1
|
Ibrahim S, Shenoy S, Kateel R, Hegde S, Parida A, Samantaray L. Navigating the complexity of BRAF mutations in non-small cell lung cancer: current insights and future prospects. Multidiscip Respir Med 2024; 19:992. [PMID: 39545749 PMCID: PMC11614001 DOI: 10.5826/mrm.2024.992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 11/17/2024] Open
Abstract
There are many challenges that are faced in the treatment of Non-Small Cell Lung Cancer (NSCLC) due to the complexities associated with the tumor. Association of different types of mutations are one of the major complexities. Among these mutations, BRAF mutations are significantly gathering more attention due to their impact on disease progression and therapeutic response. This review provides an analysis of the current understanding of BRAF mutations in NSCLC, focusing on the molecular intricacies, clinical implications, and therapeutic advancements. The article explores the diverse spectrum of BRAF mutations, highlighting the prevalence of specific mutations such as V600E and non-V600E alterations. The review also highlights the intricate signalling pathways influenced by BRAF mutations, shedding light on their role in tumorigenesis and metastasis. Therapeutically, we critically evaluate the existing targeted therapies tailored for BRAF-mutant NSCLC, addressing their efficacy, limitations, and emerging resistance mechanisms. Furthermore, we outline ongoing clinical trials and promising investigational agents that hold potential for reshaping the treatment of NSCLC. This review provides comprehensive current information about the role of BRAF mutations in NSCLC. Understanding the molecular diversity, clinical implications, and therapeutic strategies associated with BRAF-mutant NSCLC is crucial for optimizing patient outcomes and steering the direction of future research in this evolving field.
Collapse
Affiliation(s)
- Sufyan Ibrahim
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma Center, Oklahoma City, OK, USA
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ramya Kateel
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shreya Hegde
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Amrita Parida
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | |
Collapse
|
2
|
Kim H, Noristani HN, Zhai J, Manire M, Zhai J, Li S, Zhong J, Son YJ. Deleting PTEN, but not SOCS3 or myelin inhibitors, robustly boosts BRAF-elicited intraspinal regeneration of peripheral sensory axons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613685. [PMID: 39345461 PMCID: PMC11429726 DOI: 10.1101/2024.09.18.613685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Primary sensory axons fail to regenerate into the spinal cord following dorsal root injury leading to permanent sensory deficits. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Current approaches for promoting DR regeneration across the DREZ have had some success, but sustained, long-distance regeneration, particularly of large-diameter myelinated axons, still remains a formidable challenge. We have previously shown that induced expression of constitutively active B-RAF (kaBRAF) enhanced the regenerative competence of injured DRG neurons in adult mice. In this study, we investigated whether robust intraspinal regeneration can be achieved after a cervical DR injury by selective expression of kaBRAF alone or in combination with deletion of the myelin-associated inhibitors or neuron-intrinsic growth suppressors (PTEN or SOCS3). We found that kaBRAF promoted some axon regeneration across the DREZ but did not produce significant functional recovery by two months. Supplementary deletion of Nogo, MAG, and OMgp only modestly improved kaBRAF-induced regeneration. Deletion of PTEN or SOCS3 individually or in combination failed to promote any growth across the DREZ. In marked contrast, simultaneous deletion of PTEN, but not SOCS3, dramatically enhanced kaBRAF-mediated regeneration enabling many more axons to penetrate the DREZ and grow deep into the spinal cord. This study shows that dual activation of BRAF-MEK-ERK and PI3K-Akt-mTOR signaling is an effective strategy to stimulate robust intraspinal DR regeneration.
Collapse
|
3
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Hashem O, Shahin AI, Al Hindawi MA, Fageeri MF, Al-Sbbagh SA, Tarazi H, El-Gamal MI. An overview of RAF kinases and their inhibitors (2019-2023). Eur J Med Chem 2024; 275:116631. [PMID: 38954961 DOI: 10.1016/j.ejmech.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Protein kinases (PKs) including RAF, perform a principal role in regulating countless cellular events such as cell growth, differentiation, and angiogenesis. Overexpression and mutation of RAF kinases are significant contributors to the development and spread of cancer. Therefore, RAF kinase inhibitors show promising outcomes as anti-cancer small molecules by suppressing the expression of RAF protein, blocking RAS/RAF interaction, or inhibiting RAF enzymes. Currently, there are insufficient reports about approving drugs with minimal degree of toxicity. Therefore, it is an urgent need to develop new RAF kinase inhibitors correlated with increased anticancer activity and lower cytotoxicity. This review outlines reported RAF kinase inhibitors for cancer treatment in patents and literature from 2019 to 2023. It highlights the available inhibitors by shedding light on their chemical structures, biochemical profiles, and current status. Additionally, we highlighted the hinge region-binding moiety of the reported compounds by showing the hydrogen bond patterns of representative inhibitors with the hinge region for each class. In recent years, RAF kinase inhibitors have gained considerable attention in cancer research and drug development due to their potential to be studied under clinical trials and their demonstration of various degrees of efficacy and safety profiles across different cancer types. However, addressing challenges related to drug resistance and safety represents a major avenue for the optimization and enhancement of RAF kinase inhibitors. Strategies to overcome such obstacles were discussed such as developing novel pan-RAF inhibitors, RAF dimer inhibitors, and combination treatments.
Collapse
Affiliation(s)
- Omar Hashem
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Afnan I Shahin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Manar A Al Hindawi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed F Fageeri
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif A Al-Sbbagh
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Abuasab T, Mohamed S, Pemmaraju N, Kadia TM, Daver N, DiNardo CD, Ravandi F, Qiao W, Montalban-Bravo G, Borthakur G. BRAF mutation in myeloid neoplasm: incidences and clinical outcomes. Leuk Lymphoma 2024; 65:1344-1349. [PMID: 38696743 DOI: 10.1080/10428194.2024.2347539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024]
Abstract
The presence of BRAF mutation in hematological malignancies, excluding Hairy cell leukemia, and its significance as a driver mutation in myeloid neoplasms (MNs) remains largely understudied. This research aims to evaluate patient characteristics and outcomes of BRAF-mutated MNs. Among a cohort of 6667 patients, 48 (0.7%) had BRAF-mutated MNs. Notably, three patients exhibited sole BRAF mutation, providing evidence supporting the hypothesis of BRAF's role as a driver mutation in MNs. In acute myeloid leukemia, the majority of patients had secondary acute myeloid leukemia, accompanied by poor-risk cytogenic and RAS pathway mutations. Although the acquisition of BRAF mutation during disease progression did not correlate with unfavorable outcomes, its clearance through chemotherapy or stem cell transplant exhibited favorable outcomes (median overall survival of 34.8 months versus 10.4 months, p = 0.047). Furthermore, G469A was the most frequently observed BRAF mutation, differing from solid tumors and hairy cell leukemia, where V600E mutations were predominant.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins B-raf/genetics
- Mutation
- Male
- Middle Aged
- Female
- Aged
- Adult
- Incidence
- Prognosis
- Aged, 80 and over
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/diagnosis
- Young Adult
- Treatment Outcome
Collapse
Affiliation(s)
- Tareq Abuasab
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shehab Mohamed
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Ngo VA. Insight into molecular basis and dynamics of full-length CRaf kinase in cellular signaling mechanisms. Biophys J 2024; 123:2623-2637. [PMID: 38946141 PMCID: PMC11365224 DOI: 10.1016/j.bpj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
Raf kinases play key roles in signal transduction in cells for regulating proliferation, differentiation, and survival. Despite decades of research into functions and dynamics of Raf kinases with respect to other cytosolic proteins, understanding Raf kinases is limited by the lack of their full-length structures at the atomic resolution. Here, we present the first model of the full-length CRaf kinase obtained from artificial intelligence/machine learning algorithms with a converging ensemble of structures simulated by large-scale temperature replica exchange simulations. Our model is validated by comparing simulated structures with the latest cryo-EM structure detailing close contacts among three key domains and regions of the CRaf. Our simulations identify potentially new epitopes of intramolecule interactions within the CRaf and reveal a dynamical nature of CRaf kinases, in which the three domains can move back and forth relative to each other for regulatory dynamics. The dynamic conformations are then used in a docking algorithm to shed insight into the paradoxical effect caused by vemurafenib in comparison with a paradox breaker PLX7904. We propose a model of Raf-heterodimer/KRas-dimer as a signalosome based on the dynamics of the full-length CRaf.
