1
|
Wang F, Xu C, Reece EA, Li X, Wu Y, Harman C, Yu J, Dong D, Wang C, Yang P, Zhong J, Yang P. Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat Commun 2017; 8:15182. [PMID: 28474670 PMCID: PMC5424165 DOI: 10.1038/ncomms15182] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Gene deletion-induced autophagy deficiency leads to neural tube defects (NTDs), similar to those in diabetic pregnancy. Here we report the key autophagy regulators modulated by diabetes in the murine developing neuroepithelium. Diabetes predominantly leads to exencephaly, induces neuroepithelial cell apoptosis and suppresses autophagy in the forebrain and midbrain of NTD embryos. Deleting the Prkca gene, which encodes PKCα, reverses diabetes-induced autophagy impairment, cellular organelle stress and apoptosis, leading to an NTD reduction. PKCα increases the expression of miR-129-2, which is a negative regulator of autophagy. miR-129-2 represses autophagy by directly targeting PGC-1α, a positive regulator for mitochondrial function, which is disturbed by maternal diabetes. PGC-1α supports neurulation by stimulating autophagy in neuroepithelial cells. These findings identify two negative autophagy regulators, PKCα and miR-129-2, which mediate the teratogenicity of hyperglycaemia leading to NTDs. We also reveal a function for PGC-1α in embryonic development through promoting autophagy and ameliorating hyperglycaemia-induced NTDs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - E. Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Xuezheng Li
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Christopher Harman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Wang
- Department of Obstetrics, Gynecology, Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
2
|
Hrubik J, Glisic B, Samardzija D, Stanic B, Pogrmic-Majkic K, Fa S, Andric N. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2016; 190:24-31. [PMID: 27521797 DOI: 10.1016/j.cbpc.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos.
Collapse
Affiliation(s)
- Jelena Hrubik
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Branka Glisic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Dragana Samardzija
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Novi Sad, Serbia
| | - Kristina Pogrmic-Majkic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Svetlana Fa
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia.
| |
Collapse
|
3
|
Wang F, Reece EA, Yang P. Advances in revealing the molecular targets downstream of oxidative stress-induced proapoptotic kinase signaling in diabetic embryopathy. Am J Obstet Gynecol 2015; 213:125-34. [PMID: 25595581 DOI: 10.1016/j.ajog.2015.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 01/06/2023]
Abstract
Preexisting maternal diabetes is a high-risk factor of diabetic embryopathy, such as neural tube defects and congenital heart defects. Maternal diabetes significantly increases the production of reactive oxygen species, resulting in oxidative stress and diabetic embryopathy. Multiple cellular and metabolic factors contribute to these processes. Forkhead box O (FoxO)-3a has been demonstrated as a key transcription factor in the signaling transduction pathways responsible for maternal diabetes-induced birth defects. Apoptosis signal-regulating kinase 1 (ASK1) activated by oxidative stress stimulates nuclear translocation of FoxO3a, resulting in the overexpression of tumor necrosis factor receptor 1-associated death domain protein, which, in turn, leads to caspase-8 activation and apoptosis. Maternal diabetes-activated c-Jun N-terminal kinase (JNK)-1/2, downstream effectors of ASK1, can be blocked by superoxide dismutase-1 overexpression, suggesting that oxidative stress is responsible for JNK1/2 signaling activation. Deletion of JNK1/2 significantly suppressed the activity of FoxO3a. These observations indicate that maternal diabetes-induced oxidative stress stimulates the activation of ASK1, JNK1/2, FoxO3a, tumor necrosis factor receptor 1-associated death domain protein, caspase-8 cleavage, and finally, apoptosis and diabetic embryopathy.
Collapse
|
4
|
Woo JS, Perez-Rosendahl M, Haydel D, Perens G, Fishbein MC. A novel association of biventricular cardiac noncompaction and diabetic embryopathy: case report and review of the literature. Pediatr Dev Pathol 2015; 18:71-5. [PMID: 25386687 DOI: 10.2350/14-07-1532-cr.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diabetic embryopathy refers to a constellation of congenital malformations arising in the setting of poorly controlled maternal diabetes mellitus. Cardiac abnormalities are the most frequently observed findings, with a 5-fold risk over normal pregnancies. Although a diverse spectrum of cardiac defects has been documented, cardiac noncompaction morphology has not been associated with this syndrome. In this report, we describe a novel case of biventricular cardiac noncompaction in a neonate of a diabetic mother. The patient was a late preterm female with right anotia, caudal dysgenesis, multiple cardiac septal and aortic arch defects, and biventricular cardiac noncompaction. Examination of both ventricles demonstrated spongy myocardium with increased myocardial trabeculation greater than 50% left ventricular thickness and greater than 75% right ventricular thickness, with hypoplasia of the bilateral papillary muscles, consistent with noncompaction morphology. Review of the literature highlights the importance of gene expression and epigenomic regulation in cardiac embryogenesis.
