability worldwide. A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neurons, which subsequently promotes a series of pathophysiological responses leading to neuronal death. Many previous experimental studies have reported that excitotoxicity, mitochondrial death pathways, the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy, and inflammation are involved solely or in combination in this disorder. Among them, irreversible neuronal apoptosis plays a key role in both short- and long-term prognoses after SAH. Neuronal apoptosis occurs through multiple pathways including extrinsic, mitochondrial, endoplasmic reticulum, p53 and oxidative stress. Meanwhile, a large number of blood contents enter the subarachnoid space after SAH, and the secondary metabolites, including oxygenated hemoglobin and heme, further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema, causing early brain injury and delayed cerebral ischemia, and ultimately increasing neuronal apoptosis. Even there is no clear and effective therapeutic strategy for SAH thus far, but by understanding apoptosis, we might excavate new ideas and approaches, as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH. In this review, we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH, which provides a possible target or new strategy for the treatment of SAH.
Collapse
|
30
|
Sohaei D, Hollenberg M, Janket SJ, Diamandis EP, Poda G, Prassas I. The therapeutic relevance of the Kallikrein-Kinin axis in SARS-cov-2-induced vascular pathology. Crit Rev Clin Lab Sci 2023; 60:25-40. [PMID: 35930434 DOI: 10.1080/10408363.2022.2102578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While coronavirus disease 2019 (COVID-19) begins as a respiratory infection, it progresses as a systemic disease involving multiorgan microthromboses that underly the pathology. SARS-CoV-2 enters host cells via attachment to the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is widely expressed in a multitude of tissues, including the lung (alveolar cells), heart, intestine, kidney, testis, gallbladder, vasculature (endothelial cells), and immune cells. Interference in ACE2 signaling could drive the aforementioned systemic pathologies, such as endothelial dysfunction, microthromboses, and systemic inflammation, that are typically seen in patients with severe COVID-19. ACE2 is a component of the renin-angiotensin system (RAS) and is intimately associated with the plasma kallikrein-kinin system (KKS). As many papers are published on the role of ACE and ACE2 in COVID-19, we will review the role of bradykinin, and more broadly the KSS, in SARS-CoV-2-induced vascular dysfunction. Furthermore, we will discuss the possible therapeutic interventions that are approved and in development for the following targets: coagulation factor XII (FXII), tissue kallikrein (KLK1), plasma kallikrein (KLKB1), bradykinin (BK), plasminogen activator inhibitor (PAI-1), bradykinin B1 receptor (BKB1R), bradykinin B2 receptor (BKB2R), ACE, furin, and the NLRP3 inflammasome. Understanding these targets may prove of value in the treatment of COVID-19 as well as in other virus-induced coagulopathies in the future.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Morley Hollenberg
- Department of Medicine, Faculty of Medicine, University of Calgary, Alberta, Canada
| | - Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute, Cambridge, MA, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
31
|
Cyproterone Acetate Mediates IRE1α Signaling Pathway to Alleviate Pyroptosis of Ovarian Granulosa Cells Induced by Hyperandrogen. BIOLOGY 2022; 11:biology11121761. [PMID: 36552271 PMCID: PMC9775519 DOI: 10.3390/biology11121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Hyperandrogenemia (HA) is the main pathophysiological change that takes place in polycystic ovary syndrome (PCOS). Cyproterone acetate (CYA) is a drug commonly used to reduce androgen in patients with PCOS. Long-term and continuous exposure to HA can cause ovarian granulosa cells (GCs), pyroptotic death, and follicular dysfunction in PCOS mice. The aim of this study was to investigate whether CYA could ameliorate the hyperandrogenemia-induced pyroptosis of PCOS ovarian GCs by alleviating the activation of the IRE1α signaling pathway. METHODS Firstly, thirty PCOS patients with HA as their main clinical manifestation were selected as the study group, and thirty non-PCOS patients were selected as the control group. The GCs and follicular fluid of the patients were collected, and the expression of pyroptosis-related proteins was detected. Secondly, a PCOS mouse model induced by dehydroepiandrosterone (DHEA) was constructed, and the treatment group model was constructed with the subcutaneous injection of cyproterone acetate in PCOS mice. The expression of pyroptosis-related protein in ovarian GCs was detected to explore the alleviating effect of CYA on the pyroptosis of ovarian GCs in PCOS mice. Thirdly, KGN cells-i.e., from the human GC line-were cultured with dihydrotestosterone, CYA, and ERN1 (IRE1α gene) small interfering RNA in vitro to explore whether CYA can alleviate the activation of the IRE1α signaling pathway and ameliorate the hyperandrogenemia-induced pyroptosis of PCOS ovarian GCs. RESULTS The expression of pyroptosis-related proteins was significantly increased in ovarian GCs of PCOS patients with HA as the main clinical manifestation, and in the PCOS mouse model induced by DHEA. After treatment with CYA, the expression of pyroptosis-related proteins in the ovarian GCs of mice was significantly lower than that in PCOS mice. In vitro experiments showed that CYA could ameliorate KGN cells' pyroptosis by alleviating the activation of the IRE1α signaling pathway. CONCLUSION This study showed that CYA could ameliorate the activation of the IRE1α signaling pathway in mouse GCs and KGN cells, and also alleviate pyroptosis in ovarian GCs. This study provides a new mechanism and evidential support for CYA in the treatment of PCOS patients.