Collapse
Affiliation(s)
- Van A Ngo
- Advanced Computing for Life Sciences and Engineering, Science Engagement Section, Computing and Computational Sciences, National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
7
|
Bialves TS, Bastos LL, Parra JAA, Moysés MN, Marques E, de Castro Pimenta AM, Quintela FM, Mariano DCB, Carvalho FC, de Melo-Minardi RC, Boyle RT. Interaction of DisBa01 peptide from Bothrops alternatus venom with BRAF melanoma receptors: Modeling and molecular docking. Int J Biol Macromol 2024; 274:133283. [PMID: 38909731 DOI: 10.1016/j.ijbiomac.2024.133283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Metastatic melanoma is highly aggressive and challenging, often leading to a grim prognosis. Its progression is swift, especially when mutations like BRAFV600E continuously activate pathways vital for cell growth and survival. Although several treatments target this mutation, resistance typically emerges over time. In recent decades, research has underscored the potential of snake venoms and peptides as bioactive substances for innovative drugs, including anti-coagulants, anti-microbial, and anti-cancer agents. Leveraging this knowledge, we propose employing a bioinformatics simulation approach to: a) Predict how well a peptide (DisBa01) from Bothrops alternatus snake venom binds to the melanoma receptor BRAFV600E via Molecular Docking. b) Identify the specific peptide binding sites on receptors and analyze their proximity to active receptor sites. c) Evaluate the behavior of resulting complexes through molecular dynamics simulations. d) Assess whether this peptide qualifies as a candidate for anti-melanoma therapy. Our findings reveal that DisBa01 enhances stability in the BRAFV600E melanoma receptor structure by binding to its RGD motif, an interaction absent in the BRAF WT model. Consequently, both docking and molecular dynamics simulations suggest that DisBa01 shows promise as a BRAFV600E inhibitor.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Luana Luiza Bastos
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - John Alexanders Amaya Parra
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maurício Nogueira Moysés
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edleusa Marques
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Graduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Marques Quintela
- Instituto Nacional de Pesquisas do Pantanal- Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, Pará, Brazil
| | - Diego César Batista Mariano
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Chaves Carvalho
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel C de Melo-Minardi
- Laboratory of Bioinformatics and Systems, Institute of Exact Sciences, Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Tew Boyle
- Graduate Program in Physiological Sciences (PPGCF), Federal University of Rio Grande - FURG, Av. Italy, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Toye E, Chehrazi-Raffle A, Hwang J, Antonarakis ES. Targeting the multifaceted BRAF in cancer: New directions. Oncotarget 2024; 15:486-492. [PMID: 39018217 PMCID: PMC11254297 DOI: 10.18632/oncotarget.28612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Activating mutations in the mitogen-activated protein kinase (MAPK) pathway represent driver alterations governing tumorigenesis, metastasis, and therapy resistance. MAPK activation predominantly occurs through genomic alterations in RAS and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include gain-of-function mutations, copy-number alterations, and structural rearrangements. In cancer patients, BRAF-targeting precision therapeutics are effective against Class I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are also in development and have been explored in some cancers. Here we discuss the diverse forms of BRAF alterations found in human cancers and the strategies to inhibit them in patients harboring cancers of distinct origins.
Collapse
Affiliation(s)
- Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | - Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Riofrio Chung GL, Santos Tucto TL, Quispe-Salcedo A. [Molecular basis of ameloblastoma pathogenesis: A review]. REVISTA CIENTÍFICA ODONTOLÓGICA 2024; 12:e212. [PMID: 39444727 PMCID: PMC11495173 DOI: 10.21142/2523-2754-1203-2024-212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/04/2024] [Indexed: 10/25/2024] Open
Abstract
Ameloblastoma is the most common and highly invasive benign odontogenic tumor. Its pathogenesis is not yet fully understood. Objective To describe the most important molecular findings that promote the proliferative activity of ameloblastoma and the factors involved that encourage invasion into surrounding bone tissues. Methodology A search for scientific evidence was conducted through the following databases: Science Direct, Medline, Wiley, Web of Science, and Google Scholar. A total of 32 articles were reviewed, with inclusion criteria being articles published in English and Spanish; descriptive and analytical studies, narrative and systematic reviews published from January 2015 to June 2021. Letters to the editor were excluded. Results The biological molecular findings that allow ameloblastoma to invade surrounding tissues involve alterations in the RANK/RANKL/OPG pathways, transforming growth factor beta (TGF-β), Wnt/β-catenin pathway, and matrix metalloproteinases, as well as alterations in MAPK and SHH pathways that facilitate the proliferation and tumor development of ameloblastoma. Conclusions These findings are fundamental for a better understanding of the pathways involved in the pathogenesis of ameloblastoma.
Collapse
Affiliation(s)
- Grecia Lourdes Riofrio Chung
- Facultad de Odontología, Universidad Nacional Mayor de San Marcos. Lima, Perú. Universidad Nacional Mayor de San Marcos Facultad de Odontología Universidad Nacional Mayor de San Marcos Lima Peru
| | - Tania Lisseth Santos Tucto
- Facultad de Medicina, Universidad Científica del Sur. Lima, Perú. Universidad Científica del Sur Facultad de Medicina Universidad Científica del Sur Lima Peru
- Knowledge Community "Sustainable Innovation in Dentistry", Universidad Federico Villareal. Lima, Perú. Universidad Nacional Federico Villarreal Knowledge Community "Sustainable Innovation in Dentistry" Universidad Federico Villareal Lima Peru
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue. Niigata University Graduate School of Medical and Dental Science. Niigata, Niigata University Division of Anatomy and Cell Biology of the Hard Tissue Niigata University Graduate School of Medical and Dental Science Niigata Japan
| |
Collapse
|
10
|
Chen Y, Kincaid RP, Bastin K, Fachko DN, Skalsky RL. MicroRNA-focused CRISPR/Cas9 screen identifies miR-142 as a key regulator of Epstein-Barr virus reactivation. PLoS Pathog 2024; 20:e1011970. [PMID: 38885264 PMCID: PMC11213311 DOI: 10.1371/journal.ppat.1011970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/28/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Reactivation from latency plays a significant role in maintaining persistent lifelong Epstein-Barr virus (EBV) infection. Mechanisms governing successful activation and progression of the EBV lytic phase are not fully understood. EBV expresses multiple viral microRNAs (miRNAs) and manipulates several cellular miRNAs to support viral infection. To gain insight into the host miRNAs regulating transitions from EBV latency into the lytic stage, we conducted a CRISPR/Cas9-based screen in EBV+ Burkitt lymphoma (BL) cells using anti-Ig antibodies to crosslink the B cell receptor (BCR) and induce reactivation. Using a gRNA library against >1500 annotated human miRNAs, we identified miR-142 as a key regulator of EBV reactivation. Genetic ablation of miR-142 enhanced levels of immediate early and early lytic gene products in infected BL cells. Ago2-PAR-CLIP experiments with reactivated cells revealed miR-142 targets related to Erk/MAPK signaling, including components directly downstream of the B cell receptor (BCR). Consistent with these findings, disruption of miR-142 enhanced SOS1 levels and Mek phosphorylation in response to surface Ig cross-linking. Effects could be rescued by inhibitors of Mek (cobimetinib) or Raf (dabrafenib). Taken together, these results show that miR-142 functionally regulates SOS1/Ras/Raf/Mek/Erk signaling initiated through the BCR and consequently, restricts EBV entry into the lytic cycle.
