1
|
Tošović J, Kolenc Z, Hostnik G, Bren U. Exploring antioxidative properties of xanthohumol and isoxanthohumol: An integrated experimental and computational approach with isoxanthohumol pKa determination. Food Chem 2025; 463:141377. [PMID: 39342736 DOI: 10.1016/j.foodchem.2024.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
This study explores the antioxidative activities of xanthohumol (XN) and isoxanthohumol (IXN), prenylated flavonoids from Humulus lupulus (family Cannabaceae), utilizing the oxygen radical absorption capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays along with computational Density Functional Theory methods. Experimentally, XN demonstrated significantly higher antioxidative capacities than IXN. Moreover, we determined IXN pKa values using the UV/Vis spectrophotometric method for the first time, facilitating its accurate computational modeling under physiological conditions. Through a thermodynamic approach, XN was found to efficiently scavenge HOO• and CH3O• radicals via Hydrogen Atom Transfer (HAT) and Radical Adduct Formation (RAF) mechanisms, while CH3OO• scavenging was feasible only through the HAT pathway. IXN exhibited its best antioxidative activity against CH3O• via both HAT and RAF mechanisms and could also scavenge HOO• through RAF. Both Single Electron Transfer (SET) and Sequential Proton Loss-Electron Transfer (SPLET) mechanisms were thermodynamically unfavorable for all radicals and both compounds.
Collapse
Affiliation(s)
- Jelena Tošović
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Zala Kolenc
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Gregor Hostnik
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška ulica 8, SI-6000 Koper, Slovenia; Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Dabrowski W, Pfortmueller CA, Kotfis K, Jaroszynski A, Gagos M, Plotek W, Malbrain MLNG. Is there a place for natural agents with anti-inflammatory and antioxidative properties in critically ill patients? Potential usefulness of Xanthohumol. Pharmacol Ther 2024; 266:108766. [PMID: 39637948 DOI: 10.1016/j.pharmthera.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Multi-organ dysfunction is a major issue in critically ill patients, where a significant inflammatory response appears to be the primary factor driving the degree of organ impairment, which correlates with the extent of organ injury. The management of inflammation requires a multidisciplinary approach, including antibiotics for infection control, circulatory and respiratory support, and correction of coagulation abnormalities. However, the use of anti-inflammatory treatments is typically restricted to a selected group of medications, with their effectiveness remaining the subject of extensive debate. Xanthohumol (Xn), a natural compound extracted from hops, possesses strong anti-inflammatory and antioxidative properties, with a mild anti-coagulation effect. Its biological activity is related to the inhibition of different inflammatory pathways, reduction in cytokine production and secretion, and an increase in antioxidative enzyme activity. This review examined the potential use of Xn as an adjuvant in the treatment of various pathologies in critically ill patients.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland.
| | | | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Care and Pain Management, Pomeranian Medical University of Szczecin, Poland
| | | | - Mariusz Gagos
- Department of Cell Biology, Maria Curie-Sklodowska University of Lublin, Poland
| | - Wlodzimierz Plotek
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland; Medical Data Management, Medaman, Geel, Belgium; International Fluid Academy, Lovenjoel, Belgium
| |
Collapse
|
3
|
Gupta KK, Sharma KK, Chandra H, Panwar H, Bhardwaj N, Altwaijry NA, Alsfouk AA, Dlamini Z, Afzal O, Altamimi ASA, Khan S, Mishra AP. The integrative bioinformatics approaches to predict the xanthohumol as anti-breast cancer molecule: Targeting cancer cells signaling PI3K and AKT kinase pathway. Front Oncol 2022; 12:950835. [PMID: 36591523 PMCID: PMC9798915 DOI: 10.3389/fonc.2022.950835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Background Breast cancer is the most common type of cancer in women, and vast research is being conducted throughout the world for the treatment of this malignancy by natural products using various computational approaches. Xanthohumol, a prenylated flavonoid, is known for its anticancer activity; however, the mechanism behind its action is still in the preliminary stage. Methods The current study aimed to analyze the efficacy of xanthohumol compared to the currently available anticancer drugs targeting phosphoinositide-3-kinase (PI3K), serine/threonine kinase (AKT) receptors, and human epidermal growth factor receptor 2 (HER2) for breast cancer treatment through in silico analysis. Results The result revealed that the target compound showed significant binding affinity to targets within the PI3K, AKT, and HER2 signaling pathways with a binding energy of -7.5, -7.9, and -7.9 kcal/mol, respectively. Further prediction studies were then made concerning this compound's absorption, distribution, metabolism, and excretion (ADME) as well as drug-likeness properties, resulting in its oral bioavailability with only a single violation of Lipinski's rule of five. Conclusions The finding revealed the ability of xanthohumol to bind with multiple cancer cell signaling molecules including PI3K, AKT kinase, and HER2. The current novel study opened the door to advancing research into the management and treatment of breast cancer.
