1
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Ke R, Viswakarma N, Menhart M, Singh SK, Kumar S, Srivastava P, Vishnoi K, Kashyap T, Srivastava D, Nair RS, Maienschein-Cline M, Wang X, Rana A, Rana B. MLK3 promotes prooncogenic signaling in hepatocellular carcinoma via TGFβ pathway. Oncogene 2024; 43:2307-2324. [PMID: 38858590 DOI: 10.1038/s41388-024-03055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Advanced hepatocellular carcinoma (HCC) is a lethal disease, with limited therapeutic options. Mixed Lineage Kinase 3 (MLK3) is a key regulator of liver diseases, although its role in HCC remains unclear. Analysis of TCGA databases suggested elevated MAP3K11 (MLK3 gene) expression, and TMA studies showed higher MLK3 activation in human HCCs. To understand MLK3's role in HCC, we utlized carcinogen-induced HCC model and compared between wild-type and MLK3 knockout (MLK3-/-) mice. Our studies showed that MLK3 kinase activity is upregulated in HCC, and MLK3 deficiency alleviates HCC progression. MLK3 deficiency reduced proliferation in vivo and MLK3 inhibition reduced proliferation and colony formation in vitro. To obtain further insight into the mechanism and identify newer targets mediating MLK3-induced HCCs, RNA-sequencing analysis was performed. These showed that MLK3 deficiency modulates various gene signatures, including EMT, and reduces TGFB1&2 expressions. HCC cells overexpressing MLK3 promoted EMT via autocrine TGFβ signaling. Moreover, MLK3 deficiency attenuated activated hepatic stellate cell (HSC) signature, which is increased in wild-type. Interestingly, MLK3 promotes HSC activation via paracrine TGFβ signaling. These findings reveal TGFβ playing a key role at different steps of HCC, downstream of MLK3, implying MLK3-TGFβ axis to be an ideal drug target for advanced HCC management.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Mary Menhart
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tanushree Kashyap
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepti Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Xiaowei Wang
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
TrkA expression directs the anti-neoplastic activity of MLK3 inhibitors in triple-negative breast cancer. Oncogene 2023; 42:1132-1143. [PMID: 36813855 DOI: 10.1038/s41388-023-02633-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Mixed Lineage Kinase 3 (MLK3) is a viable target for neoplastic diseases; however, it is unclear whether its activators or inhibitors can act as anti-neoplastic agents. We reported that the MLK3 kinase activity was higher in triple-negative (TNBC) than in hormone receptor-positive human breast tumors, where estrogen inhibited MLK3 kinase activity and provided a survival advantage to ER+ breast cancer cells. Herein, we show that in TNBC, the higher MLK3 kinase activity paradoxically promotes cancer cell survival. Knockdown of MLK3 or MLK3 inhibitors, CEP-1347 and URMC-099, attenuated tumorigenesis of TNBC cell line and Patient-Derived (PDX) xenografts. The MLK3 kinase inhibitors decreased both the expression and activation of MLK3, PAK1, and NF-kB protein and caused cell death in TNBC breast xenografts. RNA-seq analysis identified several genes downregulated by MLK3 inhibition, and the NGF/TrkA MAPK pathway was significantly enriched in tumors sensitive to growth inhibition by MLK3 inhibitors. The TNBC cell line unresponsive to kinase inhibitor had substantially lower TrkA, and overexpression of TrkA restored the sensitivity to MLK3 inhibition. These results suggest that the functions of MLK3 in breast cancer cells depend on downstream targets in TNBC tumors expressing TrkA, and MLK3 kinase inhibition may provide a novel targeted therapy.
Collapse
|
4
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
5
|
Zhang J, Cai X, Cui W, Wei Z. Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer. Genes (Basel) 2022; 13:genes13101786. [PMID: 36292671 PMCID: PMC9601900 DOI: 10.3390/genes13101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gastric cancer remains the most prevalent and highly lethal disease worldwide. MAP4K4, a member of Ste20, plays an important role in various pathologies, including cancer. However, its role in gastric cancer is not yet fully elucidated. Therefore, this study aims to determine the tumor-promoting role of MAP4K4 in gastric cancer and whether it can be used as a new and reliable biomarker to predict the prognosis of gastric cancer. For this purpose, we divide the samples into high- and low-expression groups according to the expression level of MAP4K4. The association of MAP4K4 expression with prognosis is assessed using the Kaplan–Meier survival analysis. Furthermore, immune infiltration analysis using ESTIMATE is conducted to evaluate the tumor immune scores of the samples. Results: The findings reveal a significantly higher expression of MAP4K4 in tumor samples than in adjacent samples. The high-expression group was significantly enriched in tumor-related pathways, such as the PI3K-Akt signaling pathway. In addition, immune infiltration analysis revealed a positive correlation between immune scores and MAP4K4 expression. We also observed that miRNAs, such as miR-192-3p (R = −0.317, p-value 3.111 × 10−9), miR-33b-5p (R= −0.238, p-value 1.166 × 10−5), and miR-582-3p (R = −0.214, p-value 8.430 × 10−5), had potential negative regulatory effects on MAP4K4. Moreover, we identified several transcription factors, ubiquitinated proteins, and interacting proteins that might regulate MAP4K4. The relationship between MAP4K4 and DNA methylation was also identified. Finally, we verified the high expression of MAP4K4 and its effect on promoting cancer. Conclusion: MAP4K4 might be closely related to gastric cancer’s progression, invasion, and metastasis. Its high expression negatively impacts the prognosis of gastric cancer patients. This suggests MAP4K4 as an important prognostic factor for gastric cancer and could be regarded as a new potential prognostic detection and therapeutic target.
