1
|
Nagaya R, R P, Deva R, Jagadeesh Y, Emmanuel P, Narayan G. Optimizing Antibiotic Treatment for Diabetic Foot Infections: A Study From a Tertiary Public Healthcare Center in Puducherry, South India. Cureus 2024; 16:e60139. [PMID: 38864045 PMCID: PMC11165439 DOI: 10.7759/cureus.60139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Diabetic foot infections (DFIs) represent a significant complication of diabetes mellitus, contributing to increased morbidity and mortality. Understanding antibiotic prescribing patterns and microbial susceptibility is crucial for effective management. OBJECTIVE This study aimed to assess antibiotic prescribing trends and microbial susceptibility patterns in DFIs in a tertiary care center in Puducherry. METHODS A prospective observational study was conducted over two months, involving patients with DFIs attending surgery OPD and admitted inpatient wards. Data on demographics, comorbidities, ulcer characteristics, antibiotic prescriptions, and microbial culture results were collected. Descriptive statistics and appropriate statistical tests were used for analysis. RESULTS Of 110 patients included, most were males (80, 72.7%) aged 51-60 years (43, 39.1%). Common risk factors included poor glycemic control (85, 77.3%), barefoot walking (29, 26.4%), and a family history of diabetes (46, 41.8%). Gram-negative organisms (78, 70.9%) predominated, with Escherichia coli (17, 15.5%), Pseudomonas aeruginosa (12, 10.9%), and Staphylococcus aureus (10, 9.1%) being common isolates. Polypharmacy was observed, with (63) 57.3% receiving multiple antibiotics, mainly via the parenteral route (16, 64.5%). Ceftriaxone (31, 28.2%) and cefotaxime (21, 19.1%) were frequently prescribed. Antibiotic resistance varied among isolates. CONCLUSION This study underscores the predominance of gram-negative organisms in DFIs and highlights the need for rational antibiotic prescribing. Cephalosporins were commonly used, emphasizing the importance of empirical therapy. Understanding local microbial patterns and susceptibility is crucial for guiding antibiotic selection and optimizing clinical outcomes. In addition, addressing modifiable risk factors is imperative for preventing DFIs and reducing associated complications. This study provides valuable insights for strengthening antimicrobial stewardship programs and improving patient care in diabetic foot management. Furthermore, the present study highlights the importance of essentially deprescribing the prescriptions both from the patient, their primary carer, and the treating physician/surgeon's perspective.
Collapse
Affiliation(s)
- Raghul Nagaya
- Internal Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Priyadharshini R
- Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Reka Deva
- Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Yogeshwari Jagadeesh
- General Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Pascal Emmanuel
- General Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Gaurang Narayan
- Obstetrics and Gynecology, Indira Gandhi Government Medical College & Hospital, Nagpur, IND
| |
Collapse
|
2
|
Klose SM, Legione AR, Monotti I, Bushell RN, Sugiyama T, Browning GF, Vaz PK. Genomic characterization of Mycoplasma edwardii isolated from a dog bite induced cat wound reveals multiple horizontal gene transfer events and loss of the CRISPR/Cas system. J Med Microbiol 2024; 73. [PMID: 38167305 DOI: 10.1099/jmm.0.001788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
A domestic short hair cat (Felis catus) suffering from a purulent wound infection resulting from a dog bite was sampled for bacterial culture and isolation as the wound had been unresponsive to prolonged antimicrobial treatment. A mycoplasma was isolated from the wound. Whole genome sequencing of the isolate was performed using short-read Illumina and long-read Oxford Nanopore chemistry, and the organism was identified as Mycoplasma edwardii. Comparison of the genome sequence of the isolate to a reference M. edwardii genome sequence (canid isolate) identified the loss of several key bacterial factors involved in genome editing, as well the insertion of several novel ORFs most closely related to those found in other canine mycoplasmas, specifically Mycoplasma canis, M. cynos, M. molare and M. maculosa. This is only the second known report of disease caused by M. edwardii in a non-canid species, and the first report of it infecting and causing clinical disease in a cat.