Collapse
|
32
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
33
|
The selective NLRP3 inflammasome inhibitor MCC950 improves isoproterenol-induced cardiac dysfunction by inhibiting cardiomyocyte senescence. Eur J Pharmacol 2022; 937:175364. [DOI: 10.1016/j.ejphar.2022.175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
34
|
Puleo MG, Miceli S, Di Chiara T, Pizzo GM, Della Corte V, Simonetta I, Pinto A, Tuttolomondo A. Molecular Mechanisms of Inflammasome in Ischemic Stroke Pathogenesis. Pharmaceuticals (Basel) 2022; 15:1168. [PMID: 36297283 PMCID: PMC9612213 DOI: 10.3390/ph15101168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (also called cerebral ischemia) is one of the leading causes of death and severe disability worldwide. NLR inflammasomes play a crucial role in sensing cell damage in response to a harmful stimuli and modulating the inflammatory response, promoting the release of pro-inflammatory cytokines such as IL-18 and IL-1β following ischemic injury. Therefore, a neuroprotective effect is achieved by inhibiting the expression, assembly, and secretion of inflammasomes, thus limiting the extent of brain detriment and neurological sequelae. This review aims to illustrate the molecular characteristics, expression levels, and assembly of NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin-domain-containing 3) inflammasome, the most studied in the literature, in order to discover promising therapeutic implications. In addition, we provide some information regarding the contribution of NLRP1, NLRP2, and NLRC4 inflammasomes to ischemic stroke pathogenesis, highlighting potential therapeutic strategies that require further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
35
|
Serum concentrations of NLRP3 in relation to functional outcome and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2022; 536:61-69. [PMID: 36165860 DOI: 10.1016/j.cca.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) participates in neuroinflammation. We endeavored to determine the role of serum NLRP3 as a biomarker of neuroinflammation, severity, delayed cerebral ischemia (DCI) and functional outcome following aneurysmal subarachnoid hemorrhage (aSAH). METHODS In this prospective and observational study, a total of 118 aSAH patients and 118 healthy volunteers were enrolled. Serum NLRP3 concentrations, blood glucose concentrations, serum C-reactive protein concentrations, and blood leucocyte counts were quantified. A poor outcome was defined as extended Glasgow outcome scale scores of 1-4 at post-injury 90 days. RESULTS As compared to controls, significantly increased serum NLRP3 concentrations after aSAH were intimately correlated with the Glasgow coma scale scores, World Federation of Neurological Surgeons scale scores, Hunt-Hess scores, modified Fisher scores, extended Glasgow outcome scale scores, blood glucose concentrations, serum C-reactive protein concentrations and blood leucocyte counts. Serum NLRP3 emerged as an independent predictor for DCI and poor 90-day outcome. Using receiver operating characteristic curve, serum NLRP3 concentrations were significantly predictive of DCI and poor 90-day outcome. Its prognostic predictive ability was comparable to those of the Glasgow coma scale scores, World Federation of Neurological Surgeons scale scores, Hunt-Hess scores and modified Fisher scores. CONCLUSIONS Serum NLRP3 may represent an inflammatory biomarker in relation to the severity, DCI and poor functional outcome after aSAH.