Collapse
Affiliation(s)
- Yan Chen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rodney P. Kincaid
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Kelley Bastin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Devin N. Fachko
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rebecca L. Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
11
|
Mehrabipour M, Nakhaei-Rad S, Dvorsky R, Lang A, Verhülsdonk P, Ahmadian MR, Piekorz RP. SIRT4 as a novel interactor and candidate suppressor of C-RAF kinase in MAPK signaling. Life Sci Alliance 2024; 7:e202302507. [PMID: 38499327 PMCID: PMC10948936 DOI: 10.26508/lsa.202302507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Verhülsdonk
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
12
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
13
|
Myćka G, Ropka-Molik K, Cywińska A, Szmatoła T, Stefaniuk-Szmukier M. Molecular insights into the lipid-carbohydrates metabolism switch under the endurance effort in Arabian horses. Equine Vet J 2024; 56:586-597. [PMID: 37565649 DOI: 10.1111/evj.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Recent studies have shown that in Arabian horse muscle, long-term exercise-induced expression of genes related to fatty acid degradation and the downregulation of genes belonging to the glycolysis/gluconeogenesis and insulin signalling pathways. Long-lasting physical exertion may trigger the metabolism to switch the main energy source from carbohydrates to lipids due to higher caloric content. OBJECTIVES To describe the metabolism adaptation at the whole transcriptome of blood to endurance effort in Arabian horses. STUDY DESIGN In vivo experiment. METHODS Venous blood samples from 10 Arabian horses were taken before and after a 120 km long endurance ride to isolate the RNA and perform the high-throughput NGS transcriptome sequencing. RESULTS The results, including KEGG (Kyoto Encyclopaedia of Genes and Genomes) and GO (Gene Ontology) analyses, allowed us to describe the most significantly upregulated-ARV1, DGAT2, LIPE, APOA2, MOGAT1, MOGAT2, GYS1, GYS2 and downregulated-ACACA, ACACB, FADS1, FADS2 genes involved in carbohydrate and lipid metabolism. Also, the increased expression of RAF1, KRAS and NRAS genes involved in the Insulin pathway and PI3K-Akt was shown. MAIN LIMITATIONS Limited sample size, Arabians used for endurance racing were not compared to Arabians from other equestrian disciplines. CONCLUSIONS This general insight into the processes described supports the thesis of the lipid-carbohydrates metabolism switch in endurance Arabian horses and provides the basis for further research.
Collapse
Affiliation(s)
- Grzegorz Myćka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Anna Cywińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
14
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
15
|
Cooke SF, Wright TA, Sin YY, Ling J, Kyurkchieva E, Phanthaphol N, Mcskimming T, Herbert K, Rebus S, Biankin AV, Chang DK, Baillie GS, Blair CM. Disruption of the pro-oncogenic c-RAF-PDE8A complex represents a differentiated approach to treating KRAS-c-RAF dependent PDAC. Sci Rep 2024; 14:8998. [PMID: 38637546 PMCID: PMC11026450 DOI: 10.1038/s41598-024-59451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.
Collapse
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Thomas A Wright
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Yuan Yan Sin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jiayue Ling
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Elka Kyurkchieva
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nattaporn Phanthaphol
- Siriraj Centre of Research Excellence for Cancer Immunotherapy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas Mcskimming
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Katharine Herbert
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
16
|
Dedden D, Nitsche J, Schneider EV, Thomsen M, Schwarz D, Leuthner B, Grädler U. Cryo-EM Structures of CRAF 2/14-3-3 2 and CRAF 2/14-3-3 2/MEK1 2 Complexes. J Mol Biol 2024; 436:168483. [PMID: 38331211 DOI: 10.1016/j.jmb.2024.168483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF2/14-3-32 at 3.4 Å resolution and CRAF2/14-3-32/MEK12 at 4.2 Å resolution using CRAF kinase domain expressed as constitutively active Y340D/Y341D mutant in insect cells. The overall architecture of our CRAF2/14-3-32 and CRAF2/14-3-32/MEK12 cryo-EM structures is highly similar to corresponding BRAF structures in complex with 14-3-3 or 14-3-3/MEK1 and represent the activated dimeric RAF conformation. Our CRAF cryo-EM structures provide additional insights into structural understanding of the activated CRAF2/14-3-32/MEK12 complex.
Collapse
Affiliation(s)
- Dirk Dedden
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Julius Nitsche
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Maren Thomsen
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Daniel Schwarz
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Birgitta Leuthner
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ulrich Grädler
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| |
Collapse
|
17
|
Shanderson RL, Ferguson ID, Siprashvili Z, Ducoli L, Li AM, Miao W, Srinivasan S, Velasco MG, Li Y, Ye J, Khavari PA. Mitochondrial Raf1 Regulates Glutamine Catabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.581297. [PMID: 38496616 PMCID: PMC10942467 DOI: 10.1101/2024.03.08.581297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Raf kinases play vital roles in normal mitogenic signaling and cancer, however, the identities of functionally important Raf-proximal proteins throughout the cell are not fully known. Raf1 proximity proteomics/BioID in Raf1-dependent cancer cells unexpectedly identified Raf1-adjacent proteins known to reside in the mitochondrial matrix. Inner-mitochondrial localization of Raf1 was confirmed by mitochondrial purification and super-resolution microscopy. Inside mitochondria, Raf1 associated with glutaminase (GLS) in diverse human cancers and enabled glutaminolysis, an important source of biosynthetic precursors in cancer. These impacts required Raf1 kinase activity and were independent of canonical MAP kinase pathway signaling. Kinase-dead mitochondrial matrix-localized Raf1 impaired glutaminolysis and tumorigenesis in vivo. These data indicate that Raf1 localizes inside mitochondria where it interacts with GLS to engage glutamine catabolism and support tumorigenesis.
Collapse
Affiliation(s)
- Ronald L. Shanderson
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Ian D. Ferguson
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Luca Ducoli
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Albert M. Li
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | | | - Yang Li
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Jiangbin Ye
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Paul A. Khavari
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
| |
Collapse
|
18
|
Cooke SF, Blair CM. Exploiting c-RAF dependency in RAS mutant cancer: beyond catalytic activity. Expert Rev Anticancer Ther 2024; 24:95-100. [PMID: 38362755 DOI: 10.1080/14737140.2024.2319035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Sean F Cooke
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor M Blair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Fawzy RM, Abdel-Aziz AA, Bassiouny K, Fayed AM. Phytocompounds-based therapeutic approach: Investigating curcumin and green tea extracts on MCF-7 breast cancer cell line. J Genet Eng Biotechnol 2024; 22:100339. [PMID: 38494270 PMCID: PMC10980874 DOI: 10.1016/j.jgeb.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Breast cancer (BC) has transcended lung cancer as the most common cancer in the world. Due to the disease's aggressiveness, rapid growth, and heterogeneity, it is crucial to investigate different therapeutic approaches for treatment. According to the World Health Organization (WHO), Plant-based therapeutics continue to be utilized as safe/non-toxic complementary or alternative treatments for cancer, even in developed countries, regardless of how cutting-edge conventional therapies are. Despite their low bioavailability, curcumin (CUR) and green tea (GT) represent safer therapeutic options. Due to their potent molecular-modulating properties on various cancer-related molecules and signaling pathways, they are considered gold-standard therapeutic agents and have been incorporated into the development of one or more therapeutic strategies of BC treatment. METHODS We investigated the modulatory role of CUR and GT extracts on significant multi molecular targets in MCF-7 BC cell line to assess their potential as BC multi-targeting agents. We analyzed the phytocompounds in GT leaves using High-performance liquid chromatography (HPLC) and Gas chromatography-mass spectrometry (GC-MS) techniques. The mRNA expression levels of Raf-1, Telomerase, Tumor necrosis factor alpha (TNF-α) and Interleukin-8 (IL-8) genes in MCF-7 cells were quantified using quantitative real-time PCR (qRT-PCR). The cytotoxicity of the extracts was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the released Lactate dehydrogenase (LDH), a valuable marker for identifying the programmed necrosis (necroptosis). Additionally, the concentrations of the necroptosis-related proinflammatory cytokines (TNF-α and IL-8) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS In contrast to the GT, the results showed the anticancer and cytotoxic properties of CUR against MCF-7 cells, with a relatively higher level of released LDH. The CUR extract downregulated the oncogenic Raf-1, suppressed the Telomerase and upregulated the TNF-α and IL-8 genes. Results from the ELISA showed a notable increase in IL-8 and TNF-α cytokines levels after CUR treatment, which culminated after 72 h. CONCLUSIONS Among both extracts, only CUR effectively modulated the understudy molecular targets, achieving multi-targeting anticancer activity against MCF-7 cells. Moreover, the applied dosage significantly increased levels of the proinflammatory cytokines, which represent a component of the cytokines-targeting-based therapeutic strategy. However, further investigations are recommended to validate this therapeutic approach.
