1
|
Zhang B, Zhang H, Qin Y. A Primer on the Role of TP53 Mutation and Targeted Therapy in Endometrial Cancer. FRONT BIOSCI-LANDMRK 2025; 30:25447. [PMID: 39862074 DOI: 10.31083/fbl25447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 01/27/2025]
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. TP53 mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME). The changes in the TME subsequently promote the development of tumors and assist in immune escape by tumor cells, making it more challenging to treat EC and resulting in a poor prognosis. Therefore, it is important to understand the effects of TP53 mutation in EC and to conduct further research in relation to the targeting of TP53 mutations. This article reviews current research progress on the role of TP53 mutations in regulating the TME and in the mechanism of EC tumorigenesis, as well as progress on drugs that target TP53 mutations.
Collapse
Affiliation(s)
- Bohao Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Haozhe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| |
Collapse
|
2
|
Carvalho C, Silva R, Melo TMVDPE, Inga A, Saraiva L. P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis. Cancers (Basel) 2024; 16:3978. [PMID: 39682165 DOI: 10.3390/cancers16233978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D. Collectively, this review not only opens new avenues for future research, but also offers promising prospects for the development of novel beneficial approaches in the field of SC.
Collapse
Affiliation(s)
- Carla Carvalho
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Netanely Y, Barel O, Naamneh R, Jaber Y, Yacoub S, Saba Y, Zubeidat K, Saar O, Eli-Berchoer L, Yona S, Brand A, Capucha T, Wilensky A, Loser K, Clausen B, Hovav AH. Epithelial RANKL Limits Experimental Periodontitis via Langerhans Cells. J Dent Res 2024; 103:1281-1290. [PMID: 39370697 PMCID: PMC11653287 DOI: 10.1177/00220345241274370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Due to its capacity to drive osteoclast differentiation, the receptor activator of nuclear factor kappa-β ligand (RANKL) is believed to exert a pathological influence in periodontitis. However, RANKL was initially identified as an activator of dendritic cells (DCs), expressed by T cells, and exhibits diverse effects on the immune system. Hence, it is probable that RANKL, acting as a bridge between the bone and immune systems, plays a more intricate role in periodontitis. Using ligature-induced periodontitis (LIP), rapid alveolar bone loss was detected that was later halted even though the ligature was still present. This late phase of LIP was also linked with immunosuppressive conditions in the gingiva. Further investigation revealed that the ligature prompted an immediate migration of RANK-expressing Langerhans cells (LCs) and EpCAM+ DCs, the antigen-presenting cells (APCs) of the gingival epithelium, to the lymph nodes, followed by an expansion of T regulatory (Treg) cells in the gingiva. Subsequently, the ligatured gingiva was repopulated by monocyte-derived RANK-expressing EpCAM+ DCs, while gingival epithelial cells upregulated RANKL expression. Blocking RANKL signaling with monoclonal antibodies significantly reduced the frequencies of Treg cells in the gingiva and prevented gingival immunosuppression. In addition, RANKL signaling facilitated the differentiation of LCs from bone marrow precursors. To further investigate the role of RANKL, we used K14-RANKL mice, in which RANKL is overexpressed by gingival epithelial cells. The elevated RANKL expression shifted the steady-state frequencies of LCs and EpCAM+ DCs within the epithelium, favoring LCs over EpCAM+ DCs. Following ligature placement, heightened levels of Treg cells were observed in the gingiva of K14-RANKL mice, and alveolar bone loss was significantly reduced. These findings suggest that RANKL-RANK interactions between gingival epithelial cells and APCs are crucial for suppressing gingival inflammation, highlighting a protective immunological role for RANKL in periodontitis that was overlooked due to its osteoclastogenic activity.
Collapse
Affiliation(s)
- Y. Netanely
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - O. Barel
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - R. Naamneh
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Y. Jaber
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - S. Yacoub
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Y. Saba
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - K. Zubeidat
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - O. Saar
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - L. Eli-Berchoer
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - S. Yona
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - A. Brand
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - T. Capucha
- Department of Oral and Maxillofacial Surgery, Rambam Medical Care Center, Haifa, Israel
| | - A. Wilensky
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - K. Loser
- Institute of Immunology, University of Oldenburg, Oldenburg, Germany
| | - B.E. Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - A.-H. Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
5
|
Wu J, Zhang HP, Gao JW, Liu ZF, Jin L. Network pharmacology-based study on the mechanism of action of Trollius chinensis capsule in the treatment of upper respiratory tract infection. Medicine (Baltimore) 2024; 103:e35529. [PMID: 39252243 PMCID: PMC11383270 DOI: 10.1097/md.0000000000035529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/15/2023] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Upper respiratory tract infection (URTI), one of the most common respiratory diseases, has a high annual incidence. Trollius chinensis capsule has been used to treat URTI in China. However, the underlying-mechanisms remain unclear. METHODS Network pharmacology was used to explore the potential mechanism of action of Trollius chinensis capsule in URTI treatment. The active compounds in Trollius chinensis were obtained from the TCMSP, SymMap, and ETCM databases. The TCMSP, PubChem, and SwissTargetPrediction databases were used to predict potential targets of Trollius chinensis. URTI-associated targets were gathered from GeneCards and DisGeNET databases. The key targets and signaling pathways associated with URTI were selected by network topology, GO, and KEGG pathway enrichment analysis. Molecular docking was used to verify the binding activity between active compounds and key targets. RESULTS Quercetin, pectolinarigenin, beta-sitosterol, acacetin and cirsimaritin are major active compounds in Trollius chinensis capsule. Eighty one candidate therapeutic targets were confirmed to be involved in protection of Trollius chinensis capsule against URTI. Among them, 7 key targets (TP53, IL6, AKT1, CASP3, CXCL8, MMP9, and EGFR) were verified to have good binding affinities to the main active compounds. Furthermore, enrichment analyses suggested that inflammatory response, virus infection and oxidative stress related biological processes and pathways were possibly the potential mechanism. CONCLUSION Overall, the present study clarified that quercetin, pectolinarigenin, beta-sitosterol, acacetin and cirsimaritin are proved to be the main effective compounds of Trollius chinensis capsule treating URTI, possibly by acting on the targets of IL6, AKT1, CASP3, CXCL8, MMP9 and EGFR to play anti-infectious, anti-viral, and anti-oxidative effects. This study provides a new understanding of the active compounds and mechanisms of Trollius chinensis capsule in URTI treatment from the perspective of network pharmacology.
Collapse
Affiliation(s)
- Jun Wu
- Department of Gastroenterology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| | - Hai-Ping Zhang
- Department of Gastroenterology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| | - Jing-Wen Gao
- Department of Gastroenterology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| | - Zhi-Feng Liu
- Department of Gastroenterology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| | - Lei Jin
- Department of Gastroenterology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
6
|
Jayab NA, Abed A, Talaat IM, Hamoudi R. The molecular mechanism of NF-κB dysregulation across different subtypes of renal cell carcinoma. J Adv Res 2024:S2090-1232(24)00314-X. [PMID: 39094893 DOI: 10.1016/j.jare.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is a critical pathway that regulates various cellular functions, including immune response, proliferation, growth, and apoptosis. Furthermore, this pathway is tightly regulated to ensure stability in the presence of immunogenic triggers or genotoxic stimuli. The lack of control of the NF-κB pathway can lead to the initiation of different diseases, mainly autoimmune diseases and cancer, including Renal cell carcinoma (RCC). RCC is the most common type of kidney cancer and is characterized by complex genetic composition and elusive molecular mechanisms. AIM OF REVIEW The current review summarizes the mechanism of NF-κB dysregulation in different subtypes of RCC and its impact on pathogenesis. KEY SCIENTIFIC CONCEPT OF REVIEW This review highlights the prominent role of NF-κB in RCC development and progression by driving the expression of multiple genes and interplaying with different pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In silico analysis of RCC cohorts and molecular studies have revealed that multiple NF-κB members and target genes are dysregulated. The dysregulation includes receptors such as TLR2, signal-transmitting members including RelA, and target genes, for instance, HIF-1α. The lack of effective regulatory mechanisms results in a constitutively active NF-κB pathway, which promotes cancer growth, migration, and survival. In this review, we comprehensively summarize the role of dysregulated NF-κB-related genes in the most common subtypes of RCC, including clear cell RCC (ccRCC), chromophobe RCC (chRCC), and papillary RCC (PRCC).
