1
|
Paul B, Buchholz DR. Minireview: Glucocorticoid-Leptin Crosstalk: Role of Glucocorticoid-Leptin Counterregulation in Metabolic Homeostasis and Normal Development. Integr Comp Biol 2023; 63:1127-1139. [PMID: 37708034 DOI: 10.1093/icb/icad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
2
|
Camm EJ, Inzani I, De Blasio MJ, Davies KL, Lloyd IR, Wooding FBP, Blache D, Fowden AL, Forhead AJ. Thyroid Hormone Deficiency Suppresses Fetal Pituitary-Adrenal Function Near Term: Implications for the Control of Fetal Maturation and Parturition. Thyroid 2021; 31:861-869. [PMID: 33126831 DOI: 10.1089/thy.2020.0534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: The fetal hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the control of parturition and maturation of organ systems in preparation for birth. In hypothyroid fetuses, gestational length may be prolonged and maturational processes delayed. The extent to which the effects of thyroid hormone deficiency in utero on the timing of fetal maturation and parturition are mediated by changes to the structure and function of the fetal HPA axis is unknown. Methods: In twin sheep pregnancies where one fetus was thyroidectomized and the other sham-operated, this study investigated the effect of hypothyroidism on circulating concentrations of adrenocorticotrophic hormone (ACTH) and cortisol, and the structure and secretory capacity of the anterior pituitary and adrenal glands. The relative population of pituitary corticotrophs and the masses of the adrenal zones were assessed by immunohistochemical and stereological techniques. Adrenal mRNA abundances of key steroidogenic enzymes and growth factors were examined by quantitative polymerase chain reaction. Results: Hypothyroidism in utero reduced plasma concentrations of ACTH and cortisol. In thyroid-deficient fetuses, the mass of corticotrophs in the anterior pituitary gland was unexpectedly increased, while the mass of the zona fasciculata and its proportion of the adrenal gland were decreased. These structural changes were associated with lower adrenocortical mRNA abundances of insulin-like growth factor (IGF)-I and its receptor, and key steroidogenic enzymes responsible for glucocorticoid synthesis. The relative mass of the adrenal medulla and its proportion of the adrenal gland were increased by thyroid hormone deficiency in utero, without any change in expression of phenylethanolamine N-methyltransferase or the IGF system. Conclusions: Thyroid hormones are important regulators of the structure and secretory capacity of the pituitary-adrenal axis before birth. In hypothyroid fetuses, low plasma cortisol may be due to impaired adrenocortical growth and steroidogenic enzyme expression, secondary to low circulating ACTH concentration. Greater corticotroph population in the anterior pituitary gland of the hypothyroid fetus indicates compensatory cell proliferation and that there may be abnormal corticotroph capacity for ACTH synthesis and/or impaired hypothalamic input. Suppression of the development of the fetal HPA axis by thyroid hormone deficiency may contribute to the delay in fetal maturation and delivery observed in hypothyroid offspring.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Isabella Inzani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Miles J De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - India R Lloyd
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - F B Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dominique Blache
- School of Agriculture and Environment, University of Western Australia, Crawley, Australia
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
3
|
Zou X, Zhong L, Zhu C, Zhao H, Zhao F, Cui R, Gao S, Li B. Role of Leptin in Mood Disorder and Neurodegenerative Disease. Front Neurosci 2019; 13:378. [PMID: 31130833 PMCID: PMC6510114 DOI: 10.3389/fnins.2019.00378] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
The critical regulatory role of leptin in the neuroendocrine system has been widely reported. Significantly, leptin can improve learning and memory, affect hippocampal synaptic plasticity, exert neuroprotective efficacy and reduce the risk of several neuropsychiatric diseases. In terms of depression, leptin could modulate the levels of neurotransmitters, neurotrophic factors and reverse the dysfunction in the hypothalamic-pituitary-adrenal axis (HPA). At the same time, leptin affects neurological diseases during the regulation of metabolic homeostasis. With regards to neurodegenerative diseases, leptin can affect them via neuroprotection, mainly including Alzheimer's disease and Parkinson's disease. This review will summarize the mechanisms of leptin signaling within the neuroendocrine system with respect to these diseases and discuss the therapeutic potential of leptin.
