1
|
Halabitska I, Oksenych V, Kamyshnyi O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients 2024; 16:3349. [PMID: 39408316 PMCID: PMC11478474 DOI: 10.3390/nu16193349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives. The comorbidity of osteoarthritis and type 2 diabetes mellitus poses a complex clinical challenge, complicating patient management due to overlapping pathophysiological mechanisms. This research aims to analyze the exacerbation of clinical symptoms and biochemical markers in patients with OA and T2DM compared to those with OA alone. Methods. We employed various assessment methods to evaluate inflammation, oxidative stress, and glycemic control in both cohorts. This study includes the administration of alpha-lipoic acid (ALA) to patients with comorbid OA and T2DM, monitoring its effects on joint function, inflammatory markers, oxidative stress levels, and glycemic control. Results. The findings indicate that T2DM significantly worsens clinical symptoms and biochemical markers in OA patients. Those with both conditions exhibited elevated indicators of inflammation and oxidative stress compared to OA-only patients. Additionally, correlations among metabolic, psychological, and inflammatory factors were identified. Body mass index emerged as a potential predictor for the deterioration of evaluated parameters. The analysis revealed that ALA administration led to statistically significant improvements in WOMAC pain scores, the Lequesne Algofunctional Index, and the AIMS-P compared to the control group. Conclusions. Further research into ALA's effects on OA progression in patients with comorbidities is essential for developing personalized treatment approaches.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
2
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Yang YZ, Cheng QH, Zhang AR, Qiu Y, Guo HZ. Progress in the treatment of Osteoarthritis with avocado-soybean unsaponifiable. Inflammopharmacology 2024; 32:2177-2184. [PMID: 38814416 DOI: 10.1007/s10787-024-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/30/2024] [Indexed: 05/31/2024]
Abstract
Osteoarthritis (OA) is one of the leading causes of joint dysfunction and disability in the elderly, posing serious social problems and a huge socio-economic burden. Existing pharmacological treatments have significant drawbacks, and searching for an effective pharmacological intervention is an urgent priority. Recent studies have demonstrated the chondroprotective, anabolic, and anti-catabolic properties of avocado-soybean unsaponifiable (ASU), a natural plant extract made from avocado and soybean oils, consisting of the remainder of the saponified portion of the product that cannot be made into soap. The main components of ASU are phytosterols, beta-sitosterol, canola stanols, and soya stanols, which are rapidly incorporated into cells. Studies have confirmed the anti-inflammatory, antioxidant, and analgesic properties of phytosterols. ASU slows down the progression of OA primarily by inhibiting pathways involved in the development of OA disease. ASU prevents cartilage degradation by inhibiting the release and activity of matrix metalloproteinases and by increasing the tissue inhibition of these catabolic enzymes; ASU is also involved in the inhibition of the activation of nuclear factor κB (NF-κB) which is a transcriptional inhibitor that regulates the inflammatory response of chondrocytes. NF-κB is a transcription factor that regulates the inflammatory response of chondrocytes, and inhibition of the transfer of the transcription factor NF-κB from the cytoplasm to the nucleus regulates the transcription of many pro-inflammatory factors. By appealing to the mechanism of action and thus achieving anti-inflammatory, anti-catabolic, and pro-synthetic effects on cartilage tissues, AUS is clinically responsive to the reduction of acute pain and OA symptom progression. This paper aims to summarize the studies on the use of avocado-soybean unsaponifiable in the pharmacological treatment of osteoarticular.
Collapse
Affiliation(s)
- Yong-Ze Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Qing-Hao Cheng
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - An-Ren Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Yi Qiu
- Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Hong-Zhang Guo
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
4
|
de Oliveira GJL, do Nascimento Tsurumaki J, Aroni MA, Marcantonio E, Marcantonio RA. Periodontal host-modulation therapy with avocado/soybean unsaponifiables in rats with arthritis. Minerva Dent Oral Sci 2024; 73:200-208. [PMID: 38963288 DOI: 10.23736/s2724-6329.24.04854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND The aim of this study was to evaluate the effect of the avocado/soybean unsaponifiables (ASU) in the treatment of induced periodontitis in rats with experimental arthritis. METHODS Sixty rats were randomly assigned to 4 groups according to the type of treatment and the systemic condition of the animals: CTR-S: healthy animals in which saline solution (SS) was administered; ASU-S: healthy animals in which ASU (0.6 mg/kg) was administered; AR/ASU-S: animals with induced arthritis in which ASU was administered; AR-S: animals with induced arthritis in which SS was administered. Periodontitis was induced by ligatures, maintained for 15 days. Subsequently, the treatment was performed by scaling with hand instruments. The SS and ASU were administered daily by gavage until euthanasia of the animals that occurred at 7, 15 or 30 days after the scaling procedure (N.=5 animals/group). Bone resorption, inflammatory infiltrate composition, and osteoclastogenesis were assessed. RESULTS The AR-S group had greater bone loss, smaller amounts of fibroblasts and larger amounts of inflammatory cells than all other groups. In addition, the AR-S group had greater osteoclastogenesis in relation to the healthy animal groups. CONCLUSIONS The use of ASU improved the healing pattern after treatment for experimental periodontitis in animals with arthritis reducing the periodontal bone loss.