Collapse
Affiliation(s)
- Nour Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Alaa Abed
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, 27272 Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2024:10.1007/s11010-024-05050-9. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
8
|
Pasamba EC, Orda MA, Villanueva BHA, Tsai PW, Tayo LL. Transcriptomic Analysis of Hub Genes Reveals Associated Inflammatory Pathways in Estrogen-Dependent Gynecological Diseases. BIOLOGY 2024; 13:397. [PMID: 38927277 PMCID: PMC11201105 DOI: 10.3390/biology13060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Gynecological diseases are triggered by aberrant molecular pathways that alter gene expression, hormonal balance, and cellular signaling pathways, which may lead to long-term physiological consequences. This study was able to identify highly preserved modules and key hub genes that are mainly associated with gynecological diseases, represented by endometriosis (EM), ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), through the weighted gene co-expression network analysis (WGCNA) of microarray datasets sourced from the Gene Expression Omnibus (GEO) database. Five highly preserved modules were observed across the EM (GSE51981), OC (GSE63885), CC (GSE63514), and EC (GSE17025) datasets. The functional annotation and pathway enrichment analysis revealed that the highly preserved modules were heavily involved in several inflammatory pathways that are associated with transcription dysregulation, such as NF-kB signaling, JAK-STAT signaling, MAPK-ERK signaling, and mTOR signaling pathways. Furthermore, the results also include pathways that are relevant in gynecological disease prognosis through viral infections. Mutations in the ESR1 gene that encodes for ERα, which were shown to also affect signaling pathways involved in inflammation, further indicate its importance in gynecological disease prognosis. Potential drugs were screened through the Drug Repurposing Encyclopedia (DRE) based on the up-and downregulated hub genes, wherein a bacterial ribosomal subunit inhibitor and a benzodiazepine receptor agonist were the top candidates. Other drug candidates include a dihydrofolate reductase inhibitor, glucocorticoid receptor agonists, cholinergic receptor agonists, selective serotonin reuptake inhibitors, sterol demethylase inhibitors, a bacterial antifolate, and serotonin receptor antagonist drugs which have known anti-inflammatory effects, demonstrating that the gene network highlights specific inflammatory pathways as a therapeutic avenue in designing drug candidates for gynecological diseases.
Collapse
Affiliation(s)
- Elaine C. Pasamba
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Marco A. Orda
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Brian Harvey Avanceña Villanueva
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Lemmuel L. Tayo
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
9
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
10
|
Basha NJ, Mohan RM. Insight on Heterocycles as p53‐MDM2 Protein‐Protein Interaction Inhibitors: Molecular Mechanism for p53 Activation. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 01/03/2025]
Abstract
AbstractTranscription factor p53, also known as tumor suppressor protein. Encoded by the TP53 gene, the guardian of genome p53 regulates many gene pathways. Nevertheless, the molecular mechanisms of p53 functioning have been known for a few decades, and the exact role of p53 in cancer therapy is unclear. Also, comprehensive literature on heterocycles as p53‐MDM2 protein‐protein interaction inhibitors is limited. This review covers the molecular mechanism for the p53‐MDM2 interaction and its inhibition by the heterocyclic small molecules. We hope the present comprehensive study will help to develop heterocycles as anticancer drugs that induce apoptosis in tumor cells.
Collapse
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| | - R. M. Mohan
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| |
Collapse
|
11
|
Yang K, Fei C, Gao X. Mechanism exploration of SanShi ShengXin Ointment in the treatment of pressure ulcers based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37390. [PMID: 38428859 PMCID: PMC10906572 DOI: 10.1097/md.0000000000037390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND To explore the active ingredients, prospective targets, and action mechanisms of SanShi ShengXin Ointment in the treatment of pressure ulcers (PU) based on the network pharmacology technique and molecular docking technology. METHODS The active ingredients and action targets of Sanshishengxin Ointment were searched through the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform. The PU-related targets were retrieved from the GeneCards and DisGeNET databases. The intersection target genes of disease and drugs were obtained. The "disease-drug-active ingredient-target" was constructed using Cytoscape software. The intersection target genes were imported into the String database to construct a protein-protein interaction network for gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The Auto Dock software was used for relevant molecular docking. RESULTS A total of 78 active ingredients of SanShi ShengXin Ointment were obtained, corresponding to 539 target genes. There were 5896 PU-related target genes, and 373 intersection target genes of disease and drugs were obtained, such as STAT3, TP53, JUN, MAPK3, CTNNB1, involving PI3K-Akt, TNF, MAPK, and other related signaling pathways. CONCLUSION Based on network pharmacology and molecular docking analyses, this study demonstrates that SanShi ShengXin Ointment can treat PU through multicomponent, multitarget, and multipathway. .
Collapse
Affiliation(s)
- Kai Yang
- Postgraduate of First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Chenchen Fei
- Postgraduate of First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Gao
- Chief Physician of Surgical Department, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Zhao M, Xiang T, Dong Z, Liu G, Wang P, Qi X, Hao Q, Han N, Liu Z, Li S, Yin J, Zhai J. Shenqu xiaoshi oral solution enhances digestive function and stabilizes the gastrointestinal microbiota of juvenile rats with infantile anorexia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117112. [PMID: 37739107 DOI: 10.1016/j.jep.2023.117112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Massa Medicata Fermentata ("Shenqu") has long been applied in the treatment of indigestion in China; in fact, it is the active ingredient in the medicine Shenqu xiaoshi oral solution (SQXSOS). Based on robust clinical evidence, SQXSOS has shown efficacy in treating infantile anorexia (IFA). AIM OF THE STUDY To investigate the underlying mechanisms by which SQXSOS treats IFA. MATERIAL AND METHODS The pharmacodynamic efficacy of SQXSOS was validated through a high-fat diet (HFD)-induced IFA model of juvenile rats, which share physiological similarities to two-year-old humans. Ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-TOF MS) was utilized to analyze the blood-dissolved components of SQXSOS in rats. After identification of the blood-dissolved components, the key components and target genes were predicted through network pharmacology analysis. To further validate the predicted key targets of the blood-dissolved components, RT-PCR and Western blotting were employed to measure the changes in their concentrations. Meanwhile, the efficacy of SQXSOS on the structure of gastrointestinal microbiota (GM) in IFA rats was investigated. RESULTS SQXSOS, when administered to the IFA rats at a dosage equivalent to its clinical dose in humans (3.78 mL/kg/day), induced a significant increase in the gastric emptying rate (+1.9-fold) and small intestine advancement rate (+0.5-fold) compared to the IFA rats. Additionally, SQXSOS reversed the pathological changes observed in the serum levels of digestive functioning biochemicals (-32.4%~+250% compared to the model group, p < 0.05). A total of 40 blood-dissolved components were identified by UHPLC-TOF MS. Berberine, oleanolic acid, ganolucidic acid A, slicyluric acid, and glycyrrhetinic acid were identified as the key components of SQXSOS, while AKT1, STAT3, TP53, JUN, and MAPK1 were identified as the key targets enabling the therapeutic efficacy of SQXSOS in treating IFA. In a target validation study, the mRNA transcript levels of the abovementioned target genes were found to be significantly higher in the gastric antrum of IFA rats. However, SQXSOS administration (3.78 and 7.56 mL/kg/day) reduced the elevated mRNA transcript levels of the abovementioned target genes (41.1-77.3% compared to model group, p < 0.05). GM analysis revealed a significant increase in the Firmicutes/Bacteroidota ratio (F/B ratio, +214.2%) in the IFA fecal samples compared to normal rats, but the high dosage of SQXSOS induced a marked decrease in the F/B ratio (-44.1%) compared to IFA rats. Furthermore, the therapeutic efficacy of SQXSOS against IFA might be attributed to the increase in Muribaculaceae abundance and the decrease in Prevotellaceae_UCG_003 abundance. CONCLUSION Mechanistic investigations indicated that the efficacy of SQXSOS in treating IFA could be manifested by regulating the transcription and expression levels of AKT1, MAPK1, STAT3, and TP53 genes in the gastric antrum as well as modulating the abundance of Muribaculaceae and Prevotellaceae_UCG_003 family. Furthermore, there are still some limitations: the contents of the key biochemicals remained to be determined, similar STAT3 transcription levels were observed in both normal rats and IFA rats, and it is crucial to further validate the potential target GM when transitioning from animal populations to humans.