Collapse
Affiliation(s)
- Junping Zhang
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Xiaoping Cai
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Weifeng Cui
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, China
- School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China
- Correspondence:
| |
Collapse
|
6
|
Mixed lineage kinase 3 and CD70 cooperation sensitize trastuzumab-resistant HER2 + breast cancer by ceramide-loaded nanoparticles. Proc Natl Acad Sci U S A 2022; 119:e2205454119. [PMID: 36095190 PMCID: PMC9499572 DOI: 10.1073/pnas.2205454119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.
Collapse
|
7
|
Singh SK, Kumar S, Viswakarma N, Principe DR, Das S, Sondarva G, Nair RS, Srivastava P, Sinha SC, Grippo PJ, Thatcher GRJ, Rana B, Rana A. MAP4K4 promotes pancreatic tumorigenesis via phosphorylation and activation of mixed lineage kinase 3. Oncogene 2021; 40:6153-6165. [PMID: 34511598 PMCID: PMC8553609 DOI: 10.1038/s41388-021-02007-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
MAP4K4 is a Ste20 member and reported to play important roles in various pathologies, including in cancer. However, the mechanism by which MAP4K4 promotes pancreatic cancer is not fully understood. It is suggested that MAP4K4 might function as a cancer promoter via specific downstream target(s) in an organ-specific manner. Here we identified MLK3 as a direct downstream target of MAP4K4. The MAP4K4 and MLK3 associates with each other, and MAP4K4 phosphorylates MLK3 on Thr738 and increases MLK3 kinase activity and downstream signaling. The phosphorylation of MLK3 by MAP4K4 promotes pancreatic cancer cell proliferation, migration, and colony formation. Moreover, MAP4K4 is overexpressed in human pancreatic tumors and directly correlates with the disease progression. The MAP4K4-specific pharmacological inhibitor, GNE-495, impedes pancreatic cancer cell growth, migration, induces cell death, and arrests cell cycle progression. Additionally, the GNE-495 reduced the tumor burden and extended survival of the KPC mice with pancreatic cancer. The MAP4K4 inhibitor also reduced MAP4K4 protein expression, tumor stroma, and induced cell death in murine pancreatic tumors. These findings collectively suggest that MLK3 phosphorylation by MAP4K4 promotes pancreatic cancer, and therefore therapies targeting MAP4K4 might alleviate the pancreatic cancer tumor burden in patients.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Paul J Grippo
- Department of Medicine, the University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, the University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, the University of Illinois at Chicago, Chicago, IL, 60612, USA.
- University of Illinois Hospital & Health Sciences System Cancer Center, the University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Viswakarma N, Sondarva G, Principe DR, Nair RS, Kumar S, Singh SK, Das S, Sinha SC, Grippo PJ, Grimaldo S, Giulianotti PC, Rana B, Rana A. Mixed Lineage Kinase 3 phosphorylates prolyl-isomerase PIN1 and potentiates GLI1 signaling in pancreatic cancer development. Cancer Lett 2021; 515:1-13. [PMID: 34052323 PMCID: PMC8215900 DOI: 10.1016/j.canlet.2021.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023]
Abstract
The transcription factor Glioma-Associated Oncogene Homolog 1 (GLI1) is activated by sonic hedgehog (SHH) cascade and is an established driver of pancreatic ductal adenocarcinoma (PDAC). However, therapies targeting upstream hedgehog signaling have shown little to no efficacy in clinical trials. Here, we identify Mixed Lineage Kinase 3 (MLK3) as a druggable regulator of oncogenic GLI1. Earlier, we reported that MLK3 phosphorylated a peptidyl-prolyl isomerase PIN1 on the S138 site, and the PIN1-pS138 translocated to the nucleus. In this report, we identify GLI1 as one of the targets of PIN1-pS138 and demonstrate that PIN1-pS138 is upregulated in human PDAC and strongly associates with the upregulation of GLI1 and MLK3 expression. Moreover, we also identified two new phosphorylation sites on GLI1, T394, and S1089, which are directly phosphorylated by MLK3 to promote GLI1 nuclear translocation, transcriptional activity, and cell proliferation. Additionally, pharmacological inhibition of MLK3 by CEP-1347 promoted apoptosis in PDAC cell lines, reduced tumor burden, extended survival, and reduced GLI1 expression in the Pdx1-Cre x LSL-KRASG12D x LSL-TP53R172H (KPC) mouse model of PDAC. These findings collectively suggest that MLK3 is an important regulator of oncogenic GLI1 and that therapies targeting MLK3 warrant consideration in the management of PDAC patients.