Collapse
|
36
|
Tao YW, Yang L, Chen SY, Zhang Y, Zeng Y, Wu JS, Meng XL. Pivotal regulatory roles of traditional Chinese medicine in ischemic stroke via inhibition of NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115316. [PMID: 35513214 DOI: 10.1016/j.jep.2022.115316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have demonstrated the powerful neuroprotection abilities of multiple traditional Chinese medicines (TCMs) against NLRP3 inflammasome-mediated ischemic cerebral injury. These TCMs may be in the form of TCM prescriptions, Chinese herbal medicines and their extracts, and TCM monomers. AIM OF THE STUDY This review aimed to analyze and summarize the existing knowledge on the assembly and activation of the NLRP3 inflammasome and its role in the pathogenesis of ischemic stroke (IS). We also summarized the mechanism of action of the various TCMs on the NLRP3 inflammasome, which may provide new insights for the management of IS. MATERIALS AND METHODS We reviewed recently published articles by setting the keywords "NLRP3 inflammasome" and "traditional Chinese medicines" along with "ischemic stroke"; "NLRP3 inflammasome" and "ischemic stroke" along with "natural products" and so on in Pubmed and GeenMedical. RESULTS According to recent studies, 16 TCM prescriptions (officially authorized products and clinically effective TCM prescriptions), 7 Chinese herbal extracts, and 29 TCM monomers show protective effects against IS through anti-inflammatory, anti-oxidative stress, anti-apoptotic, and anti-mitochondrial autophagy effects. CONCLUSIONS In this review, we analyzed studies on the involvement of NLRP3 in IS therapy. Further, we comprehensively and systematically summarized the current knowledge to provide a reference for the further application of TCMs in the treatment of IS.
Collapse
Affiliation(s)
- Yi-Wen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shi-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia-Si Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
37
|
Díaz-García E, Nanwani-Nanwani K, García-Tovar S, Alfaro E, López-Collazo E, Quintana-Díaz M, García-Rio F, Cubillos-Zapata C. NLRP3 Inflammasome Overactivation in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2022; 14:334-346. [PMID: 35819747 PMCID: PMC10160181 DOI: 10.1007/s12975-022-01064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is an uncommon and severe subtype of stroke leading to the loss of many years of productive life. We analyzed NLRP3 activity as well as key components of the inflammasome cascade in monocytes and plasma from 28 patients with aSAH and 14 normal controls using flow cytometry, western blot, ELISA, and qPCR technologies. Our data reveal that monocytes from patients with aSAH present an overactivation of the NLRP3 inflammasome, which results in the presence of high plasma levels of interleukin (IL)-1β, IL-18, gasdermin D, and tissue factor. Although further research is needed, we propose that serum tissue factor concentration might be a useful prognosis biomarker for clinical outcome, and for Tako-Tsubo cardiomyopathy and cerebral vasospasm prediction. Remarkably, MCC-950 inhibitor effectively blocks NLRP3 activation in aSAH monocyte culture and supresses tissue factor release to the extracellular space. Finally, our findings suggest that NLRP3 activation could be due to the release of erythrocyte breakdown products to the subarachnoid space during aSAH event. These data define NLRP3 activation in monocytes from aSAH patients, indicating systemic inflammation that results in serum TF upregulation which in turns correlates with aSAH severity and might serve as a prognosis biomarker for aSAH clinical outcome and for cerebral vasospasm and Tako-Tsubo cardiomyopathy prediction.
Collapse
Affiliation(s)
- Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.
| | | | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - Manuel Quintana-Díaz
- Department of Intensive Care Medicine, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco García-Rio
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
38
|
Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H, Huang X, Yang W, Wang Q. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation 2022; 19:137. [PMID: 35689216 PMCID: PMC9188164 DOI: 10.1186/s12974-022-02511-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Neuroinflammation-induced injury is intimately associated with poor prognosis in patients with cerebral venous sinus thrombosis (CVST). The cyclic GMP-AMP synthase–stimulator of interferon gene (cGAS–STING) axis is a cytoplasmic double-stranded DNA (dsDNA) sensing pathway has recently emerged as a crucial mediator of neuroinflammation in ischemic stroke. However, the role of the cGAS–STING pathway in modulating post-CVST inflammation and the underlying mechanisms involved remain unclear. Methods A CVST model was induced by ferric chloride in male C57BL/6J mice. The selective cGAS inhibitor RU.521, STING agonist 2′3′-cGAMP, and STING siRNA were delivered by intranasal administration or intraventricular injection. Post-CVST assessments included rotarod test, TUNEL staining, Fluoro-Jade C staining, dihydroethidium staining, western blotting, qPCR, immunofluorescence, immunohistochemistry, ELISA and flow cytometry. Results cGAS, STING, NLRP3 and GSDMD were significantly upregulated after CVST and mostly in the microglia of the mouse brain. CVST triggered the release of dsDNA into the cytoplasm and elicited an inflammatory response via activating the cGAS–STING axis. RU.521 decreased the levels of 2′3′-cGAMP, STING and downstream inflammatory cytokines, and suppressed the expressions of NLRP3 inflammasome and pyroptosis-pertinent components containing cleaved caspase-1, GSDMD, GSDMD-C, pro- and cleaved IL-1β, and cleaved IL-1β/pro-IL-1β. Besides, RU.521 treatment also reduced oxidative stress, lessened the numbers of microglia and neutrophils, and ameliorated neuronal apoptosis, degeneration along with neurological deficits post-CVST. 2′3'-cGAMP delivery enhanced the expressions of STING and related inflammatory mediators, NLRP3 inflammasome and pyroptosis-relevant proteins, whereas these alterations were significantly abrogated by the silencing of STING by siRNA. Conclusions Our data demonstrate that repression of the cGAS–STING pathway diminishes the neuroinflammatory burden of CVST and highlight this approach as a potential therapeutic tactic in CVST-mediated pathologies. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02511-0.
Collapse
Affiliation(s)
- Rui Ding
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Haiyan Li
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, Guangdong, China
| | - Yaqi Liu
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Weiyang Ou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xifang Zhang
- Dongguan Kanghua Hospital, 1000# Dongguan Avenue, Dongguan, 523000, Guangdong Province, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiaofei Huang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Weijie Yang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Qiujing Wang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
39
|
Cheng F, Wang N. N-Lobe of TXNIP Is Critical in the Allosteric Regulation of NLRP3 via TXNIP Binding. Front Aging Neurosci 2022; 14:893919. [PMID: 35721021 PMCID: PMC9201253 DOI: 10.3389/fnagi.2022.893919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammasomes are cytoplasmic complexes that form in response to exogenous microbial invasions and endogenous damage signals. Among the known inflammasomes, the activation of the NACHT (NAIP, CIITA, HET-E, and TP1 domain), leucine-rich repeat, and pyrin domain containing protein 3 (NLRP3) inflammasome is also primarily related to neuroinflammation and nerve cell damage. Previous studies reported that under the stimulation of dangerous signals like reactive oxygen species (ROS), the overexpression and interaction of thioredoxin-interacting protein (TXNIP) with NLRP3 may trigger the inflammatory response through the ROS/TXNIP/NLRP3 signaling pathway. This inflammatory response is the pathophysiological basis of some neurological and neurodegenerative diseases. The activation of inflammasome and apoptosis caused by TXNIP are widespread in brain diseases. Previous report has suggested the TXNIP/NLRP3 interaction interface. However, the comprehensive model of the TXNIP/NLRP3 interaction is still unclear. In this study, molecular docking experiments based on the existing crystal model of NLRP3 were performed to investigate the binding of TXNIP and NLRP3. Three in silico models of the TXNIP/NLRP3 complex were selected, and molecular dynamics simulations evaluated the binding stability of the possible interaction between the two proteins. The results revealed that the E690, E693, and D745 residues in NLRP3 and the K212 and R238 residues in TXNIP play a critical role in the TXNIP/NLRP3 interaction. N-terminal of TXNIP is essential in promoting the conformational changes of NLRP3, although it does not directly bind to NLRP3. Our findings reveal the possible binding mechanism between TXNIP and NLRP3 and the associated allosteric regulation of NLRP3. The constructed models may also be useful for inhibitor development targeting the TXNIP/NLRP3 interaction during inflammasome activation via the ROS/TXNIP/NLRP3 pathway.