Collapse
Affiliation(s)
- Meng Zhao
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Ting Xiang
- Jiangsu Longfengtang Traditional Chinese Medicine Co. Ltd, Yangtze River Pharmaceutical Group, China.
| | - Zhikui Dong
- Beijing Haiyan Pharmaceutical Co., Ltd, Yangtze River Pharmaceutical Group, China.
| | - Guorui Liu
- Jiangsu Longfengtang Traditional Chinese Medicine Co. Ltd, Yangtze River Pharmaceutical Group, China.
| | - Pengran Wang
- Jiangsu Longfengtang Traditional Chinese Medicine Co. Ltd, Yangtze River Pharmaceutical Group, China.
| | - Xiaoxu Qi
- Jiangsu Longfengtang Traditional Chinese Medicine Co. Ltd, Yangtze River Pharmaceutical Group, China.
| | - Qingqing Hao
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Na Han
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhihui Liu
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Sikai Li
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jianxiu Zhai
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Cupido G, Günther G. Post tuberculosis lung disease and tuberculosis sequelae: A narrative review. Indian J Tuberc 2024; 71:64-72. [PMID: 38296392 DOI: 10.1016/j.ijtb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 02/08/2024]
Abstract
Post Tuberculosis lung disease (PTLD) and post tuberculosis sequelae is a global and poorly recognized problem, amplified by social factors and immunocompromising conditions, inadequate treatment, lack of effective prevention of tuberculosis (TB) infection and disease. As a disease, it remained until recently poorly defined, with studies heterogenous with regards to regions, population demographics, risk factors, cohort sizes, and methods. Pathophysiologically, even successfully treated pulmonary TB disease has sequelae i.e. involving central and peripheral airways, lung parenchyma and pleura, resulting in airway narrowing and dilatation, fibrocavitation and emphysema, pulmonary vascular changes as well as pleural fibrosis. Functionally patients have airflow limitation, restrictive disease or a mixture of both not rarely associated with respiratory, or even ventilatory failure. Quality of life is often impaired through disability, TB relapse, superinfections and through increased susceptibility to reinfection and persistent inflammation, leading to progressive lung function decline and an increased risk of cardiovascular disease and cancer. Premature mortality due to PTLD is very likely, but poorly described.
Collapse
Affiliation(s)
- Gordon Cupido
- Department of Internal Medicine, Katutura State Hospital, Windhoek, Namibia.
| | - Gunar Günther
- Department of Pulmonology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Medical Sciences, University of Namibia, School of Medicine, Windhoek, Namibia
| |
Collapse
|
14
|
Lin TY, Chang TM, Tsai WC, Hsieh YJ, Wang LT, Huang HC. Human Umbilical Cord Mesenchymal-Stem-Cell-Derived Extracellular Vesicles Reduce Skin Inflammation In Vitro. Int J Mol Sci 2023; 24:17109. [PMID: 38069436 PMCID: PMC10707458 DOI: 10.3390/ijms242317109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The protective roles of extracellular vesicles derived from human umbilical cord mesenchymal stem cells against oxazolone-induced damage in the immortalized human keratinocyte cell line HaCaT were investigated. The cells were pretreated with or without UCMSC-derived extracellular vesicles 24 h before oxazolone exposure. The pretreated UVMSC-EVs showed protective activity, elevating cell viability, reducing intracellular ROS, and reducing the changes in the mitochondrial membrane potential compared to the cells with a direct oxazolone treatment alone. The UCMSC-EVs exhibited anti-inflammatory activity via reducing the inflammatory cytokines IL-1β and TNF-α. A mechanism study showed that the UCMSC-EVs increased the protein expression levels of SIRT1 and P53 and reduced P65 protein expression. It was concluded that UVMSC-EVs can induce the antioxidant defense systems of HaCaT cells and that they may have potential as functional ingredients in anti-aging cosmetics for skin care.
Collapse
Affiliation(s)
- Tzou-Yien Lin
- Department of Paediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Tsong-Min Chang
- Department of Hair Styling and Design, Department of Applied Cosmetology, Hungkuang University, Taichung 433304, Taiwan;
| | - Wei-Cheng Tsai
- ExoOne Bio Co., Ltd., Taipei City 115011, Taiwan; (W.-C.T.); (Y.-J.H.); (L.-T.W.)
| | - Yi-Ju Hsieh
- ExoOne Bio Co., Ltd., Taipei City 115011, Taiwan; (W.-C.T.); (Y.-J.H.); (L.-T.W.)
| | - Li-Ting Wang
- ExoOne Bio Co., Ltd., Taipei City 115011, Taiwan; (W.-C.T.); (Y.-J.H.); (L.-T.W.)
| | - Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
15
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Islam M, Anvarbatcha R, Kunnathodi F, Athar MT, Tariq M. Quinacrine enhances the efficacy of cisplatin by increasing apoptosis and modulating cancer survival proteins in a colorectal cancer cell line. J Cancer Res Ther 2023; 19:1988-1997. [PMID: 38376308 DOI: 10.4103/jcrt.jcrt_902_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND Cisplatin and platinum-based compounds have been used successfully to treat various cancers. However, their use is often restricted due to the acquired resistance by cancer cells. Over-expression of p53 and inhibition of NF-kB sensitize several cancer cells towards cisplatin-induced apoptosis. Quinacrine, a cytotoxic drug with predictable safety revealed to concurrently suppress NF-kB and activate p53, which may be an attractive adjuvant in cisplatin chemotherapy. Therefore, the objective of the present study was to establish the role of quinacrine as an adjuvant in lowering the dose of cisplatin during cancer therapy to circumvent its toxic effects. MATERIALS AND METHODS The colon cancer (HCT-8) cells were cultured and cell survival assays were performed using standard procedures. Cell cycle arrest and the extent of apoptosis were determined using a muse cell analyzer. Cancer survival proteins were analyzed using western blotting techniques. RESULTS AND CONCLUSION We demonstrated that concomitant use of quinacrine with cisplatin increased cell apoptosis, suppressed cell proliferation and inhibited colony formation in a colorectal cancer cell line. Moreover, cell cycle arrest in the G0/G1 and G2/M phases and upregulation of p53 expression were observed. There was also downregulation of NF-kB and Bcl-xL protein expressions, both of which are associated with enhanced cell apoptosis and an increase in the sensitivity of cancer cells to cisplatin, overcoming its chemoresistance. Overall, the results of the present study and available literature clearly indicate that the use of quinacrine as an adjuvant with cisplatin may enhance its anti-cancer activity and reduce chemoresistance.
Collapse
Affiliation(s)
- Mozaffarul Islam
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Riyasdeen Anvarbatcha
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Md Tanwir Athar
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Al-Qassim, Saudi Arabia
| | - Mohammad Tariq
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Weiss E, Schrüfer A, Tocantins C, Diniz MS, Novakovic B, van Bergen AS, Kulovic‐Sissawo A, Saffery R, Boon RA, Hiden U. Higher gestational weight gain delays wound healing and reduces expression of long non-coding RNA KLRK1-AS1 in neonatal endothelial progenitor cells. J Physiol 2023; 601:3961-3974. [PMID: 37470310 PMCID: PMC10952284 DOI: 10.1113/jp284871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
High gestational weight gain (GWG) is a cardiovascular risk factor and may disturb neonatal endothelial function. Long non-coding RNAs (lncRNAs) regulate gene expression epigenetically and can modulate endothelial function. Endothelial colony forming cells (ECFCs), circulating endothelial precursors, are a recruitable source of endothelial cells and sustain endothelial function, vascular growth and repair. We here investigated whether higher GWG affects neonatal ECFC function and elucidated the role of lncRNAs herein. Wound healing of umbilical cord blood-derived ECFCs after pregnancies with GWG <13 kg versus >13 kg was determined in a scratch assay and based on monolayer impedance after electric wounding (electric cell-substrate impedance sensing, ECIS). LncRNA expression was analysed by RNA sequencing. The function of killer cell lectin-like receptor K1 antisense RNA (KLRK1-AS1) was investigated after siRNA-based knockdown. Closure of the scratch was delayed by 25% (P = 0.041) in the higher GWG group and correlated inversely with GWG (R = -0.538, P = 0.012) in all subjects (n = 22). Similarly, recovery of the monolayer barrier after electric wounding was delayed (-11% after 20 h; P = 0.014; n = 15). Several lncRNAs correlated with maternal GWG, the most significant one being KLRK1-AS1 (log2 fold change = -0.135, P < 0.001, n = 35). KLRK1-AS1 knockdown (n = 4) reduced barrier recovery after electric wounding by 21% (P = 0.029) and KLRK1-AS1 expression correlated with the time required for wound healing for both scratch (R = 0.447, P = 0.033) and impedance-based assay (R = 0.629, P = 0.014). Higher GWG reduces wound healing of neonatal ECFCs, and lower levels of the lncRNA KLRK1-AS1 may underlie this. KEY POINTS: Maternal cardiovascular risk factors such as diabetes, obesity and smoking in pregnancy disturb fetal endothelial function, and we here investigated whether also high gestational weight gain (GWG) has an impact on fetal endothelial cells. Circulating endothelial progenitor cells (endothelial colony forming cells, ECFCs) are highly abundant in the neonatal blood stream and serve as a circulating pool for vascular growth and repair. We revealed that higher GWG delays wound healing capacity of ECFCs in vitro. We identified the regulatory RNA lncRNA KLRK1-AS1 as a link between GWG and delayed ECFC wound healing. Our data show that high GWG, independent of pre-pregnancy BMI, affects neonatal ECFC function.