Collapse
Affiliation(s)
- Guilherme J Lopes de Oliveira
- Department of Periodontology, School of Dentistry at Uberlândia, Federal University of Uberlândia - Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil -
| | - Jackeline do Nascimento Tsurumaki
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Paulista State University - Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Mauricio A Aroni
- Universidad de Especialidades Espíritu Santo (UEES), Samborondón, Equador
| | - Elcio Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Paulista State University - Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Rosemary A Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Paulista State University - Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
5
|
Honarvar A, Setayeshmehr M, Ghaedamini S, Hashemibeni B, Moroni L, Karbasi S. Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:799-822. [PMID: 38289681 DOI: 10.1080/09205063.2024.2307752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-β3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined by real-time PCR. The expression of proteins COLII and COLX was also determined by immunohistochemistry. Glycosaminoglycan was measured by toluidine blue staining. 3D-printed scaffolds clearly improved cell proliferation, viability, water absorption and compressive strength compared to the hydrogel groups. Moreover, the use of compounds such as ECM and Piascledine in the process of ADSCs chondrogenesis induction increased cartilage-specific markers and decreased the hypertrophic marker compared to TGF-β3. In Piascledine groups, the expression of COLL II protein, COLL II and Aggrecan genes, and the amount of glycosaminoglycan showed a significant increase in the PCL/F/ECM compared to the PCL and PCL/F groups.
Collapse
Affiliation(s)
- Ali Honarvar
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohsen Setayeshmehr
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sho'leh Ghaedamini
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Yang D, Xu K, Xu X, Xu P. Revisiting prostaglandin E2: A promising therapeutic target for osteoarthritis. Clin Immunol 2024; 260:109904. [PMID: 38262526 DOI: 10.1016/j.clim.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
7
|
Zwierz M, Chabowski A, Sztolsztener K. α-Lipoic acid - a promising agent for attenuating inflammation and preventing steatohepatitis in rats fed a high-fat diet. Arch Biochem Biophys 2023; 750:109811. [PMID: 37926405 DOI: 10.1016/j.abb.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder affecting a significant part of the global population. This study aimed to investigate the potential therapeutic effects of α-lipoic acid (α-LA) on the inflammatory response during simple steatosis development and progression into steatohepatitis. The study used the MASLD model in male Wistar rats that were fed a standard diet or a high-fat diet (HFD) for 8 weeks. Throughout the entire experiment, half of the animals received α-LA supplementation. The hepatic activity of pro-inflammatory n-6 and anti-inflammatory n-3 polyunsaturated fatty acid (PUFA) pathways and the concentration of arachidonic acid (AA) in selected lipid fractions were determined by the gas-liquid chromatography (GLC). The hepatic expression of proteins from inflammatory pathway was measured by the Western blot technique. The level of eicosanoids, cytokines and chemokines was assessed by the ELISA or multiplex assay kits. The results showed that α-LA supplementation attenuated the activity of n-6 PUFA pathway in FFA and DAG and increased the activity of n-3 PUFA pathway in PL, TAG and DAG. In addition, the administration of α-LA decreased the concentration of AA in DAG and FFA, indicating its potential protective effect on the deterioration of simple hepatic steatosis. The supplementation of α-LA also increased the expression of COX-1 and COX-2 with the lack of significant changes in prostaglandins profile. We observed an increase in the expression of 12/15-LOX, which was reflected in an increase in lipoxin A4 (LXA4) level. A decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines was also noticed in the liver of rats treated with HFD and α-LA. Our observations confirm that α-LA treatment has potential protective effects on inflammation development in the MASLD model. We believe that α-LA has a preventive impact when it comes to the progression of simple steatosis lesions to steatohepatitis.