Collapse
Affiliation(s)
- Radwa M Fawzy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Amal A Abdel-Aziz
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khalid Bassiouny
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Aysam M Fayed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
20
|
Khan A, Bealy MA, Alharbi B, Khan S, Alharethi SH, Al-Soud WA, Mohammad T, Hassan MI, Alshammari N, Ahmed Al-Keridis L. Discovering potential inhibitors of Raf proto-oncogene serine/threonine kinase 1: a virtual screening approach towards anticancer drug development. J Biomol Struct Dyn 2024; 42:1846-1857. [PMID: 37104027 DOI: 10.1080/07391102.2023.2204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Raf proto-oncogene serine/threonine kinase 1 (RAF1 or c-Raf) is a serine/threonine protein kinase crucial in regulating cell growth, differentiation, and survival. Any disruption or overexpression of RAF1 can result in neoplastic transformation and other disorders such as cardiomyopathy, Noonan syndrome, leopard syndrome, etc. RAF1 has been identified as a potential therapeutic target in drug development against various complex diseases, including cancer, due to its remarkable role in disease progression. Here, we carried out a multitier virtual screening study involving different in-silico approaches to discover potential inhibitors of RAF1. After applying the Lipinski rule of five, we retrieved all phytocompounds from the IMPPAT database based on their physicochemical properties. We performed a molecular docking-based virtual screening and got top hits with the best binding affinity and ligand efficiency. Then we screened out the selected hits using the PAINS filter, ADMET properties, and other druglike features. Eventually, PASS evaluation identifies two phytocompounds, Moracin C and Tectochrysin, with appreciable anti-cancerous properties. Finally, all-atom molecular dynamics simulation (MDS) followed by interaction analysis was performed on the elucidated compounds in complex with RAF1 for 200 ns to investigate their time-evolution dynamics and interaction mechanism. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and Dynamical Cross-Correlation Matrix (DCCM) analyses then followed these results from the simulated trajectories. According to the results, the elucidated compounds stabilize the RAF1 structure and lead to fewer conformational alterations. The results of the current study indicated that Moracin C and Tectochrysin could serve as potential inhibitors of RAF1 after required validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsha Khan
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohamed Ahmed Bealy
- Department of Pathology, College of Medicine, University of Ha'il, Hail, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Shama Khan
- Faculty of Health Science, South Africa Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
21
|
Hishida A, Okada T, Mochizuki A. Patterns of change in regulatory modules of chemical reaction systems induced by network modification. PNAS NEXUS 2024; 3:pgad441. [PMID: 38292559 PMCID: PMC10825507 DOI: 10.1093/pnasnexus/pgad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
Cellular functions are realized through the dynamics of chemical reaction networks formed by thousands of chemical reactions. Numerical studies have empirically demonstrated that small differences in network structures among species or tissues can cause substantial changes in dynamics. However, a general principle for behavior changes in response to network structure modifications is not known. The chemical reaction system possesses substructures called buffering structures, which are characterized by a certain topological index being zero. It was proven that the steady-state response to modulation of reaction parameters inside a buffering structure is localized in the buffering structure. In this study, we developed a method to systematically identify the loss or creation of buffering structures induced by the addition of a single degradation reaction from network structure alone. This makes it possible to predict the qualitative and macroscopic changes in regulation that will be caused by the network modification. This method was applied to two reaction systems: the central metabolic system and the mitogen-activated protein kinases signal transduction system. Our method enables identification of reactions that are important for biological functions in living systems.
Collapse
Affiliation(s)
- Atsuki Hishida
- Graduate School of Science, Kyoto University, Kyoto, 6068502, Japan
| | - Takashi Okada
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 6068507, Japan
| | - Atsushi Mochizuki
- Graduate School of Science, Kyoto University, Kyoto, 6068502, Japan
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 6068507, Japan
| |
Collapse
|
22
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
23
|
Ta L, Tsai BL, Deng W, Sha J, Varuzhanyan G, Tran W, Wohlschlegel JA, Carr-Ascher JR, Witte ON. Wild-type C-Raf gene dosage and dimerization drive prostate cancer metastasis. iScience 2023; 26:108480. [PMID: 38089570 PMCID: PMC10711388 DOI: 10.1016/j.isci.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 02/01/2024] Open
Abstract
Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the Ras/Raf/MEK/ERK (mitogen-activated protein kinase [MAPK]) pathway. A role for non-mutated Raf in metastasis is also emerging, but the key mechanisms remain unclear. Elevated expression of any of the three wild-type Raf family members (C, A, or B) can drive metastasis. We utilized an in vivo model to show that wild-type C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene dosage-dependent manner. Analysis of the transcriptomic and phosphoproteomic landscape indicated that C-Raf-driven metastasis is accompanied by upregulated MAPK signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity, is essential for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf's ability to form dimers with endogenous Raf molecules is important for promoting metastasis. These data identify wild-type C-Raf heterodimer signaling as a potential target for treating metastatic disease.
Collapse
Affiliation(s)
- Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Brandon L. Tsai
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, Sacramento, CA 95817, USA
- Department of Orthopedic Surgery, University of California, Davis; Sacramento, CA 95817, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Sadagopan NS, Nandoliya KR, Youngblood MW, Horbinski CM, Ahrendsen JT, Magill ST. A novel BRAF::PTPRN2 fusion in meningioma: a case report. Acta Neuropathol Commun 2023; 11:194. [PMID: 38066633 PMCID: PMC10704634 DOI: 10.1186/s40478-023-01668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gene fusion events have been linked to oncogenesis in many cancers. However, gene fusions in meningioma are understudied compared to somatic mutations, chromosomal gains/losses, and epigenetic changes. Fusions involving B-raf proto-oncogene, serine/threonine kinase (BRAF) are subtypes of oncogenic BRAF genetic abnormalities that have been reported in certain cases of brain tumors, such as pilocytic astrocytomas. However, BRAF fusions have not been recognized in meningioma. We present the case of an adult female presenting with episodic partial seizures characterized by déjà vu, confusion, and cognitive changes. Brain imaging revealed a cavernous sinus and sphenoid wing mass and she underwent resection. Histopathology revealed a World Health Organization (WHO) grade 1 meningioma. Genetic profiling with next generation sequencing and microarray analysis revealed an in-frame BRAF::PTPRN2 fusion affecting the BRAF kinase domain as well as chromothripsis of chromosome 7q resulting in multiple segmental gains and losses including amplifications of cyclin dependent kinase 6 (CDK6), tyrosine protein-kinase Met (MET), and smoothened (SMO). Elevated pERK staining in tumor cells provided evidence of activated mitogen-activated protein kinase (MAPK) signaling. This report raises the possibility that gene fusion events may be involved in meningioma pathogenesis and warrant further investigation.
Collapse
Affiliation(s)
- Nishanth S Sadagopan
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 3-140, Chicago, IL, 60611, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
25
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
26
|
Nussinov R, Liu Y, Zhang W, Jang H. Protein conformational ensembles in function: roles and mechanisms. RSC Chem Biol 2023; 4:850-864. [PMID: 37920394 PMCID: PMC10619138 DOI: 10.1039/d3cb00114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/02/2023] [Indexed: 11/04/2023] Open
Abstract
The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
27
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
28
|
Su D, Zhu S, Hou Z, Hao F, Xu K, Xu F, Zhu Y, Liu D, Xu J, Tao J. Toxoplasma gondii infection regulates apoptosis of host cells via miR-185/ARAF axis. Parasit Vectors 2023; 16:371. [PMID: 37858158 PMCID: PMC10585723 DOI: 10.1186/s13071-023-05991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Toxoplasmosis is a zoonosis with a worldwide presence that is caused by the intracellular parasite Toxoplasma gondii. Active regulation of apoptosis is an important immune mechanism by which host cells resist the growth of T. gondii or avoid excessive pathological damage induced by this parasite. Previous studies found that upregulated expression of microRNA-185 (miR-185) during T. gondii infection has a potential role in regulating the expression of the ARAF gene, which is reported to be associated with cell proliferation and apoptosis. METHODS The expression levels of miR-185 and the ARAF gene were evaluated by qPCR and Western blot, respectively, in mice tissues, porcine kidney epithelial cells (PK-15) and porcine alveolar macrophages (3D4/21) following infection with the T. gondii ToxoDB#9 and RH strains. The dual luciferase reporter assay was then used to verify the relationship between miR-185 and ARAF targets in PK-15 cells. PK-15 and 3D4/21 cell lines with stable knockout of the ARAF gene were established by CRISPR, and then the apoptosis rates of the cells following T. gondii infection were detected using cell flow cytometry assays. Simultaneously, the activities of cleaved caspase-3, as a key apoptosis executive protein, were detected by Western blot to evaluate the apoptosis levels of cells. RESULTS Infection with both the T. gondii ToxoDB#9 and RH strains induced an increased expression of miR-185 and a decreased expression of ARAF in mice tissues, PK-15 and 3D4/21 cells. MiR-185 mimic transfections showed a significantly negative correlation in expression levels between miR-185 and the ARAF gene. The dual luciferase reporter assay confirmed that ARAF was a target of miR-185. Functional investigation revealed that T. gondii infection induced the apoptosis of PK-15 and 3D4/21 cells, which could be inhibited by ARAF knockout or overexpression of miR-185. The expression levels of cleaved caspase-3 protein were significantly lower in cells with ARAF knockout than in normal cells, which were consistent with the results of the cell flow cytometry assays. CONCLUSIONS Toxoplasma gondii infection could lead to the upregulation of miR-185 and the downregulation of ARAF, which was not related to the strain of T. gondii and the host cells. Toxoplasma gondii infection could regulate the apoptosis of host cells via the miR-185/ARAF axis, which represents an additional strategy used by T. gondii to counteract host-cell apoptosis in order to maintain survival and reproduce in the host cells.