Collapse
Affiliation(s)
- Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Paul J Grippo
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sam Grimaldo
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pier Cristoforo Giulianotti
- Division of General, Minimally Invasive, and Robotic Surgery, The University of Illinois at Chicago, Chicago, IL, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Wu HH, Tsai LH, Huang CK, Hsu PH, Chen MY, Chen YI, Hu CM, Shen CN, Lee CC, Chang MC, Chang YT, Tien YW, Jeng YM, Lee EYHP, Lee WH. Characterization of initial key steps of IL-17 receptor B oncogenic signaling for targeted therapy of pancreatic cancer. Sci Transl Med 2021; 13:13/583/eabc2823. [PMID: 33658352 DOI: 10.1126/scitranslmed.abc2823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The members of the interleukin-17 (IL-17) cytokine family and their receptors were identified decades ago. Unlike IL-17 receptor A (IL-17RA), which heterodimerizes with IL-17RB, IL-17RC, and IL-17RD and mediates proinflammatory gene expression, IL-17RB plays a distinct role in promoting tumor growth and metastasis upon stimulation with IL-17B. However, the molecular basis by which IL-17RB promotes oncogenesis is unknown. Here, we report that IL-17RB forms a homodimer and recruits mixed-lineage kinase 4 (MLK4), a dual kinase, to phosphorylate it at tyrosine-447 upon treatment with IL-17B in vitro. Higher amounts of phosphorylated IL-17RB in tumor specimens obtained from patients with pancreatic cancer correlated with worse prognosis. Phosphorylated IL-17RB recruits the ubiquitin ligase tripartite motif containing 56 to add lysine-63-linked ubiquitin chains to lysine-470 of IL-17RB, which further assembles NF-κB activator 1 (ACT1) and other factors to propagate downstream oncogenic signaling. Consequentially, IL-17RB mutants with substitution at either tyrosine-447 or lysine-470 lose their oncogenic activity. Treatment with a peptide consisting of amino acids 403 to 416 of IL-17RB blocks MLK4 binding, tyrosine-477 phosphorylation, and lysine-470 ubiquitination in vivo, thereby inhibiting tumorigenesis and metastasis and prolonging the life span of mice bearing pancreatic tumors. These results establish a clear pathway of how proximal signaling of IL-17RB occurs and provides insight into how this pathway provides a therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Heng-Hsiung Wu
- Drug Development Center, China Medical University, Taichung 40402, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Lung-Hung Tsai
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Chun-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Pang-Hung Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, Taiwan.,Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Mei-Yu Chen
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Chen Lee
- Drug Development Center, China Medical University, Taichung 40402, Taiwan.,Department of Microbiology and Immunology, China Medical University, Taichung 40402, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Eva Y-H P Lee
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.,Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Wen-Hwa Lee
- Drug Development Center, China Medical University, Taichung 40402, Taiwan. .,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.,Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Kumar S, Singh SK, Viswakarma N, Sondarva G, Nair RS, Sethupathi P, Sinha SC, Emmadi R, Hoskins K, Danciu O, Thatcher GRJ, Rana B, Rana A. Mixed lineage kinase 3 inhibition induces T cell activation and cytotoxicity. Proc Natl Acad Sci U S A 2020; 117:7961-7970. [PMID: 32209667 PMCID: PMC7149389 DOI: 10.1073/pnas.1921325117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mixed lineage kinase 3 (MLK3), also known as MAP3K11, was initially identified in a megakaryocytic cell line and is an emerging therapeutic target in cancer, yet its role in immune cells is not known. Here, we report that loss or pharmacological inhibition of MLK3 promotes activation and cytotoxicity of T cells. MLK3 is abundantly expressed in T cells, and its loss alters serum chemokines, cytokines, and CD28 protein expression on T cells and its subsets. MLK3 loss or pharmacological inhibition induces activation of T cells in in vitro, ex vivo, and in vivo conditions, irrespective of T cell activating agents. Conversely, overexpression of MLK3 decreases T cell activation. Mechanistically, loss or inhibition of MLK3 down-regulates expression of a prolyl-isomerase, Ppia, which is directly phosphorylated by MLK3 to increase its isomerase activity. Moreover, MLK3 also phosphorylates nuclear factor of activated T cells 1 (NFATc1) and regulates its nuclear translocation via interaction with Ppia, and this regulates T cell effector function. In an immune-competent mouse model of breast cancer, MLK3 inhibitor increases Granzyme B-positive CD8+ T cells and decreases MLK3 and Ppia gene expression in tumor-infiltrating T cells. Likewise, the MLK3 inhibitor in pan T cells, isolated from breast cancer patients, also increases cytotoxic CD8+ T cells. These results collectively demonstrate that MLK3 plays an important role in T cell biology, and targeting MLK3 could serve as a potential therapeutic intervention via increasing T cell cytotoxicity in cancer.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/blood
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Cell Line, Tumor/transplantation
- Cyclophilin A/metabolism
- Female
- Humans
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/metabolism
- Mammary Neoplasms, Experimental/blood
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- NFATC Transcription Factors/metabolism
- Phosphorylation/drug effects
- Phosphorylation/immunology
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Escape/drug effects
- Mitogen-Activated Protein Kinase Kinase Kinase 11
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Periannan Sethupathi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Subhash C Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065
| | - Rajyasree Emmadi
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Kent Hoskins
- Division of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Oana Danciu
- Division of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612
- Research Unit, Jesse Brown VA Medical Center, Chicago, IL 60612
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612;
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612
- Research Unit, Jesse Brown VA Medical Center, Chicago, IL 60612
