1
|
Torelli FR, Rodrigues-Peres RM, Lopes-Cendes I, Bahamondes L, Juliato CRT. Gene expression associated with vaginal bleeding in women using the 52-mg levonorgestrel hormonal intrauterine device: A prospective study. Int J Gynaecol Obstet 2024; 165:1199-1209. [PMID: 38299835 DOI: 10.1002/ijgo.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE To evaluate gene expression associated with vaginal bleeding in the 52-mg hormonal intrauterine device (IUD) users. MATERIALS AND METHODS We conducted a prospective study involving 100 women seeking to use the 52-mg hormonal IUD for contraception. We excluded women with a history or current condition of abnormal uterine bleeding and who were unable to attend a 1-year follow up. Women who expelled the device, removed it for reasons unrelated to vaginal bleeding, or were lost to follow up were discontinued. We collected endometrial biopsies immediately before IUD placement and assessed 20 selected genes using reverse transcription quantitative polymerase chain reaction. Users maintained a uterine bleeding diary for 12 months following IUD insertion. For statistical analysis, participants were categorized into groups with or without vaginal bleeding at 3 and 12 months. RESULTS Women with elevated CXCL9 expression had an 8.15-fold higher likelihood of experiencing vaginal bleeding at 3 months (odds ratio [OR] 8.15, 95% confidence interval [CI] 2.24-29.61, P = 0.001). At 12 months of follow up, women with increased TIMP1 expression had a 2.74-fold higher chance of experiencing vaginal bleeding (OR 2.74, 95% CI 1.08-6.95, P = 0.033). CXCL9 ≥ 1.5 and IL17A ≥ 0.68 were associated with a higher probability of vaginal bleeding at 3 months, while TIMP1 levels ≥0.943 were linked to an increased risk of bleeding at 12 months. CONCLUSION Users of the 52-mg hormonal IUD with elevated relative CXCL9 expression face an increased risk of vaginal bleeding at 3-month follow up, whereas those with heightened TIMP1 expression are more likely to experience vaginal bleeding at 12 months.
Collapse
Affiliation(s)
- Flávia R Torelli
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raquel M Rodrigues-Peres
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luis Bahamondes
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Cássia R T Juliato
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
Torelli FR, Rodrigues-Peres RM, Monteiro I, Lopes-Cendes I, Bahamondes L, Juliato CRT. Gene expression associated with unfavorable vaginal bleeding in women using the etonogestrel subdermal contraceptive implant: a prospective study. Sci Rep 2024; 14:11062. [PMID: 38745005 PMCID: PMC11093992 DOI: 10.1038/s41598-024-61751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
To evaluate gene expression associated with unfavorable vaginal bleeding in users of the Etonogestrel (ENG) contraceptive implant. Prospective study involving 100 women who intended to use the ENG implant. Exclusion criteria included abnormal uterine bleeding, inability to attend a 1-year follow-up, and implant removal for reasons unrelated to vaginal bleeding or loss of follow-up. We obtained endometrial biopsies before implant placement and assessed the expression of 20 selected genes. Users maintained a uterine bleeding diary for 12 months post-implant placement. For statistical analysis, we categorized women into those with or without favorable vaginal bleeding at 3 and 12 months. Women with lower CXCL1 expression had a 6.8-fold increased risk of unfavorable vaginal bleeding at 3 months (OR 6.8, 95% CI 2.21-20.79, p < 0.001), while those with higher BCL6 and BMP6 expression had 6- and 5.1-fold increased risks, respectively. By the 12-month follow-up, women with lower CXCL1 expression had a 5.37-fold increased risk of unfavorable vaginal bleeding (OR 5.37, 95% CI 1.63-17.73, p = 0.006). Women with CXCL1 expression < 0.0675, BCL6 > 0.65, and BMP6 > 3.4 had a higher likelihood of experiencing unfavorable vaginal bleeding at 3 months, and CXCL1 < 0.158 at 12 months. Users of ENG contraceptive implants with elevated BCL6 and BMP6 expression exhibited a higher risk of breakthrough bleeding at the 3-month follow-up. Conversely, reduced CXCL1 expression was associated with an elevated risk of bleeding at both the 3 and 12-month follow-ups.
Collapse
Affiliation(s)
- Flávia R Torelli
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Raquel M Rodrigues-Peres
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ilza Monteiro
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luis Bahamondes
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cássia R T Juliato
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Departamento de Tocoginecologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP, Rua Alexander Fleming 101, Campinas, SP, 13083-881, Brazil.
| |
Collapse
|
3
|
Gupta PM, Balle C, Tharp GK, Nelson SA, Gasper MA, Brown B, Alisoltani A, Onono M, Palanee-Phillips T, Nair G, Ayele H, Noel-Romas L, Passmore JAS, Burgener AD, Heffron R, Jaspan HB, Bosinger SE. Systems analysis reveals differential expression of endocervical genes in African women randomized to DMPA-IM, LNG implant or cu-IUD. Clin Immunol 2023; 255:109750. [PMID: 37660744 PMCID: PMC10570927 DOI: 10.1016/j.clim.2023.109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Although effective contraceptives are crucial for preventing unintended pregnancies, evidence suggests that their use may perturb the female genital tract (FGT). A comparative analysis of the effects of the most common contraceptives on the FGT have not been evaluated in a randomized clinical trial setting. Here, we evaluated the effect of three long-acting contraceptive methods: depot medroxyprogesterone acetate(DMPA-IM), levonorgestrel(LNG) implant, and a copper intrauterine device (Cu-IUD), on the endocervical host transcriptome in 188 women from the Evidence for Contraceptive Options and HIV Outcomes Trial (ECHO) trial. Cu-IUD usage showed the most extensive transcriptomic changes, and was associated with inflammatory and anti-viral host responses. DMPA-IM usage was enriched for pathways associated with T cell responses. LNG implant had the mildest effect on endocervical gene expression, and was associated with growth factor signaling. These data provide a mechanistic basis for the diverse influence that varying contraceptives have on the FGT.
Collapse
Affiliation(s)
- Prachi Mehrotra Gupta
- Emory National Primate Research Center (ENPRC) Genomics Core Laboratory, Division of Microbiology & Immunology, Emory University, Atlanta, GA, USA
| | - Christina Balle
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Gregory K Tharp
- Emory National Primate Research Center (ENPRC) Genomics Core Laboratory, Division of Microbiology & Immunology, Emory University, Atlanta, GA, USA
| | - Sydney A Nelson
- Emory National Primate Research Center (ENPRC) Genomics Core Laboratory, Division of Microbiology & Immunology, Emory University, Atlanta, GA, USA
| | | | - Bryan Brown
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thesla Palanee-Phillips
- Wits RHI, University of the Witwatersrand, Faculty of Health Sciences, School of Public Health, Johannesburg, South Africa; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Hosseana Ayele
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Laura Noel-Romas
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jo-Ann S Passmore
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; National Health Laboratory Service, Cape Town, South Africa; CAPRISA DSI-NRF Centre of Excellence in HIV Prevention, University of Cape Town, South Africa
| | - Adam D Burgener
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Renee Heffron
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Heather B Jaspan
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Steven E Bosinger
- Emory University School of Medicine, Department of Pathology & Laboratory Medicine, GA, USA; Emory Vaccine Center, Emory University, GA, USA.