Collapse
Affiliation(s)
- Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Fuxing Hao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300 People’s Republic of China
| | - Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Fan Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Yuyang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009 Jiangsu People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009 People’s Republic of China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| |
Collapse
|
29
|
Yu A, Nguyen DH, Nguyen TJ, Wang Z. A novel phosphorylation site involved in dissociating RAF kinase from the scaffolding protein 14-3-3 and disrupting RAF dimerization. J Biol Chem 2023; 299:105188. [PMID: 37625591 PMCID: PMC10520314 DOI: 10.1016/j.jbc.2023.105188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rapidly accelerated fibrosarcoma (ARAF, BRAF, CRAF) kinase is central to the MAPK pathway (RAS-RAF-MEK-ERK). Inactive RAF kinase is believed to be monomeric, autoinhibited, and cytosolic, while activated RAF is recruited to the membrane via RAS-GTP, leading to the relief of autoinhibition, phosphorylation of key regulatory sites, and dimerization of RAF protomers. Although it is well known that active and inactive BRAF have differential phosphorylation sites that play a crucial role in regulating BRAF, key details are still missing. In this study, we report the characterization of a novel phosphorylation site, BRAFS732 (equivalent in CRAFS624), located in proximity to the C-terminus binding motif for the 14-3-3 scaffolding protein. At the C terminus, 14-3-3 binds to BRAFpS729 (CRAFpS621) and enhances RAF dimerization. We conducted mutational analysis of BRAFS732A/E and CRAFS624A/E and revealed that the phosphomimetic S→E mutant decreases 14-3-3 association and RAF dimerization. In normal cell signaling, dimerized RAF phosphorylates MEK1/2, which is observed in the phospho-deficient S→A mutant. Our results suggest that phosphorylation and dephosphorylation of this site fine-tune the association of 14-3-3 and RAF dimerization, ultimately impacting MEK phosphorylation. We further characterized the BRAF homodimer and BRAF:CRAF heterodimer and identified a correlation between phosphorylation of this site with drug sensitivity. Our work reveals a novel negative regulatory role for phosphorylation of BRAFS732 and CRAFS624 in decreasing 14-3-3 association, dimerization, and MEK phosphorylation. These findings provide insight into the regulation of the MAPK pathway and may have implications for cancers driven by mutations in the pathway.
Collapse
Affiliation(s)
- Alison Yu
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Duc Huy Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Thomas Joseph Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA.
| |
Collapse
|
30
|
Nolan A, Raso C, Kolch W, von Kriegsheim A, Wynne K, Matallanas D. Proteomic Mapping of the Interactome of KRAS Mutants Identifies New Features of RAS Signalling Networks and the Mechanism of Action of Sotorasib. Cancers (Basel) 2023; 15:4141. [PMID: 37627169 PMCID: PMC10452836 DOI: 10.3390/cancers15164141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
RAS proteins are key regulators of cell signalling and control different cell functions including cell proliferation, differentiation, and cell death. Point mutations in the genes of this family are common, particularly in KRAS. These mutations were thought to cause the constitutive activation of KRAS, but recent findings showed that some mutants can cycle between active and inactive states. This observation, together with the development of covalent KRASG12C inhibitors, has led to the arrival of KRAS inhibitors in the clinic. However, most patients develop resistance to these targeted therapies, and we lack effective treatments for other KRAS mutants. To accelerate the development of RAS targeting therapies, we need to fully characterise the molecular mechanisms governing KRAS signalling networks and determine what differentiates the signalling downstream of the KRAS mutants. Here we have used affinity purification mass-spectrometry proteomics to characterise the interactome of KRAS wild-type and three KRAS mutants. Bioinformatic analysis associated with experimental validation allows us to map the signalling network mediated by the different KRAS proteins. Using this approach, we characterised how the interactome of KRAS wild-type and mutants is regulated by the clinically approved KRASG12C inhibitor Sotorasib. In addition, we identified novel crosstalks between KRAS and its effector pathways including the AKT and JAK-STAT signalling modules.
Collapse
Affiliation(s)
- Aoife Nolan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - Cinzia Raso
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| |
Collapse
|
31
|
Beller NC, Wang Y, Hummon AB. Evaluating the Pharmacokinetics and Pharmacodynamics of Chemotherapeutics within a Spatial SILAC-Labeled Spheroid Model System. Anal Chem 2023; 95:11263-11272. [PMID: 37462741 PMCID: PMC10676637 DOI: 10.1021/acs.analchem.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Tumors have considerable cellular heterogeneity that is impossible to explore with simple cell cultures. Spheroid cultures contain pathophysiological and chemical gradients similar to in vivo tumors and show complex responses to therapeutics, similar to a tumor. Using pulsed isotopic labels, we demonstrate the pronounced differential response of the proteome to the drug Regorafenib, a multikinase inhibitor, in HCT 116 spheroids. Regorafenib treatment of outer spheroids inhibits proteins involved in critical pathways such as mTOR signaling, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling, and colorectal cancer metastasis signaling, resulting in decreased proliferation and cellular apoptosis. By contrast, analysis of the treated core cells shows upregulation of MAPK1 and KRAS, possibly implicating drug resistance within these late apoptotic cells. Thus, pulsed isotopic labeling enables evaluation of the distinct proteomic responses for cells residing in the different chemical microenvironments of the spheroid. This platform promises great utility in assisting researchers' predictions of pharmacodynamic therapeutic responses within complex tumors.
Collapse
Affiliation(s)
- Nicole C. Beller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| |
Collapse
|
32
|
Constantin M, Mătanie C, Petrescu L, Bolocan A, Andronic O, Bleotu C, Mitache MM, Tudorache S, Vrancianu CO. Landscape of Genetic Mutations in Appendiceal Cancers. Cancers (Basel) 2023; 15:3591. [PMID: 37509254 PMCID: PMC10377024 DOI: 10.3390/cancers15143591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In appendiceal cancers, the most frequently mutated genes are (i) KRAS, which, when reactivated, restores signal transduction via the RAS-RAF-MEK-ERK signaling pathway and stimulates cell proliferation in the early stages of tumor transformation, and then angiogenesis; (ii) TP53, whose inactivation leads to the inhibition of programmed cell death; (iii) GNAS, which, when reactivated, links the cAMP pathway to the RAS-RAF-MEK-ERK signaling pathway, stimulating cell proliferation and angiogenesis; (iv) SMAD4, exhibiting typical tumor-suppressive activity, blocking the transmission of oncogenic TGFB signals via the SMAD2/SMAD3 heterodimer; and (v) BRAF, which is part of the RAS-RAF-MEK-ERK signaling pathway. Diverse mutations are reported in other genes, which are part of secondary or less critical signaling pathways for tumor progression, but which amplify the phenotypic diversity of appendiceal cancers. In this review, we will present the main genetic mutations involved in appendix tumors and their roles in cell proliferation and survival, and in tumor invasiveness, angiogenesis, and acquired resistance to anti-growth signals.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Cristina Mătanie
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Coralia Bleotu
- Life, Environmental and Earth Sciences Division, The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | | | - Sorin Tudorache
- Faculty of Medicine, "Titu Maiorescu" University, 040441 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| |
Collapse
|
33
|
Yeh CY, Wang YS, Takahashi Y, Kuusk K, Paul K, Arjus T, Yadlos O, Schroeder JI, Ilves I, Garcia-Sosa AT, Kollist H. MPK12 in stomatal CO 2 signaling: function beyond its kinase activity. THE NEW PHYTOLOGIST 2023; 239:146-158. [PMID: 36978283 PMCID: PMC10247450 DOI: 10.1111/nph.18913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf-like kinase HT1 as a required step for stomatal movements caused by changes in CO2 concentration. However, whether MPK12 kinase activity is required for regulation of CO2 -induced stomatal responses warrants in-depth investigation. We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2 signaling that relies on allosteric inhibition of HT1. We show that CO2 /HCO3 - -enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase-dead and constitutively active versions of MPK12 in a plant line where MPK12 is deleted, we confirmed that CO2 -dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2 /HCO3 - and present structural modeling that explains the MPK12:HT1 interaction interface. These data add to the model that MPK12 kinase-activity-independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yohei Takahashi
- Institute of Transformative Bio-Molecules, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katarina Kuusk
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Triinu Arjus
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Oleksii Yadlos
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
34
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
35
|
KAP1 modulates osteogenic differentiation via the ERK/Runx2 cascade in vascular smooth muscle cells. Mol Biol Rep 2023; 50:3217-3228. [PMID: 36705791 DOI: 10.1007/s11033-022-08225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Osteoblast phenotypic transition in vascular smooth muscle cells (VSMCs) has been unveiled as a common cause of vascular calcification (VC). Krüppel-Associated Box (KRAB)-Associated Protein 1(KAP1) is a transcriptional corepressor that modulates various intracellular pathological processes from gene expression to DNA repair to signal transduction. However, the function and mechanism of KAP1 on the osteoblastic differentiation of VSMCs have not been evaluated yet. METHODS AND RESULTS We demonstrate that the expression of KAP1 in VSMCs is significantly enhanced in vivo and in vitro calcification models. Downregulating the expression of KAP1 suppresses the osteoblast phenotypic transition of VSMCs, which is indicated by a decrease in the expression of osteoblast marker collagenase type I (COL I) and an increase in the expression of VSMC marker α-smooth muscle actin (α-SMA). Conversely, exogenous overexpression of KAP1 could promote osteoblast phenotypic transition of VSMCs. Moreover, KAP1 upregulated the expression of RUNX family transcription factor 2 (Runx2), an inducer of osteoblast that positively regulates many osteoblast-related genes, such as COL I. Evaluation of the potential mechanism demonstrated that KAP1 promoted osteoblast phenotypic transition of VSMCs by activating the extracellular regulated protein kinases (ERK) signaling pathway, which could activate Runx2. In support of this finding, KAP1-induced cell osteoblast phenotypic transition is abolished by treatment with PD0325901, a specific ERK inhibitor. CONCLUSIONS The present study suggested that KAP1 participated in the osteoblast differentiation of VSMCs via the ERK/Runx2 cascade and served as a potential diagnostics and therapeutics target for vascular calcification.