Collapse
|
40
|
Shi J, Tang Y, Liang F, Liu L, Liang N, Yang X, Zhang N, Yi Z, Zhong Y, Wang W, Zhao K. NLRP3 inflammasome contributes to endotoxin-induced coagulation. Thromb Res 2022; 214:8-15. [DOI: 10.1016/j.thromres.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
|
41
|
Jiang S, Fan F, Yang L, Chen K, Sun Z, Zhang Y, Cairang N, Wang X, Meng X. Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway. Eur J Pharmacol 2022; 925:175015. [PMID: 35561751 DOI: 10.1016/j.ejphar.2022.175015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Salidroside (Sal), an active ingredient from Rhodiola crenulate, has been reported to exert neuroprotection in cerebral injury from hypobaric hypoxia (HH) at high altitude. However, it remains to be understood whether its protective effects are related to inflammation suppression. In the present work, we aimed to reveal the mechanism of Sal attenuating HH-induced brain injury in mice caused by an animal hypobaric and hypoxic chamber. Our results provided that Sal could attenuate HH-evoked pathological injury and oxidative stress response by decreasing the content of ROS and MDA, and elevating the activities of SOD and GSH-Px. Sal treatment could partly enhance the energy metabolism, evidenced by increasing the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, ATP, SDH, HK and PK, while decreasing the release of LDH and LD. Meanwhile, Sal administration reversed the degradation of tight junction proteins ZO-1, Occludin and Claudin-5. Further, the increased levels of TNF-α, IL-1β and IL-6 were confined with Sal administration under the HH condition. Importantly, Sal could downregulate the proteins expression of p-NF-κB-p65, NLRP3, cleaved-Caspase-1 and ASC. Sal also decreased the protein expression of iNOS and COX2 with the increased CD206 and Arg1 expression. Taken together, these data provided that the inhibited NF-κB/NLRP3 pathway by Sal could attenuate HH-induced cerebral oxidative stress injury, inflammatory responses and the blood brain barrier (BBB) damage, attributing to the improved energy metabolism and the microglial phenotype of anti-inflammatory M2. The findings suggested that Sal was expected to be a promising anti-inflammatory agent for high altitude HH-induced brain injury.
Collapse
Affiliation(s)
- Shengnan Jiang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lu Yang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ke Chen
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihao Sun
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nanjia Cairang
- University of Tibetan Medicine, Lasa, Tibet, 850000, China.
| | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
42
|
Zheng Y, Tang W, Zeng H, Peng Y, Yu X, Yan F, Cao S. Probenecid-Blocked Pannexin-1 Channel Protects Against Early Brain Injury via Inhibiting Neuronal AIM2 Inflammasome Activation After Subarachnoid Hemorrhage. Front Neurol 2022; 13:854671. [PMID: 35401398 PMCID: PMC8983901 DOI: 10.3389/fneur.2022.854671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Previous studies have proved that inhibiting inflammasome activation provides neuroprotection against early brain injury (EBI) after subarachnoid hemorrhage (SAH), which is mainly focused on the microglial inflammatory response, but the potential role of neuronal inflammasome activation in EBI has not been clearly identified. This study examined whether the pannexin-1 channel inhibitor probenecid could reduce EBI after SAH by inhibiting neuronal AIM2 inflammasome activation. Methods There are in vivo and in vitro parts in this study. First, adult male SD rats were subjected to the endovascular perforation mode of SAH. The time course of pannexin-1 and AIM2 expressions were determined after SAH in 72 h. Brain water content, neurological function, AIM2 inflammasome activation, and inflammatory response were evaluated at 24 h after SAH in sham, SAH, and SAH + probenecid groups. In the in vitro part, HT22 cell treated with hemin was applied to mimic SAH. The expression of AIM2 inflammasome was detected by immunofluorescence staining. Neuronal death and mitochondrial dysfunction were determined by the LDH assay kit and JC-1 staining. Results The pannexin-1 and AIM2 protein levels were upregulated after SAH. Pannexin-1 channel inhibitor probenecid attenuated brain edema and improved neurological dysfunction by reducing AIM2 inflammasome activation and reactive oxygen species (ROS) generation after SAH in rats. Treating HT22 cells with hemin for 12 h resulted in AIM2 and caspase-1 upregulation and increased mitochondrial dysfunction and neuronal cell death. Probenecid significantly attenuated the hemin-induced AIM2 inflammasome activation and neuronal death. Conclusions AIM2 inflammasome is activated in neurons after SAH. Pharmacological inhibition of the pannexin-1 channel by probenecid attenuated SAH-induced AIM2 inflammasome activation and EBI in vivo and hemin-induced AIM2 inflammasome activation and neuronal death in vitro.