Collapse
Affiliation(s)
- Jennifer S Woo
- 1 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 13-145, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
5
|
Baack ML, Wang C, Hu S, Segar JL, Norris AW. Hyperglycemia induces embryopathy, even in the absence of systemic maternal diabetes: an in vivo test of the fuel mediated teratogenesis hypothesis. Reprod Toxicol 2014; 46:129-36. [PMID: 24721120 DOI: 10.1016/j.reprotox.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
Abstract
Embryonic exposure to excess circulating fuels is proposed to underlie diabetic embryopathy. To isolate the effects of hyperglycemia from the many systemic anomalies of diabetes, we infused 4 mg/min glucose into the left uterine artery of non-diabetic pregnant rats on gestation days (GD) 7-9. Right-sided embryos and dams exhibited no glucose elevation. Embryos were assessed on GD13, comparing the left versus right uterine horns. Hyperglycemic exposure increased rates of embryopathy, resorptions, and worsened embryopathy severity. By contrast, saline infusion did not affect any of these parameters. To assess for possible embryopathy susceptibility bias between uterine horns, separate dams were given retinoic acid (25mg/kg, a mildly embryopathic dose) systemically on GD7.5. The resultant embryopathy rates were equivalent between uterine horns. We conclude that hyperglycemia, even in the absence of systemic maternal diabetes, is sufficient to produce in vivo embryopathy during organogenesis.
Collapse
Affiliation(s)
- Michelle L Baack
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Chunlin Wang
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Shanming Hu
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Jeffrey L Segar
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA
| | - Andrew W Norris
- University of Iowa Children's Hospital, Department of Pediatrics, Iowa City, IA, USA.
| |
Collapse
|
6
|
Abstract
Diabetes mellitus is responsible for nearly 10% of fetal anomalies in diabetic pregnancies. Although aggressive perinatal care and glycemic control are available in developed countries, the birth defect rate in diabetic pregnancies remains higher than that in the general population. Major cellular activities (ie, proliferation and apoptosis) and intracellular metabolic conditions (ie, nitrosative, oxidative, and endoplasmic reticulum stress) have been shown to be associated with diabetic embryopathy using animal models. Translating advances made in animal studies into clinical applications in humans requires collaborative efforts across the basic research, preclinical, and clinical communities.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
7
|
Cao Y, Zhao Z, Eckert RL, Reece EA. The essential role of protein kinase Cδ in diabetes-induced neural tube defects. J Matern Fetal Neonatal Med 2012; 25:2020-4. [PMID: 22463764 DOI: 10.3109/14767058.2012.677963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Maternal diabetes causes neural tube defects (NTDs) in the embryos via activating protein kinase Cs (PKCs), which regulate programmed cell death (apoptosis). The aims of this study are to investigate the role of proapoptotic PKCδ in NTD formation and the underlying mechanisms. METHODS PKCδ heterozygous (pkcδ(+/-)) female mice were diabetic (DM) induced by intravenous injection of streptozotocin. Occurrence of NTDs was evaluated at embryonic day 11.5 and compared between wild type (WT) and PKCδ homozygous (pkcδ(-/-)) embryos. Changes in oxidative and endoplasmic reticulum (ER) stress-associated factors and stress-response c-Jun N-terminal kinases (JNKs) were assessed using Western blot assay. RESULTS Compared to DM/WT, the DM/PKCδ(-/-) embryos had significantly lower NTD rate and lower levels of oxidative and ER stress factors and JNK activation. These values were similar to those in the non-diabetic control group. CONCLUSION PKCδ plays a critical role in diabetes-induced NTDs, potentially through increasing oxidative and ER stress and JNK-associated stress-response pathways.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
8
|