| |
Collapse
|
4
|
Giudice LC, Oskotsky TT, Falako S, Opoku‐Anane J, Sirota M. Endometriosis in the era of precision medicine and impact on sexual and reproductive health across the lifespan and in diverse populations. FASEB J 2023; 37:e23130. [PMID: 37641572 PMCID: PMC10503213 DOI: 10.1096/fj.202300907] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Endometriosis is a common estrogen-dependent disorder wherein uterine lining tissue (endometrium) is found mainly in the pelvis where it causes inflammation, chronic pelvic pain, pain with intercourse and menses, and infertility. Recent evidence also supports a systemic inflammatory component that underlies associated co-morbidities, e.g., migraines and cardiovascular and autoimmune diseases. Genetics and environment contribute significantly to disease risk, and with the explosion of omics technologies, underlying mechanisms of symptoms are increasingly being elucidated, although novel and effective therapeutics for pain and infertility have lagged behind these advances. Moreover, there are stark disparities in diagnosis, access to care, and treatment among persons of color and transgender/nonbinary identity, socioeconomically disadvantaged populations, and adolescents, and a disturbing low awareness among health care providers, policymakers, and the lay public about endometriosis, which, if left undiagnosed and under-treated can lead to significant fibrosis, infertility, depression, and markedly diminished quality of life. This review summarizes endometriosis epidemiology, compelling evidence for its pathogenesis, mechanisms underlying its pathophysiology in the age of precision medicine, recent biomarker discovery, novel therapeutic approaches, and issues around reproductive justice for marginalized populations with this disorder spanning the past 100 years. As we enter the next revolution in health care and biomedical research, with rich molecular and clinical datasets, single-cell omics, and population-level data, endometriosis is well positioned to benefit from data-driven research leveraging computational and artificial intelligence approaches integrating data and predicting disease risk, diagnosis, response to medical and surgical therapies, and prognosis for recurrence.
Collapse
Affiliation(s)
- Linda C. Giudice
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Tomiko T. Oskotsky
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Bakar Computational Health Sciences InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Simileoluwa Falako
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Columbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Jessica Opoku‐Anane
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Gynecologic Specialty SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Marina Sirota
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Bakar Computational Health Sciences InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Dabee S, Balle C, Onono M, Innes S, Nair G, Palanee-Phillips T, Burgener AD, Bosinger SE, Passmore JAS, Heffron R, Jaspan H, Happel AU. Update on the Impact of Depot Medroxyprogesterone Acetate on Vaginal Mucosal Endpoints and Relevance to Sexually Transmitted Infections. Curr HIV/AIDS Rep 2023; 20:251-260. [PMID: 37341916 PMCID: PMC10403392 DOI: 10.1007/s11904-023-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW The long-acting reversible intramuscularly-injected contraceptive depot medroxyprogesterone acetate (DMPA-IM) is widely used by cisgender women in Africa. Although DMPA-IM provides reliable contraception, potential effects on the female genital tract (FGT) mucosa have raised concern, including risk of HIV infection. This review summarises and compares evidence from observational cohort studies and the randomised Evidence for Contraceptive Options in HIV Outcomes (ECHO) Trial. RECENT FINDINGS Although previous observational studies found women using DMPA-IM had higher abundance of bacterial vaginosis (BV)-associated bacteria, increased inflammation, increased cervicovaginal HIV target cell density, and epithelial barrier damage, sub-studies of the ECHO Trial found no adverse changes in vaginal microbiome, inflammation, proteome, transcriptome, and risk of viral and bacterial STIs, other than an increase in Th17-like cells. Randomised data suggest that DMPA-IM use does not adversely change mucosal endpoints associated with acquisition of infections. These findings support the safe use of DMPA-IM in women at high risk of acquiring STIs, including HIV.
Collapse
Affiliation(s)
- Smritee Dabee
- Center for Global Infectious Disease, Seattle Children’s Research Institute, 307 Westlake Ave. N, Seattle, WA 98109 USA
| | - Christina Balle
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | | | - Steve Innes
- Desmond Tutu Health Foundation, 3 Woodlands Rd, Woodstock, Cape Town, 7915 South Africa
| | - Gonasagrie Nair
- Desmond Tutu Health Foundation, 3 Woodlands Rd, Woodstock, Cape Town, 7915 South Africa
| | - Thesla Palanee-Phillips
- Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Klein St & Esselen St, Hillbrow, Johannesburg 2001 South Africa
| | - Adam D. Burgener
- Center for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Obstetrics and Gynecology, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2 Canada
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Visionsgatan 18, L8, 171 76 Solna, Sweden
| | - Steven E. Bosinger
- ENPRC Genomics Core Laboratory, Emory National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA 30329 USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA 30307 USA
- Emory Vaccine Center, Emory University, 7 1st Ave, Atlanta, GA 30317 USA
| | - Jo-Ann S. Passmore
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Renee Heffron
- Department of Medicine, University of Alabama at Birmingham, 845 19th Street South, AL 35294-2170 Birmingham, USA
- Department of Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA 98195 USA
| | - Heather Jaspan
- Center for Global Infectious Disease, Seattle Children’s Research Institute, 307 Westlake Ave. N, Seattle, WA 98109 USA
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA 98195 USA
- Department of Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA 98195 USA
| | - Anna-Ursula Happel
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
6
|
Zhang H, Wang Z, Zhou Q, Cao Z, Jiang Y, Xu M, Liu J, Zhou J, Yan G, Sun H. Downregulated INHBB in endometrial tissue of recurrent implantation failure patients impeded decidualization through the ADCY1/cAMP signalling pathway. J Assist Reprod Genet 2023; 40:1135-1146. [PMID: 36913138 PMCID: PMC10239411 DOI: 10.1007/s10815-023-02762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE This study aims to identify the mechanism of Inhibin Subunit Beta B (INHBB), a member of the transforming growth factor-β (TGF-β) family involved in the regulation of human endometrial stromal cells (HESCs) decidualization in recurrent implantation failure (RIF). METHODS RNA-seq was conducted to identify the differentially expressed genes in the endometria from control and RIF patients. RT-qPCR, WB, and immunohistochemistry were performed to analyse the expression levels of INHBB in endometrium and decidualised HESCs. RT-qPCR and immunofluorescence were used to detect changes in the decidual marker genes and cytoskeleton after knockdown INHBB. Then, RNA-seq was used to dig out the mechanism of INHBB regulating decidualization. The cAMP analogue (forskolin) and si-INHBB were used to investigate the involvement of INHBB in the cAMP signalling pathway. The correlation of INHBB and ADCY expression was analysed by Pearson's correlation analysis. RESULTS Our results showed significantly reduced expression of INHBB in endometrial stromal cells of women with RIF. In addition, INHBB was increased in the endometrium of the secretory phase and significantly induced in in-vitro decidualization of HESCs. Notably, with RNA-seq and siRNA-mediated knockdown approaches, we demonstrated that the INHBB-ADCY1-mediated cAMP signalling pathway regulates the reduction of decidualization. We found a positive association between the expression of INHBB and ADCY1 in endometria with RIF (R2 = 0.3785, P = 0.0005). CONCLUSIONS The decline of INHBB in HESCs suppressed ADCY1-induced cAMP production and cAMP-mediated signalling, which attenuated decidualization in RIF patients, indicating that INHBB is an essential component in the decidualization process.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhilong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Quan Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Manlin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jingyu Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Plesniarski A, Siddik AB, Su RC. The Microbiome as a Key Regulator of Female Genital Tract Barrier Function. Front Cell Infect Microbiol 2022; 11:790627. [PMID: 34976864 PMCID: PMC8719631 DOI: 10.3389/fcimb.2021.790627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiome, the collection of microbial species at a site or compartment, has been an underappreciated realm of human health up until the last decade. Mounting evidence suggests the microbiome has a critical role in regulating the female genital tract (FGT) mucosa's function as a barrier against sexually transmitted infections (STIs) and pathogens. In this review, we provide the most recent experimental systems and studies for analyzing the interplay between the microbiome and host cells and soluble factors with an influence on barrier function. Key components, such as microbial diversity, soluble factors secreted by host and microbe, as well as host immune system, all contribute to both the physical and immunologic aspects of the FGT mucosal barrier. Current gaps in what is known about the effects of the microbiome on FGT mucosal barrier function are compared and contrasted with the literature of the gut and respiratory mucosa. This review article presents evidence supporting that the vaginal microbiome, directly and indirectly, contributes to how well the FGT protects against infection.