Collapse
Affiliation(s)
- Sara M Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, VIC, Australia
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, NRW, Germany
| | - Alistair R Legione
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, VIC, Australia
| | - Isobel Monotti
- U-Vet, Department of Veterinary Clinical Sciences, Melbourne Veterinary School, University of Melbourne, VIC, Australia
| | - Rhys N Bushell
- U-Vet, Department of Veterinary Clinical Sciences, Melbourne Veterinary School, University of Melbourne, VIC, Australia
| | - Takanori Sugiyama
- U-Vet, Department of Veterinary Clinical Sciences, Melbourne Veterinary School, University of Melbourne, VIC, Australia
- Present address: Animalius Vet, WA, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, VIC, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, VIC, Australia
| |
Collapse
|
3
|
Sande C, Boston ZJ, Kalan LR, Brennan MB. Next Steps: Studying Diabetic Foot Infections with Next-Generation Molecular Assays. Curr Infect Dis Rep 2023; 25:323-330. [PMID: 39055239 PMCID: PMC11270620 DOI: 10.1007/s11908-023-00822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 07/27/2024]
Abstract
Purpose of Review In 2019, the International Working Group on the Diabetic Foot voiced six concerns regarding the use of molecular microbiology techniques for routine diagnosis of infection complicating diabetic foot ulcers. The purpose of this review is to evaluate contemporary evidence addressing each of these concerns and describe promising avenues for continued development of molecular microbiology assays. Recent Findings Since 2019, the feasibility of conducting metagenomic and metatranscriptomic studies on diabetic foot ulcer samples has been shown. However, these preliminary studies used small samples with concerns for selection bias. We await larger-scale, longitudinal studies, potentially using the recently formed Diabetic Foot Consortium, to identify microbiome profiles associated with infection and patient outcomes. How these results would translate into a clinical diagnostic requires further clarification. Summary High-throughput molecular microbiology techniques are not yet ready for clinical adoption as first-line diagnostics. However, moving from amplicon sequencing to metagenomic and metatranscriptomic studies has the potential to significantly accelerate development of assays that might meaningfully impact patient care.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Room 4H41, 1200 Main St West, Hamilton, ON L8N 3Z5, Canada
| | - Zoë J. Boston
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, 1685 Highland Ave, Madison, WI 53583, USA
| | - Lindsay R. Kalan
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Room 4H41, 1200 Main St West, Hamilton, ON L8N 3Z5, Canada
| | - Meghan B. Brennan
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, 1685 Highland Ave, Madison, WI 53583, USA
| |
Collapse
|
4
|
Şahin F, Pirouzpanah MB, Farshbaf-Khalili A, Ayşan E, Doğan A, Demirci S, Ostadrahimi A, Mobasseri M. The effect of the boron-based gel on the treatment of diabetic foot ulcers: A prospective, randomized controlled trial. J Trace Elem Med Biol 2023; 79:127261. [PMID: 37421808 DOI: 10.1016/j.jtemb.2023.127261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Chronic ulcers represent impaired healing capacity with high mortality in the elderly or patients with systemic disorders such as diabetes. Boron is an effective agent in wound healing by promoting cell migration and proliferation and reducing inflammation in the wound area. This study aimed to evaluate the therapeutic effect of a sodium pentaborate-based topical formulation compared to control on the treatment of diabetic foot ulcers. METHODS A prospective, double-blind, randomized controlled trial was conducted to apply randomly the topical sodium pentaborate 3% gel or topical conventional remedy (control) by patients diagnosed with diabetic foot ulcers. The 171 eligible participants aged 18-75 years received the allocated medicines twice a day for a month with an allocation ratio of 3:1. Twenty-five days and two months after the end of the trial, participants were reinvestigated for their ulcer condition and any recurrence. Wagner's classification of diabetic foot ulcers was applied to this purpose (0-5). RESULTS 161 participants (57 females, 104 males; mean age: 59.37) completed this study. After the intervention, most participants in the intervention group had a lower ulcer grade than the control group (adjusted mean difference (95% CI): - 0.91 (-1.1 to -0.73); p < 0.001). Moreover, most participants in the intervention group (n = 109 (90.8%)) were treated at a higher rate than the control group (n = 5 (12.2%)) after intervention (adjusted odds ratio (95% CI): 0.008 (0.002-0.029); p < 0.001). There was no case of recurrence in the intervention group while its rate was (n = 2 (40%)) in the control group (p < 0.001). CONCLUSION The present study suggests that topical sodium pentaborate gel may help treat and decrease the grade of diabetic foot ulcers and prevent the recurrence of diabetic foot ulcers.