Collapse
Affiliation(s)
- Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Wang X, Pan L, Zou Z, Wang D, Lu Y, Dong Z, Zhu L. Hypoxia reduces testosterone synthesis in mouse Leydig cells by inhibiting NRF1-activated StAR expression. Oncotarget 2017; 8:16401-16413. [PMID: 28146428 PMCID: PMC5369971 DOI: 10.18632/oncotarget.14842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Male fertility disorders play a key role in half of all infertility cases. Reduction in testosterone induced by hypoxia might cause diseases in reproductive system and other organs. Hypoxic exposure caused a significant decrease of NRF1. Software analysis reported that the promoter region of steroidogenic acute regulatory protein (StAR) contained NRF1 binding sites, indicating NRF1 promoted testicular steroidogenesis. The purpose of this study is to determine NRF1 is involved in testosterone synthesis; and under hypoxia, the decrease of testosterone synthesis is caused by lower expression of NRF1. We designed both in vivo and in vitro experiments. Under hypoxia, the expressions of NRF1 in Leydig cells and testosterone level were significantly decreased both in vivo and in vitro. Overexpression and interference NRF1 could induced StAR and testosterone increased and decreased respectively. ChIP results confirmed the binding of NRF1 to StAR promoter region. In conclusion, decline of NRF1 expression downregulated the level of StAR, which ultimately resulted in a reduction in testosterone synthesis.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Longlu Pan
- Department of Rehabilitation of the Six People's Hospital of Nantong, Jiangsu, China
| | - Zhiran Zou
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Dan Wang
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Yapeng Lu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China
| | - Zhangji Dong
- Co-Innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhu
- Department of Biochemistry, Institute for Nautical Medicine, Nantong University, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, China
| |
Collapse
|
5
|
Garcia-Flores J, Cruceyra M, Cañamares M, Garicano A, Espada M, Nieto O, Tamarit I, Sainz de la Cuesta R. Sonographic Evaluation of Fetal Adrenal Gland in Gestational Diabetes: Relation to Fetal Growth and Maternal Biochemical Markers. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:999-1007. [PMID: 28150324 DOI: 10.7863/ultra.16.03005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES To relate measurements and volume of the fetal adrenal gland in third trimester ultrasound in diabetic pregnancies (1) to birth weight; (2) to other sonographic markers of diabetic fetopathy (expected fetal weight, sectional area, and fractional volume in fetal limbs); and (3) to maternal biochemical markers of diabetes (HbA1c, leptin). METHODS Fetal adrenal gland measurements were obtained between 32 and 34 weeks. The gland length, width, depth, and volume (by Virtual Organ Computer-Aided Analysis [VOCAL]) were measured for total gland and fetal zone. Fetal total and fat sectional area and fractional volume were obtained in arm and thigh. A maternal blood sample was obtained. Univariate and multivariate models were used to assess the associations. RESULTS Thirty-nine diabetic pregnancies were included. Birth weight related significantly to total and fetal zone adrenal depth, and total adrenal volume in third trimester. Total adrenal length and corrected adrenal gland volume also showed a significant correlation to birth weight percentile in univariate and multivariate models. Total adrenal volume associated significantly to total and fat areas and volumes in fetal limbs. Both maternal leptin and HbA1c levels found a significant positive relation to fetal total adrenal volume and corrected adrenal gland volume. Total adrenal gland volume showed a significant association to maternal HbA1c level in multivariate model. CONCLUSIONS An enlargement of the fetal adrenal gland may be observed in gestational diabetes, not only related to birth weight, but also to distinctive features of diabetic pregnancies, such as fat tissue fetal deposits or maternal biochemical markers.