Collapse
Affiliation(s)
- Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Tang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Activation of RKIP Binding ASC Attenuates Neuronal Pyroptosis and Brain Injury via Caspase-1/GSDMD Signaling Pathway After Intracerebral Hemorrhage in Mice. Transl Stroke Res 2022; 13:1037-1054. [PMID: 35355228 DOI: 10.1007/s12975-022-01009-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Pyroptosis has been proven to be responsible for secondary brain injury after intracerebral hemorrhage (ICH). A recent study reported that Raf kinase inhibitor protein (RKIP) inhibited assembly and activation of inflammasome in macrophages. Our present study aimed to investigate the effects of RKIP on inflammasome-mediated neuronal pyroptosis and underlying neuroprotective mechanisms in experimental ICH. Here, we showed that RKIP expression was decreased both in cerebrospinal fluid (CSF) samples from patients with ICH and in the peri-hematoma tissues after experimental ICH. In mouse ICH model, activation of RKIP remarkably improved neurological deficits, reduced brain water content and BBB disruption, and promoted hematoma absorption at 24 h after ICH, as well as alleviated neuronal degeneration, reduced membrane pore formation, and downregulated pyroptotic molecules NLRP3, caspase-1 P20, GSDMD-N, and mature IL-1β. Besides, RKIP activation decreased the number of caspase-1 P20-positive neurons after ICH. However, RKIP inhibitor reserved the neuroprotective effects of RKIP at 24 h following ICH. Moreover, RKIP could bind with ASC, then interrupt the assembly of NLRP3 inflammasome. Mechanistically, inhibiting the caspase-1 by VX-765 attenuated brain injury and suppressed neuronal pyroptosis after RKIP inhibitor-pretreated ICH. In conclusion, our findings indicated that activation of RKIP could attenuate neuronal pyroptosis and brain injury after ICH, to some extent, through ASC/Caspase-1/GSDMD pathway. Thus, RKIP may be a potential target to attenuate brain injury via its anti-pyroptosis effect after ICH.
Collapse
|
44
|
Jiedu-Yizhi Formula Improves Cognitive Impairment in an A β 25-35-Induced Rat Model of Alzheimer's Disease by Inhibiting Pyroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6091671. [PMID: 35341145 PMCID: PMC8942661 DOI: 10.1155/2022/6091671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Jiedu-Yizhi formula (JDYZF) is prescribed for the treatment of Alzheimer's disease (AD) and was created by Jixue Ren, a master of traditional Chinese medicine, based on the "marrow deficiency and toxin damage" theory. In our clinic, this formula has been used for the treatment of AD for many years and has achieved good results. However, the mechanism by which JDYZF improves cognitive impairment has not been determined. In this study, we confirmed that orally administered JDYZF reversed the cognitive deficits in an Aβ 25-35-induced rat model, increased the number of neurons in the hippocampal CA1 area, improved their structure, decreased the deposition of β-amyloid (Aβ), reduced the expression of proteins related to the NLRP3/Caspase-1/GSDMD and LPS/Caspase-11/GSDMD pyroptosis pathways, and reduced the levels of interleukin 1β (IL-1β) and IL-18, thereby inhibiting the inflammatory response. In addition, JDYZF exerted no hepatotoxicity in rats. In short, these results provide scientific support for the clinical use of JDYZF to improve the cognitive function of patients with AD.
Collapse
|
45
|
Kasprzak Ł, Twardawa M, Formanowicz P, Formanowicz D. The Mutual Contribution of 3-NT, IL-18, Albumin, and Phosphate Foreshadows Death of Hemodialyzed Patients in a 2-Year Follow-Up. Antioxidants (Basel) 2022; 11:antiox11020355. [PMID: 35204237 PMCID: PMC8868576 DOI: 10.3390/antiox11020355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Patients with chronic kidney disease (CKD), especially those who are hemodialyzed (HD), are at significantly high risk of contracting cardiovascular disease and having increased mortality. This study aimed to find potential death predictors, the measurement of which may reflect increased mortality in HD patients, and then combine the most promising ones in frames of a simple death risk assessment model. For this purpose, HD patients (n=71) with acute myocardial infarction in the last year (HD group) and healthy people (control group) as a comparative group (n=32) were included in the study. Various laboratory determinations and non-invasive cardiovascular tests were performed. Next, patients were followed for two years, and data on cardiovascular (CV) deaths were collected. On this basis, two HD groups were formed: patients who survived (HD-A, n=51) and patients who died (HD-D, n=20). To model HD mortality, 21 out of 90 potential variables collected or calculated from the raw data were selected. The best explanatory power (95.5%) was reached by a general linear model with four variables: interleukin 18, 3-nitrotyrosine, albumin, and phosphate. The interplay between immuno-inflammatory processes, nitrosative and oxidative stress, malnutrition, and calcium-phosphate disorders has been indicated to be essential in predicting CV-related mortality in studied HD patients. ClinicalTrials.gov Identifier: NCT05214872.