Collapse
Affiliation(s)
- Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Kamal Kant Sharma
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India,*Correspondence: Kamal Kant Sharma, ; Abhay Prakash Mishra, ; Shahanavaj Khan,
| | - Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Himalaya Panwar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Najla A. Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Obaid Afzal
- 4SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Abdulmalik S. A. Altamimi
- 4SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur, Uttar Pradesh, India,Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia,Department of Pharmaceutics, College of Pharmacy, King Saud University, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Kamal Kant Sharma, ; Abhay Prakash Mishra, ; Shahanavaj Khan,
| | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein, Free State, South Africa,*Correspondence: Kamal Kant Sharma, ; Abhay Prakash Mishra, ; Shahanavaj Khan,
| |
Collapse
|
4
|
Pan Y, Wang X, Liu X, Shen L, Chen Q, Shu Q. Targeting Ferroptosis as a Promising Therapeutic Strategy for Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:2196. [PMID: 36358568 PMCID: PMC9686892 DOI: 10.3390/antiox11112196] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a major challenge in perioperative medicine that contributes to pathological damage in various conditions, including ischemic stroke, myocardial infarction, acute lung injury, liver transplantation, acute kidney injury and hemorrhagic shock. I/R damage is often irreversible, and current treatments for I/R injury are limited. Ferroptosis, a type of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides, has been implicated in multiple diseases, including I/R injury. Emerging evidence suggests that ferroptosis can serve as a therapeutic target to alleviate I/R injury, and pharmacological strategies targeting ferroptosis have been developed in I/R models. Here, we systematically summarize recent advances in research on ferroptosis in I/R injury and provide a comprehensive analysis of ferroptosis-regulated genes investigated in the context of I/R, as well as the therapeutic applications of ferroptosis regulators, to provide insights into developing therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Yihang Pan
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xueke Wang
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiwang Liu
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lihua Shen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qixing Chen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| | - Qiang Shu
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| |
Collapse
|
5
|
Marques C, Dinis L, Barreiros Mota I, Morais J, Ismael S, Pereira-Leal JB, Cardoso J, Ribeiro P, Beato H, Resende M, Espírito Santo C, Cortez AP, Rosário A, Pestana D, Teixeira D, Faria A, Calhau C. Impact of Beer and Nonalcoholic Beer Consumption on the Gut Microbiota: A Randomized, Double-Blind, Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13062-13070. [PMID: 35834180 PMCID: PMC9776556 DOI: 10.1021/acs.jafc.2c00587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gut microbiota modulation might constitute a mechanism mediating the effects of beer on health. In this randomized, double-blinded, two-arm parallel trial, 22 healthy men were recruited to drink 330 mL of nonalcoholic beer (0.0% v/v) or alcoholic beer (5.2% v/v) daily during a 4-week follow-up period. Blood and faecal samples were collected before and after the intervention period. Gut microbiota was analyzed by 16S rRNA gene sequencing. Drinking nonalcoholic or alcoholic beer daily for 4 weeks did not increase body weight and body fat mass and did not changed significantly serum cardiometabolic biomarkers. Nonalcoholic and alcoholic beer increased gut microbiota diversity which has been associated with positive health outcomes and tended to increase faecal alkaline phosphatase activity, a marker of intestinal barrier function. These results suggest the effects of beer on gut microbiota modulation are independent of alcohol and may be mediated by beer polyphenols.
Collapse
Affiliation(s)
- Cláudia Marques
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CINTESIS-Center
for Health Technology Services Research, Faculdade de Ciências
Médicas/NOVA Medical School, Universidade
NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Liliana Dinis
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CINTESIS-Center
for Health Technology Services Research, Faculdade de Ciências
Médicas/NOVA Medical School, Universidade
NOVA de Lisboa, Lisboa 1169-056, Portugal
- CHRC-Comprehensive
Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade
de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Inês Barreiros Mota
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CHRC-Comprehensive
Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade
de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Juliana Morais
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CINTESIS-Center
for Health Technology Services Research, Faculdade de Ciências
Médicas/NOVA Medical School, Universidade
NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Shámila Ismael
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CINTESIS-Center
for Health Technology Services Research, Faculdade de Ciências
Médicas/NOVA Medical School, Universidade
NOVA de Lisboa, Lisboa 1169-056, Portugal
- CHRC-Comprehensive
Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade
de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
| | | | - Joana Cardoso
- Ophiomics—Precision