| |
Collapse
|
11
|
He J, Huang Z, He M, Liao J, Zhang Q, Wang S, Xie L, Ouyang L, Koeffler HP, Yin D, Liu A. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer 2020; 19:17. [PMID: 31992303 PMCID: PMC6986105 DOI: 10.1186/s12943-019-1120-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background Recent evidences have shown that circular RNAs (circRNAs) are frequently dysregulated and play paramount roles in various cancers. circRNAs are abundant in central nervous system (CNS); however, few studies describe the clinical significance and role of circRNAs in gliomas, which is the most common and aggressive primary malignant tumor in the CNS. Methods A bioinformatics analysis was performed to profile and screen the dyregulated circRNAs during early neural development. Quantitative real-time PCR was used to detect the expression of circ-MAPK4 and target miRNAs. Glioma cells were transfected with circ-MAPK4 siRNAs, then cell proliferation, apoptosis, transwell assays, as well as tumorigenesis and TUNEL assays, were performed to examine effect of circ-MAPK4 in vitro and vivo. Biotinylated-circ-MAPK4 probe based pull-down assay was conducted to confirm the relationship between circ-MAPK4 and miR-125-3p. Results In this study, we identified a circRNA, circ-MAPK4 (has_circ_0047688), which was downregulated during early neural differentiation. In gliomas, circ-MAPK4 acted as an oncogene, was inversely upregulated and linked to clinical pathological stage of gliomas (P < 0.05). Next, we verified that circ-MAPK4 promoted the survival and inhibited the apoptosis of glioma cells in vitro and in vivo. Furthermore, we proved that circ-MAPK4 was involved in regulating p38/MAPK pathway, which affected glioma proliferation and apoptosis. Finally, miR-125a-3p, a miRNA exhibited tumor-suppressive function through impairing p38/MAPK pathway, which was increased by inhibiting circ-MAPK4 and could be pulled down by circ-MAPK4. Inhibition of miR-125a-3p could partly rescue the increased phosphorylation levels of p38/MAPK and the elevated amount of apoptosis inducing by knockdown of circ-MAPK4. Conclusions Our findings suggest that circ-MAPK4 is a critical player in glioma cell survival and apoptosis via p38/MAPK signaling pathway through modulation of miR-125a-3p, which can serve as a new therapeutic target for treatment of gliomas.
Collapse
Affiliation(s)
- Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Zuoyu Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Mingliang He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Jianyou Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shengwen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Lin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Leping Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China.
| | - Anmin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China.
| |
Collapse
|
12
|
Jiang W, Ding L, Dai T, Guo J, Dai R, Chang Y. Studies of pharmacokinetics in beagle dogs and drug-drug interaction potential of a novel selective ZAK inhibitor 3h for hypertrophic cardiomyopathy treatment. J Pharm Biomed Anal 2019; 172:206-213. [PMID: 31060033 DOI: 10.1016/j.jpba.2019.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Overexpression of leucine-zipper and sterile-α motif kinase (ZAK) in heart has been closely associated with the development of hypertrophic cardiomyopathy (HCM). N-(3-(1H-pyrazolo[3,4-b]pyridin-5-yl)ethynyl) benzene-sulfonamides, novel highly selective ZAK inhibitors, had exhibited reasonable orally therapeutic effects on HCM in spontaneous hypertensive rat models. In the present study, a rapid and sensitive HPLC-MS/MS method for determining ZAK inhibitor 3h in beagle dog plasma was developed and validated. Meanwhile, the pharmacokinetics in beagle dog and drug-drug interaction potential of 3h had been conducted. The pharmacokinetic results showed that the absolute oral bioavailability for 3h in beagle dogs was determined to be 61.9%, which was significantly higher than that in the previous determination in Spragur-Dawley rats (F = 20%). The Cytochrome P450 enzymes and P-glycoprotein mediated drug-drug interactions by 3h were also investigated using dog and human liver microsomes and Caco-2 cells. The results demonstrated that only CYP2C9 was obviously inhibited (IC50 = 1.66 μM). Besides, 3h could significantly decrease digoxin efflux ratio in Caco-2 experiments in a dose-dependent manner (IC50 = 13.3 μM). Considering 3h strongly suppressed the ZAK kinase activity with an IC50 of 3.3 nM, there are significantly differences between this IC50 value for ZAK inhibition and the present determinations of IC50 values. In general, the clinical drug-drug interaction potential for 3h could be well monitored during the treatment of HCM.
Collapse
Affiliation(s)
- Weifan Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lan Ding
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Tianming Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiayin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Renke Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yu Chang
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Das S, Nair RS, Mishra R, Sondarva G, Viswakarma N, Abdelkarim H, Gaponenko V, Rana B, Rana A. Mixed lineage kinase 3 promotes breast tumorigenesis via phosphorylation and activation of p21-activated kinase 1. Oncogene 2019; 38:3569-3584. [PMID: 30664689 PMCID: PMC7568686 DOI: 10.1038/s41388-019-0690-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/28/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023]
Abstract
Mixed lineage kinase 3 (MLK3), a MAP3K member has been envisioned as a viable drug target in cancer, yet its detailed function and signaling is not fully elucidated. We identified that MLK3 tightly associates with an oncogene, PAK1. Mammalian PAK1 being a Ste20 (MAP4K) member, we tested whether it is an upstream regulator of MLK3. In contrast to our hypothesis, MLK3 activated PAK1 kinase activity directly, as well as in the cells. Although, MLK3 can phosphorylate PAK1 on Ser133 and Ser204 sites, PAK1S133A mutant is constitutively active, whereas, PAK1S204A is not activated by MLK3. Stable overexpression of PAK1S204A in breast cancer cells, impedes migration, invasion, and NFĸB activity. In vivo breast cancer cell tumorigenesis is significantly reduced in tumors expressing PAK1S204A mutant. These results suggest that mammalian PAK1 does not act as a MAP4K and MLK3-induced direct activation of PAK1 plays a key role in breast cancer tumorigenesis.