Collapse
Affiliation(s)
- Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Erhan Ayşan
- Faculty of Medicine, Department of General Surgery, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Agidigbi TS, Kwon HK, Knight JR, Zhao D, Lee FY, Oh I. Transcriptomic identification of genes expressed in invasive S. aureus diabetic foot ulcer infection. Front Cell Infect Microbiol 2023; 13:1198115. [PMID: 37434783 PMCID: PMC10332306 DOI: 10.3389/fcimb.2023.1198115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Infection in diabetic foot ulcers (DFUs) is one of the major complications associated with patients with diabetes. Staphylococcus aureus is the most common offending pathogen in patients with infected DFU. Previous studies have suggested the application of species-specific antibodies against S. aureus for diagnosis and monitoring treatment response. Early and accurate identification of the main pathogen is critical for management of DFU infection. Understanding the host immune response against species-specific infection may facilitate diagnosis and may suggest potential intervention options to promote healing infected DFUs. We sought to investigate evolving host transcriptome associated with surgical treatment of S. aureus- infected DFU. Methods This study compared the transcriptome profile of 21 patients with S. aureus- infected DFU who underwent initial foot salvage therapy with irrigation and debridement followed by intravenous antibiotic therapy. Blood samples were collected at the recruitment (0 weeks) and 8 weeks after therapy to isolate peripheral blood mononuclear cells (PBMCs). We analyzed the PBMC expression of transcriptomes at two different time points (0 versus 8 weeks). Subjects were further divided into two groups at 8 weeks: healed (n = 17, 80.95%) versus non-healed (n = 4, 19.05%) based on the wound healing status. DESeq2 differential gene analysis was performed. Results and discussion An increased expression of IGHG1, IGHG2, IGHG3, IGLV3-21, and IGLV6-57 was noted during active infection at 0 weeks compared with that at 8 weeks. Lysine- and arginine-rich histones (HIST1H2AJ, HIST1H2AL, HIST1H2BM, HIST1H3B, and HIST1H3G) were upregulated at the initial phase of active infection at 0 weeks. CD177 and RRM2 were also upregulated at the initial phase of active infection (0 weeks) compared with that at 8 weeks of follow-up. Genes of heat shock protein members (HSPA1A, HSPE1, and HSP90B1) were high in not healed patients compared with that in healed patients 8 weeks after therapy. The outcome of our study suggests that the identification of genes evolution based on a transcriptomic profiling could be a useful tool for diagnosing infection and assessing severity and host immune response to therapies.
Collapse
Affiliation(s)
- Taiwo Samuel Agidigbi
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Hyuk-Kwon Kwon
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - James R. Knight
- Yale Center for Genome Analysis, Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Dejian Zhao
- Yale Center for Genome Analysis, Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Francis Y. Lee
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Irvin Oh
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Abstract
The contribution of dysbiotic gut microbiota configuration is essential when making reference to the metabolic disorders by increasing energy. It is important to understand that the gut microbiota induced metabolic disease mechanisms and inflammations. Thus it is imperative to have an insight into the state of all chronic subclinical inflammations influencing disease outcomes. However, from the emerging studies, there still exist inconsistencies in the findings of such studies. While making the best out of the reasons for inconsistencies of the findings, this review is designed to make a clear spell out as to the inconsistence of gut microbiota with respect to diabetes. It considered gut-virome alterations and diabetes and gut-bacteriome-gut-virome-alterations and diabetes as confounding factors. The review further explained some study design strategies that will spontaneously eliminate any potential confounding factors to lead to a more evidence based diabetic-gut microbiota medicine. Lipopolysaccharide (LPS) pro-inflammatory, metabolic endotoxemia and diet/gut microbiota insulin-resistance and low-grade systemic inflammation induced by gut microbiota can trigger pro-inflammatory cytokines in insulin-resistance, consequently, leading to the diabetic condition. While diet influences the gut microbiota, the consequences are mainly the constant high levels of pro-inflammatory cytokines in the circulatory system. Of recent, dietary natural products have been shown to be anti-diabetic. The effects of resveratrol on the gut showed an improved lipid profile, anti-inflammatory properties and ameliorated the endotoxemia, tight junction and glucose intolerance.
Collapse
|
7
|
Schmidt BM, Holmes CM, Najarian K, Gallagher K, Haus JM, Shadiow J, Ye W, Ang L, Burant A, Baker N, Katona A, Martin CL, Pop-Busui R. On diabetic foot ulcer knowledge gaps, innovation, evaluation, prediction markers, and clinical needs. J Diabetes Complications 2022; 36:108317. [PMID: 36215794 PMCID: PMC10087892 DOI: 10.1016/j.jdiacomp.2022.108317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Diabetic foot ulcers (DFUs) remain a very prevalent and challenging complication of diabetes worldwide due to high morbidity, high risks of lower extremity amputation and associated mortality. Despite major advances in diabetes treatment in general, there is a paucity of FDA approved technologies and therapies to promote successful healing. Furthermore, accurate biomarkers to identify patients at risk of non-healing and monitor response-to-therapy are significantly lacking. To date, research has been slowed by a lack of coordinated efforts among basic scientists and clinical researchers and confounded by non-standardized heterogenous collection of biospecimen and patient associated data. Novel technologies, especially those in the single and 'multiomics' arena, are being used to advance the study of diabetic foot ulcers but require pragmatic study design to ensure broad adoption following validation. These high throughput analyses offer promise to investigate potential biomarkers across wound trajectories and may support information on wound healing and pathophysiology not previously well understood. Additionally, these biomarkers may be used at the point-of-care. In combination with national scalable research efforts, which seek to address the limitations and better inform clinical practice, coordinated and integrative insights may lead to improved limb salvage rates.
Collapse
Affiliation(s)
- Brian M Schmidt
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| | - Crystal M Holmes
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Kayvan Najarian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States of America
| | - Katherine Gallagher
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Abor, MI 48109, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Wen Ye
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Lynn Ang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Aaron Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Nicole Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Aimee Katona
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Catherine L Martin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|