Collapse
Affiliation(s)
- Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- Research Unit Early Life Determinants (ELiD)Medical University of GrazGrazAustria
| | - Anna Schrüfer
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- CNC‐Center for Neuroscience and Cell Biology, CIBB‐Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Mariana Simoes Diniz
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- CNC‐Center for Neuroscience and Cell Biology, CIBB‐Centre for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity ThemeMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Anke S. van Bergen
- Department of PhysiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesMicrocirculationAmsterdamThe Netherlands
| | - Azra Kulovic‐Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- Research Unit Early Life Determinants (ELiD)Medical University of GrazGrazAustria
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity ThemeMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Reinier A. Boon
- Department of PhysiologyAmsterdam University Medical Centers, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesMicrocirculationAmsterdamThe Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Centre for Cardiovascular Research DZHKPartner site Frankfurt Rhein/MainFrankfurt am MainGermany
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and GynaecologyMedical University of GrazGrazAustria
- Research Unit Early Life Determinants (ELiD)Medical University of GrazGrazAustria
| |
Collapse
|
18
|
Carlsen L, Zhang S, Tian X, De La Cruz A, George A, Arnoff TE, El-Deiry WS. The role of p53 in anti-tumor immunity and response to immunotherapy. Front Mol Biosci 2023; 10:1148389. [PMID: 37602328 PMCID: PMC10434531 DOI: 10.3389/fmolb.2023.1148389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
p53 is a transcription factor that regulates the expression of genes involved in tumor suppression. p53 mutations mediate tumorigenesis and occur in approximately 50% of human cancers. p53 regulates hundreds of target genes that induce various cell fates including apoptosis, cell cycle arrest, and DNA damage repair. p53 also plays an important role in anti-tumor immunity by regulating TRAIL, DR5, TLRs, Fas, PKR, ULBP1/2, and CCL2; T-cell inhibitory ligand PD-L1; pro-inflammatory cytokines; immune cell activation state; and antigen presentation. Genetic alteration of p53 can contribute to immune evasion by influencing immune cell recruitment to the tumor, cytokine secretion in the TME, and inflammatory signaling pathways. In some contexts, p53 mutations increase neoantigen load which improves response to immune checkpoint inhibition. Therapeutic restoration of mutated p53 can restore anti-cancer immune cell infiltration and ameliorate pro-tumor signaling to induce tumor regression. Indeed, there is clinical evidence to suggest that restoring p53 can induce an anti-cancer immune response in immunologically cold tumors. Clinical trials investigating the combination of p53-restoring compounds or p53-based vaccines with immunotherapy have demonstrated anti-tumor immune activation and tumor regression with heterogeneity across cancer type. In this Review, we discuss the impact of wild-type and mutant p53 on the anti-tumor immune response, outline clinical progress as far as activating p53 to induce an immune response across a variety of cancer types, and highlight open questions limiting effective clinical translation.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Taylor E. Arnoff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
19
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Kohno R, Nagata Y, Ishihara T, Amma C, Inomata Y, Seto T, Suzuki R. Benzo[ a]pyrene induces NLRP1 expression and promotes prolonged inflammasome signaling. Front Immunol 2023; 14:1154857. [PMID: 37215119 PMCID: PMC10192748 DOI: 10.3389/fimmu.2023.1154857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon in the air, triggers pulmonary inflammation. This study focused on BaP-induced inflammation in the alveolar epithelium. A549 cells were stimulated with BaP for four days. BaP treatment markedly increased NLRP1 expression but slightly decreased NLRP3. Furthermore, aryl hydrocarbon receptor (AhR) knockdown displayed no increase in BaP-induced NLRP1 expression. Similar results were also observed by blocking reactive oxygen species (ROS), which is mediated through AhR, suggesting that the AhR-ROS axis operates in BaP-induced NLRP1 expression. p53 involvement in ROS-mediated NLRP1 induction has also been implied. When we confirmed inflammasome activation in cells treated with BaP for four days, while BaP transiently activated NLRP3, it predominantly activated the NLRP1 inflammasome. These findings have led to the conclusion that BaP could be a potential ligand for the NLRP1 inflammasome persistently observed in the lung epithelium. Our study may provide additional evidence for the sustained pulmonary inflammation caused by environmental air pollution.
Collapse
Affiliation(s)
- Risa Kohno
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuka Nagata
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomohiro Ishihara
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Chisato Amma
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yayoi Inomata
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Takafumi Seto
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Kim JY, Jung J, Kim KM, Lee J, Im YH. TP53 mutations predict poor response to immunotherapy in patients with metastatic solid tumors. Cancer Med 2023. [PMID: 37081749 DOI: 10.1002/cam4.5953] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND TP53 is the most commonly mutated gene across all cancer types. R175H mutation was considered structural mutation where the mutation causes misfolding of the protein and leads to a significant conformational alterations within p53's DNA binding domain. The aim of this study was to explain the reason why R175H worse the response to immunotherapy by analyzing tumor immune microenvironment through the expression of immune cells and PD-1. MATERIALS AND METHODS Patients diagnosed with metastatic carcinoma, including colorectal cancer (CRC), breast cancer (BRCA), gastric cancer (GC), non-small cell lung cancer (NSCLC), and 20 other cancer types, treated in a palliative setting at Samsung Medical Center between October 2019 and April 2021, were enrolled. Of these patients, those who underwent TDS analysis (TruSight™ Oncology 500 assay [TSO 500]) were finally analyzed. RESULTS Of 1770 patients, 1012 (57.2%) harbored genetic alterations in TP53. All mutations were single nucleotide variants (SNVs), and the most frequent SNV was R175H (n = 84, 7.5%) which was known as one of the most common hotspot TP53 mutation. The overall survival of patients with TP53 R175H mutations was significantly worse following chemotherapy (606 vs. 456 days, p < 0.001) or immunotherapy (822 vs. 350 days, p < 0.001) compared to those with TP53 mutation in other loci. RNA sequencing indicated that the immune response-related pathways were downregulated in tumors harboring TP53 R175H mutation. Moreover, the expression of CD8(+) T cells PD-1 were lowered in R175H mutation tumors. In the analysis of TP53 structural domain, compared to those having TP53 mutation in other domain, patients with mutations occurring in the nuclear exporter signal (NES) and E4F1-binding domains had significantly worse overall survival following chemotherapy (NES: 606 vs. 451 days, p = 0.043; E4F1: 606 vs. 469 days, p = 0.046) and immunotherapy (NES: 822 vs. 403 days, p < 0.001; E4F1: 822 vs. 413 days, p < 0.001). In addition, tumors with TP53 mutation and co-existing copy number amplification of CCND1, FGF4, and FGF19 in chromosome 11 conferred worse prognosis than those with only TP53 mutation (p < 0.050). DISCUSSION Each TP53 mutations indicated differential treatment outcomes following chemotherapy or immunotherapy in patients with metastatic cancer. Functional analysis including RNASeq suggested that TP53 mutation downregulated immune response. CONCLUSION Overall, we found each TP53 mutation to indicate different prognoses in patients with metastatic tumors undergoing chemotherapy and ICI treatment. Further validations, including a prospective cohort study or a functional study, would be particularly valuable in advancing the knowledge on this aspect and developing improved prognostic parameters.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jaeyun Jung
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, South Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, South Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Li K, Hu W, Yang Y, Wen H, Li W, Wang B. Anti-inflammation of hydrogenated isoflavones in LPS-stimulated RAW264.7 cells via inhibition of NF-κB and MAPK signaling pathways. Mol Immunol 2023; 153:126-134. [PMID: 36495817 DOI: 10.1016/j.molimm.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Isoflavones are commonly found in diets, such as soybean and clover. Their anti-inflammatory effects are due to the inhibition of the transcriptional regulation of NF-κB. Hydrogenated isoflavones are metabolites of isoflavones with higher bioavailability, however, there have been few studies on their anti-inflammatory effects. In this work, by using the LPS-stimulated RAW264.7 cell model, we investigated the anti-inflammatory effect and the underlying mechanism of hydrogenated isoflavones. Hydrogenated isoflavones reduced the production of LPS-stimulated pro-inflammatory mediators and enzymes, including TNF-α, IL-6, NO, iNOS and COX-2. The level of ROS was also diminished in LPS-stimulated RAW264.7 cells. Further mechanistic studies showcase that hydrogenated isoflavones block NF-κB and MAPK pathways via attenuation of p65 nuclear translocation and JNK, ERK, and p38 phosphorylation, respectively. In addition, we found that hydrogenated isoflavones display anti-proliferation effect in human colon cancer cells with wild-type p53. Together, hydrogenated isoflavones could be used as an adjuvant for the treatment of inflammation and cancer.