Collapse
Affiliation(s)
- Subhasis Das
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rajakishore Mishra
- Center for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, 835205, India
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital &Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- University of Illinois Hospital &Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Kashyap T, Pramanik KK, Nath N, Mishra P, Singh AK, Nagini S, Rana A, Mishra R. Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3β signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol 2018; 86:234-243. [PMID: 30409306 DOI: 10.1016/j.oraloncology.2018.09.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The cell-surface glycoprotein CD44 is an important oral cancer stem cell (OCSC) marker and plays significant role in oral squamous cell carcinoma (OSCC) aggressiveness, however, the regulation of CD44 is incompletely understood. METHODS In the present study, 145 fresh human OSCC tissue specimens, including 18 adjacent normal, 42 noninvasive (N0), 53 invasive tumor samples (N1-3) and 32 chemo-radiation resistant samples (RCRT), were included. The expression of CD44 standard (CD44s) and variants (CD44v4, CD44v6); the activation of pERK1/2, GSK3β, NICD (Notch) pathways; the cell viability; and the MMP-9/-2 activity were assessed using RT-PCR, immunohistochemistry, Western blotting, MTT assay and gelatin zymography. OSCC cell lines, including parental (SCC9/SCC4) and Cisplatin-resistant (CisR-SCC9/-SCC4) cells, were used. Knock down of CD44v4/CD44v6 (by siRNA) or inactivation of MAPK/PI3K pathways using specific PD98059/LY294002 was achieved for in vitro analysis of chemoresistance and invasion/migration. RESULTS Elevated CD44 variants were associated with overall OSCC progression, chemoresistance and invasion. Positive correlations were observed, mainly between the expression of CD44v4 and the activation of ERK1/2 causing chemoresistance, whereas CD44v6 expression and inactivation of GSK3β caused invasiveness of OSCC. Cisplatin resistant, CisR-SCC9/SCC4 cell lines showed OCSC properties. Inhibition of MEK/ERK1/2 by SMI or knock down (KD) of CD44v4 by siRNA reversed cisplatin-resistance, whereas blocking the PI3K/Akt/GSK3β pathway by SMI or KD of CD44v6 isoforms by respective siRNA diminished invasion/metastasis potential. CONCLUSION Collectively, our results demonstrated that CD44v4 expression is more linked with ERK1/2 activation and promote cisplatin resistance, whereas CD44v6 expression is associated primarily with PI3K/Akt/GSK3β activation and driving tumor invasion/migration.
Collapse
Affiliation(s)
- Tanushree Kashyap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Kamdeo K Pramanik
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Nidhi Nath
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Prajna Mishra
- Centre for Applied Chemistry, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Abhay K Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Ajay Rana
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The University of Illinois at Chicago 840 S. Wood Street, Suite 601 Clinical Sciences Building, MC 958, Chicago, IL 60612 USA
| | - Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
15
|
Eshraghi AA, Aranke M, Salvi R, Ding D, Coleman JK, Ocak E, Mittal R, Meyer T. Preclinical and clinical otoprotective applications of cell-penetrating peptide D-JNKI-1 (AM-111). Hear Res 2018; 368:86-91. [DOI: 10.1016/j.heares.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
|
16
|
Kokoszka ME, Kall SL, Khosla S, McGinnis JE, Lavie A, Kay BK. Identification of two distinct peptide-binding pockets in the SH3 domain of human mixed-lineage kinase 3. J Biol Chem 2018; 293:13553-13565. [PMID: 29980598 PMCID: PMC6120190 DOI: 10.1074/jbc.ra117.000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a β-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.
Collapse
Affiliation(s)
| | - Stefanie L Kall
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | | | | | - Arnon Lavie
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Brian K Kay
- From the Departments of Biological Sciences and
| |
Collapse
|
17
|
Zhang B, Zhang Z, Wang J, Yang B, Zhao Y, Rao Z, Gao J. Dihydroartemisinin sensitizes Lewis lung carcinoma cells to carboplatin therapy via p38 mitogen-activated protein kinase activation. Oncol Lett 2018; 15:7531-7536. [PMID: 29740482 PMCID: PMC5934725 DOI: 10.3892/ol.2018.8276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/21/2017] [Indexed: 01/18/2023] Open
Abstract
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua, is an effective novel antimalarial agent. Studies have suggested that it also exhibits anticancer effects when administered alone or in combination with conventional chemotherapeutic agents. The present study investigated the therapeutic effect of DHA combined with carboplatin (CBP) on Lewis lung carcinoma (LLC) cells and the possible underlying molecular mechanisms. MTT and clonogenic assays demonstrated that the proliferation activity of LLC cells was inhibited in a dose-dependent manner by DHA combined with CBP. In addition, flow cytometry analysis revealed that cell cycle arrest was induced at the G0/G1 phase and apoptosis was induced following treatment with the combination. When administered in combination with CBP, DHA exhibited more effective anticancer activity compared with DHA or CBP used alone, via increased apoptosis. Following treatment with DHA with or without CBP, the expression of phosphorylated-p38 mitogen-activated protein kinase (MAPK), which can be inhibited with the selective inhibitor SB202190, was detected by western blotting. To summarize, the results of the present study indicated that DHA may sensitize LLC cells to CBP therapy via the activation of p38MAPK, which suggests that a combined treatment of DHA and CBP may be a potential novel therapeutic schedule for lung adenocarcinoma.