Medicine, Lisboa 1600-514, Portugal
- Centro
de Medicina Laboratorial Germano de Sousa, Lisboa 1600-513, Portugal
| | - Pedro Ribeiro
- Centro
de Medicina Laboratorial Germano de Sousa, Lisboa 1600-513, Portugal
| | - Helena Beato
- CATAA—Centro
de Apoio Tecnológico Agro Alimentar, Castelo Branco 6000-459, Portugal
| | - Mafalda Resende
- CATAA—Centro
de Apoio Tecnológico Agro Alimentar, Castelo Branco 6000-459, Portugal
| | | | - Ana Paula Cortez
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - André Rosário
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CINTESIS-Center
for Health Technology Services Research, Faculdade de Ciências
Médicas/NOVA Medical School, Universidade
NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Diogo Pestana
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CINTESIS-Center
for Health Technology Services Research, Faculdade de Ciências
Médicas/NOVA Medical School, Universidade
NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Diana Teixeira
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CHRC-Comprehensive
Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade
de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- Unidade
Universitária Lifestyle Medicine José de Mello Saúde
by NOVA Medical School, Lisboa 1169-056, Portugal
| | - Ana Faria
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CHRC-Comprehensive
Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade
de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Conceição Calhau
- Nutrição
e Metabolismo, Faculdade de Ciências Médicas/NOVA Medical
School, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
- CINTESIS-Center
for Health Technology Services Research, Faculdade de Ciências
Médicas/NOVA Medical School, Universidade
NOVA de Lisboa, Lisboa 1169-056, Portugal
- Unidade
Universitária Lifestyle Medicine José de Mello Saúde
by NOVA Medical School, Lisboa 1169-056, Portugal
| |
Collapse
|
6
|
Sulistyowati E, Hsu JH, Lee SJ, Huang SE, Sihotang WY, Wu BN, Dai ZK, Lin MC, Yeh JL. Potential Actions of Baicalein for Preventing Vascular Calcification of Smooth Muscle Cells In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23105673. [PMID: 35628483 PMCID: PMC9143966 DOI: 10.3390/ijms23105673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 12/16/2022] Open
Abstract
Vascular calcification (VC) is associated with cardiovascular disease. Baicalein, a natural flavonoid extract of Scutellaria baicalensis rhizome has several biological properties which may inhibit VC. We investigated whether baicalein suppresses Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein 2 (BMP-2) and upregulates smooth muscle 22-alpha (SM22-α) and alpha-smooth muscle actin (α-SMA). In an in vitro experiment, primary rat aortic vascular smooth muscle cells (VSMCs) were pretreated with 0.1, 1, and 5 μM baicalein, followed by β-glycerophosphate (β-GP) to induce calcification. In an in vivo experiment, VC was generated by vitamin D3 plus nicotine (VDN) administration to male Sprague Dawley (SD) rats randomly assigned into a control group, a VC group, a VC group pretreated with baicalein, and a baicalein alone group. Each group comprised 10 rats. Left ventricular (LV) morphology, function and performance were assessed by echocardiography. Calcium content was measured by Alizarin red S staining and alkaline phosphatase (ALP) activity assays. Apoptotic VSMCs were detected by flow cytometry. Protein levels and superoxide changes were evaluated using Western blotting and immunofluorescence assays respectively. Plasma malondialdehyde (MDA) was assayed. Baicalein pretreatment significantly reduced calcium content in calcified VSMCs (p < 0.001) as well as in VC rat aortic smooth muscle (p < 0.001). Additionally, ALP activity was decreased in calcified VSMCs and VC rat aortic smooth muscle (p < 0.001). Apoptosis was significantly attenuated by 1 μM baicalein pretreatment in calcified VSMCs. Runx2 and BMP-2 expressions were downregulated by the baicalein in calcified VSMCs. Baicalein pretreatment increased typical VSMCs markers SM22-α and α-SMA in calcified VSMCs. Baicalein pretreatment was associated with adverse changes in LV morphometry. Markers of oxidative stress declined, and endogenous antioxidants increased in VC rats pretreated with baicalein. Baicalein mitigates VC through the inhibition of Runx2/BMP-2 signaling pathways, enhancement of vascular contractile phenotype and oxidative stress reduction. However, our study is of basic experimental design; more advanced investigations to identify other molecular regulators of VC and their mechanisms of action is required.
Collapse
Affiliation(s)
- Erna Sulistyowati
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
- Faculty of Medicine, University of Islam Malang, Malang 65145, Indonesia
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Szu-Jung Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
| | - Shang-En Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
| | - Widya Yanti Sihotang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
- Faculty of Public Health, Prima University of Indonesia, Medan 20118, Indonesia
| | - Bin-Nan Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Zen-Kong Dai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ming-Chung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Correspondence: (M.-C.L.); (J.-L.Y.); Tel.: +886-7-3121101 (ext. 2139) (J.-L.Y.)
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (E.S.); (J.-H.H.); (S.-J.L.); (S.-E.H.); (W.Y.S.); (B.-N.W.); (Z.-K.D.)
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: (M.-C.L.); (J.-L.Y.); Tel.: +886-7-3121101 (ext. 2139) (J.-L.Y.)