Collapse
Affiliation(s)
- Jose Garcia-Flores
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| | - Mireia Cruceyra
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| | - Marina Cañamares
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| | - Ainhoa Garicano
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| | - Mercedes Espada
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| | - Olga Nieto
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| | - Ines Tamarit
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| | - Ricardo Sainz de la Cuesta
- High-Risk Pregnancy Unit, Obstetrics & Gynecology Department, Hospital Universitario Quiron Madrid, Pozuelo de Alarcon (Madrid), Spain
| |
Collapse
|
6
|
Karimi K, Lindgren TH, Koch CA, Brodell RT. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev Endocr Metab Disord 2016; 17:389-403. [PMID: 27832418 DOI: 10.1007/s11154-016-9393-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dramatic increases in incidence of both obesity and many cancers including skin cancer emphasize the need to better understand the pathophysiology of both conditions and their connections. Melanoma is considered the fastest growing cancer and rates of non-melanoma skin cancer have also increased over the last decade. The molecular mechanisms underlying the association between obesity and skin cancer are not clearly understood but emerging evidence points to changes in the tumor microenvironment including aberrant cell signaling and genomic instability in the chronic inflammatory state many obese individuals experience. This article reviews the literature linking obesity to melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- K Karimi
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - T H Lindgren
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C A Koch
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| | - Robert T Brodell
- Department of Dermatology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
7
|
Newby EA, Myers DA, Ducsay CA. Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis. Am J Physiol Endocrinol Metab 2015; 309:E429-39. [PMID: 26173460 PMCID: PMC4556885 DOI: 10.1152/ajpendo.00126.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
Abstract
In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus.
Collapse
Affiliation(s)
- Elizabeth A Newby
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California; and
| | - Dean A Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Charles A Ducsay
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California; and
| |
Collapse
|
8
|
MacDonald LE, Alderman SL, Kramer S, Woo PTK, Bernier NJ. Hypoxemia-induced leptin secretion: a mechanism for the control of food intake in diseased fish. J Endocrinol 2014; 221:441-55. [PMID: 24741070 DOI: 10.1530/joe-13-0615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leptin is a potent anorexigen, but little is known about the physiological conditions under which this cytokine regulates food intake in fish. In this study, we characterized the relationships between food intake, O2-carrying capacity, liver leptin-A1 (lep-a1) gene expression, and plasma leptin-A1 in rainbow trout infected with a pathogenic hemoflagellate, Cryptobia salmositica. As lep gene expression is hypoxia-sensitive and Cryptobia-infected fish are anemic, we hypothesized that Cryptobia-induced anorexia is mediated by leptin. A 14-week time course experiment revealed that Cryptobia-infected fish experience a transient 75% reduction in food intake, a sharp initial drop in hematocrit and hemoglobin levels followed by a partial recovery, a transient 17-fold increase in lep-a1 gene expression, and a sustained increase in plasma leptin-A1 levels. In the hypothalamus, peak anorexia was associated with decreases in mRNA levels of neuropeptide Y (npy) and cocaine- and amphetamine-regulated transcript (cart), and increases in agouti-related protein (agrp) and pro-opiomelanocortin A2 (pomc). In contrast, in non-infected fish pair-fed to infected animals, lep-a1 gene expression and plasma levels did not differ from those of non-infected satiated fish. Pair-fed fish were also characterized by increases in hypothalamic npy and agrp, no changes in pomc-a2, and a reduction in cart mRNA expression. Finally, peak infection was characterized by a significant positive correlation between O2-carrying capacity and food intake. These findings show that hypoxemia, and not feed restriction, stimulates leptin-A1 secretion in Cryptobia-infected rainbow trout and suggest that leptin contributes to anorexia by inhibiting hypothalamic npy and stimulating pomc-a2.