Collapse
|
36
|
Sarkar S, Goswami D. Lifetime of actin-dependent protein nanoclusters. Biophys J 2023; 122:290-300. [PMID: 36518075 PMCID: PMC9892618 DOI: 10.1016/j.bpj.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Protein nanoclusters (PNCs) are dynamic collections of a few proteins that spatially organize in nanometer-length clusters. PNCs are one of the principal forms of spatial organization of membrane proteins, and they have been shown or hypothesized to be important in various cellular processes, including cell signaling. PNCs show remarkable diversity in size, shape, and lifetime. In particular, the lifetime of PNCs can vary over a wide range of timescales. The diversity in size and shape can be explained by the interaction of the clustering proteins with the actin cytoskeleton or the lipid membrane, but very little is known about the processes that determine the lifetime of the nanoclusters. In this paper, using mathematical modeling of the cluster dynamics, we model the biophysical processes that determine the lifetime of actin-dependent PNCs. In particular, we investigated the role of actin aster fragmentation, which had been suggested to be a key determinant of the PNC lifetime, and we found that it is important only for a small class of PNCs. A simple extension of our model allowed us to investigate the kinetics of protein-ligand interaction near PNCs. We found an anomalous increase in the lifetime of ligands near PNCs, which agrees remarkably well with experimental data on RAS-RAF kinetics. In particular, analysis of the RAS-RAF data through our model provides falsifiable predictions and novel hypotheses that will not only shed light on the role of RAS-RAF kinetics in various cancers, but also will be useful in studying membrane protein clustering in general.
Collapse
Affiliation(s)
- Sumantra Sarkar
- The Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico; Theoretical Biophysics (T-6) Group, Los Alamos National Laboratory, Los Alamos, New Mexico; Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Debanjan Goswami
- NCI RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, Maryland.
| |
Collapse
|
37
|
Capogiri M, De Micheli AJ, Lassaletta A, Muñoz DP, Coppé JP, Mueller S, Guerreiro Stucklin AS. Response and resistance to BRAF V600E inhibition in gliomas: Roadblocks ahead? Front Oncol 2023; 12:1074726. [PMID: 36698391 PMCID: PMC9868954 DOI: 10.3389/fonc.2022.1074726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
BRAFV600E represents the most common BRAF mutation in all human cancers. Among central nervous system (CNS) tumors, BRAFV600E is mostly found in pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas brought a paradigm shift to clinical care. However, not all patients benefit from treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining predictors of response, as well as developing strategies to prevent resistance to BRAFi and overcome post-BRAFi tumor progression/rebound growth are some of the main challenges at present in the field. In this review, we outline current achievements and limitations of BRAF inhibition in gliomas, with a special focus on potential mechanisms of resistance. We discuss future directions of targeted therapy for BRAFV600E mutated gliomas, highlighting how insights into resistance to BRAFi could be leveraged to improve outcomes.
Collapse
Affiliation(s)
- Monica Capogiri
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Alvaro Lassaletta
- Department of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Denise P. Muñoz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Jean-Philippe Coppé
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Sabine Mueller
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, United States
| | - Ana S. Guerreiro Stucklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,*Correspondence: Ana S. Guerreiro Stucklin,
| |
Collapse
|
38
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Dos Santos Claro PA, Silbermins M, Inda C, Silberstein S. CRHR1 endocytosis: Spatiotemporal regulation of receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:229-260. [PMID: 36813360 DOI: 10.1016/bs.pmbts.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Corticotropin releasing hormone (CRH) is crucial for basal and stress-initiated reactions in the hypothalamic-pituitary-adrenal axis (HPA) and extrahypothalamic brain circuits, where it acts as a neuromodulator to organize behavioral and humoral responses to stress. We review and describe cellular components and molecular mechanisms involved in CRH system signaling through G protein-coupled receptors (GPCRs) CRHR1 and CRHR2, under the current view of GPCR signaling from the plasma membrane but also from intracellular compartments, which establish the bases of signal resolution in space and time. Focus is placed on latest studies of CRHR1 signaling in physiologically significant contexts of the neurohormone function that disclosed new mechanistic features of cAMP production and ERK1/2 activation. We also introduce in a brief overview the pathophysiological function of the CRH system, underlining the need for a complete characterization of CRHRs signaling to design new and specific therapies for stress-related disorders.
Collapse
Affiliation(s)
- Paula A Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Micaela Silbermins
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Inda
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Octamer SRL, Buenos Aires, Argentina
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Zhang H, Li C, Liao S, Tu Y, Sun S, Yao F, Li Z, Wang Z. PSMD12 promotes the activation of the MEK-ERK pathway by upregulating KIF15 to promote the malignant progression of liver cancer. Cancer Biol Ther 2022; 23:1-11. [PMID: 36137220 PMCID: PMC9519003 DOI: 10.1080/15384047.2022.2125260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The tumor recurrence and drug resistance of hepatocellular carcinoma (HCC) threatened patients a lot. The mechanism should be further explored. The information of expression status and survival were available in public databases. The Western blot and immunohistochemistry staining displayed the level of related proteins. CCK-8, colony-formation assays, transwell assay and wound healing assay were performed to illustrate the ability of tumor growth, invasion and migration. In vivo model was established to verify our cell experiments. In our study, we revealed that proteasome 26S subunit, non-ATPase 12 (PSMD12) was high expressed in HCC tissues and positive related to the survival. In vitro experiments suggested that PSMD12 knockdown attenuated tumor cell growth, invasion and migration. Moreover, PSMD12 interference blocked the activation of MEK-ERK pathway. The ERK inhibitor could alleviate the tumor-promoting effect in PSMD12-overexpression cells. In addition, kinesin family member 15 (KIF15) was also observed to be highly expressed in HCC and be harmful to the survival. The public database, the images of immunohistochemistry and the western blot illustrated that PSMD12 and KIF15 was positive correlated. KIF15 knockdown impaired tumor progression and tumor-promoting effect of PSMD12. The xenograft models supported the results of cell experiments. In conclusion, PSMD12 could activated MEK-ERK pathway via KIF15 upregulation, thereby promoting tumor progression.