Collapse
Affiliation(s)
- Keting Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wenshu Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yaobin Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
23
|
Abstract
BACKGROUND Metformin has good anti-hyperglycemic effectiveness, but does not induce hypoglycemia,is very safe, and has become the preferred drug for the treatment of type 2 diabetes. Recently, the other effects of metformin, such as being anti-inflammatory and delaying aging, have also attracted increased attention. METHODS AND RESULTS The relevant literatures on pubmed and other websites for reading, classification and sorting, and did not involve any animal experiments. CONCLUSION Metformin has anti-inflammatory effects through multiple routes, which provides potential therapeutic targets for certain inflammatory diseases, such as neuroinflammation and rheumatoid arthritis. In addition, inflammation is a key component of tumor occurrence and development ; thus, targeted inflammatory intervention is a significant benefit for both cancer prevention and treatment. Therefore, metformin may have further potential for inflammation-related disease prevention and treatmen. However, the inflammatory mechanism is complex; various molecules are connected and influence each other. For example, metformin significantly inhibits p65 nuclear translocation, but pretreatment with compound C, an AMPK inhibitor, abolishes this effect, and silencing of HMGB1 inhibits NF-κB activation . SIRT1 deacetylates FoxO, increasing its transcriptional activity . mTOR in dendritic cells regulates FoxO1 via AKT. The interactions among various molecules should be further explored to clarify their specific mechanisms and provide more direction for the treatment of inflammatory diseases, as well as cancer.
Collapse
|
24
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Diwan B, Sharma R. Green tea EGCG effectively alleviates experimental colitis in middle-aged male mice by attenuating multiple aspects of oxi-inflammatory stress and cell cycle deregulation. Biogerontology 2022; 23:789-807. [PMID: 35779147 DOI: 10.1007/s10522-022-09976-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Age-dependent increased risk of inflammatory bowel diseases such as ulcerative colitis is being increasingly realized, and yet therapies targeting this disorder within the purview of aging are limited. The present study attempted to assess the efficacy of green tea epigallocatechin gallate (EGCG) consumption in preventing the severity and progression of dextran sulphate sodium (DSS)-induced ulcerative colitis in 18 months old middle-aged male mice. Acute colitis was induced in animals using DSS and protective effects of EGCG consumption were examined. Different parameters related to disease progression and molecular markers related to oxi-inflammatory stress, localized and systemic cytokine response, epithelial barrier integrity, and cell cycle progression profile were evaluated. DSS treatment induced rapid and severe symptoms of colitis such as consistently increased DAI score, shortened and inflamed colon accompanied by increased levels of inflammatory proteins (TNFα/IL-6/IL-1β) in both the colon tissue and cultured splenocytes indicating exaggerated Th1 immune response. Markers of oxidative stress increased while antioxidant defences and the expression of tight junction genes in the colonic cells were attenuated. Dysregulation in the expression of cell cycle inhibitory genes (p53/p21WAF1/p16Ink4a) indicated possible induction of colitis-induced dysplasia. On the other hand, EGCG consumption strongly attenuated all the measured ostensible as well as molecular markers of the disease progression as evidenced by improved DAI score, cellular antioxidant capacity, attenuated Th1 cytokine response both in the colon and cultured splenocytes, enhanced expression of tight junction genes, and cell cycle inhibitors thereby suggesting systemic effects of EGCG. Together, these observations suggest that drinking EGCG-rich green tea can be a significant way of managing the severity of colitis during aging.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
26
|
Mutant p53 gain of function mediates cancer immune escape that is counteracted by APR-246. Br J Cancer 2022; 127:2060-2071. [PMID: 36138076 PMCID: PMC9681866 DOI: 10.1038/s41416-022-01971-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND p53 mutants contribute to the chronic inflammatory tumour microenvironment (TME). In this study, we address the mechanism of how p53 mutants lead to chronic inflammation in tumours and how to transform it to restore cancer immune surveillance. METHODS Our analysis of RNA-seq data from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project revealed that mutant p53 (mtp53) cancers correlated with chronic inflammation. We used cell-based assays and a mouse model to discover a novel gain of function of mtp53 and the effect of the mtp53 reactivating compound APR-246 on the anti-tumour immune response. RESULTS We found that tumour samples from patients with breast carcinoma carrying mtp53 showed elevated Interferon (IFN) signalling, Tumour Inflammation Signature (TIS) score and infiltration of CD8+ T cells compared to wild type p53 (wtp53) tumours. We showed that the expression of IFN and immune checkpoints were elevated in tumour cells in a mtp53-dependent manner, suggesting a novel gain of function. Restoration of wt function to mtp53 by APR-246 induced the expression of endogenous retroviruses, IFN signalling and repressed immune checkpoints. Moreover, APR-246 promoted CD4+ T cells infiltration and IFN signalling and prevented CD8+ T cells exhaustion within the TME in vivo. CONCLUSIONS Breast carcinomas with mtp53 displayed enhanced inflammation. APR-246 boosted the interferon response or represses immune checkpoints in p53 mutant tumour cells, and restores cancer immune surveillance in vivo.
Collapse
|
27
|
Mehta PM, Gimenez G, Walker RJ, Slatter TL. Reduction of lithium induced interstitial fibrosis on co-administration with amiloride. Sci Rep 2022; 12:14598. [PMID: 36028651 PMCID: PMC9418221 DOI: 10.1038/s41598-022-18825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term administration of lithium is associated with chronic interstitial fibrosis that is partially reduced with exposure to amiloride. We examined potential pathways of how amiloride may reduce interstitial fibrosis. Amiloride was administered to a rat model of lithium induced interstitial fibrosis over a long term (6 months), as well as for short terms of 14 and 28 days. Kidney cortical tissue was subjected to RNA sequencing and microRNA expression analysis. Gene expression changes of interest were confirmed using immunohistochemistry on kidney tissue. Pathways identified by RNA sequencing of kidney tissue were related to 'promoting inflammation' for lithium and 'reducing inflammation' for amiloride. Validation of candidate genes found amiloride reduced inflammatory components induced by lithium including NF-κB/p65Ser536 and activated pAKTSer473, and increased p53 mediated regulatory function through increased p21 in damaged tubular epithelial cells. Amiloride also reduced the amount of Notch1 positive PDGFrβ pericytes and infiltrating CD3 cells in the interstitium. Thus, amiloride attenuates a multitude of pro-inflammatory components induced by lithium. This suggests amiloride could be repurposed as a possible anti-inflammatory, anti-fibrotic agent to prevent or reduce the development of chronic interstitial fibrosis.
Collapse
Affiliation(s)
- Paulomi M Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
28
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
29
|
Shallis RM, Bewersdorf JP, Stahl MF, Halene S, Zeidan AM. Are We Moving the Needle for Patients with TP53-Mutated Acute Myeloid Leukemia? Cancers (Basel) 2022; 14:2434. [PMID: 35626039 PMCID: PMC9140008 DOI: 10.3390/cancers14102434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
The currently available therapeutic options for patients with TP53-mutated acute myeloid leukemia (AML) are insufficient, as they translate to a median overall of only 6-9 months, and less than 10% of patients undergoing the most aggressive treatments, such as intensive induction therapy and allogeneic hematopoietic stem cell transplantation, will be cured. The lack of clear differences in outcomes with different treatments precludes the designation of a standard of care. Recently, there has been growing attention on this critical area of need by way of better understanding the biology of TP53 alterations and the disparities in outcomes among patients in this molecular subgroup, reflected in the development and testing of agents with novel mechanisms of action. Promising preclinical and efficacy data exist for therapies that are directed at the p53 protein rendered dysfunctional via mutation or that inhibit the CD47/SIRPα axis or other immune checkpoints such as TIM-3. In this review, we discuss recently attractive and emerging therapeutic agents, their preclinical rationale and the available clinical data as a monotherapy or in combination with the currently accepted backbones in frontline and relapsed/refractory settings for patients with TP53-mutated AML.
Collapse
Affiliation(s)
- Rory M. Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT 06520, USA; (R.M.S.); (S.H.)
| | - Jan P. Bewersdorf
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Maximilian F. Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT 06520, USA; (R.M.S.); (S.H.)