Collapse
Affiliation(s)
- Andrew Plesniarski
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abu Bakar Siddik
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Ayele H, Perner M, McKinnon LR, Birse K, Farr Zuend C, Burgener A. An updated review on the effects of depot medroxyprogesterone acetate on the mucosal biology of the female genital tract. Am J Reprod Immunol 2021; 86:e13455. [PMID: 33991137 PMCID: PMC8459266 DOI: 10.1111/aji.13455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Access to safe, effective, and affordable contraception is important for women’s health and essential to mitigate maternal and fetal mortality rates. The progestin‐based contraceptive depot medroxyprogesterone acetate (DMPA) is a popular contraceptive choice with a low failure rate and convenient administration schedule. Aim In this review, we compiled observational data from human cohorts that examine how DMPA influences the mucosal biology of the female genital tract (FGT) that are essential in maintaining vaginal health, including resident immune cells, pro‐inflammatory cytokines, epithelial barrier function, and the vaginal microbiome Materials and Methods This review focused on the recent published literature published in 2019 and 2020. Results Recent longitudinal studies show that DMPA use associates with an immunosuppressive phenotype, increase in CD4+CCR5+ T cells, and alterations to growth factors. In agreement with previous meta‐analyses, DMPA use is associated with minimal effects of the composition of the vaginal microbiome. Cross‐sectional studies associate a more pro‐inflammatory relationship with DMPA, but these studies are confounded by inherent weaknesses of cross‐sectional studies, including differences in study group sizes, behaviors, and other variables that may affect genital inflammation. Discussion & Conclusion These recent results indicate that the interactions between DMPA and the vaginal mucosa are complex emphasizing the need for comprehensive longitudinal studies that take into consideration the measurement of multiple biological parameters.
Collapse
Affiliation(s)
- Hossaena Ayele
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michelle Perner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kenzie Birse
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christina Farr Zuend
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam Burgener
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada.,Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Solna, Sweden
| |
Collapse
|
9
|
Dottino JA, Zhang Q, Loose DS, Fellman B, Melendez BD, Borthwick MS, McKenzie LJ, Yuan Y, Yang RK, Broaddus RR, Lu KH, Soliman PT, Yates MS. Endometrial biomarkers in premenopausal women with obesity: an at-risk cohort. Am J Obstet Gynecol 2021; 224:278.e1-278.e14. [PMID: 32835719 DOI: 10.1016/j.ajog.2020.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obesity is a well-known risk factor for endometrial cancer, but the mechanisms of obesity-related carcinogenesis are not well defined, particularly for premenopausal women. With the continuing obesity epidemic, increases in the incidence of endometrial cancer and a younger age of diagnosis are often attributed to a hyperestrogenic state created by hormone production in adipose tissue, but significant knowledge gaps remain. The balance of estrogen-responsive signals has not been defined in the endometrium of premenopausal women with obesity, where obesity may not create hyperestrogenism in the context of ovaries being the primary source of estrogen production. Obesity is associated with a state of low-grade, chronic inflammation that can promote tumorigenesis, and it is also known that hormonal changes alter the immune microenvironment of the endometrium. However, limited research has been conducted on endometrial immune-response changes in women who have an increased risk for cancer due to obesity. OBJECTIVE Endometrial estrogen-regulated biomarkers, previously shown to be dysregulated in endometrial cancer, were evaluated in a cohort of premenopausal women to determine if obesity is associated with differences in the biomarker expression levels, which might reflect an altered risk of developing cancer. The expression of a multiplexed panel of immune-related genes was also evaluated for expression differences related to obesity. STUDY DESIGN Premenopausal women with a body mass index of ≥30 kg/m2 (n=97) or a body mass index of ≤25 kg/m2 (n=33) were prospectively enrolled in this cross-sectional study, which included the assessment of serum metabolic markers and a timed endometrial biopsy for pathologic evaluation, hormone-regulated biomarker analysis, and immune response gene expression analysis. Medical and gynecologic histories were obtained. Endometrial gene expression markers were also compared across the body mass index groups in a previous cohort of premenopausal women with an inherited cancer risk (Lynch syndrome). RESULTS In addition to known systemic metabolic differences, histologically normal endometria from women with obesity showed a decrease in gene expression of progesterone receptor (P=.0027) and the estrogen-induced genes retinaldehyde dehydrogenase 2 (P=.008), insulin-like growth factor 1 (P=.016), and survivin (P=.042) when compared with women without obesity. The endometrial biomarkers insulin-like growth factor 1, survivin, and progesterone receptor remained statistically significant in multivariate linear regression models. In contrast, women with obesity and Lynch syndrome had an increased expression of insulin-like growth factor 1 (P=.017). There were no differences in endometrial proliferation, and limited endometrial immune differences were observed. CONCLUSION When comparing premenopausal women with and without obesity in the absence of endometrial pathology or an inherited cancer risk, the expression of the endometrial biomarkers does not reflect a local hyperestrogenic environment, but it instead reflects a decreased cancer risk profile that may be indicative of a compensated state. In describing premenopausal endometrial cancer risk, it may be insufficient to attribute a high-risk state to obesity alone; further studies are warranted to evaluate individualized biomarker profiles for differences in the hormone-responsive signals or immune response. In patients with Lynch syndrome, the endometrial biomarker profile suggests that obesity further increases the risk of developing cancer.
Collapse
|
10
|
Edfeldt G, Lajoie J, Röhl M, Oyugi J, Åhlberg A, Khalilzadeh-Binicy B, Bradley F, Mack M, Kimani J, Omollo K, Wählby C, Fowke KR, Broliden K, Tjernlund A. Regular use of depot medroxyprogesterone acetate causes thinning of the superficial lining and apical distribution of HIV target cells in the human ectocervix. J Infect Dis 2020; 225:1151-1161. [PMID: 32780807 PMCID: PMC8974825 DOI: 10.1093/infdis/jiaa514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/08/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The hormonal contraceptive depot medroxyprogesterone acetate (DMPA) may be associated with an increased risk of acquiring human immunodeficiency virus (HIV). We hypothesize that DMPA use influences the ectocervical tissue architecture and HIV target cell localization. METHODS Quantitative image analysis workflows were developed to assess ectocervical tissue samples collected from DMPA users and control subjects not using hormonal contraception. RESULTS Compared to controls, the DMPA group exhibited a significantly thinner apical ectocervical epithelial layer and a higher proportion of CD4+CCR5+ cells with a more superficial location. This localization corresponded to an area with a non-intact E-cadherin net structure. CD4+Langerin+ cells were also more superficially located in the DMPA group, while fewer in number compared to the controls. Natural plasma progesterone levels did not correlate with any of these parameters, whereas estradiol levels were positively correlated with E-cadherin expression and a more basal location for HIV target cells of the control group. CONCLUSIONS DMPA users have a less robust epithelial layer and a more apical distribution of HIV target cells in the human ectocervix, which could confer a higher risk of HIV infection. Our results highlight the importance of assessing intact genital tissue samples to gain insights into HIV susceptibility factors.