| |
Collapse
|
7
|
From Hops to Craft Beers: Production Process, VOCs Profile Characterization, Total Polyphenol and Flavonoid Content Determination and Antioxidant Activity Evaluation. Processes (Basel) 2022. [DOI: 10.3390/pr10030517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this work, selections of seven international hop varieties and three craft beers obtained from them were analyzed by SPME-GC/MS techniques with the aim to describe their volatile chemical profile. The brewing process was also reported. Furthermore, the hop extracts and beers were investigated to determine their flavonoid and polyphenol content and to evaluate their antioxidant power by DPPH and ABTS assays. The findings showed the presence of compounds belonging to different chemical classes such as monoterpenes, sesquiterpenes, alcohols, esters and fatty acids. In particular, sesquiterpenes were the main compounds with β-caryophyllene (from 1.7 to 16.2%) and humulene (from 10.8 to 43.9%) as the major components in all varieties of dried hop cones investigated. On the contrary, with the exception for the Pacific sample, monoterpenes were the class of compounds that were more abundant in the hop extracts and, among these, β-myrcene appeared to be the predominant constituent (from 31.8 to 71.4%). Regarding the craft beers obtained by adding these hop varieties, some differences in the qualitative and quantitative volatile composition have been found. All hop samples showed a high scavenging potential against both radicals. In the case of DPPH, the obtained IC50 values ranged from 0.027 to 0.047 mg/mL while they varied between 0.023 and 0.134 mg/mL by the ABTS assay. A positive correlation was found with polyphenol and flavonoid contents. Among beer samples, ACD was the richest one in polyphenols (292.0 mg GAE/100 mL beer) and flavonoids (5.8 mg QE/100 mL beer) and the most powerful against DPPH• and ABTS•+ radicals with IC50 values equal to 4.969 and 0.198 v/v%, respectively.
Collapse
|
8
|
Xanthohumol Protects the Rat Myocardium against Ischemia/Reperfusion Injury-Induced Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9523491. [PMID: 35082973 PMCID: PMC8786462 DOI: 10.1155/2022/9523491] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Ferroptosis is an iron-dependent form of cell death caused by the inactivation of glutathione peroxidase 4 (GPX4) and accumulation of lipid peroxides. Ferroptosis has been found to participate in the ischemia-reperfusion (I/R) injury, leading to heart dysfunction and myocardial cell death. Xanthohumol (XN), a prenylated flavonoid isolated from Humulus lupulus, has multiple pharmacological activities, such as anti-inflammatory and antioxidant. This study is aimed at investigating whether XN could attenuate the I/R-induced ferroptosis in cardiomyocytes and the underlying mechanisms. Cardiomyocytes were treated with Fe-SP and RSL3, and the rat hearts were treated with I/R. The results from the present study show that XN was able to protect cardiomyocytes against Fe-SP- and RSL3-induced ferroptotic cell death by decreasing the production of lipid peroxidation and ROS, chelating iron, reducing the NRF2 protein level, and modulating the protein levels of GPX4. Moreover, XN significantly decreased the mRNA levels of ferroptosis markers, Ptgs2 and Acsl4, and the protein levels of ACSL4 and NRF2 and modulated the protein levels of GPX4 in I/R-treated hearts. The findings from the present study suggest that XN might have the therapeutic potential for the I/R-induced ferroptosis injury.
Collapse
|
9
|
Paraiso IL, Mattio LM, Alcázar Magaña A, Choi J, Plagmann LS, Redick MA, Miranda CL, Maier CS, Dallavalle S, Kioussi C, Blakemore PR, Stevens JF. Xanthohumol Pyrazole Derivative Improves Diet-Induced Obesity and Induces Energy Expenditure in High-Fat Diet-Fed Mice. ACS Pharmacol Transl Sci 2021; 4:1782-1793. [PMID: 34927010 DOI: 10.1021/acsptsci.1c00161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The energy intake exceeding energy expenditure (EE) results in a positive energy balance, leading to storage of excess energy and weight gain. Here, we investigate the potential of a newly synthesized compound as an inducer of EE for the management of diet-induced obesity and insulin resistance. Xanthohumol (XN), a prenylated flavonoid from hops, was used as a precursor for the synthesis of a pyrazole derivative tested for its properties on high-fat diet (HFD)-induced metabolic impairments. In a comparative study with XN, we report that 4-(5-(4-hydroxyphenyl)-1-methyl-1H-pyrazol-3-yl)-5-methoxy-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (XP) uncouples oxidative phosphorylation in C2C12 cells. In HFD-fed mice, XP improved glucose tolerance and decreased weight gain by increasing EE and locomotor activity. Using an untargeted metabolomics approach, we assessed the effects of treatment on metabolites and their corresponding biochemical pathways. We found that XP and XN reduced purine metabolites and other energy metabolites in the plasma of HFD-fed mice. The induction of locomotor activity was associated with an increase in inosine monophosphate in the cortex of XP-treated mice. Together, these results suggest that XP, better than XN, affects mitochondrial respiration and cellular energy metabolism to prevent obesity in HFD-fed mice.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Luce M Mattio
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan 20133, Italy
| | - Armando Alcázar Magaña
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| | - Layhna S Plagmann
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Margaret A Redick
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cristobal L Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan 20133, Italy
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Paul R Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
10
|
Xanthohumol Induces ROS through NADPH Oxidase, Causes Cell Cycle Arrest and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9877170. [PMID: 34804373 PMCID: PMC8598356 DOI: 10.1155/2021/9877170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are either toxic in excess or essential for redox signalling at the physiological level, which is closely related to the site of generation. Xanthohumol (XN) is an important natural product of hops (Humulus lupulus L.) and was reported to induce ROS in mitochondria. While in the present study, our data indicate that NADPH oxidase (NOX) is another site. In human acute myeloid leukemia HL-60 cells, we first identified that cell proliferation was inhibited by XN without affecting viability, and this could be alleviated by the antioxidant N-acetyl-L-cysteine (NAC); cell cycles were blocked at G1 phase, apoptosis was induced in a dose-dependent manner, and malondialdehyde (MDA) content was upregulated. XN-induced ROS generation was detected by flow cytometry, which can be inhibited by diphenyleneiodonium chloride (DPI, a NOX inhibitor), while not by NG-methyl-L-arginine acetate (L-NMMA, a nitric oxide synthase inhibitor). The involvement of NOX in XN-induced ROS generation was further evaluated: immunofluorescence assay indicated subunits assembled in the membrane, and gp91phox knockdown with siRNA decreased XN-induced ROS. Human red blood cells (with NOX, without mitochondria) were further selected as a cell model, and the XN-induced ROS and DPI inhibiting effects were found again. In conclusion, our results indicate that XN exhibits antiproliferation effects through ROS-related mechanisms, and NOX is a source of XN-induced ROS. As NOX-sourced ROS are critical for phagocytosis, our findings may contribute to the anti-infection and anti-inflammatory effect of XN.