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT 06520, USA; (R.M.S.); (S.H.)
| |
Collapse
|
30
|
Perna S, Alawadhi H, Riva A, Allegrini P, Petrangolini G, Gasparri C, Alalwan TA, Rondanelli M. In Vitro and In Vivo Anticancer Activity of Basil ( Ocimum spp.): Current Insights and Future Prospects. Cancers (Basel) 2022; 14:cancers14102375. [PMID: 35625980 PMCID: PMC9139360 DOI: 10.3390/cancers14102375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Basil (Ocimum basilicum) is a medicinal herb of the family Lamiaceae that contains a variety of potential bioactive compounds, such as polyphenols, flavonoids, phenolics, and essential oils. Ocimum basilicum can boost phagocytic action of neutrophils and immunostimulant effect, antimicrobial activity due to linalool by having inhibitory action toward all tested microorganism, and additionally, rosmarinic acid shows inhibition in DNA synthesis, as well as protein synthesis when experimented on hepatoma-derived cell line (HepG2), this resulted by lower DNA fragments plus suppression on caspase-3 activation, which blocks apoptosis. The aim of this review is to spotlight and discuss the anti-cancer activity of basil (Ocimum) and its implications in cancer prevention and treatment. Antioxidants and other bioactive compounds in basil leaves show important potential anti-cancer activity regards to cell death and viability inhibition, cytotoxicity, inducing apoptosis, slowing down tumor growth and especially on cell cycle arrest both in vivo and in vitro. Abstract Background: Cancer is an irregular proliferation of cells that starts with a gene mutation that alters cellular function, is triggered by several factors, and can be inherited or acquired. The aim of this review is to discuss the anticancer activity of basil and its components’ strength, focusing on its implication in cancer prevention and treatment. Methods: This systematic review involves all of the studies published from 1 January 2010 through 1 January 2022. Results: In this review, 16 research articles are included to discuss the potential anticancer ability of the extracts of various Ocimum basilicum varieties at various dosages, applied to different cancer cells. Of those 16 articles, 2 were in vivo studies, 13 were in vitro studies, and 1 study conducted both in vivo and in vitro experiments. Antioxidants and other bioactive compounds in basil leaves show important potential anticancer activity at dosage of 4 mg/mL as aqueous extract or essential oil up to 200 µg/mL could slow-down tumor growth and progression with regards to cell death and viability inhibition. At dosages from 50 to 500 µg/mL is effective as anti-proliferative activities. cytotoxicity, inducing apoptosis, slowing down tumor growth, and especially cell cycle arrest, both in vivo and in vitro. Human studies show effects at dosages from 1 to 2.5 mg/daily on general vital activities and on reducing cytokines activity. Conclusions: Based on 16 published studies, basil demonstrates important anticancer activities in vivo and vitro models, and it could act as a potential cancer.
Collapse
Affiliation(s)
- Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain; (H.A.); (T.A.A.)
- Correspondence:
| | - Hajar Alawadhi
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain; (H.A.); (T.A.A.)
| | - Antonella Riva
- Development Department, Indena SpA, 20139 Milan, Italy; (A.R.); (P.A.); (G.P.)
| | - Pietro Allegrini
- Development Department, Indena SpA, 20139 Milan, Italy; (A.R.); (P.A.); (G.P.)
| | | | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy;
| | - Tariq A. Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain; (H.A.); (T.A.A.)
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
31
|
Garofalo M, Payros D, Oswald E, Nougayrède JP, Oswald IP. The foodborne contaminant deoxynivalenol exacerbates DNA damage caused by a broad spectrum of genotoxic agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153280. [PMID: 35066032 DOI: 10.1016/j.scitotenv.2022.153280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Humans are exposed to different contaminants including mycotoxins. Deoxynivalenol (DON), a potent ribosome inhibitor, is a highly prevalent mycotoxin in the food chain worldwide. Although DON is not genotoxic, we previously showed that it exacerbates the genotoxicity of colibactin, a DNA-crosslinking toxin produced by bacteria in the gut. In the present study, we investigated whether this phenotype can be extended to other genotoxic compounds with different modes of action. Our data showed that, at a dose that can be found in food, DON exacerbated the DNA damage caused by etoposide, cisplatin and phleomycin. In contrast, de-epoxy-deoxynivalenol (DOM-1), a modified form of DON that does not induce ribotoxic stress, did not exacerbate DNA damage. The effect of DON was mimicked with other ribosome inhibitors such as anisomycin and cycloheximide, suggesting that ribotoxicity plays a key role in exacerbating DNA damage. In conclusion, a new effect of DON was identified, this toxin aggravates the DNA damage induced by a broad spectrum of genotoxic agents with different modes of action. These results are of utmost importance as our food can be co-contaminated with DON and DNA-damaging agents.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
32
|
Varzideh F, Kansakar U, Donkor K, Wilson S, Jankauskas SS, Mone P, Wang X, Lombardi A, Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front Cardiovasc Med 2022; 9:863238. [PMID: 35498051 PMCID: PMC9043126 DOI: 10.3389/fcvm.2022.863238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 01/12/2023] Open
Abstract
After an ischemic injury, the heart undergoes a complex process of structural and functional remodeling that involves several steps, including inflammatory and fibrotic responses. In this review, we are focusing on the contribution of microRNAs in the regulation of inflammation and fibrosis after myocardial infarction. We summarize the most updated studies exploring the interactions between microRNAs and key regulators of inflammation and fibroblast activation and we discuss the recent discoveries, including clinical applications, in these rapidly advancing fields.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Stanislovas S. Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Xujun Wang
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- *Correspondence: Gaetano Santulli,
| |
Collapse
|
33
|
Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer. J Pers Med 2022; 12:jpm12020234. [PMID: 35207722 PMCID: PMC8877116 DOI: 10.3390/jpm12020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive neoplasm that in an early stage is generally asymptomatic and, in most cases, is diagnosed in advanced stages with a very low life expectancy because there is no curative treatment. Therefore, understanding the early carcinogenic mechanisms of this pathology is crucial to proposing preventive strategies for this cancer. The main risk factor is the presence of gallstones, which are associated with some environmental factors such as a sedentary lifestyle and a high-fat diet. Other risk factors such as autoimmune disorders and bacterial, parasitic and fungal infections have also been described. All these factors can generate a long-term inflammatory state characterized by the persistent activation of the immune system, the frequent release of pro-inflammatory cytokines, and the constant production of reactive oxygen species that result in a chronic damage/repair cycle, subsequently inducing the loss of the normal architecture of the gallbladder mucosa that leads to the development of GBC. This review addresses how the different risk factors could promote a chronic inflammatory state essential to the development of gallbladder carcinogenesis, which will make it possible to define some strategies such as anti-inflammatory drugs or public health proposals in the prevention of GBC.
Collapse
|
34
|
Inflammation Promotes Oxidative and Nitrosative Stress in Chronic Myelogenous Leukemia. Biomolecules 2022; 12:biom12020247. [PMID: 35204748 PMCID: PMC8961589 DOI: 10.3390/biom12020247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic inflammation is characterized by the production of reactive oxygen species (ROS), reactive nitrogen species, and inflammatory cytokines in myeloproliferative neoplasms (MPNs). In addition to these parameters, the aim of this study was to analyze the influence of ROS on the proliferation-related AKT/mTOR signaling pathway and the relationship with inflammatory factors in chronic myelogenous leukemia (CML). The activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase is reduced in erythrocytes while levels of the oxidative stress markers malondialdehyde and protein carbonyl are elevated in the plasma of patients with CML. In addition, nitrogen species (nitrotyrosine, iNOS, eNOS) and inflammation markers (IL-6, NFkB, and S100 protein) were increased in granulocytes of CML while anti-inflammatory levels of IL-10 were decreased in plasma. CML granulocytes exhibited greater resistance to cytotoxic H2O2 activity compared to healthy subjects. Moreover, phosphorylation of the apoptotic p53 protein was reduced while the activity of the AKT/mTOR signaling pathway was increased, which was further enhanced by oxidative stress (H2O2) in granulocytes and erythroleukemic K562 cells. IL-6 caused oxidative stress and DNA damage that was mitigated using antioxidant or inhibition of inflammatory NFkB transcription factor in K562 cells. We demonstrated the presence of oxidative and nitrosative stress in CML, with the former mediated by AKT/mTOR signaling and stimulated by inflammation.
Collapse
|
35
|
Micheloni G, Carnovali M, Millefanti G, Rizzetto M, Moretti V, Montalbano G, Acquati F, Giaroni C, Valli R, Costantino L, Ferrara F, Banfi G, Mariotti M, Porta G. Soy diet induces intestinal inflammation in adult Zebrafish: Role of OTX and P53 family. Int J Exp Pathol 2022; 103:13-22. [PMID: 34725870 PMCID: PMC8781668 DOI: 10.1111/iep.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the colon and small intestine, including Crohn's disease and ulcerative colitis. Since Danio rerio is a promising animal model to study gut function, we developed a soy-dependent model of intestinal inflammation in adult zebrafish. The soya bean meal diet was given for 4 weeks and induced an inflammatory process, as demonstrated by morphological changes together with an increased percentage of neutrophils infiltrating the intestinal wall, which developed between the second and fourth week of treatment. Pro-inflammatory genes such as interleukin-1beta, interleukin-8 and tumour necrosis factor alpha were upregulated in the second week and anti-inflammatory genes such as transforming growth factor beta and interleukin-10. Interestingly, an additional expression peak was found for interleukin-8 at the fourth week. Neuronal genes, OTX1 and OTX2, were significantly upregulated in the first two weeks, compatible with the development of the changes in the gut wall. As for the genes of the p53 family such as p53, DNp63 and p73, a statistically significant increase was observed after two weeks of treatment compared with controls. Interestingly, DNp63 and p73 were shown an additional peak after four weeks. Our data demonstrate that soya bean meal diet negatively influences intestinal morphology and immunological function in adult zebrafish showing the features of acute inflammation. Data observed at the fourth week of treatment may suggest initiation of chronic inflammation. Adult zebrafish may represent a promising model to better understand the mechanisms of food-dependent intestinal inflammation.