Collapse
Affiliation(s)
- Gabriella Edfeldt
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Maria Röhl
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julius Oyugi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Alexandra Åhlberg
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Behnaz Khalilzadeh-Binicy
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Frideborg Bradley
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Mathias Mack
- Department of Internal Medicine - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Partners for Health and Development in Africa, Nairobi, Kenya
| | - Kenneth Omollo
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Carolina Wählby
- Department of Information Technology, Uppsala University, Uppsala, Sweden.,SciLifeLab BioImage Informatics Facility, Uppsala, Sweden
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya.,Partners for Health and Development in Africa, Nairobi, Kenya.,Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
11
|
Vicetti Miguel RD, Quispe Calla NE, Cherpes TL. HIV, progestins, genital epithelial barrier function, and the burden of objectivity†. Biol Reprod 2020; 103:318-322. [PMID: 32561906 PMCID: PMC7401028 DOI: 10.1093/biolre/ioaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Contributions from a diverse set of scientific disciplines will be needed to help individuals make fully informed decisions regarding contraceptive choices least likely to promote HIV susceptibility. This commentary recaps contrasting interpretations of results from the Evidence for Contraceptive Options and HIV Outcomes (ECHO) Trial, a study that compared HIV risk in women using the progestin-only injectable contraceptive depot medroxyprogesterone acetate (DMPA) vs. two other contraceptive choices. It also summarizes results from basic and translational research that establish biological plausibility for earlier clinical studies that identified enhanced HIV susceptibility in women using DMPA.
Collapse
Affiliation(s)
| | - Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Smith-McCune K, Thomas R, Averbach S, Seidman D, Takeda M, Houshdaran S, Giudice LC. Differential Effects of the Hormonal and Copper Intrauterine Device on the Endometrial Transcriptome. Sci Rep 2020; 10:6888. [PMID: 32327684 PMCID: PMC7181869 DOI: 10.1038/s41598-020-63798-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
The contraceptive effectiveness of intrauterine devices (IUDs) has been attributed in part to a foreign body reaction in the endometrium. We performed this study to better understand mechanisms of action of contraceptives of by studying their effects on endometrial and cervical transcriptomes. We collected endometrial and cervical biopsies from women using the levonorgestrel-releasing intrauterine system (LNG-IUS, n = 11), copper intrauterine device (cu-IUD, n = 13) or levonorgestrel-containing combined oral contraceptives (COC, n = 12), and from women not using contraceptives (control group, n = 11). Transcriptional profiling was performed with Affymetrix arrays, Principal Component Analysis and the bioconductor package limma. In endometrial samples from cu-IUD users, there were no genes with statistically significant differential expression compared to controls. In LNG-IUS users, 2509 genes were differentially expressed and mapped predominantly onto immune and inflammatory pathways. The cervical samples showed no statistically significant differential gene expression compared to controls. Hormonal and copper IUDs have significantly different effects on the endometrial transcriptome, with the LNG-IUS transcriptome showing pronounced inflammation and immune activation compared to controls whereas the cu-IUD transcriptome was indistinguishable from luteal phase endometrium. These findings argue against a foreign body reaction as a common mechanism of action of IUDs.
Collapse
Affiliation(s)
- Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| | | | - Sarah Averbach
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, CA, USA
| | - Dominika Seidman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Takeda
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sahar Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Houshdaran S, Chen JC, Vallvé-Juanico J, Balayan S, Vo KC, Smith-McCune K, Greenblatt RM, Irwin JC, Giudice LC. Progestins Related to Progesterone and Testosterone Elicit Divergent Human Endometrial Transcriptomes and Biofunctions. Int J Mol Sci 2020; 21:ijms21072625. [PMID: 32283828 PMCID: PMC7177488 DOI: 10.3390/ijms21072625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/30/2022] Open
Abstract
Progestins are widely used for the treatment of gynecologic disorders and alone, or combined with an estrogen, are used as contraceptives. While their potencies, efficacies and side effects vary due to differences in structures, doses and routes of administration, little is known about their effects on the endometrial transcriptome in the presence or absence of estrogen. Herein, we assessed the transcriptome and pathways induced by progesterone (P4) and the three most commonly used synthetic progestins, medroxyprogesterone acetate (MPA), levonorgestrel (LNG), and norethindrone acetate (NETA), on human endometrial stromal fibroblasts (eSF), key players in endometrial physiology and reproductive success. While there were similar transcriptional responses, each progestin induced unique genes and biofunctions, consistent with their structural similarities to progesterone (P4 and MPA) or testosterone (LNG and NETA), involving cellular proliferation, migration and invasion. Addition of estradiol (E2) to each progestin influenced the number of differentially expressed genes and biofunctions in P4 and MPA, while LNG and NETA signatures were more independent of E2. Together, these data suggest different mechanisms of action for different progestins, with progestin-specific altered signatures when combined with E2. Further investigation is warranted for a personalized approach in different gynecologic disorders, for contraception, and minimizing side effects associated with their use.
Collapse
Affiliation(s)
- Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | | | - Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Shayna Balayan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Karen Smith-McCune
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Ruth M. Greenblatt
- Departments of Clinical Pharmacy, Medicine, Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA;
| | - Juan C. Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
| | - Linda C. Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (S.H.); (J.V.-J.); (S.B.); (K.C.V.); (K.S.-M.); (J.C.I.)
- Correspondence: ; Tel.: +1-4154762039
| |
Collapse
|
14
|
Dinehart E, Lathi RB, Aghajanova L. Levonorgestrel IUD: is there a long-lasting effect on return to fertility? J Assist Reprod Genet 2020; 37:45-52. [PMID: 31709489 PMCID: PMC7000571 DOI: 10.1007/s10815-019-01624-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Intrauterine devices (IUDs) are effective and safe long-acting reversible contraceptive methods for preventing unplanned pregnancies. While extensive studies were conducted to evaluate return to fertility after removal of IUDs, majority of them were focused on multiparous women using copper IUDs. Current trends indicate increased use of levonorgestrel (LNG) IUDs in nulliparous women for very long periods of time, with both nulliparity and long duration of LNG-IUD use being potentially associated with trends towards longer time to conception post removal. Understanding the effects that LNG-IUDs may have on endometrial morphology and gene expression has important implications to further understanding their mechanism of action. Studies examining endometrial gene expression show persistent changes in receptivity markers up to 1 year after removal of an inert IUD, and no similar studies have been performed after removal of LNG-IUDs. Given the current gap in the literature and trends in LNG-IUD use in nulliparous young women, studies are needed that specifically look at the interaction of nulliparity, long-term use of LNG-IUD, and return to normal fertility. Herein, we review the available literature on the mechanism of action of IUDs with a specific focus on the effect on endometrial gene expression profile changes associated with IUDs.