Collapse
|
11
|
Rodrigues Arruda T, Fontes Pinheiro P, Ibrahim Silva P, Campos Bernardes P. Exclusive Raw Material for Beer Production? Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02716-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Preparation of Hop Estrogen-Active Material for Production of Food Supplements. Molecules 2021; 26:molecules26196065. [PMID: 34641609 PMCID: PMC8512618 DOI: 10.3390/molecules26196065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, the interest in the health-promoting effects of hop prenylflavonoids, especially its estrogenic effects, has grown. Unfortunately, one of the most potent phytoestrogens identified so far, 8-prenylnaringenin, is only a minor component of hops, so its isolation from hop materials for the production of estrogenically active food supplements has proved to be problematic. The aim of this study was to optimize the conditions (e.g., temperature, the length of the process and the amount of the catalyst) to produce 8-prenylnaringenin-rich material by the magnesium oxide-catalyzed thermal isomerization of desmethylxanthohumol. Under these optimized conditions, the yield of 8-prenylnaringenin was 29 mg per 100 gDW of product, corresponding to a >70% increase in its content relative to the starting material. This process may be applied in the production of functional foods or food supplements rich in 8-prenylnaringenin, which may then be utilized in therapeutic agents to help alleviate the symptoms of menopausal disorders.
Collapse
|
13
|
Alonso P, Albasanz JL, Martín M. Modulation of Adenosine Receptors by Hops and Xanthohumol in Cell Cultures. ACS Chem Neurosci 2021; 12:2373-2384. [PMID: 34156813 DOI: 10.1021/acschemneuro.1c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine receptors (ARs) have been involved in neurodegenerative diseases such as Alzheimer disease, where oxidative stress contributes to neurodegeneration and cell death. Therefore, there is increasing interest in developing antioxidative strategies to avoid or reduce neurodegeneration. We have previously described that different beer extracts modulate ARs and protect glioma and neuroblastoma cells from oxidative stress. The present work aimed to analyze the possible protective effect of hops (Humulus lupulus L.), a major component of beer, and xanthohumol on cell death elicited by oxidative stress and their modulation of ARs in rat C6 glioma and human SH-SY5Y neuroblastoma cells. Different extraction methods were employed in two hops varieties (Nugget and Columbus). Cell viability was determined by the XTT method in cells exposed to these hops extracts and xanthohumol. ARs were analyzed by radioligand binding and real-time PCR assays. Hops extract reverted the cell death observed under oxidative stress and modulated adenosine A1 and A2 receptors in both cell types. Xanthohumol was unable to revert the effect of oxidative stress in cell viability but it also modulated ARs similarly to hops. Therefore, healthy effects of beer described previously could be due, at least in part, to their content of hops and the modulation of ARs.
Collapse
Affiliation(s)
- Patricia Alonso
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José L. Albasanz
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
14
|
Harish V, Haque E, Śmiech M, Taniguchi H, Jamieson S, Tewari D, Bishayee A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int J Mol Sci 2021; 22:ijms22094478. [PMID: 33923053 PMCID: PMC8123270 DOI: 10.3390/ijms22094478] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.
Collapse
Affiliation(s)
- Vancha Harish
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India;
| | - Effi Haque
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Magdalena Śmiech
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India
- Correspondence: (D.T.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (D.T.); or (A.B.)