Collapse
Affiliation(s)
- Giovanni Micheloni
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | | | | | - Manuel Rizzetto
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Vittoria Moretti
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Giuseppe Montalbano
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Francesco Acquati
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Roberto Valli
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Lucy Costantino
- Department of Molecular GeneticsCentro Diagnostico ItalianoMilanoItaly
| | - Fulvio Ferrara
- Department of Molecular GeneticsCentro Diagnostico ItalianoMilanoItaly
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico GaleazziMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico GaleazziMilanItaly
- Department of BiomedicalSurgical and Dental SciencesUniversity of MilanMilanItaly
| | - Giovanni Porta
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| |
Collapse
|
36
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
37
|
Shi D, Jiang P. A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Front Cell Dev Biol 2021; 9:762651. [PMID: 34733856 PMCID: PMC8558413 DOI: 10.3389/fcell.2021.762651] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As a key transcription factor, the evolutionarily conserved tumor suppressor p53 (encoded by TP53) plays a central role in response to various cellular stresses. A variety of biological processes are regulated by p53 such as cell cycle arrest, apoptosis, senescence and metabolism. Besides these well-known roles of p53, accumulating evidence show that p53 also regulates innate immune and adaptive immune responses. p53 influences the innate immune system by secreted factors that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53 in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune evasion. p53 can also activate key regulators in immune signaling pathways which support or impede tumor development. Hence, it seems that the tumor suppressor p53 exerts its tumor suppressive effect to a considerable extent by modulating the immune response. In this review, we concisely discuss the emerging connections between p53 and immune responses, and their impact on tumor progression. Understanding the role of p53 in regulation of immunity will help to developing more effective anti-tumor immunotherapies for patients with TP53 mutation or depletion.
Collapse
Affiliation(s)
- Di Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
38
|
Galley JD, Mar P, Wang Y, Han R, Rajab A, Besner GE. Urine-derived extracellular vesicle miRNAs as possible biomarkers for and mediators of necrotizing enterocolitis: A proof of concept study. J Pediatr Surg 2021; 56:1966-1975. [PMID: 33785202 PMCID: PMC8410893 DOI: 10.1016/j.jpedsurg.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Early-stage symptomology of necrotizing enterocolitis (NEC) is similar in presentation to non-NEC sepsis, though the treatment plans differ based on antibiotic administration and withholding of feeds. Improved diagnostics for NEC differentiation would allow clinicians to more rapidly set individual patients on a targeted treatment path. Extracellular vesicle-derived miRNAs, have previously demonstrated efficacy as disease biomarkers. To determine if these miRNAs are differentially-expressed in NEC infants, we performed transcriptomic analysis of urine-derived extracellular vesicle-derived miRNAs. METHODS Urine was non-invasively obtained from infants in one of four groups (n ≥ 8) (Medical NEC, Surgical NEC, non-NEC sepsis, and healthy age-matched controls). EV-derived miRNAs were isolated and transcriptomic analysis was performed. RESULTS Multiple miRNAs, including miR-376a, miR-518a-3p and miR-604, were significantly altered when comparing NEC to non-NEC sepsis and healthy controls, and could potentially be used as specific NEC biomarkers. Additionally, Ingenuity Pathway Analysis demonstrated that miRs differentially-expressed in NEC were associated with inflammatory disease and intestinal disease. Signal transduction molecules associated with NEC including TP53 and RPS15, which were also reduced transcriptionally in a rat model of NEC. CONCLUSION These data indicate that there is a pool of potential urine EV-derived miRNAs that may be validated as NEC biomarkers in the differentiation of NEC from non-NEC sepsis and from age-matched controls. Additionally, signal transduction molecules associated with miRNAs differentially-expressed in human NEC are altered in a murine model of NEC, suggesting potential crossover between murine models of the disease and actual human presentation. LEVEL OF EVIDENCE Level III Study of Diagnostic Test.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Pamela Mar
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Yijie Wang
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rachel Han
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Adrian Rajab
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Gail E Besner
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
39
|
Lee CL, Wright AO, Lee JW, Brownstein J, Hasapis S, Satow S, Da Silva Campos L, Williams N, Ma Y, Luo L, Johnson T, Daniel AR, Harrison WT, Oldham M, Kirsch DG. Sensitization of Endothelial Cells to Ionizing Radiation Exacerbates Delayed Radiation Myelopathy in Mice. Radiat Res 2021; 197:0. [PMID: 34724704 DOI: 10.1667/rade-21-00166.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Delayed radiation myelopathy is a rare, but significant late side effect from radiation therapy that can lead to paralysis. The cellular and molecular mechanisms leading to delayed radiation myelopathy are not completely understood but may be a consequence of damage to oligodendrocyte progenitor cells and vascular endothelial cells. Here, we aimed to determine the contribution of endothelial cell damage to the development of radiation-induced spinal cord injury using a genetically defined mouse model in which endothelial cells are sensitized to radiation due to loss of the tumor suppressor p53. Tie2Cre; p53FL/+ and Tie2Cre; p53FL/- mice, which lack one and both alleles of p53 in endothelial cells, respectively, were treated with focal irradiation that specifically targeted the lumbosacral region of the spinal cord. The development of hindlimb paralysis was followed for up to 18 weeks after either a 26.7 Gy or 28.4 Gy dose of radiation. During 18 weeks of follow-up, 83% and 100% of Tie2Cre; p53FL/- mice developed hindlimb paralysis after 26.7 and 28.4 Gy, respectively. In contrast, during this period only 8% of Tie2Cre; p53FL/+ mice exhibited paralysis after 28.4 Gy. In addition, 8 weeks after 28.4 Gy the irradiated spinal cord from Tie2Cre; p53FL/- mice showed a significantly higher fractional area positive for the neurological injury marker glial fibrillary acidic protein (GFAP) compared with the irradiated spinal cord from Tie2Cre; p53FL/+ mice. Together, our findings show that deletion of p53 in endothelial cells sensitizes mice to the development of delayed radiation myelopathy indicating that endothelial cells are a critical cellular target of radiation that regulates myelopathy.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology.,Department of Pathology
| | | | | | | | | | | | | | | | - Yan Ma
- Department of Radiation Oncology
| | | | | | | | - William T Harrison
- Department of Pathology, Wake Forest Baptist Health, Winston Salem, North Carolina 27157
| | | | - David G Kirsch
- Department of Radiation Oncology.,Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
40
|
Gupta A, Styczynski MP, Galinski MR, Voit EO, Fonseca LL. Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections. Sci Rep 2021; 11:19519. [PMID: 34593836 PMCID: PMC8484567 DOI: 10.1038/s41598-021-98024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Majewska J, Krizhanovsky V. Breathe it in - Spotlight on senescence and regeneration in the lung. Mech Ageing Dev 2021; 199:111550. [PMID: 34352324 DOI: 10.1016/j.mad.2021.111550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Cellular senescence, a highly coordinated and programmed cellular state, has a functional role in both lung physiology and pathology. While the contribution of senescent cells is recognized in the context of ageing and age-related pulmonary diseases, relatively less is known how cellular senescence of functionally distinct cell types leads to the progression of these pathologies. Recent advances in tools to track and isolate senescent cells from tissues, shed a light on the identity, behavior and function of senescent cells in vivo. The transient presence of senescent cells has an indispensable role in limiting lung damage and contributes to organ regenerative capacity upon acute stress insults. In contrast, persistent accumulation of senescent cells is a driver of age-related decline in organ function. Here, we discuss lung physiology and pathology as an example of seemingly contradictory role of senescence in structural and functional integrity of the tissue upon damage, and in age-related pulmonary diseases.