Collapse
Affiliation(s)
- Bicheng Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhimin Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital of Jinan Command, People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Bo Yang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Yong Zhao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhiguo Rao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jianfei Gao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
18
|
Garman B, Anastopoulos IN, Krepler C, Brafford P, Sproesser K, Jiang Y, Wubbenhorst B, Amaravadi R, Bennett J, Beqiri M, Elder D, Flaherty KT, Frederick DT, Gangadhar TC, Guarino M, Hoon D, Karakousis G, Liu Q, Mitra N, Petrelli NJ, Schuchter L, Shannan B, Shields CL, Wargo J, Wenz B, Wilson MA, Xiao M, Xu W, Xu X, Yin X, Zhang NR, Davies MA, Herlyn M, Nathanson KL. Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines. Cell Rep 2017; 21:1936-1952. [PMID: 29141224 PMCID: PMC5709812 DOI: 10.1016/j.celrep.2017.10.052] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor-sequencing studies have revealed the widespread genetic diversity of melanoma. Sequencing of 108 genes previously implicated in melanomagenesis was performed on 462 patient-derived xenografts (PDXs), cell lines, and tumors to identify mutational and copy number aberrations. Samples came from 371 unique individuals: 263 were naive to treatment, and 108 were previously treated with targeted therapy (34), immunotherapy (54), or both (20). Models of all previously reported major melanoma subtypes (BRAF, NRAS, NF1, KIT, and WT/WT/WT) were identified. Multiple minor melanoma subtypes were also recapitulated, including melanomas with multiple activating mutations in the MAPK-signaling pathway and chromatin-remodeling gene mutations. These well-characterized melanoma PDXs and cell lines can be used not only as reagents for a large array of biological studies but also as pre-clinical models to facilitate drug development.
Collapse
Affiliation(s)
- Bradley Garman
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis N Anastopoulos
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Clemens Krepler
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Patricia Brafford
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Katrin Sproesser
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Yuchao Jiang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Amaravadi
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Bennett
- Helen F. Graham Cancer Center at Christiana Care Health System, Newark, DE, USA
| | - Marilda Beqiri
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - David Elder
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Keith T Flaherty
- Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Dennie T Frederick
- Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tara C Gangadhar
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Guarino
- Helen F. Graham Cancer Center at Christiana Care Health System, Newark, DE, USA
| | - David Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Giorgos Karakousis
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas J Petrelli
- Helen F. Graham Cancer Center at Christiana Care Health System, Newark, DE, USA
| | - Lynn Schuchter
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Batool Shannan
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jennifer Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon Wenz
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa A Wilson
- Perlmutter Cancer Center, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Min Xiao
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Xaiowei Xu
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Xiangfan Yin
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Nancy R Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenhard Herlyn
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Chang Y, Lu X, Shibu MA, Dai YB, Luo J, Zhang Y, Li Y, Zhao P, Zhang Z, Xu Y, Tu ZC, Zhang QW, Yun CH, Huang CY, Ding K. Structure Based Design of N-(3-((1H-Pyrazolo[3,4-b]pyridin-5-yl)ethynyl)benzenesulfonamides as Selective Leucine-Zipper and Sterile-α Motif Kinase (ZAK) Inhibitors. J Med Chem 2017; 60:5927-5932. [PMID: 28586211 DOI: 10.1021/acs.jmedchem.7b00572] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of N-(3-((1H-pyrazolo[3,4-b]pyridin-5-yl)ethynyl)benzenesulfonamides were designed as the first class of highly selective ZAK inhibitors. The representative compound 3h strongly inhibits the kinase activity of ZAK with an IC50 of 3.3 nM and dose-dependently suppresses the activation of ZAK downstream signals in vitro and in vivo, while it is significantly less potent for the majority of 403 nonmutated kinases evaluated. Compound 3h also exhibits orally therapeutic effects on cardiac hypertrophy in a spontaneous hypertensive rat model.
Collapse
Affiliation(s)
- Yu Chang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
- School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University , Taichung 404, Taiwan, China
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 433, Taiwan, China
| | - Yi-Bo Dai
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing 100191, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yan Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yingjun Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Peng Zhao
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing 100191, China
| | - Zhang Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Cai-Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing 100191, China
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University , Taichung 404, Taiwan, China
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 433, Taiwan, China
| | - Ke Ding
- School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
20
|
Viswakarma N, Nair RS, Sondarva G, Das S, Ibrahimi L, Chen Z, Sinha S, Rana B, Rana A. Transcriptional regulation of mixed lineage kinase 3 by estrogen and its implication in ER-positive breast cancer pathogenesis. Oncotarget 2017; 8:33172-33184. [PMID: 28388540 PMCID: PMC5464859 DOI: 10.18632/oncotarget.16566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
Mixed Lineage Kinase 3 (MLK3), also called as MAP3K11 is a tightly regulated MAP3K member but its cellular function is still not fully understood. Earlier we reported post-translational regulation of MLK3 by estrogen (E2) that inhibited the kinase activity and favored survival of ER+ breast cancer cells. Here we report that MLK3 is also transcriptionally downregulated by E2 in ER+ breast cancer cells. Publicly available data and in situ hybridization of human breast tumors showed significant down regulation of MLK3 transcripts in ER+ tumors. The basal level of MLK3 transcripts and protein in ER+ breast cancer cell lines were significantly lower, and the protein expression was further down regulated by E2 in a time-dependent manner. Analysis of the promoter of MLK3 revealed two ERE sites which were regulated by E2 in ER+ but not in ER- breast cancer cell lines. Both ERα and ERβ were able to bind to MLK3 promoter and recruit nuclear receptor co-repressors (NCoR, SMRT and LCoR), leading to down-regulation of MLK3 transcripts. Collectively these results suggest that recruitment of nuclear receptor co-repressor is a key feature of ligand-dependent transcriptional repression of MLK3 by ERs. Therefore coordinated transcriptional and post-translational repression of pro-apoptotic MLK3 probably is one of the mechanisms by which ER+ breast cancer cells proliferate and survive.