| |
Collapse
|
15
|
Tuli HS, Aggarwal V, Parashar G, Aggarwal D, Parashar NC, Tuorkey MJ, Varol M, Sak K, Kumar M, Buttar HS. Xanthohumol: A Metabolite with Promising Anti-Neoplastic Potential. Anticancer Agents Med Chem 2021; 22:418-432. [PMID: 33622230 DOI: 10.2174/1871520621666210223095021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
The overwhelming globalburden of cancer has posed numerous challenges and opportunities for developing anti-cancer therapies. Phytochemicalshave emerged as promising synergistic compounds with potential anti-cancer effects to supplement chemo- and immune-therapeutic regimens. Anti cancer synergistic effects have been investigated in the interaction between phytocompounds derived from flavonoids such as quercetin, apigenin, kaempferol, hesperidin, emodin etc., and conventional drugs. Xanthohumol is one of the prenylatedphytoflavonoid that has demonstrated key anti-cancer activities in in vitro (anti proliferation of cancer cell lines) and in vivo(animal models of xenograft tumours)studies, and has been explored from different dimensions for targeting cancer subtypes. In the last decade, xanthohumol has been investigated how it induces the anti-cancer effects at cellular and molecular level.The different signalling cascades and targets of xanthohumolare summarized in thisreview.Overall, this reviewsummarizes the current advances made in the field of natural compounds with special reference to xanthohumol and its promising anti-cancer effectsto inhibit tumour progression.The present review hasalso touched upon the potential of xanthohumol transitioning into a lead candidate from nano-therapy viewpoint along with the challenges which need to be addressed for extensive pre-clinical and clinical anti-cancer studies.
Collapse
Affiliation(s)
- Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, PA. United States
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Nidarshana C Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Muobarak J Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour. Egypt
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, MuglaSitkiKocman University, Mugla TR48000. Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur. India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario. Canada
| |
Collapse
|
16
|
Rutnik K, Knez Hrnčič M, Jože Košir I. Hop Essential Oil: Chemical Composition, Extraction, Analysis, and Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1874413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ksenija Rutnik
- Department for Agrochemistry and Brewing, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Maša Knez Hrnčič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Iztok Jože Košir
- Department for Agrochemistry and Brewing, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| |
Collapse
|
17
|
Novel Non-Cerevisiae Saccharomyces Yeast Species Used in Beer and Alcoholic Beverage Fermentations. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A great deal of research in the alcoholic beverage industry was done on non-Saccharomyces yeast strains in recent years. The increase in research interest could be attributed to the changing of consumer tastes and the search for new beer sensory experiences, as well as the rise in popularity of mixed-fermentation beers. The search for unique flavors and aromas, such as the higher alcohols and esters, polyfunctional thiols, lactones and furanones, and terpenoids that produce fruity and floral notes led to the use of non-cerevisiae Saccharomyces species in the fermentation process. Additionally, a desire to invoke new technologies and techniques for making alcoholic beverages also led to the use of new and novel yeast species. Among them, one of the most widely used non-cerevisiae strains is S. pastorianus, which was used in the production of lager beer for centuries. The goal of this review is to focus on some of the more distinct species, such as those species of Saccharomyces sensu stricto yeasts: S. kudriavzevii, S. paradoxus, S. mikatae, S. uvarum, and S. bayanus. In addition, this review discusses other Saccharomyces spp. that were used in alcoholic fermentation. Most importantly, the factors professional brewers might consider when selecting a strain of yeast for fermentation, are reviewed herein. The factors include the metabolism and fermentation potential of carbon sources, attenuation, flavor profile of fermented beverage, flocculation, optimal temperature range of fermentation, and commercial availability of each species. While there is a great deal of research regarding the use of some of these species on a laboratory scale wine fermentation, much work remains for their commercial use and efficacy for the production of beer.
Collapse
|
18
|
The Preventive Effects of Xanthohumol on Vascular Calcification Induced by Vitamin D 3 Plus Nicotine. Antioxidants (Basel) 2020; 9:antiox9100956. [PMID: 33036258 PMCID: PMC7599490 DOI: 10.3390/antiox9100956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients with atherosclerosis, chronic kidney disease, diabetes mellitus, and hypertension. In blood vessels, VC is associated with major adverse cardiovascular events. Xanthohumol (XN), a main prenylated chalcone found in hops, has antioxidant effects to inhibit VC. This study aimed to investigate whether XN attenuates VC through in vivo study. A rat VC model was established by four weeks oral administration of vitamin D3 plus nicotine in Sprague Dawley (SD) rats. In brief, 30 male SD rats were randomly divided into three groups: control, 25 mg/kg nicotine in 5 mL corn oil and 3 × 105 IU/kg vitamin D3 administration (VDN), and combination of VDN with 20 mg/L in 0.1% ethanol of XN (treatment group). Physiological variables such as body and heart weight and drinking consumption were weekly observed, and treatment with XN caused no differences among the groups. In comparison with the control group, calcium content and alkaline phosphatase (ALP) activity were increased in calcified arteries, and XN treatment reduced these levels. Dihydroethidium (DHE) and 2′,7′-dichloroflurescin diacetate (DCFH-DA) staining to identify Superoxide and reactive oxygen species generation from aorta tissue showed increased production in VDN group compared with the control and treatment groups. Hematoxylin eosin (HE) and Alizarin Red S staining were determined to show medial vascular thickness and calcification of vessel wall. Administration of VDN resulted in VC, and XN treatment showed improvement in vascular structure. Moreover, overexpression of osteogenic transcription factors bone morphogenetic protein 2 (BMP-2) and runt-related transcription factor 2 (Runx2) were significantly suppressed by XN treatment in VC. Moreover, downregulation of vascular phenotypic markers alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) were increased by XN treatment in VC. Furthermore, XN treatment in VC upregulated nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions. Otherwise, Kelch-like ECH-associated protein 1 (Keap1) was alleviated by XN treatment in VC. In conclusion, our findings suggested that XN enhances antioxidant capacity to improve VC by regulating the Nrf2/Keap1/HO-1 pathway. Therefore, XN may have potential effects to decrease cardiovascular risk by reducing VC.