Collapse
Affiliation(s)
- Hanpu Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Shichong Liao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
41
|
Alharbi H, Hardyman M, Cull J, Markou T, Cooper S, Glennon P, Fuller S, Sugden P, Clerk A. Cardiomyocyte BRAF is a key signalling intermediate in cardiac hypertrophy in mice. Clin Sci (Lond) 2022; 136:1661-1681. [PMID: 36331065 PMCID: PMC9679367 DOI: 10.1042/cs20220607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 04/21/2024]
Abstract
Cardiac hypertrophy is necessary for the heart to accommodate an increase in workload. Physiological, compensated hypertrophy (e.g. with exercise) is reversible and largely due to cardiomyocyte hypertrophy. Pathological hypertrophy (e.g. with hypertension) is associated with additional features including increased fibrosis and can lead to heart failure. RAF kinases (ARAF/BRAF/RAF1) integrate signals into the extracellular signal-regulated kinase 1/2 cascade, a pathway implicated in cardiac hypertrophy, and activation of BRAF in cardiomyocytes promotes compensated hypertrophy. Here, we used mice with tamoxifen-inducible cardiomyocyte-specific BRAF knockout (CM-BRAFKO) to assess the role of BRAF in hypertension-associated cardiac hypertrophy induced by angiotensin II (AngII; 0.8 mg/kg/d, 7 d) and physiological hypertrophy induced by phenylephrine (40 mg/kg/d, 7 d). Cardiac dimensions/functions were measured by echocardiography with histological assessment of cellular changes. AngII promoted cardiomyocyte hypertrophy and increased fibrosis within the myocardium (interstitial) and around the arterioles (perivascular) in male mice; cardiomyocyte hypertrophy and interstitial (but not perivascular) fibrosis were inhibited in mice with CM-BRAFKO. Phenylephrine had a limited effect on fibrosis but promoted cardiomyocyte hypertrophy and increased contractility in male mice; cardiomyocyte hypertrophy was unaffected in mice with CM-BRAFKO, but the increase in contractility was suppressed and fibrosis increased. Phenylephrine induced a modest hypertrophic response in female mice and, in contrast with the males, tamoxifen-induced loss of cardiomyocyte BRAF reduced cardiomyocyte size, had no effect on fibrosis and increased contractility. The data identify BRAF as a key signalling intermediate in both physiological and pathological hypertrophy in male mice, and highlight the need for independent assessment of gene function in females.
Collapse
Affiliation(s)
- Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | | | - Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Thomais Markou
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Peter E. Glennon
- University Hospitals Coventry and Warwickshire, University Hospital Cardiology Department, Clifford Bridge Road, Coventry, U.K
| | | | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
42
|
Parnell SC, Raman A, Zhang Y, Daniel EA, Dai Y, Khanna A, Reif GA, Vivian JL, Fields TA, Wallace DP. Expression of active B-Raf proto-oncogene in kidney collecting ducts induces cyst formation in normal mice and accelerates cyst growth in mice with polycystic kidney disease. Kidney Int 2022; 102:1103-1114. [PMID: 35760151 PMCID: PMC9588601 DOI: 10.1016/j.kint.2022.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by the formation and progressive enlargement of fluid-filled cysts due to abnormal cell proliferation. Cyclic AMP agonists, including arginine vasopressin, stimulate ERK-dependent proliferation of cystic cells, but not normal kidney cells. Previously, B-Raf proto-oncogene (BRAF), a MAPK kinase kinase that activates MEK-ERK signaling, was shown to be a central intermediate in the cAMP mitogenic response. However, the role of BRAF on cyst formation and enlargement in vivo had not been demonstrated. To determine if active BRAF induces kidney cyst formation, we generated transgenic mice that conditionally express BRAFV600E, a common activating mutation, and bred them with Pkhd1-Cre mice to express active BRAF in the collecting ducts, a predominant site for cyst formation. Collecting duct expression of BRAFV600E (BRafCD) caused kidney cyst formation as early as three weeks of age. There were increased levels of phosphorylated ERK (p-ERK) and proliferating cell nuclear antigen, a marker for cell proliferation. BRafCD mice developed extensive kidney fibrosis and elevated blood urea nitrogen, indicating a decline in kidney function, by ten weeks of age. BRAFV600E transgenic mice were also bred to Pkd1RC/RC and pcy/pcy mice, well-characterized slowly progressive PKD models. Collecting duct expression of active BRAF markedly increased kidney weight/body weight, cyst number and size, and total cystic area. There were increased p-ERK levels and proliferating cells, immune cell infiltration, interstitial fibrosis, and a decline in kidney function in both these models. Thus, our findings demonstrate that active BRAF is sufficient to induce kidney cyst formation in normal mice and accelerate cystic disease in PKD mice.
Collapse
Affiliation(s)
- Stephen C Parnell
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Archana Raman
- Department of Molecular and Integrative Physiology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yan Zhang
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Emily A Daniel
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuqiao Dai
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aditi Khanna
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gail A Reif
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Darren P Wallace
- Department of Molecular and Integrative Physiology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
43
|
Romano D, García-Gutiérrez L, Aboud N, Duffy DJ, Flaherty KT, Frederick DT, Kolch W, Matallanas D. Proteasomal down-regulation of the proapoptotic MST2 pathway contributes to BRAF inhibitor resistance in melanoma. Life Sci Alliance 2022; 5:5/10/e202201445. [PMID: 36038253 PMCID: PMC9434705 DOI: 10.26508/lsa.202201445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The loss of MST2 pathway protein expression in BRAF inhibitor resistant melanoma cells is due to ubiquitination and subsequent proteasomal degradation and prevents MST2-mediated apoptosis. The RAS-RAF-MEK-ERK pathway is hyperactivated in most malignant melanomas, and mutations in BRAF or NRAS account for most of these cases. BRAF inhibitors (BRAFi) are highly efficient for treating patients with BRAFV600E mutations, but tumours frequently acquire resistance within a few months. Multiple resistance mechanisms have been identified, due to mutations or network adaptations that revive ERK signalling. We have previously shown that RAF proteins inhibit the MST2 proapoptotic pathway in a kinase-independent fashion. Here, we have investigated the role of the MST2 pathway in mediating resistance to BRAFi. We show that the BRAFV600E mutant protein, but not the wild-type BRAF protein, binds to MST2 inhibiting its proapoptotic signalling. Down-regulation of MST2 reduces BRAFi-induced apoptosis. In BRAFi-resistant cell lines, MST2 pathway proteins are down-regulated by ubiquitination and subsequent proteasomal degradation rendering cells refractory to MST2 pathway–induced apoptosis. Restoration of apoptosis can be achieved by increasing MST2 pathway protein expression using proteasome inhibitors. In summary, we show that the MST2 pathway plays a role in the acquisition of BRAFi resistance in melanoma.
Collapse
Affiliation(s)
- David Romano
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - David J Duffy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Department of Biology/Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL, USA
| | | | | | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland .,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Kealey J, Düssmann H, Llorente-Folch I, Niewidok N, Salvucci M, Prehn JHM, D’Orsi B. Effect of TP53 deficiency and KRAS signaling on the bioenergetics of colon cancer cells in response to different substrates: A single cell study. Front Cell Dev Biol 2022; 10:893677. [PMID: 36238683 PMCID: PMC9550869 DOI: 10.3389/fcell.2022.893677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Somatic mutations in genes involved in oncogenic signaling pathways, including KRAS and TP53, rewire the metabolic machinery in cancer cells. We here set out to determine, at the single cell level, metabolic signatures in human colon cancer cells engineered to express combinations of activating KRAS gene mutations and TP53 gene deletions. Specifically, we explored how somatic mutations in these genes and substrate availability (lactate, glucose, substrate deprivation) from the extracellular microenvironment affect bioenergetic parameters, including cellular ATP, NADH and mitochondrial membrane potential dynamics. Employing cytosolic and mitochondrial FRET-based ATP probes, fluorescent NADH sensors, and the membrane-permeant cationic fluorescent probe TMRM in HCT-116 cells as a model system, we observed that TP53 deletion and KRAS mutations drive a shift in metabolic signatures enabling lactate to become an efficient metabolite to replenish both ATP and NADH following nutrient deprivation. Intriguingly, cytosolic, mitochondrial and overall cellular ATP measurements revealed that, in WT KRAS cells, TP53 deficiency leads to an enhanced ATP production in the presence of extracellular lactate and glucose, and to the greatest increase in ATP following a starvation period. On the other hand, oncogenic KRAS in TP53-deficient cells reversed the alterations in cellular ATP levels. Moreover, cell population measurements of mitochondrial and glycolytic metabolism using a Seahorse analyzer demonstrated that WT KRAS TP53-silenced cells display an increase of the basal respiration and tightly-coupled mitochondria, in the presence of glucose as substrate, compared to TP53 competent cells. Furthermore, cells possessing oncogenic KRAS, independently of TP53 status, showed less pronounced mitochondrial membrane potential changes in response to metabolic nutrients. Furthermore, analysis of cytosolic and mitochondrial NADH levels revealed that the simultaneous presence of TP53 deletion and oncogenic KRAS showed the most pronounced alteration in cytosolic and mitochondrial NADH during metabolic stress. In conclusion, our findings demonstrate how activating KRAS mutation and loss of TP53 remodel cancer metabolism and lead to alterations in bioenergetics under metabolic stress conditions by modulating cellular ATP production, NADH oxidation, mitochondrial respiration and function.