Li X, Weng H, Reece EA, Yang P. SOD1 overexpression in vivo blocks hyperglycemia-induced specific PKC isoforms: substrate activation and consequent lipid peroxidation in diabetic embryopathy. Am J Obstet Gynecol 2011; 205:84.e1-6. [PMID: 21529760 DOI: 10.1016/j.ajog.2011.02.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Oxidative stress plays a causative role in diabetic embryopathy. We tested whether mitigating oxidative stress, using superoxide dismutase 1 (SOD1) transgenic (Tg) mice, would block hyperglycemia-induced specific protein kinase C (PKC) isoform activation and its downstream cascade. STUDY DESIGN Day 8.5 embryos from nondiabetic wild-type control (NC), diabetic mellitus wild-type (DM), and diabetic SOD1-Tg mice (DM-SOD1-Tg) were used for detection of phosphorylated (p-) PKCα/βII and p-PKCδ, and levels of 2 prominent PKC substrates, phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS) and receptor for activated C kinase 1 (RACK1), and lipid peroxidation markers, 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). RESULTS Levels of p-PKCα/βII, p-PKCδ, p-MARCKS, 4-HNE, and MDA were significantly elevated in the DM group compared with those in the NC group and the DM-SOD1-Tg group. The NC and DM-SOD1-Tg groups had comparable levels of these protein and lipid peroxidation markers. RACK1 levels did not differ among the 3 groups. CONCLUSION Mitigating oxidative stress by SOD1 overexpression blocks maternal hyperglycemia-induced activation of specific PKC isoforms and downstream cascades.
Collapse
|
9
|
Liu S, Yuan Q, Zhao S, Wang J, Guo Y, Wang F, Zhang Y, Liu Q, Zhang S, Ling EA, Hao A. High glucose induces apoptosis in embryonic neural progenitor cells by a pathway involving protein PKCδ. Cell Signal 2011; 23:1366-74. [PMID: 21440619 DOI: 10.1016/j.cellsig.2011.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 11/29/2022]
Abstract
Diabetic-induced neural tube defects in embryos are caused by apoptosis of neural progenitor cells (NPCs); however, the underlying mechanisms are poorly understood. The present study is aimed to investigate the specific cellular proteins that may be involved in apoptosis of NPCs. We show here that hyperglycemia-induced apoptosis of NPCs was through a PKCδ-dependent mechanism. Tyrosine phosphorylation of PKCδ was required for PKCδ binding to c-Abl in the cytoplasm, and inhibition of c-Abl by STI571 or knock-down of c-Abl by RNAi decreased the phosphorylation of PKCδ. Moreover, translocation of PKCδ and c-Abl complex from the cytoplasm to the nucleus, was blocked by down-regulation of PKCδ or c-Abl. Furthermore, we found that interaction of PKCδ and c-Abl played a crucial role in p53 accumulation in the nucleus, which was linked to the apoptosis of NPCs in response to high glucose.
Collapse
Affiliation(s)
- Shangming Liu
- Department of Histology and Embryology, Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cao Y, Zhao Z, Eckert RL, Reece EA. Protein kinase Cβ2 inhibition reduces hyperglycemia-induced neural tube defects through suppression of a caspase 8-triggered apoptotic pathway. Am J Obstet Gynecol 2011; 204:226.e1-5. [PMID: 21376163 DOI: 10.1016/j.ajog.2011.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Neural tube defects in diabetic embryopathy are associated with increased protein kinase C (PKC)β2 activity and programmed cell death (apoptosis). The apoptosis is triggered by caspase 8, which activates members of the Bcl-2 and caspase families, such as Bid and caspase 3. Whether PKCβ2 regulates caspase 8-induced apoptosis remains to be addressed. STUDY DESIGN Mouse embryos at embryonic day 8.5 were cultured in a high concentration of glucose (22 mmol/L) and treated with PKCβ2 inhibitor (50 nmol/L) for 48 hours. The levels of apoptosis and activation of apoptotic factors were quantified using the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and Western blot assays, respectively. RESULTS Reduction in the rate of neural tube defect by PKCβ2 inhibition is associated with significant decreases in the levels of apoptosis, and caspase 8, caspase 3, and Bid activation, and cytochrome C release from mitochondria, to the similar levels as in euglycemic controls (8.3 mmol/L; P < .05). CONCLUSION PKCβ2 influences a caspase 8-regulated apoptotic pathway in diabetic embryopathy.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
11
|