Collapse
|
19
|
Formation of Prenylated Chalcone Xanthohumol Cocrystals: Single Crystal X-Ray Diffraction, Vibrational Spectroscopic Study Coupled with Multivariate Analysis. Molecules 2019; 24:molecules24234245. [PMID: 31766540 PMCID: PMC6930654 DOI: 10.3390/molecules24234245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/21/2022] Open
Abstract
Four novel xanthohumol (XN) cocrystals with pharmaceutically acceptable coformers, such as nicotinamide (NIC), glutarimide (GA), acetamide (AC), and caffeine (CF) in the 1:1 stoichiometry were obtained by the slow evaporation solution growth technique. The structure of the cocrystals was determined by single crystal X-ray diffraction. The analysis of packing and interactions in the crystal lattice revealed that molecules in the target cocrystals were packed into almost flat layers, formed by the O–H⋅⋅⋅O, O–H⋅⋅⋅N, and N–H⋅⋅⋅O-type contacts between the xanthohumol and coformer molecules. The results provided details about synthons responsible for crystal net stabilization and all hydrogen bonds observed in the crystal lattice. The main synthon was formed via the hydrogen bond between the hydroxyl group in the B ring of XN and coformers. The three-dimensional crystal lattice was stabilized by the hydrogen XN−XN interactions whereas the π–π stacking interactions played an additional role in layer binding, with the exception of low quality cocrystals formed with caffeine. Application of FTIR and Raman spectroscopy confirmed that the crystalline phase of obtained cocrystals was not a simple combination of individual components and completely different crystal phases resulted from the effect of intermolecular interactions. The multivariate analysis showed the changes in the spectra, and this technique can be applied in a combination with vibrational spectroscopy for fast screening of new crystal phases. Additionally, the solubility studies of pure XN and its cocrystals exhibited a 2.6-fold enhancement in XN solubility in aqueous solution for XN–AC and, to a lesser extent, for other cocrystals.
Collapse
|
20
|
Vázquez Loureiro P, Hernández Jiménez I, Sendón R, Rodriguez-Bernaldo de Quirós A, Barbosa-Pereira L. Determination of Xanthohumol in Hops, Food Supplements and Beers by HPLC. Foods 2019; 8:foods8100435. [PMID: 31554235 PMCID: PMC6835515 DOI: 10.3390/foods8100435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/22/2023] Open
Abstract
Xanthohumol (XN) is the main prenylated chalcone present in hops (Humulus lupulus) with high biological activity, and it is of great importance for human health because of its antioxidant, anti-inflammatory, immunosuppressive and chemopreventive properties. This polyphenol can be included in the diet through foods in which hops are used, such as beer or food supplements. Because of their health benefits and the increasing interest of using hops as a novel nutraceutical, the aim of this work was the identification and quantification of XN in different types of samples using a method based on high resolution liquid chromatography with a diode array detector (HPLC-DAD). The method was validated in terms of linearity, limits of detection (LOD) and quantification (LOQ), repeatability and recovery. Acceptable linearity (r2 0.9999), adequate recovery (>90% in the most of cases) and good sensitivity (LOD 16 µg/L) were obtained. Furthermore, the presence of XN in all samples was confirmed using liquid chromatography coupled to mass spectrometry (LC-MS/MS) operated in negative ESI (electrospray system ionization) mode. The concentrations of XN determined in hop flowers and food supplements were above the LOQ, in a range between 0.106 and 12.7 mg/g. Beer may also represent an important source of dietary prenylflavonoids, with between 0.028 and 0.062 mg/L of XN. The results showed that the methodology proposed was suitable for the determination of XN in the different types of samples studied, and the amounts of XN varied significantly according to the selected product.
Collapse
Affiliation(s)
- Patricia Vázquez Loureiro
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela (Spain), 15782 Santiago de Compostela, Spain.
| | - Ignacio Hernández Jiménez
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela (Spain), 15782 Santiago de Compostela, Spain.
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela (Spain), 15782 Santiago de Compostela, Spain.
| | - Ana Rodriguez-Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela (Spain), 15782 Santiago de Compostela, Spain.