Collapse
Affiliation(s)
- James Kealey
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon-Madrid, Spain
| | - Natalia Niewidok
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| | - Beatrice D’Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| |
Collapse
|
45
|
García-Alonso S, Mesa P, Ovejero LDLP, Aizpurua G, Lechuga CG, Zarzuela E, Santiveri CM, Sanclemente M, Muñoz J, Musteanu M, Campos-Olivas R, Martínez-Torrecuadrada J, Barbacid M, Montoya G. Structure of the RAF1-HSP90-CDC37 complex reveals the basis of RAF1 regulation. Mol Cell 2022; 82:3438-3452.e8. [PMID: 36055235 DOI: 10.1016/j.molcel.2022.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
RAF kinases are RAS-activated enzymes that initiate signaling through the MAPK cascade to control cellular proliferation, differentiation, and survival. Here, we describe the structure of the full-length RAF1 protein in complex with HSP90 and CDC37 obtained by cryoelectron microscopy. The reconstruction reveals a RAF1 kinase with an unfolded N-lobe separated from its C-lobe. The hydrophobic core of the N-lobe is trapped in the HSP90 dimer, while CDC37 wraps around the chaperone and interacts with the N- and C-lobes of the kinase. The structure indicates how CDC37 can discriminate between the different members of the RAF family. Our structural analysis also reveals that the folded RAF1 assembles with 14-3-3 dimers, suggesting that after folding RAF1 follows a similar activation as B-RAF. Finally, disruption of the interaction between CDC37 and the DFG segment of RAF1 unveils potential vulnerabilities in attempting the pharmacological degradation of RAF1 for therapeutic purposes.
Collapse
Affiliation(s)
- Sara García-Alonso
- Experimental Oncology Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pablo Mesa
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Laura de la Puente Ovejero
- Experimental Oncology Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Gonzalo Aizpurua
- Experimental Oncology Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Carmen G Lechuga
- Experimental Oncology Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Eduardo Zarzuela
- Proteomics Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Clara M Santiveri
- Spectroscopy and NMR Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Manuel Sanclemente
- Experimental Oncology Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Javier Muñoz
- Proteomics Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Mónica Musteanu
- Department Section of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid 28040, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and NMR Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Jorge Martínez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
46
|
García-Gutiérrez L, Fallahi E, Aboud N, Quinn N, Matallanas D. Interaction of LATS1 with SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner. Cell Death Dis 2022; 13:692. [PMID: 35941108 PMCID: PMC9360443 DOI: 10.1038/s41419-022-05147-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Metastatic malignant melanoma is the deadliest skin cancer, and it is characterised by its high resistance to apoptosis. The main melanoma driving mutations are part of ERK pathway, with BRAF mutations being the most frequent ones, followed by NRAS, NF1 and MEK mutations. Increasing evidence shows that the MST2/Hippo pathway is also deregulated in melanoma. While mutations are rare, MST2/Hippo pathway core proteins expression levels are often dysregulated in melanoma. The expression of the tumour suppressor RASSF1A, a bona fide activator of the MST2 pathway, is silenced by promoter methylation in over half of melanomas and correlates with poor prognosis. Here, using mass spectrometry-based interaction proteomics we identified the Second Mitochondria-derived Activator of Caspases (SMAC) as a novel LATS1 interactor. We show that RASSF1A-dependent activation of the MST2 pathway promotes LATS1-SMAC interaction and negatively regulates the antiapoptotic signal mediated by the members of the IAP family. Moreover, proteomic experiments identified a common cluster of apoptotic regulators that bind to SMAC and LATS1. Mechanistic analysis shows that the LATS1-SMAC complex promotes XIAP ubiquitination and its subsequent degradation which ultimately results in apoptosis. Importantly, we show that the oncogenic BRAFV600E mutant prevents the proapoptotic signal mediated by the LATS1-SMAC complex while treatment of melanoma cell lines with BRAF inhibitors promotes the formation of this complex, indicating that inhibition of the LATS1-SMAC might be necessary for BRAFV600E-driven melanoma. Finally, we show that LATS1-SMAC interaction is regulated by the SMAC mimetic Birinapant, which requires C-IAP1 inhibition and the degradation of XIAP, suggesting that the MST2 pathway is part of the mechanism of action of Birinapant. Overall, the current work shows that SMAC-dependent apoptosis is regulated by the LATS1 tumour suppressor and supports the idea that LATS1 is a signalling hub that regulates the crosstalk between the MST2 pathway, the apoptotic network and the ERK pathway.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Fallahi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nourhan Aboud
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall Quinn
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
47
|
Singh R, Bhardwaj VK, Purohit R. Computational targeting of allosteric site of MEK1 by quinoline-based molecules. Cell Biochem Funct 2022; 40:481-490. [PMID: 35604288 DOI: 10.1002/cbf.3709] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Abstract
MEK1 is an attractive target due to its role in selective extracellular-signal-regulated kinase phosphorylation, which plays a pivotal role in regulating cell proliferation. Another benefit of targeting the MEK protein is its unique hydrophobic pocket that can accommodate highly selective allosteric inhibitors. To date, various MEK1 inhibitors have reached clinical trials against several cancers, but they were discarded due to their severe toxicity and low efficacy. Thus, the development of allosteric inhibitors for MEK1 is the demand of the hour. In this in-silico study, molecular docking, long-term molecular dynamics (5 µs), and molecular mechanics Poisson-Boltzmann surface area analysis were undertaken to address the potential of quinolines as allosteric inhibitors. We selected four reference MEK1 inhibitors for the comparative analysis. The drug-likeness and toxicity of these molecules were also examined based on their ADMET and Toxicity Prediction by Komputer Assisted Technology profiles. The outcome of the analysis revealed that the quinolines (4m, 4o, 4s, and 4n) exhibited better stability and binding affinity while being nontoxic compared to reference inhibitors. We have reached the conclusion that these quinoline molecules could be checked by experimental studies to validate their use as allosteric inhibitors against MEK1.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay K Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
48
|
Lusk JB, Chua EHZ, Kaur P, Sung ICH, Lim WK, Lam VYM, Harmston N, Tolwinski NS. A non-canonical Raf function is required for dorsal-ventral patterning during Drosophila embryogenesis. Sci Rep 2022; 12:7684. [PMID: 35538124 PMCID: PMC9090920 DOI: 10.1038/s41598-022-11699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Proper embryonic development requires directional axes to pattern cells into embryonic structures. In Drosophila, spatially discrete expression of transcription factors determines the anterior to posterior organization of the early embryo, while the Toll and TGFβ signalling pathways determine the early dorsal to ventral pattern. Embryonic MAPK/ERK signaling contributes to both anterior to posterior patterning in the terminal regions and to dorsal to ventral patterning during oogenesis and embryonic stages. Here we describe a novel loss of function mutation in the Raf kinase gene, which leads to loss of ventral cell fates as seen through the loss of the ventral furrow, the absence of Dorsal/NFκB nuclear localization, the absence of mesoderm determinants Twist and Snail, and the expansion of TGFβ. Gene expression analysis showed cells adopting ectodermal fates much like loss of Toll signaling. Our results combine novel mutants, live imaging, optogenetics and transcriptomics to establish a novel role for Raf, that appears to be independent of the MAPK cascade, in embryonic patterning.
Collapse
Affiliation(s)
- Jay B Lusk
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Prameet Kaur
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Wen Kin Lim
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Nicholas S Tolwinski
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore.
- Yale-NUS College Research Labs @ E6, E6, 5 Engineering Drive 1, #04-02, Singapore, 117608, Singapore.
| |
Collapse
|
49
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
50
|
Riudavets M, Cascetta P, Planchard D. Targeting BRAF-mutant non-small cell lung cancer: current status and future directions. Lung Cancer 2022; 169:102-114. [DOI: 10.1016/j.lungcan.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|