Cardiac malformations and alteration of TGFbeta signaling system in diabetic embryopathy. ACTA ACUST UNITED AC 2010; 89:97-105. [PMID: 20127828 DOI: 10.1002/bdrb.20225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cardiovascular defects are the most common anomalies in diabetic embryopathy. The mechanisms underlying the manifestation of the defects remain to be addressed. METHODS Female mice were administered streptozotocin to induce diabetes. Embryos from euglycemic (control) and hyperglycemic groups were examined for morphological and histological evaluation of malformations. Cell proliferation and programmed cell death (apoptosis) were assessed using mitotic markers (BrdU and Ki67) and TUNEL assay, respectively. Expression of eight four genes in the TGFbeta signaling system was analyzed using real-time RT-PCR. RESULTS Structural abnormalities were observed in the heart and neural tube in diabetic groups, with significantly higher malformation rates than in control groups. Moreover, malformation rates in the heart were higher than those in the neural tube. Cardiac abnormalities including dilated heart tube, smaller ventricles, conotruncal stenosis, and abnormal heart looping were seen during early morphogenesis prior to cardiac septation [embryonic day (E) 9.5-11.5]. Histological examinations showed hypoplastic myocardium and endocardial cushions. After cardiac septation (E15.5), ventricular septal defects were observed, which were manifested in the non-muscular portion of the septum. Significant decreases in cell proliferation with no differences in apoptosis were observed in the myocardium and endocardial cushions in diabetic compared to control groups. Factors in the TGFbeta signaling that regulate heart development were downregulated by maternal diabetes. CONCLUSIONS Maternal diabetes causes malformations in the heart of the embryo. The heart is more susceptible to maternal diabetic insults than the neural tube. Malformations in the heart prior to septation are associated with decreased cell proliferation, but not increased apoptosis. The TGFbeta signaling is involved in cardiac malformations in diabetic embryopathy.
Collapse
|
12
|
Zhao Z, Yang P, Eckert RL, Reece EA. Caspase-8: a key role in the pathogenesis of diabetic embryopathy. ACTA ACUST UNITED AC 2009; 86:72-7. [PMID: 19194987 DOI: 10.1002/bdrb.20185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Maternal diabetes causes neural tube defects in embryos, which are associated with increased apoptosis in the neuroepithelium. Many factors, including effector caspases, have been shown to be involved in the events. However, the key regulators have not been identified and the underlying mechanisms remain to be addressed. Caspase-8, an initiator caspase, has been shown to be altered in diabetic embryopathy, suggesting a role as an upstream apoptotic regulator. Using mouse embryos as a model system, this study demonstrates that caspase-8 is required for the production of hyperglycemia-associated embryonic malformations. Caspase-8 was shown to be expressed in the developing neural tube. Its activity, as evidenced by enhanced cleavage, was increased by hyperglycemia. These changes were associated with increased formation of the active cleavage of Bid. Inhibition of caspase-8 activity in high glucose-challenged embryos reduced the rate of embryonic malformation and this was associated with decreased apoptosis in the neuroepithelium of the neural tube. Inhibition of caspase-8 activity also reduced hyperglycemia-induced Bid activation and caspase-9 cleavage. These data suggest that caspase-8 may control diabetic embryopathy-associated apoptosis via regulation of the Bid-stimulated mitochondrion/caspase-9 pathway.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
13
|
[Differentially expressed genes in diabetes-induced embryopathy]. YI CHUAN = HEREDITAS 2009; 31:280-4. [PMID: 19273441 DOI: 10.3724/sp.j.1005.2009.00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To determine molecular mechanism in hyperglycemia induced congenital neural tube defects, yolk sac cells were harvested at gestational day 12 from streptozotocin (STZ) -induced diabetic rats with congenital neural tube defects in offspring, STZ-induced diabetic rats without neural tube defects and normal control group. We analyzed gene expression profiles in yolk sac cells using a DNA microarray technique. Changes in apoptotic and MAP Kinase signaling pathways were detected by Western blotting analyses. Comparison of genes in yolk sac cells with a total of 1 200 genes in the control cells, 79 genes differently expressed between the two groups were detected. Forty-two of them were up-regulated and 37 were down-regulated. There was strong characteristic apoptotic DNA ladder in yolk sac cells in embryopathic offspring from experimentally-induced diabetic rats. The activity of ERK1/2 was dramatically decreased and the activity of JNK1/2 was significantly increased. Differentially expressed genes, MAP Kinase, and apoptotic signal pathways play very important roles in hyperglycemia induced neural tube defects. We hope that these could provide useful hallmark to rapid identification of early diabetic embryopathy.
Collapse
|