Collapse
Affiliation(s)
- Łukasz Kasprzak
- Department of Nephrology with Dialysis Unit, Provincial Hospital in Leszno, 64-100 Leszno, Poland;
| | - Mateusz Twardawa
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland; (M.T.); (P.F.)
- ICT Security Department, Poznan Supercomputing and Networking Center Affiliated to the Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-139 Poznan, Poland
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland; (M.T.); (P.F.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence:
| |
Collapse
|
46
|
HBO Alleviates Neural Stem Cell Pyroptosis via lncRNA-H19/miR-423-5p/NLRP3 Axis and Improves Neurogenesis after Oxygen Glucose Deprivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9030771. [PMID: 35178162 PMCID: PMC8844101 DOI: 10.1155/2022/9030771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Due to the limited neurogenesis capacity, there has been a big challenge in better recovery from neurological dysfunction caused by stroke for a long time. Neural stem cell (NSC) programmed death is one of the unfavorable factors for neural regeneration after stroke. The types of death such as apoptosis and necroptosis have been deeply investigated while the pyroptosis of NSCs is not quite understood. Although it is well accepted that hyperbaric oxygen (HBO) alleviates the oxygen-glucose deprivation (OGD) injury after stroke and reduces programmed death of NSCs, whether NSC pyroptosis is involved in this process is still unknown. Therefore, this study is aimed at studying the potential effect of HBO treatment on NSC pyroptosis following OGD exposure, as well as its influence on NSC proliferation and differentiation in vitro. The results revealed that OGD increased NOD-like receptor protein 3 (NLRP3) expression to induce the pyroptotic death of NSCs, which was rescued by HBO treatment. And the upregulated lncRNA-H19 functioned as a molecular sponge of miR-423-5p to target NLRP3 for NSC pyroptosis following OGD. Most importantly, it was confirmed that HBO exerted protection of NSCs against pyroptosis by inhibiting lncRNA-H19/miR-423-5p/NLRP3 axis. Moreover, HBO restraint of lncRNA-H19-associated pyroptosis benefited the proliferation and neuronal differentiation of NSCs. It was concluded that HBO attenuated NSC pyroptosis via lncRNA-H19/miR-423-5p/NLRP3 axis and enhanced neurogenesis following OGD. The findings provide new insight into NSC programmed death and enlighten therapeutic strategy after stroke.
Collapse
|
47
|
Shi J, Xia Y, Wang H, Yi Z, Zhang R, Zhang X. Piperlongumine Is an NLRP3 Inhibitor With Anti-inflammatory Activity. Front Pharmacol 2022; 12:818326. [PMID: 35095532 PMCID: PMC8790537 DOI: 10.3389/fphar.2021.818326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Piperlongumine (PL) is an alkaloid from Piper longum L. with anti-inflammatory and antitumor properties. Numerous studies have focused on its antitumor effect. However, the underlying mechanisms of its anti-inflammation remain elusive. In this study, we have found that PL is a natural inhibitor of Nod-like receptor family pyrin domain-containing protein-3 (NLRP3) inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile inflammations. PL blocks NLRP3 activity by disrupting the assembly of NLRP3 inflammasome including the association between NLRP3 and NEK7 and subsequent NLRP3 oligomerization. Furthermore, PL suppressed lipopolysaccharide-induced endotoxemia and MSU-induced peritonitis in vivo, which are NLRP3-dependent inflammation. Thus, our study identified PL as an inhibitor of NLRP3 inflammasome and indicated the potential application of PL in NLRP3-relevant diseases.