Collapse
Affiliation(s)
- Erin Dinehart
- Department of Obstetrics and Gynecology, George Washington University, Washington, DC, USA
| | - Ruth B Lathi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Lusine Aghajanova
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Quispe Calla NE, Vicetti Miguel RD, Glick ME, Kwiek JJ, Gabriel JM, Cherpes TL. Exogenous oestrogen inhibits genital transmission of cell-associated HIV-1 in DMPA-treated humanized mice. J Int AIDS Soc 2019; 21. [PMID: 29334191 PMCID: PMC5810324 DOI: 10.1002/jia2.25063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction HIV affects more women than any other life‐threatening infectious agent, and most infections are sexually transmitted. HIV must breach the female genital tract mucosal barrier to establish systemic infection, and clinical studies indicate virus more easily evades this barrier in women using depot‐medroxyprogesterone acetate (DMPA) and other injectable progestins for contraception. Identifying a potential mechanism for this association, we learned DMPA promotes susceptibility of wild‐type mice to genital herpes simplex virus type 2 (HSV‐2) infection by reducing genital tissue expression of the cell‐cell adhesion molecule desmoglein‐1 (DSG‐1) and increasing genital mucosal permeability. Conversely, DMPA‐mediated increases in genital mucosal permeability and HSV‐2 susceptibility were eliminated in mice concomitantly administered exogenous oestrogen (E). To confirm and extend these findings, herein we used humanized mice to define effects of systemic DMPA and intravaginal (ivag) E administration on susceptibility to genital infection with cell‐associated HIV‐1. Methods Effects of DMPA or an intravaginal (ivag) E cream on engraftment of NOD‐scid‐IL‐2Rgcnull (NSG) mice with human peripheral blood mononuclear cells (hPBMCs) were defined with flow cytometry. Confocal microscopy was used to evaluate effects of DMPA, DMPA and E cream, or DMPA and the pharmacologically active component of the cream on vaginal tissue DSG‐1 expression and genital mucosal permeability to low molecular weight (LMW) molecules and hPBMCs. In other studies, hPBMC‐engrafted NSG mice (hPBMC‐NSG) received DMPA or DMPA and ivag E cream before genital inoculation with 106 HIV‐1‐infected hPBMCs. Mice were euthanized 10 days after infection, and plasma HIV‐1 load quantified by qRT‐PCR and splenocytes used to detect HIV‐1 p24 antigen via immunohistochemistry and infectious virus via TZM‐bl luciferase assay. Results Whereas hPBMC engraftment was unaffected by DMPA or E treatment, mice administered DMPA and E (cream or the pharmacologically active cream component) displayed greater vaginal tissue expression of DSG‐1 protein and decreased vaginal mucosal permeability to LMW molecules and hPBMCs versus DMPA‐treated mice. DMPA‐treated hPBMC‐NSG mice were also uniformly susceptible to genital transmission of cell‐associated HIV‐1, while no animal concomitantly administered DMPA and E cream acquired systemic HIV‐1 infection. Conclusion Exogenous E administration reduces susceptibility of DMPA‐treated humanized mice to genital HIV‐1 infection.
Collapse
Affiliation(s)
- Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Melissa E Glick
- The Ohio State University (OSU) College of Veterinary Medicine, Columbus, OH, USA
| | - Jesse J Kwiek
- Department of Microbiology, OSU College of Arts and Sciences, Columbus, OH, USA
| | | | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
The contraceptive medroxyprogesterone acetate, unlike norethisterone, directly increases R5 HIV-1 infection in human cervical explant tissue at physiologically relevant concentrations. Sci Rep 2019; 9:4334. [PMID: 30867477 PMCID: PMC6416361 DOI: 10.1038/s41598-019-40756-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
The intramuscular progestin-only injectable contraceptive, depo-medroxyprogesterone acetate (DMPA-IM), is more widely used in Sub-Saharan Africa than another injectable contraceptive, norethisterone enanthate (NET-EN). Epidemiological data show a significant 1.4-fold increased risk of HIV-1 acquisition for DMPA-IM usage, while no such association is shown from limited data for NET-EN. We show that MPA, unlike NET, significantly increases R5-tropic but not X4-tropic HIV-1 replication ex vivo in human endocervical and ectocervical explant tissue from pre-menopausal donors, at physiologically relevant doses. Results support a mechanism whereby MPA, unlike NET, acts via the glucocorticoid receptor (GR) to increase HIV-1 replication in cervical tissue by increasing the relative frequency of CD4+ T cells and activated monocytes. We show that MPA, unlike NET, increases mRNA expression of the CD4 HIV-1 receptor and CCR5 but not CXCR4 chemokine receptors, via the GR. However, increased density of CD4 on CD3+ cells was not observed with MPA by flow cytometry of digested tissue. Results suggest that DMPA-IM may increase HIV-1 acquisition in vivo at least in part via direct effects on cervical tissue to increase founder R5-tropic HIV-1 replication. Our findings support differential biological mechanisms and disaggregation of DMPA-IM and NET-EN regarding HIV-1 acquisition risk category for use in high risk areas.
Collapse
|
17
|
Hapgood JP, Kaushic C, Hel Z. Hormonal Contraception and HIV-1 Acquisition: Biological Mechanisms. Endocr Rev 2018; 39:36-78. [PMID: 29309550 PMCID: PMC5807094 DOI: 10.1210/er.2017-00103] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Access to effective affordable contraception is critical for individual and public health. A wide range of hormonal contraceptives (HCs), which differ in composition, concentration of the progestin component, frequency of dosage, and method of administration, is currently available globally. However, the options are rather limited in settings with restricted economic resources that frequently overlap with areas of high HIV-1 prevalence. The predominant contraceptive used in sub-Saharan Africa is the progestin-only three-monthly injectable depot medroxyprogesterone acetate. Determination of whether HCs affect HIV-1 acquisition has been hampered by behavioral differences potentially confounding clinical observational data. Meta-analysis of these studies shows a significant association between depot medroxyprogesterone acetate use and increased risk of HIV-1 acquisition, raising important concerns. No association was found for combined oral contraceptives containing levonorgestrel, nor for the two-monthly injectable contraceptive norethisterone enanthate, although data for norethisterone enanthate are limited. Susceptibility to HIV-1 and other sexually transmitted infections may, however, be dependent on the type of progestin present in the formulation. Several underlying biological mechanisms that may mediate the effect of HCs on HIV-1 and other sexually transmitted infection acquisition have been identified in clinical, animal, and ex vivo studies. A substantial gap exists in the translation of basic research into clinical practice and public health policy. To bridge this gap, we review the current knowledge of underlying mechanisms and biological effects of commonly used progestins. The review sheds light on issues critical for an informed choice of progestins for the identification of safe, effective, acceptable, and affordable contraceptive methods.
Collapse
Affiliation(s)
- Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Charu Kaushic
- Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Effects of Sex Steroids on Fish Leukocytes. BIOLOGY 2018; 7:biology7010009. [PMID: 29315244 PMCID: PMC5872035 DOI: 10.3390/biology7010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish.
Collapse
|
19
|
Shanmugasundaram U, Hilton JF, Critchfield JW, Greenblatt RM, Giudice LC, Averbach S, Seidman D, Shacklett BL, Smith-McCune K. Effects of the levonorgestrel-releasing intrauterine device on the immune microenvironment of the human cervix and endometrium. Am J Reprod Immunol 2017; 76:137-48. [PMID: 27401588 PMCID: PMC5316474 DOI: 10.1111/aji.12535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
PROBLEM There is little information regarding the impact of the intrauterine device on immune parameters of the upper female reproductive tract related to risk of HIV acquisition. METHOD OF STUDY We collected cervical and endometrial samples from women using the hormonal intrauterine device to study its effects on endocervical cytokines/chemokine concentrations, phenotypic markers of T cells, responses of endometrial T cells to activation, and alterations of endometrial cellular infiltrates. RESULTS Hormonal intrauterine device use was associated with: increased concentrations of inflammatory cytokines/chemokines (endocervix); increased coexpression of CXCR4 and CCR5 (endocervix and endometrium); increased coexpression of CD38 and HLADR (endocervix and endometrium); increased intracellular IL-10 production after T-cell stimulation (endometrium); and increased density of T cells, most notably regulatory T cells (endometrium). CONCLUSION Hormonal intrauterine device use resulted in both inflammatory and immunosuppressive alterations. Further research is needed to determine the significance of these changes for HIV risk.