Collapse
Affiliation(s)
- Julia Majewska
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
42
|
Gansmo LB, Lie BA, Mæhlen MT, Vatten L, Romundstad P, Hveem K, Lønning PE, Knappskog S. Polymorphisms in the TP53-MDM2-MDM4-axis in patients with rheumatoid arthritis. Gene 2021; 793:145747. [PMID: 34077778 DOI: 10.1016/j.gene.2021.145747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In addition to being a tumour suppressor, TP53 is a suppressor of inflammation, and dysfunction of this gene has been related to autoimmune diseases. Patients with autoimmunity, such as rheumatoid arthritis (RA) have an increased risk of certain cancers, like lymphomas, indicating that some underlying mechanisms may modulate risk of both cancers and autoimmunity. METHODS We genotyped 5 common genetic variants in TP53 and its main regulators MDM2 and MDM4 in a sample of 942 RA patients and 3,747 healthy controls, and mined previously published GWAS-data, to assess the potential impact of these variants on risk of RA. RESULTS For the TP53 Arg72Pro polymorphism (rs1042522), MDM4 SNP34091 (rs4245739) and MDM2 SNP285C (rs117039649), we found no association to risk of RA. For MDM2 SNP309 (rs2279744), the minor G-allele was associated with a reduced risk of RA (OR: 0.87; CI: 0.79-0.97). This association was also seen in genotype models (OR: 0.86; CI: 0.74-0.99 and OR: 0.79; CI 0.63-0.99; dominant and recessive model, respectively), but was not validated in a large GWAS data set. For MDM2 del1518 (rs3730485), the minor del-allele was associated with an increased risk of RA in the dominant model (OR: 1.18; CI: 1.02-1.38). Stratifying RA cases and controls into phylogenetic subgroups according to the combined genotypes of all three MDM2 polymorphism, we found individuals with the del158-285-309 genotype del/ins-G/G-T/T to have an increased risk of RA as compared to those with the ins/ins-G/G-G/G genotype (OR: 1.56; CI: 1.18-2.06) indicating opposite effects of the del1518 del-allele and the SNP309 G-allele. CONCLUSION We find a potential association between the MDM2 del1518 variant and RA, and indications that combinatorial genotypes and haplotypes in the MDM2 locus may be related to RA.
Collapse
Affiliation(s)
- Liv B Gansmo
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Marthe T Mæhlen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars Vatten
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Romundstad
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per E Lønning
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
43
|
Kwon ATJ, Mohri K, Takizawa S, Arakawa T, Takahashi M, Kaczkowski B, Furuno M, Suzuki H, Tagami S, Mukai H, Arner E. Development of p53 knockout U87MG cell line for unbiased drug delivery testing system using CRISPR-Cas9 and transcriptomic analysis. J Biotechnol 2021; 332:72-82. [PMID: 33836165 DOI: 10.1016/j.jbiotec.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Antibody-drug conjugates offers many advantages as a drug delivery platform that allows for highly specific targeting of cell types and genes. Ideally, testing the efficacy of these systems requires two cell types to be different only in the gene targeted by the drug, with the rest of the cellular machinery unchanged, in order to minimize other potential differences from obscuring the effects of the drug. In this study, we created multiple variants of U87MG cells with targeted mutation in the TP53 gene using the CRISPR-Cas9 system, and determined that their major transcriptional differences stem from the loss of p53 function. Using the transcriptome data, we predicted which mutant clones would have less divergent phenotypes from the wild type and thereby serve as the best candidates to be used as drug delivery testing platforms. Further in vitro and in vivo assays of cell morphology, proliferation rate and target antigen-mediated uptake supported our predictions. Based on the combined analysis results, we successfully selected the best qualifying mutant clone. This study serves as proof-of-principle of the approach and paves the way for extending to additional cell types and target genes.
Collapse
Affiliation(s)
| | - Kohta Mohri
- RIKEN Center for Biosystems Dynamic Research, Japan
| | | | | | | | | | | | | | | | | | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Japan.
| |
Collapse
|
44
|
Marruecos L, Manils J, Moreta C, Gómez D, Filgaira I, Serafin A, Cañas X, Espinosa L, Soler C. Single loss of a Trp53 allele triggers an increased oxidative, DNA damage and cytokine inflammatory responses through deregulation of IκBα expression. Cell Death Dis 2021; 12:359. [PMID: 33824284 PMCID: PMC8024389 DOI: 10.1038/s41419-021-03638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
Dose of Trp53, the main keeper of genome stability, influences tumorigenesis; however, the causes underlying and driving tumorigenesis over time by the loss of a single p53 allele are still poorly characterized. Here, we found that single p53 allele loss specifically impacted the oxidative, DNA damage and inflammatory status of hematopoietic lineages. In particular, single Trp53 allele loss in mice triggered oxidative stress in peripheral blood granulocytes and spleenocytes, whereas lack of two Trp53 alleles produced enhanced oxidative stress in thymus cells, resulting in a higher incidence of lymphomas in the Trp53 knockout (KO) mice compared with hemizygous (HEM). In addition, single or complete loss of Trp53 alleles, as well as p53 downregulation, led to a differential increase in basal, LPS- and UVB-induced expression of a plethora of pro-inflammatory cytokine, such as interleukin-12 (Il-12a), TNFα (Tnfa) and interleukin (Il-23a) in bone marrow-derived macrophage cells (BMDMs) compared to WT cells. Interestingly, p53-dependent increased inflammatory gene expression correlated with deregulated expression of the NF-κB pathway inhibitor IκBα. Chromatin immunoprecipitation data revealed decreased p65 binding to Nfkbia in the absence of p53 and p53 binding to Nfkbia promoter, uncovering a novel crosstalk mechanism between p53 and NF-κB transcription factors. Overall, our data suggest that single Trp53 allele loss can drive a sustained inflammatory, DNA damage and oxidative stress response that, over time, facilitate and support carcinogenesis.
Collapse
Affiliation(s)
- Laura Marruecos
- Cancer Research Program, CIBERONC Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Joan Manils
- Unitat d'Immunologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Immunology & Inflammation, Imperial College London, London, United Kingdom
| | - Cristina Moreta
- Unitat d'Immunologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Diana Gómez
- Unitat d'Immunologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ingrid Filgaira
- Unitat d'Immunologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Serafin
- PCB Animal Facility, Parc Científic de Barcelona, Barcelona, Spain
| | - Xavier Cañas
- Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Lluís Espinosa
- Cancer Research Program, CIBERONC Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Concepció Soler
- Unitat d'Immunologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain. .,Neuropharmacology & Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
45
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
46
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
47
|
Dey DK, Chang SN, Kang SC. The inflammation response and risk associated with aflatoxin B1 contamination was minimized by insect peptide CopA3 treatment and act towards the beneficial health outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115713. [PMID: 33038573 DOI: 10.1016/j.envpol.2020.115713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
This study focused on the possible chemo-preventive effects of insect peptide CopA3 on normal human colon cells against the inflammation induced by the toxic environmental pollutant aflatoxin B1 (AFB1). In the study, we used CCD 841 CoN normal human colon cells to investigate the cytotoxic effect induced by AFB1 and elucidated the negative impact of AFB1 exposure on the cell cycle progression. Further, we also carried out the in-vivo experiment, where male BALB/c mice were administrated with AFB1 to induce inflammation associated cancer like phenotype and the dietary effect of CopA3 was evaluated on the early stages of AFB1-induced hepatotoxicity and inflammation in colon tissues. At the initiation stage, CopA3 was given along with water, which significantly decreased the inflammation in the liver and colon of AFB1 exposed mice model. Mice that received CopA3 alone showed enhanced activity of several antioxidant enzymes. In the post treatment stage, the CopA3 dosage remarkably increased the Ki-67 protein expression, indicating the enhancement in cell proliferation event and increased the number of apoptotic cells in colonic crypts, suggesting the capability of CopA3 treatment towards the epithelial cell turnover. Thus, CopA3 treatment shows its potential to inhibit the development of the early stages of AFB1-induced colon inflammation and hepatotoxicity in mice by inhibiting the DNA synthesis of the damaged and inflammatory cell and induced apoptosis for the clearance of damaged cells. Collectively, the results of this study suggest that CopA3 treatment may play a protective role against the mycotoxin induced inflammation.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Jillyang, Naeri-riGyeongsan, Gyeongbuk, 38453, Republic of Korea.
| | - Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-riGyeongsan, Gyeongbuk, 38453, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-riGyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
48
|
Oxidative DNA Damage, Inflammatory Signature, and Altered Erythrocytes Properties in Diamond-Blackfan Anemia. Int J Mol Sci 2020; 21:ijms21249652. [PMID: 33348919 PMCID: PMC7768356 DOI: 10.3390/ijms21249652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients' samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients.
Collapse
|
49
|
The Intricate Role of p53 in Adipocyte Differentiation and Function. Cells 2020; 9:cells9122621. [PMID: 33297294 PMCID: PMC7762213 DOI: 10.3390/cells9122621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
For more than three decades, numerous studies have demonstrated the function of p53 in cell cycle, cellular senescence, autophagy, apoptosis, and metabolism. Among diverse functions, the essential role of p53 is to maintain cellular homeostatic response to stress by regulating proliferation and apoptosis. Recently, adipocytes have been studied with increasing intensity owing to the increased prevalence of metabolic diseases posing a serious public health concern and because metabolic dysfunction can directly induce tumorigenesis. The prevalence of metabolic diseases has steadily increased worldwide, and a growing interest in these diseases has led to the focus on the role of p53 in metabolism and adipocyte differentiation with or without metabolic stress. However, our collective understanding of the direct role of p53 in adipocyte differentiation and function remains insufficient. Therefore, this review focuses on the newly discovered roles of p53 in adipocyte differentiation and function.
Collapse
|
50
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|