Collapse
Affiliation(s)
- Mateusz Zwierz
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| | - Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| |
Collapse
|
8
|
Stevioside attenuates osteoarthritis via regulating Nrf2/HO-1/NF-κB pathway. J Orthop Translat 2023; 38:190-202. [DOI: 10.1016/j.jot.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
|
9
|
α-Lipoic acid ameliorates inflammation state and oxidative stress by reducing the content of bioactive lipid derivatives in the left ventricle of rats fed a high-fat diet. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166440. [PMID: 35569738 DOI: 10.1016/j.bbadis.2022.166440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Lipid mediators derived from arachidonic acid (AA) are implicated with the occurrence of inflammation and oxidative stress. The current knowledge of AA metabolism focuses on searching for the therapeutic strategy to subvert affected AA metabolism. The aim of our study was to evaluate the potential protective effect of chronic α-lipoic acid (α-LA) supplementation on myocardial inflammation state and oxidative stress in obesity-related cardiovascular dysfunction. The experiment was carried out on male Wistar rats receiving a standard or a high-fat diets with intragastric α-LA administration for 8 weeks. Plasma and myocardial AA concentration was determined using gas-liquid chromatography (GLC). The Western blot technique was used to examine the expression of proteins from the inflammatory pathway. The content of selected cytokines, inflammatory mediators, and oxidative stress indicators was detected by ELISA, colorimetric, and multiplex assay kits. Our results revealed that α-LA caused a notable reduction in AA content, mainly in the phospholipid fraction with a simultaneous diminishment in the synthesis of pro-inflammatory mediators, i.e., prostaglandin E2, leukotrienes B4 and C4 by decreasing the expression of COX-2 and 5-LOX. α-LA also augmented the level of antioxidative SOD2 and GSH and decreased the level of lipid peroxidation products, which improved oxidative system impairment in the left ventricle tissue. The data clearly showed that α-lipoic acid has a significant role in inflammation and oxidative stress development ameliorating the risk of cardiac obesity induced by high-fat feeding.
Collapse
|
10
|
Vajdi M, Mahmoudi-Nezhad M, Farhangi MA. An updated systematic review and dose-response meta-analysis of the randomized controlled trials on the effects of Alpha-Lipoic acid supplementation on inflammatory biomarkers. INT J VITAM NUTR RES 2021; 93:164-177. [PMID: 33827267 DOI: 10.1024/0300-9831/a000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Data about the effects of alpha-lipoic acid (ALA) supplementation on inflammatory markers are inconsistent. This systematic review and dose-response meta-analysis of randomized controlled trials was performed to summarize the effects of ALA supplementation on inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in adults. A comprehensive literature search was conducted in the electronic databases of PubMed, Web of Science, ProQuest, Embase, and SCOPUS from inception to February 2020. Among all of the eligible studies, 20 articles were selected. The weighted mean differences (WMD) and 95% confidence intervals (CI) were calculated to evaluate the pooled effect size. Between-study heterogeneity was evaluated using Cochran's Q test and I2. Subgroup analysis was done to evaluate the potential sources of heterogeneity. The dose-response relationship was evaluated using fractional polynomial modeling. Twenty eligible studies with a total sample size of 947 participants were included in the current meta-analysis. The findings of the meta-analysis showed that ALA supplementation significantly reduced CRP (WMD: -0.69 mg/L, 95% CI: -1.13, -0.26, P=0.002), IL-6 (WMD: -1.83 pg/ml, 95% CI: -2.90, -0.76, P=0.001), and TNF-α concentrations (WMD: -0.45 pg/ml, 95% CI: -0.85, -0.04, P=0.032). No evidence of departure from linearity was observed between dose and duration of the ALA supplementation on serum CRP, IL-6 and TNF-α concentration. In subgroup analysis, ALA dosage, baseline concentrations of the parameter, sample size, and gender were considered as possible sources of heterogeneity. In summary, ALA supplementation improves inflammatory markers without any evidence of non-linear association to dose or duration of the trial.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
11
|
Buhrmann C, Honarvar A, Setayeshmehr M, Karbasi S, Shakibaei M, Valiani A. Herbal Remedies as Potential in Cartilage Tissue Engineering: An Overview of New Therapeutic Approaches and Strategies. Molecules 2020; 25:E3075. [PMID: 32640693 PMCID: PMC7411884 DOI: 10.3390/molecules25133075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
It is estimated that by 2023, approximately 20% of the population of Western Europe and North America will suffer from a degenerative joint disease commonly known as osteoarthritis (OA). During the development of OA, pro-inflammatory cytokines are one of the major causes that drive the production of inflammatory mediators and thus of matrix-degrading enzymes. OA is a challenging disease for doctors due to the limitation of the joint cartilage's capacity to repair itself. Though new treatment approaches, in particular with mesenchymal stem cells (MSCs) that integrate the tissue engineering (TE) of cartilage tissue, are promising, they are not only expensive but more often do not lead to the regeneration of joint cartilage. Therefore, there is an increasing need for novel, safe, and more effective alternatives to promote cartilage joint regeneration and TE. Indeed, naturally occurring phytochemical compounds (herbal remedies) have a great anti-inflammatory, anti-oxidant, and anabolic potential, and they have received much attention for the development of new therapeutic strategies for the treatment of inflammatory diseases, including the prevention of age-related OA and cartilage TE. This paper summarizes recent research on herbal remedies and their chondroinductive and chondroprotective effects on cartilage and progenitor cells, and it also emphasizes the possibilities that exist in this research area, especially with regard to the nutritional support of cartilage regeneration and TE, which may not benefit from non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Ali Honarvar
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran; (A.H.); (M.S.)