Collapse
Affiliation(s)
- Lauren E MacDonald
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah L Alderman
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah Kramer
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Patrick T K Woo
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
9
|
Madison BN, Woo PTK, Bernier NJ. Duress without stress: Cryptobia infection results in HPI axis dysfunction in rainbow trout. J Endocrinol 2013; 218:287-97. [PMID: 23814015 DOI: 10.1530/joe-13-0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite clear physiological duress, rainbow trout (Oncorhynchus mykiss) infected with the pathogenic haemoflagellate Cryptobia salmositica do not appear to mount a cortisol stress response. Therefore, we hypothesized that the infection suppresses the stress response by inhibiting the key effectors of the hypothalamic-pituitary-interrenal (HPI) axis. To test this, we characterized the basal activity of the HPI axis and the cortisol response to air exposure in saline- and parasite-injected fish. All fish were sampled at 4 and 6 weeks post-injection (wpi). While both the treatment groups had resting plasma cortisol levels, the parasite-infected fish had lower levels of plasma ACTH than the control fish. Relative to the control fish, the infected fish had higher mRNA levels of brain pre-optic area corticotrophin-releasing factor (CRF) and pituitary CRF receptor type 1, no change in pituitary POMC-A1, -A2 and -B gene expression, higher and lower head kidney melanocortin 2 receptor mRNA levels at 4 and 6 wpi respectively and reduced gene expression of key proteins regulating interrenal steroidogenesis: StAR, cytochrome P450scc and 11β-hydroxylase. The parasite-infected fish also had a reduced plasma cortisol response to a 60-s air exposure stressor. Superfusion of the head kidney tissues of the parasite-infected fish led to significantly lower ACTH-stimulated cortisol release rates than that observed in the control fish. These novel findings show that infection of rainbow trout with C. salmositica results in complex changes in the transcriptional activity of both central and peripheral regulators of the HPI axis and in a reduction in the interrenal capacity to synthesize cortisol.
Collapse
Affiliation(s)
- Barry N Madison
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
10
|
Su Y, Carey LC, Rose JC, Pulgar VM. Antenatal glucocorticoid exposure enhances the inhibition of adrenal steroidogenesis by leptin in a sex-specific fashion. Am J Physiol Endocrinol Metab 2013; 304:E1404-11. [PMID: 23632631 PMCID: PMC3680693 DOI: 10.1152/ajpendo.00013.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antenatal treatment with glucocorticoids (GC) poses long-lasting effects on endocrine and cardiovascular function. Given that leptin attenuates adrenal function and the reported sex differences in plasma leptin concentration, we hypothesized that antenatal GC will affect leptin levels and leptin modulation of adrenal function in a sex-specific manner. Pregnant sheep were randomly given betamethasone or vehicle at 80 days of gestational age, and offspring were allowed to deliver at term. Adrenocortical cells (ADC) were studied from male and female animals at 1.5 yr of age. Plasma leptin was increased 66% in male and 41% in female GC-treated animals (P < 0.05), but adrenal leptin mRNA was increased only in GC-treated males (P < 0.05). Whereas mRNA expression of adrenal leptin receptor isoforms showed sex (Ob-Ra and Ob-Rb) and treatment-dependent (Ob-Rb) differences, protein expression remained unchanged. GC-treated females showed greater plasma cortisol and greater ACTH-stimulated cortisol production (P < 0.05) in ADC. Leptin exerted a greater inhibitory effect on basal and stimulated cortisol by ADC from GC-treated males (P < 0.05), with no differences in females. Similarly, greater inhibitory effects on basal and ACTH-stimulated StAR and ACTH-R mRNA expression by leptin were observed in cells from GC males (P < 0.05), with no changes in females. Persistent effects of antenatal GC on leptin levels and leptin modulation of adrenal function are expressed in a sex-specific manner; males are more sensitive than females to the inhibitory influences of leptin on adrenal function, and this effect appears to be mediated by a greater inhibition of StAR and ACTH-R expression in adrenals of adult GC-treated males.