Collapse
Affiliation(s)
- Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zhiyong Chen
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Subhash Sinha
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Rattanasinchai C, Gallo KA. MLK3 Signaling in Cancer Invasion. Cancers (Basel) 2016; 8:cancers8050051. [PMID: 27213454 PMCID: PMC4880868 DOI: 10.3390/cancers8050051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Mixed-lineage kinase 3 (MLK3) was first cloned in 1994; however, only in the past decade has MLK3 become recognized as a player in oncogenic signaling. MLK3 is a mitogen-activated protein kinase kinase kinase (MAP3K) that mediates signals from several cell surface receptors including receptor tyrosine kinases (RTKs), chemokine receptors, and cytokine receptors. Once activated, MLK3 transduces signals to multiple downstream pathways, primarily to c-Jun terminal kinase (JNK) MAPK, as well as to extracellular-signal-regulated kinase (ERK) MAPK, P38 MAPK, and NF-κB, resulting in both transcriptional and post-translational regulation of multiple effector proteins. In several types of cancer, MLK3 signaling is implicated in promoting cell proliferation, as well as driving cell migration, invasion and metastasis.
Collapse
Affiliation(s)
| | - Kathleen A Gallo
- Cell and Molecular Biology program, Michigan State University, East Lansing, MI 48824, USA.
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
22
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
23
|
Das S, Sondarva G, Viswakarma N, Nair RS, Osipo C, Tzivion G, Rana B, Rana A. Human Epidermal Growth Factor Receptor 2 (HER2) Impedes MLK3 Kinase Activity to Support Breast Cancer Cell Survival. J Biol Chem 2015; 290:21705-12. [PMID: 26152725 PMCID: PMC4571892 DOI: 10.1074/jbc.m115.655563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is amplified in ∼ 15-20% of human breast cancer and is important for tumor etiology and therapeutic options of breast cancer. Up-regulation of HER2 oncogene initiates cascades of events cumulating to the stimulation of transforming PI3K/AKT signaling, which also plays a dominant role in supporting cell survival and efficacy of HER2-directed therapies. Although investigating the underlying mechanisms by which HER2 promotes cell survival, we noticed a profound reduction in the kinase activity of a pro-apoptotic mixed lineage kinase 3 (MLK3) in HER2-positive (HER2+) but not in HER2-negative (HER2-) breast cancer tissues, whereas both HER2+ and HER2- tumors expressed a comparable level of MLK3 protein. Furthermore, the kinase activity of MLK3 was inversely correlated with HER2+ tumor grades. Moreover, HER2-directed drugs such as trastuzumab and lapatinib as well as depletion of HER2 or HER3 stimulated MLK3 kinase activity in HER2+ breast cancer cell lines. In addition, the noted inhibitory effect of HER2 on MLK3 kinase activity was mediated via its phosphorylation on Ser(674) by AKT and that pharmacological inhibitors of PI3K/AKT prevented trastuzumab- and lapatinib-induced stimulation of MLK3 activity. Consistent with the pro-apoptotic function of MLK3, stable knockdown of MLK3 in the HER2+ cell line blunted the pro-apoptotic effects of trastuzumab and lapatinib. These findings suggest that HER2 activation inhibits the pro-apoptotic function of MLK3, which plays a mechanistic role in mediating anti-tumor activities of HER2-directed therapies. In brief, MLK3 represents a newly recognized integral component of HER2 biology in HER2+ breast tumors.
Collapse
Affiliation(s)
- Subhasis Das
- From the Department of Molecular Pharmacology and Therapeutics and
| | - Gautam Sondarva
- From the Department of Molecular Pharmacology and Therapeutics and
| | - Navin Viswakarma
- From the Department of Molecular Pharmacology and Therapeutics and
| | | | - Clodia Osipo
- Department of Pathology, Loyola University Chicago, Maywood, Illinois 60153
| | - Guri Tzivion
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Basabi Rana
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, Illinois 60153, and Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Ajay Rana
- From the Department of Molecular Pharmacology and Therapeutics and Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| |
Collapse
|
24
|
Luo L, Jiang S, Huang D, Lu N, Luo Z. MLK3 phophorylates AMPK independently of LKB1. PLoS One 2015; 10:e0123927. [PMID: 25874865 PMCID: PMC4395454 DOI: 10.1371/journal.pone.0123927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
Emerging evidence has shown that cellular energy metabolism is regulated by the AMPK and MLK3-JNK signaling pathways, but the functional link between them remains to be determined. The present study aimed to explore the crosstalk between MLK3 and AMPK. We found that both JNK and AMPK were phosphorylated at their activation sites by TNF-α, Anisomycin, H2O2 and sorbitol. Interestingly, sorbitol stimulated phosphorylation of AMPK at T172 in LKB1-deficient cells. Following the screening of more than 100 kinases, we identified that MLK3 induced phosphorylation of AMPK at T172. Our in vitro analysis further revealed that MLK3-mediated phosphorylation of AMPK at T172 was independent of AMP, but addition of AMP caused a mobility shift of AMPK, an indication of autophosphorylation, suggesting that AMP binding and phosphorylation of T172 leads to maximal activation of AMPK. GST-pull down assays showed a direct interaction between AMPKα1 subunit and MLK3. Altogether, our results indicate that MLK3 serves as a common upstream kinase of AMPK and JNK and functions as a direct upstream kinase for AMPK independent of LKB1.