Collapse
Affiliation(s)
- Uma Shanmugasundaram
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Joan F Hilton
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - J William Critchfield
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Ruth M Greenblatt
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.,Departments of Clinical Pharmacy and Medicine, University of California, San Francisco, CA, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Sarah Averbach
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Dominika Seidman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Polis CB, Achilles SL, Hel Z, Hapgood JP. Is a lower-dose, subcutaneous contraceptive injectable containing depot medroxyprogesterone acetate likely to impact women's risk of HIV? Contraception 2017; 97:191-197. [PMID: 29242082 DOI: 10.1016/j.contraception.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/18/2017] [Accepted: 12/02/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Chelsea B Polis
- Guttmacher Institute, New York, NY, USA; Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA.
| | - Sharon L Achilles
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zdenek Hel
- Department of Pathology, Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janet P Hapgood
- Department of Molecular and Cell Biology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Derby N, Aravantinou M, Kenney J, Ugaonkar SR, Wesenberg A, Wilk J, Kizima L, Rodriguez A, Zhang S, Mizenina O, Levendosky K, Cooney ML, Seidor S, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Fernández-Romero J, Zydowsky TM, Robbiani M. An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques. Drug Deliv Transl Res 2017; 7:840-858. [PMID: 28600625 PMCID: PMC5656733 DOI: 10.1007/s13346-017-0389-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.
Collapse
MESH Headings
- Alphapapillomavirus/drug effects
- Alphapapillomavirus/physiology
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacology
- Carrageenan/administration & dosage
- Carrageenan/pharmacology
- Contraceptive Agents, Female/administration & dosage
- Contraceptive Agents, Female/pharmacology
- Contraceptive Devices, Female
- Disease Models, Animal
- Drug Therapy, Combination/methods
- Female
- Herpes Simplex/prevention & control
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/physiology
- Humans
- Macaca mulatta
- Menstrual Cycle
- Pyridines/administration & dosage
- Pyridines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
- Vaginal Creams, Foams, and Jellies/administration & dosage
- Vaginal Creams, Foams, and Jellies/pharmacology
- Virus Shedding/drug effects
- Zinc Acetate/administration & dosage
- Zinc Acetate/pharmacology
Collapse
Affiliation(s)
- Nina Derby
- Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| | | | - Jessica Kenney
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Asa Wesenberg
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Jolanta Wilk
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Larisa Kizima
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Aixa Rodriguez
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Shimin Zhang
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Mizenina
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | - Samantha Seidor
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
| | - Brooke Grasperge
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - James Blanchard
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - José Fernández-Romero
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
- Science Department, Borough of Manhattan Community College, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | | | | |
Collapse
|
22
|
Woods MW, Zahoor MA, Dizzell S, Verschoor CP, Kaushic C. Medroxyprogesterone acetate-treated human, primary endometrial epithelial cells reveal unique gene expression signature linked to innate immunity and HIV-1 susceptibility. Am J Reprod Immunol 2017; 79. [PMID: 29105931 DOI: 10.1111/aji.12781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. METHOD OF STUDY Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. RESULTS Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. CONCLUSION The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition.
Collapse
Affiliation(s)
- Matthew W Woods
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Muhammad Atif Zahoor
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Sara Dizzell
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Chris P Verschoor
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Institute for Research on Aging, McMaster Innovation Park, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Prathoomthong S, Tingthanatikul Y, Lertvikool S, Rodratn N, Waiyaput W, Dittharot K, Sroyraya M, Sophonsritsuk A. The Effects of Dienogest on Macrophage and Natural Killer Cells in Adenomyosis: A Randomized Controlled Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:279-286. [PMID: 29043703 PMCID: PMC5641459 DOI: 10.22074/ijfs.2018.5137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022]
Abstract
Background Progestin has been used for symptomatic treatment of adenomyosis, although its effect on the immune
system has not been studied. The aim of this study was to investigate the changes of macrophage and natural killer (NK)
cell infiltration in tissues obtained from women with adenomyosis who did or did not receive oral progestin dienogest. Materials and Methods In this randomized controlled clinical trial study, 24 patients with adenomyosis who re-
quired hysterectomy were enrolled. Twelve patients received dienogest 28-35 days before surgery, and the other
12 patients were not treated with any hormones. The endometrial and myometrial tissue samples were immediately
collected after hysterectomy, and immunohistochemistry for a macrophage marker (CD68) and a NK cells marker
(CD57) was performed. Results The number of CD57 cells was significantly increased in endometrial glands of the treated group compared
to the untreated group (P=0.005) but not in stroma in the endometrium of the treated patients (P=0.416). The differ-
ence in the number of CD68 cells was not statistically significant between treated and untreated groups in the endo-
metrial glands (P=0.055) or stromal tissues (P=0.506). Conclusion Administration of oral progestin dienogest to patients with adenomyosis increased the number of uterine
infiltrating NK cells in glandular structure of eutopic endometrium. The differential effects of progestin on NK cells
depended on the site of immune cell infiltration. The effects of oral progestin on uterine NK cells in adenomyosis have
the potentials to be beneficial to pregnancies occurring following discontinuation of treatment in terms of embryo im-
plantation and fetal protection (Registration number: TCTR20150921001).
Collapse
Affiliation(s)
- Saowapak Prathoomthong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yada Tingthanatikul
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Srithean Lertvikool
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nittaya Rodratn
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wanwisa Waiyaput
- Office of Research Academic and Innovation, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanthanadon Dittharot
- Office of Research Academic and Innovation, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Morakot Sroyraya
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Mahidol University Nakhon Sawan Campus, Nakhon Sawan, Thailand
| | - Areepan Sophonsritsuk
- Reproductive Endocrinology and Infertility Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
24
|
Effects of depot-medroxyprogesterone acetate on the immune microenvironment of the human cervix and endometrium: implications for HIV susceptibility. Mucosal Immunol 2017; 10:1270-1278. [PMID: 28051087 PMCID: PMC5496803 DOI: 10.1038/mi.2016.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023]
Abstract
Depot-medroxyprogesterone acetate is a commonly used injectable contraceptive that has been associated with an increased risk of HIV acquisition. This study compares effects of depot-medroxyprogesterone acetate on immune parameters from several upper reproductive tract compartments relevant to HIV-1 susceptibility in repetitive samples from 15 depot-medroxyprogesterone acetate users and 27 women not on hormonal contraceptives. Compared with samples from unexposed women in the mid-luteal phase, depot-medroxyprogesterone acetate use was associated with: increased endocervical concentrations of MCP1 and IFNalpha2; decreased endocervical concentrations of IL1beta and IL6; increased proportions of endometrial CD4+ and CD8+ cells expressing the activation marker HLADR; increased density of endometrial macrophages; and decreased density of endometrial regulatory T cells. Unlike previous reports with samples from the vagina, we did not observe increased expression of the HIV co-receptor CCR5 on CD4+ T cells in the endocervix or endometrium. Our results indicate important differences in anatomic compartments regarding mechanisms by which depot-medroxyprogesterone acetate could be associated with increased risk of HIV acquisition, including increased recruitment of macrophages to the endometrium, decreased levels of pro-inflammatory cytokines in the endocervix possibly leading to enhanced susceptibility to viral infection, and activation of endometrial T cells.