| | - Letricia Barbosa-Pereira
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela (Spain), 15782 Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Alwerdt J, Small BJ. Fecal incontinence as a moderator between dietary intake and depressive symptoms among a sample of older adults obtained from the National Health and Nutrition Examination Survey (NHANES). Aging Ment Health 2019; 23:222-232. [PMID: 29171958 DOI: 10.1080/13607863.2017.1399348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Many studies have established a relationship between diet and mental health, as well as the importance of bowel health. Further, with increased evidence of a gut-brain bidirectional relationship, an indication of dysbiosis as a potential moderator between diet and depression may be a viable target for future interventions. The current study investigated the relationship between diet and depressive symptoms (DS) among older adults, as well as gender, and whether a symptom of dysbiosis, fecal incontinence severity (FIS), moderated this relationship. METHOD Using moderated regressions, we examined whether FIS moderates the relationship between diet and DS while controlling for covariates in the overall sample (N = 1918), as well as among the male (n = 841) and female sample (n = 1077). The dietary variables were reduced using a factor analysis. RESULTS Results indicated significant moderating effects of FIS between Component 4 and polyunsaturated fatty acids (PFA) in the overall sample. Component 4, protein, carbohydrates, and alcohol were significant in males only while PFA only in females. Further analysis of protein/carbohydrate ratio groups indicated significant differences within males. Higher scores of FIS were related to higher DS and less consumption of Component 4 nutrients, PFA, and protein. Males that consumed higher protein and carbohydrates resulted in lower DS with increased FIS. CONCLUSION Outcomes from the current study provide further evidence of the importance of healthy bowel function and the potential of modifying the diet to improve DS in older adults.
Collapse
Affiliation(s)
- J Alwerdt
- a Center For Healthy Aging , The Pennsylvania State University , University Park , PA , USA.,b School of Aging Studies , The University of South Florida , Tampa , FL , USA
| | - B J Small
- b School of Aging Studies , The University of South Florida , Tampa , FL , USA
| |
Collapse
|
22
|
Inui T, Okumura K, Matsui H, Hosoya T, Kumazawa S. Effect of harvest time on some in vitro functional properties of hop polyphenols. Food Chem 2017; 225:69-76. [PMID: 28193435 DOI: 10.1016/j.foodchem.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 01/26/2023]
Abstract
Health benefits of hop polyphenols are well studied. In the present investigation, we examined the antioxidant activity, anti-nitric oxide (NO) production, and anti-adipocyte differentiation of polyphenols extracted from hops (HPP), harvested at different times for over 4years. Saaz hop variety from the Czech Republic was used in the in vitro assays. Twenty-three polyphenols were quantitatively analyzed using Orbitrap liquid chromatography-mass spectrometry (LC-MS), and their health promoting effects were assayed individually. Strong effects of low concentrations of HPP were observed in the above three assays. A significant increase in anti-adipocyte differentiation activity per unit weight of HPP was obtained in the early harvested samples. A significant difference in anti-NO production activity per unit weight of HPP was observed among the different harvest years. HPP significantly increased in early harvested samples. Our results suggest that some in vitro functional properties of hops vary with harvest time and year and are dependent on different polyphenols.
Collapse
Affiliation(s)
- Takako Inui
- Suntory Beer Ltd., Beer Development Department, 5-2-5 Yamazaki, Shimamoto-cho, Mishima-gun, Osaka 618-0001, Japan.
| | - Koharu Okumura
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroo Matsui
- Suntory Global Innovation Center Ltd., Research Institute, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takahiro Hosoya
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shigenori Kumazawa
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
23
|
Abstract
Xanthohumol (Xan) is a natural constituent of human nutrition. Little is known about its actions on leishmanial parasites and their mitochondria as putative target. Therefore, we determined the antileishmanial activity of Xan and resveratrol (Res, as alternative compound with antileishmanial activity) with respect to mitochondria in Leishmania amazonensis promastigotes/amastigotes (LaP/LaA) in comparison with their activity in peritoneal macrophages from mouse (PMM) and macrophage cell line J774A.1 (J774). Mechanistic studies were conducted in Leishmania tarentolae promastigotes (LtP) and mitochondrial fractions isolated from LtP. Xan and Res demonstrated antileishmanial activity in LaA [half inhibitory concentration (IC50): Xan 7 µ m, Res 14 µ m]; while they had less influence on the viability of PMM (IC50: Xan 70 µ m, Res >438 µ m). In contrast to Res, Xan strongly inhibited oxygen consumption in Leishmania (LtP) but not in J774 cells. This was based on the inhibition of the mitochondrial electron transfer complex II/III by Xan, which was less pronounced with Res. Neither Xan nor Res increased mitochondrial superoxide release in LtP, while both decreased the mitochondrial membrane potential in LtP. Bioenergetic studies showed that LtP mitochondria have no spare respiratory capacity in contrast to mitochondria in J774 cells and can therefore much less adapt to stress by mitochondrial inhibitors, such as Xan. These data show that Xan may have antileishmanial activity, which is mediated by mitochondrial inhibition.
Collapse
|
24
|
Yeo HQ, Liu SQ. An overview of selected specialty beers: developments, challenges and prospects. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12488] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hui Qi Yeo
- Department of Chemistry; Food Science and Technology Programme; National University of Singapore; Science Drive 3 117543 Singapore Singapore
| | - Shao-Quan Liu
- National University of Singapore (Suzhou) Research Institute; No. 377 Linquan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| |
Collapse
|
25
|
|
26
|
Use of High Hydrostatic Pressure to Increase the Content of Xanthohumol in Beer Wort. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0952-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Influence of malt on the xanthohumol and isoxanthohumol behavior in pale and dark beers: A micro-scale approach. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|