Collapse
Affiliation(s)
- Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shanshan Jiang
- Graduate Program, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Nonghua Lu
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhijun Luo
- Institute of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118, United States of America
| |
Collapse
|
25
|
Mou J, Liu X, Pei D. Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD-95-MLK3 signaling module. Neural Regen Res 2015; 9:2059-65. [PMID: 25657722 PMCID: PMC4316469 DOI: 10.4103/1673-5374.147932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 11/27/2022] Open
Abstract
Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad-Glur6-9c on the phosphorylation of JNK, MLK3 and mitogen-activated kinase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of JNK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was significantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.
Collapse
Affiliation(s)
- Jie Mou
- Jiangsu Key Laboratory of Targeted Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xiaomei Liu
- School of Basic Medical Science, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Dongsheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| |
Collapse
|
26
|
Zhang B, Wu T, Wang Z, Zhang Y, Wang J, Yang B, Zhao Y, Rao Z, Gao J. p38MAPK activation mediates tumor necrosis factor-α-induced apoptosis in glioma cells. Mol Med Rep 2014; 11:3101-7. [PMID: 25434304 DOI: 10.3892/mmr.2014.3002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 10/31/2014] [Indexed: 11/06/2022] Open
Abstract
Gliomas are a type of heterogeneous primary central nervous system tumor, which arise from the glial cells; these types of tumor generally respond poorly to surgery, radiation and conventional chemotherapy. Tumor necrosis factor‑α (TNF‑α) has been suggested to produce an antitumor effect by binding to specific receptors on the tumor cell membrane to induce apoptosis. TNF‑α is known to activate a number of signaling pathways, including extracellular signal‑regulated protein kinase, c‑Jun N‑terminal kinase (JNK), p38 mitogen‑activated protein kinase (p38MAPK), nuclear factor‑κB and caspase cascades, depending on the cell type. However, the involvement of p38MAPK signaling in TNF‑α‑induced apoptosis in glioma cells remains unclear. In the current study, the role of p38MAPK in TNF‑α‑induced apoptosis in rat glioma C6 cells was investigated. TNF‑α was observed to induce cell apoptosis and the phosphorylation of p38MAPK in C6 cells. In addition, the inhibition of p38MAPK markedly reduced TNF‑α‑induced apoptosis, while JNK inhibition did not affect apoptosis. Furthermore, p38MAPK transfection altered the cell cycle of glioma cells and increased the rate of apoptosis. It also led to an increase in the level of soluble TNF‑α in the culture supernatant and membrane TNF receptor I levels in tumor cells. In conclusion, the results of the current study demonstrated that the activation of p38MAPK mediates TNF‑α‑induced apoptosis in glioma C6 cells, suggesting p38MAPK as a potential target for glioma therapy.
Collapse
Affiliation(s)
- Bicheng Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Tingting Wu
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhigang Wang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Yafei Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Bo Yang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Yong Zhao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhiguo Rao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jianfei Gao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
27
|
Rhoo KH, Granger M, Sur J, Feng C, Gelbard HA, Dewhurst S, Polesskaya O. Pharmacologic inhibition of MLK3 kinase activity blocks the in vitro migratory capacity of breast cancer cells but has no effect on breast cancer brain metastasis in a mouse xenograft model. PLoS One 2014; 9:e108487. [PMID: 25264786 PMCID: PMC4180451 DOI: 10.1371/journal.pone.0108487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/29/2014] [Indexed: 12/22/2022] Open
Abstract
Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3) in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore set out to test whether MLK3 plays a role in brain metastasis of breast cancer cells. To address this question, we used a novel, brain penetrant, MLK3 inhibitor, URMC099. URMC099 efficiently inhibited the migration of breast cancer cells in an in vitro cell monolayer wounding assay, and an in vitro transwell migration assay, but had no effect on in vitro cell growth. We also tested the effect of URMC099 on tumor formation in a mouse xenograft model of breast cancer brain metastasis. This analysis showed that URMC099 had no effect on the either the frequency or size of breast cancer brain metastases. We conclude that pharmacologic inhibition of MLK3 by URMC099 can reduce the in vitro migratory capacity of breast cancer cells, but that it has no effect on either the frequency or size of breast cancer brain metastases, in a mouse xenograft model.
Collapse
Affiliation(s)
- Kun Hyoe Rhoo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Megan Granger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Joynita Sur
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Harris A. Gelbard
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Neural Development and Disease, and Departments of Pediatrics and Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Oksana Polesskaya
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|