Collapse
Affiliation(s)
- Yixin Su
- Department of Obstetrics and Gynecology
| | | | | | | |
Collapse
|
11
|
Mazzucco MB, Higa R, Capobianco E, Kurtz M, Jawerbaum A, White V. Saturated fat-rich diet increases fetal lipids and modulates LPL and leptin receptor expression in rat placentas. J Endocrinol 2013; 217:303-15. [PMID: 23482704 DOI: 10.1530/joe-13-0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metabolic alterations in obese and overweight mothers impact the placenta and the fetus, leading to anomalies in fetal growth and lipid accretion. The primary aim of the study was to examine the effect of a saturated fat-rich diet (FD) on growth, lipid accretion, and lipases, leptin and leptin receptor (ObR) expression in the placenta and fetal liver. We also aimed to find a role for fetal leptin in the modulation of placental and fetal liver lipase and ObR expression. Six-week-old rats were fed with a standard rat chow (control) or a 25% FD for 7 weeks until mating and during pregnancy. Also, in a group of control rats, fetuses were injected with leptin on days 19, 20, and 21 of pregnancy. On day 21, we assessed lipidemia, insulinemia, and leptinemia in mothers and fetuses. In the placenta and fetal liver, lipid concentration was assessed by thin layer chromatography (TLC) and the gene expression of lipoprotein lipase (LPL), endothelial lipase, insulin receptor (Insr), leptin, and ObR by RT-PCR. The FD induced hypertriglyceridemia and hyperleptinemia (P<0.01) in mothers and fetuses, an increase in maternal (P<0.05) and fetal weight (P<0.01), overaccumulation of lipids in fetal liver (P<0.01), and enhanced leptin expression in the placenta and fetal liver (P<0.05). Placental expression of IR and LPL was increased (P<0.05), and ObR decreased (P<0.05) in the FD group. Fetal administration of leptin induced the placental and fetal liver downregulation of ObR (P<0.05) and upregulation of LPL expression (P<0.05). The FD led to increased fetal lipid levels, which may result from high maternal lipid availability and fetal leptin effects.
Collapse
Affiliation(s)
- M B Mazzucco
- Laboratory of Reproduction and Metabolism, School of Medicine, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, University of Buenos Aires, Paraguay 2155 17th floor CABA 1121, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
12
|
Ducsay CA, Furuta K, Vargas VE, Kaushal KM, Singleton K, Hyatt K, Myers DA. Leptin receptor antagonist treatment ameliorates the effects of long-term maternal hypoxia on adrenal expression of key steroidogenic genes in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 2013; 304:R435-42. [PMID: 23344230 DOI: 10.1152/ajpregu.00377.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported elevated adipose leptin expression, plasma leptin concentrations, and adrenocortical leptin receptor expression in the long-term hypoxic (LTH) ovine fetus. This study addressed whether leptin antagonist (LA) administration to LTH fetal sheep altered expression of key genes governing cortisol synthesis. Ewes were maintained at high altitude (3,820 meters) from 40 to 130 days gestation (dG), returned to Loma Linda University, and implanted with a maternal tracheal catheter. Reduced Po2 was maintained by nitrogen infusion. On 132 dG, LTH (n = 11) and age-matched, normoxic control (n = 11) fetuses underwent vascular catheter implantation. At 138 dG, fetuses were continuously infused with either saline or the LA (1.5 mg·kg(-1)·day(-1)) for 4 days and samples collected for blood gases, ACTH, and cortisol. Fetal adrenal cortex was collected for determination of steriodogenic acute regulatory protein (StAR), ACTH, and leptin receptor, cholesterol side-chain cleavage (CYP11A1), cytochrome P-450 11β-hydroxylase (CYP11B1), 17α-hydroxylase (CYP17), 21-hydroxylase (CYP21), signal transducer and activator of transcription 3 (STAT3), pSTAT3, and 17β-hydroxysteroid dehydrogenase (HSD3B) expression. In the saline-infused LTH fetuses, StAR, ACTH receptor, CYP11A1, and CYP17 expression was significantly lower compared with control (P < 0.05), whereas levels of CYP11B1, CYP21, and HSD3B mRNA were similar between groups. LA infusion restored expression of StAR, pSTAT3, CYP11A1, and CYP17, but not ACTH receptor, to normal ontogenic levels in the LTH group while having no effect on control fetuses. Neither fetal plasma ACTH nor cortisol concentrations were altered by LA infusion. We speculate that while leptin plays a role in governing expression of key enzymes and StAR in response to LTH, other factors play a role in modulating cortisol synthesis in these fetuses.
Collapse
Affiliation(s)
- Charles A Ducsay
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | | | |
Collapse
|