Collapse
Affiliation(s)
- Jie Shi
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xia
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huihong Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhongjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruoruo Zhang
- Institute of Transplantation Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
48
|
Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis. Exp Neurol 2021; 349:113952. [PMID: 34921847 DOI: 10.1016/j.expneurol.2021.113952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022]
Abstract
As a primary nonpharmacological tool, exercise training is neuroprotective after experimental ischemic stroke by relieving neuroinflammation. However, the specific mechanism of which and anti-inflammatory effect of exercise at different intensities require in-depth investigations. To explore the issue, middle cerebral artery occlusion-reperfusion (MCAO-r) in mice were utilized, with subsequent exercise training at different intensities (high-intensity interval training versus moderate-intensity continuous training, i.e. HIIT vs. MICT) during an early phase post-modeling. The neurobehavioral assessment showed that MICT improved the performance of neurological deficit scores and rotarod test earlier, while HIIT appeared to be more efficacious to meliorate locomotor impairments and aerobic fitness at the end of intervention. Both exercise regimens inhibited the expressions of NLRP3 inflammasome components (NLRP3, ASC, and Cl.caspase-1) and pyroptosis-associated proteins (GSDMD, Cl.IL-1β, and Cl.IL-18) as indicated by western blot and immunofluorescence co-staining. Multiplex assay panel revealed that both exercise regimens reduced the levels of pro-inflammatory cytokines and upregulated anti-inflammatory cytokine. Furthermore, an increased proportion of M2-like microglia and a diminished proportion of M1-like microglia in the peri-infarct zone were observed by colocalization analysis, which was jointly validated by western blot. Here, for the first time, our study demonstrated that HIIT elicited better improvements at functional and cardiovascular levels than MICT after ischemic stroke, and anti-inflammatory effect of exercise might result from suppression in inflammasome-mediated pyroptosis by shifting microglial polarization toward neuroprotective M2 phenotype.
Collapse
|
49
|
Kućmierz J, Frąk W, Młynarska E, Franczyk B, Rysz J. Molecular Interactions of Arterial Hypertension in Its Target Organs. Int J Mol Sci 2021; 22:ijms22189669. [PMID: 34575833 PMCID: PMC8471598 DOI: 10.3390/ijms22189669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Arterial hypertension (AH) is a major risk factor for the development of cardiovascular diseases. It is estimated that the disease affects between 10% and 20% of the adult population and is responsible for 5.8% of all deaths worldwide. Several pathophysiologic factors are crucial in AH, including inappropriate activation of the renin-angiotensin-aldosterone system, oxidative stress and inflammation. The heart, kidney, brain, retina and arterial blood vessels are prime targets of hypertensive damage. Uncontrolled and untreated AH accelerates the damage to these organs and could cause their failure. Damage to these organs could also manifest as coronary heart disease, cognitive impairment, retinopathy or optic neuropathy. For better understanding, it is important to analyze molecular factors which take part in pathogenesis of AH and hypertension-related target organ damage. In our paper, we would like to focus on molecular interactions of AH in the heart, blood vessels, brain and kidneys. We focus on matrix metalloproteinases, the role of immune system, the renin-angiotensin-aldosterone system and oxidative stress in hypertensive induced organ damage.
Collapse
|
50
|
Barpujari A, Patel C, Zelmonovich R, Clark A, Patel D, Pierre K, Scott K, Lucke Wold B. Pharmaceutical Management for Subarachnoid Hemorrhage. RECENT TRENDS IN PHARMACEUTICAL SCIENCES AND RESEARCH 2021; 3:16-30. [PMID: 34984419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Aneurysmal subarachnoid hemorrhage can have deleterious consequences. Vasospasm, delayed cerebral ischemia, and re-hemorrhage can all cause delayed sequelae. Furthermore, severe headaches are common and require careful modulation of pain medications. Limited treatment options currently exist and are becoming more complex with the rising use of oral anticoagulants needing reversal. In this review, we highlight the current treatment options currently employed and address avenues of future discovery based on emerging preclinical data. Furthermore, we dive into the best treatment approach for managing headaches following subarachnoid hemorrhage. The review is designed to serve as a catalyst for further prospective investigation into this important topic.
Collapse
Affiliation(s)
- Arnav Barpujari
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Chhaya Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | | | - Alec Clark
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Devan Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Kevin Pierre
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Kyle Scott
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | | |
Collapse
|