Collapse
|
25
|
Mika KM, Lynch VJ. An Ancient Fecundability-Associated Polymorphism Switches a Repressor into an Enhancer of Endometrial TAP2 Expression. Am J Hum Genet 2016; 99:1059-1071. [PMID: 27745831 DOI: 10.1016/j.ajhg.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
Variation in female reproductive traits, such as fertility, fecundity, and fecundability, is heritable in humans, but identifying and functionally characterizing genetic variants associated with these traits has been challenging. Here, we explore the functional significance and evolutionary history of a T/C polymorphism of SNP rs2071473, which we have previously shown is an eQTL for TAP2 and significantly associated with fecundability (time to pregnancy). We replicated the association between the rs2071473 genotype and TAP2 expression by using GTEx data and demonstrated that TAP2 is expressed by decidual stromal cells at the maternal-fetal interface. Next, we showed that rs2071473 is located within a progesterone-responsive cis-regulatory element that functions as a repressor with the T allele and an enhancer with the C allele. Remarkably, we found that this polymorphism arose before the divergence of modern and archaic humans, segregates at intermediate to high frequencies across human populations, and has genetic signatures of long-term balancing selection. This variant has also previously been identified in genome-wide association studies of immune-related disease, suggesting that both alleles are maintained as a result of antagonistic pleiotropy.
Collapse
|
26
|
Calla NEQ, Miguel RDV, Boyaka PN, Hall-Stoodley L, Kaur B, Trout W, Pavelko SD, Cherpes TL. Medroxyprogesterone acetate and levonorgestrel increase genital mucosal permeability and enhance susceptibility to genital herpes simplex virus type 2 infection. Mucosal Immunol 2016; 9:1571-1583. [PMID: 27007679 PMCID: PMC5035233 DOI: 10.1038/mi.2016.22] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Depot-medroxyprogesterone acetate (DMPA) is a hormonal contraceptive especially popular in areas with high prevalence of HIV and other sexually transmitted infections (STI). Although observational studies identify DMPA as an important STI risk factor, mechanisms underlying this connection are undefined. Levonorgestrel (LNG) is another progestin used for hormonal contraception, but its effect on STI susceptibility is much less explored. Using a mouse model of genital herpes simplex virus type 2 (HSV-2) infection, we herein found that DMPA and LNG similarly reduced genital expression of the desmosomal cadherin desmoglein-1α (DSG1α), enhanced access of inflammatory cells to genital tissue by increasing mucosal epithelial permeability, and increased susceptibility to viral infection. Additional studies with uninfected mice revealed that DMPA-mediated increases in mucosal permeability promoted tissue inflammation by facilitating endogenous vaginal microbiota invasion. Conversely, concomitant treatment of mice with DMPA and intravaginal estrogen restored mucosal barrier function and prevented HSV-2 infection. Evaluating ectocervical biopsy tissue from women before and 1 month after initiating DMPA remarkably revealed that inflammation and barrier protection were altered by treatment identically to changes seen in progestin-treated mice. Together, our work reveals DMPA and LNG diminish the genital mucosal barrier; a first-line defense against all STI, but may offer foundation for new contraceptive strategies less compromising of barrier protection.
Collapse
Affiliation(s)
- Nirk E Quispe Calla
- Department of Microbial infection & Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA,Corresponding authors: Thomas L. Cherpes, DVM, MD, Biomedical Research Tower, Room 712, 460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.1897 Fax: 614.292.9616. Rodolfo D. Vicetti Miguel, MD, Biomedical Research Tower, Room 731, 460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.2165 Fax: 614.292.9616. Nirk E. Quispe Calla, MD, Biomedical Research Tower, Room 740,460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.2165 Fax: 614.292.9616
| | - Rodolfo D Vicetti Miguel
- Department of Microbial infection & Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA,Corresponding authors: Thomas L. Cherpes, DVM, MD, Biomedical Research Tower, Room 712, 460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.1897 Fax: 614.292.9616. Rodolfo D. Vicetti Miguel, MD, Biomedical Research Tower, Room 731, 460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.2165 Fax: 614.292.9616. Nirk E. Quispe Calla, MD, Biomedical Research Tower, Room 740,460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.2165 Fax: 614.292.9616
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Luanne Hall-Stoodley
- Department of Microbial infection & Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Balveen Kaur
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Wayne Trout
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stephen D Pavelko
- Department of Microbial infection & Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thomas L Cherpes
- Department of Microbial infection & Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA,Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA,Corresponding authors: Thomas L. Cherpes, DVM, MD, Biomedical Research Tower, Room 712, 460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.1897 Fax: 614.292.9616. Rodolfo D. Vicetti Miguel, MD, Biomedical Research Tower, Room 731, 460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.2165 Fax: 614.292.9616. Nirk E. Quispe Calla, MD, Biomedical Research Tower, Room 740,460 West 12th Ave., Columbus, OH 43210, USA, Telephone: 614.688.2165 Fax: 614.292.9616
| |
Collapse
|
27
|
Hormonal contraceptive use and women's risk of HIV acquisition: priorities emerging from recent data. Curr Opin Obstet Gynecol 2016; 27:487-95. [PMID: 26536211 DOI: 10.1097/gco.0000000000000228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Understanding whether hormonal contraception increases women's risk of HIV acquisition is a public health priority. This review summarizes recent epidemiologic and biologic data, and considers the implications of new evidence on research and programmatic efforts. RECENT FINDINGS Two secondary analyses of HIV prevention trials demonstrated increased HIV risk among depot medroxyprogesterone acetate (DMPA) users compared with nonhormonal/no method users and norethisterone enanthate (NET-EN) users. A study of women in serodiscordant partnerships found no significant association for DMPA or implants. Two meta-analyses found elevated risks of HIV among DMPA users compared with nonhormonal/no method users, with no association for NET-EN or combined oral contraceptive pills. In-vitro and animal model studies identified plausible biological mechanisms by which progestin exposure could increase risk of HIV, depending on the type and dose of progestin, but such mechanisms have not been definitively observed in humans. SUMMARY Recent epidemiologic and biologic evidence on hormonal contraception and HIV suggests a harmful profile for DMPA but not combined oral contraceptives. In limited data, NET-EN appears safer than DMPA. More research is needed on other progestin-based methods, especially implants and Sayana Press. Future priorities include updating modeling studies with new pooled estimates, continued basic science to understand biological mechanisms, expanding contraceptive choice, and identifying effective ways to promote dual method use.
Collapse
|
28
|
Villegas G, Calenda G, Ugaonkar S, Zhang S, Kizima L, Mizenina O, Gettie A, Blanchard J, Cooney ML, Robbiani M, Fernández-Romero JA, Zydowsky TM, Teleshova N. A Novel Microbicide/Contraceptive Intravaginal Ring Protects Macaque Genital Mucosa against SHIV-RT Infection Ex Vivo. PLoS One 2016; 11:e0159332. [PMID: 27428377 PMCID: PMC4948912 DOI: 10.1371/journal.pone.0159332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Abstract
Women need multipurpose prevention products (MPTs) that protect against sexually transmitted infections (STIs) and provide contraception. The Population Council has developed a prototype intravaginal ring (IVR) releasing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (M), zinc acetate (ZA), carrageenan (CG) and levonorgestrel (LNG) (MZCL IVR) to protect against HIV, HSV-2, HPV and unintended pregnancy. Our objective was to evaluate the anti-SHIV-RT activity of MZCL IVR in genital mucosa. First, macaque vaginal tissues were challenged with SHIV-RT in the presence of (i) MIV-150 ± LNG or (ii) vaginal fluids (VF); available from studies completed earlier) collected at various time points post insertion of MZCL and MZC IVRs. Then, (iii) MZCL IVRs (vs. LNG IVRs) were inserted in non-Depo Provera-treated macaques for 24h and VF, genital biopsies, and blood were collected and tissues were challenged with SHIV-RT. Infection was monitored with one step SIV gag qRT-PCR or p27 ELISA. MIV-150 (LCMS/MS, RIA), LNG (RIA) and CG (ELISA) were measured in different compartments. Log-normal generalized mixed linear models were used for analysis. LNG did not affect the anti-SHIV-RT activity of MIV-150 in vitro. MIV-150 in VF from MZC/MZCL IVR-treated macaques inhibited SHIV-RT in vaginal mucosa in a dose-dependent manner (p<0.05). MIV-150 in vaginal tissue from MZCL IVR-treated animals inhibited ex vivo infection relative to baseline (96%; p<0.0001) and post LNG IVR group (90%, p<0.001). No MIV-150 dose-dependent protection was observed, likely because of high MIV-150 concentrations in all vaginal tissue samples. In cervical tissue, MIV-150 inhibited infection vs. baseline (99%; p<0.05). No cervical tissue was available for MIV-150 measurement. Exposure to LNG IVR did not change tissue infection level. These observations support further development of MZCL IVR as a multipurpose prevention technology to improve women's sexual and reproductive health.
Collapse
Affiliation(s)
| | - Giulia Calenda
- Population Council, New York, New York, United States of America
| | - Shweta Ugaonkar
- Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | | | - Melissa Robbiani
- Population Council, New York, New York, United States of America
| | | | | | | |
Collapse
|
29
|
Black A, Guilbert E, Costescu D, Dunn S, Fisher W, Kives S, Mirosh M, Norman W, Pymar H, Reid R, Roy G, Varto H, Waddington A, Wagner MS, Whelan AM. Canadian Contraception Consensus (Part 3 of 4): Chapter 8 - Progestin-Only Contraception. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2016; 38:279-300. [PMID: 27106200 DOI: 10.1016/j.jogc.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To provide guidelines for health care providers on the use of contraceptive methods to prevent pregnancy and on the promotion of healthy sexuality. OUTCOMES Overall efficacy of cited contraceptive methods, assessing reduction in pregnancy rate, safety, ease of use, and side effects; the effect of cited contraceptive methods on sexual health and general well-being; and the relative cost and availability of cited contraceptive methods in Canada. EVIDENCE Published literature was retrieved through searches of Medline and The Cochrane Database from January 1994 to January 2015 using appropriate controlled vocabulary (e.g., contraception, sexuality, sexual health) and key words (e.g., contraception, family planning, hormonal contraception, emergency contraception). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies published in English from January 1994 to January 2015. Searches were updated on a regular basis in incorporated in the guideline to June 2015. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. VALUES The quality of the evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). CHAPTER 8: PROGESTIN-ONLY CONTRACEPTION: Summary Statements Recommendations.
Collapse
|
30
|
Black A, Guilbert E, Costescu D, Dunn S, Fisher W, Kives S, Mirosh M, Norman WV, Pymar H, Reid R, Roy G, Varto H, Waddington A, Wagner MS, Whelan AM. Consensus canadien sur la contraception (3e partie de 4) : chapitre 8 – contraception à progestatif seul. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2016; 38:301-26. [DOI: 10.1016/j.jogc.2016.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Barriers to a cure for HIV in women. J Int AIDS Soc 2016; 19:20706. [PMID: 26900031 PMCID: PMC4761692 DOI: 10.7448/ias.19.1.20706] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction Distinct biological factors exist that affect the natural history of HIV and the host immune response between women and men. These differences must be addressed to permit the optimal design of effective HIV eradication strategies for much of the HIV-positive population. Methods and results Here, we review the literature on sex-based differences in HIV pathogenesis and natural history in tissues and anatomic compartments, HIV latency and transcriptional activity, and host immunity including the role of sex hormones. We then outline the potential effects of these differences on HIV persistence, and on the safety and efficacy of HIV eradication and curative interventions. Finally, we discuss the next steps necessary to elucidate these factors to achieve a cure for HIV, taking in account the complex ethical issues and the regulatory landscape in the hopes of stimulating further research and awareness in these areas. Conclusions Targeted enrolment of women in clinical trials and careful sex-based analysis will be crucial to gain further insights into sex-based differences in HIV persistence and to design sex-specific approaches to HIV eradication, if required.
Collapse
|
32
|
Fichorova RN, Chen PL, Morrison CS, Doncel GF, Mendonca K, Kwok C, Chipato T, Salata R, Mauck C. The Contribution of Cervicovaginal Infections to the Immunomodulatory Effects of Hormonal Contraception. mBio 2015; 6:e00221-15. [PMID: 26330510 PMCID: PMC4556810 DOI: 10.1128/mbio.00221-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Particular types of hormonal contraceptives (HCs) and genital tract infections have been independently associated with risk of HIV-1 acquisition. We examined whether immunity in women using injectable depot medroxyprogesterone acetate (DMPA), combined oral contraceptives (COC), or no HCs differs by the presence of cervicovaginal infections. Immune mediators were quantified in cervical swabs from 832 HIV-uninfected reproductive-age Ugandans and Zimbabweans. Bacterial infections and HIV were diagnosed by PCR, genital herpes serostatus by enzyme-linked immunosorbent assay (ELISA), altered microflora by Nugent score, and Trichomonas vaginalis and Candida albicans infection by wet mount. Generalized linear models utilizing Box-Cox-Power transformation examined associations between levels of mediators, infection status, and HCs. In no-HC users, T. vaginalis was associated with broadest spectrum of aberrant immunity (higher interleukin 1β [IL-1β], IL-8, macrophage inflammatory protein 3α [MIP-3α], β-defensin 2 [BD2], and IL-1 receptor antigen [IL-1RA]). In women with a normal Nugent score and no genital infection, compared to the no-HC group, COC users showed higher levels of IL-1β, IL-6, IL-8, and IL-1RA, while DMPA users showed higher levels of RANTES and lower levels of BD2, both associated with HIV seroconversion. These effects of COC were blunted in the presence of gonorrhea, chlamydia, trichomoniasis, candidiasis, and an abnormal Nugent score; however, RANTES was increased among COC users with herpes, chlamydia, and abnormal Nugent scores. The effect of DMPA was exacerbated by lower levels of IL-1RA in gonorrhea, chlamydia, or herpes, SLPI in gonorrhea, and IL-1β, MIP-3α, and IL-1RA/IL1β ratio in trichomoniasis. Thus, the effects of HC on cervical immunity depend on the genital tract microenvironment, and a weakened mucosal barrier against HIV may be a combined resultant of genital tract infections and HC use. IMPORTANCE In this article, we show that in young reproductive-age women most vulnerable to HIV, hormonal contraceptives are associated with altered cervical immunity in a manner dependent on the presence of genital tract infections. Through altered immunity, hormones may predispose women to bacterial and viral pathogens; conversely, a preexisting specific infection or disturbed vaginal microbiota may suppress the immune activation by levonorgestrel or exacerbate the suppressed immunity by DMPA, thus increasing HIV risk by their cumulative action. Clinical studies assessing the effects of contraception on HIV susceptibility and mucosal immunity may generate disparate results in populations that differ by microbiota background or prevalence of undiagnosed genital tract infections. A high prevalence of asymptomatic infections among HC users that remain undiagnosed and untreated raises even more concerns in light of their combined effects on biomarkers of HIV risk. The molecular mechanisms of the vaginal microbiome's simultaneous interactions with hormones and HIV remain to be elucidated.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Kevin Mendonca
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Robert Salata
- Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|