| | - Mohsen Setayeshmehr
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran; (A.H.); (M.S.)
- Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran;
| | - Saeed Karbasi
- Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Ali Valiani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran; (A.H.); (M.S.)
| |
Collapse
|
12
|
Grzanna MW, Au RY, Au AY, Rashmir AM, Frondoza CG. Avocado/Soybean Unsaponifiables, Glucosamine and Chondroitin Sulfate Combination Inhibits Proinflammatory COX-2 Expression and Prostaglandin E2 Production in Tendon-Derived Cells. J Med Food 2020; 23:139-146. [PMID: 31486703 DOI: 10.1089/jmf.2019.0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tendinopathy, a common disorder in man and horses, is characterized by pain, dysfunction, and tendon degeneration. Inflammation plays a key role in the pathogenesis of tendinopathy. Tendon cells produce proinflammatory molecules that induce pain and tissue deterioration. Currently used nonsteroidal anti-inflammatory drugs are palliative but have been associated with adverse side effects prompting the search for safe, alternative compounds. This study determined whether tendon-derived cells' expression of proinflammatory cyclooxygenase (COX)-2 and production of prostaglandin E2 (PGE2) could be attenuated by the combination of avocado/soybean unsaponifiables (ASU), glucosamine (GLU), and chondroitin sulfate (CS). ASU, GLU, and CS have been used in the management of osteoarthritis-associated joint inflammation. Tenocytes in monolayer and microcarrier spinner cultures were incubated with media alone, or with the combination of ASU (8.3 μg/mL), GLU (11 μg/mL), and CS (20 μg/mL). Cultures were next incubated with media alone, or stimulated with interleukin-1β (IL-1β; 10 ng/mL) for 1 h to measure COX-2 gene expression, or for 24 h to measure PGE2 production, respectively. Tenocyte phenotype was analyzed by phase-contrast microscopy, immunocytochemistry, and Western blotting. Tendon-derived cells proliferated and produced extracellular matrix component type I collagen in monolayer and microcarrier spinner cultures. IL-1β-induced COX-2 gene expression and PGE2 production were significantly reduced by the combination of (ASU+GLU+CS). The suppression of IL-1β-induced inflammatory response suggests that (ASU+GLU+CS) may help attenuate deleterious inflammation in tendons.
Collapse
Affiliation(s)
| | - Rebecca Y Au
- Nutramax Laboratories, Inc., Edgewood, Maryland, USA
| | - Angela Y Au
- Nutramax Laboratories, Inc., Edgewood, Maryland, USA
| | - Ann M Rashmir
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Carmelita G Frondoza
- Nutramax Laboratories, Inc., Edgewood, Maryland, USA
- Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
13
|
Jimenez P, Garcia P, Quitral V, Vasquez K, Parra-Ruiz C, Reyes-Farias M, Garcia-Diaz DF, Robert P, Encina C, Soto-Covasich J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paula Jimenez
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Paula Garcia
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Vilma Quitral
- Escuela De Nutricion Y Dietetica, Facultad De Salud, Universidad Santo Tomas, Santiago, Chile
| | - Karla Vasquez
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Marjorie Reyes-Farias
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento De Nutricion, Facultad De Medicina, Universidad De Chile, Santiago, Chile
| | - Paz Robert
- Departamento De Ciencia De Los Alimentos Y Tecnologia Quimica, Facultad De Ciencias Quimicas Y Farmaceuticas, Universidad De Chile, Santiago, Chile
| | - Cristian Encina
- Departamento De Ciencia De Los Alimentos Y Tecnologia Quimica, Facultad De Ciencias Quimicas Y Farmaceuticas, Universidad De Chile, Santiago, Chile
| | - Jessica Soto-Covasich
- Programa de Doctorado en Biotecnologia, Pontificia Universidad Catolica de Valparaiso-Universidad Tecnica Federico Santa Maria
| |
Collapse
|
14
|
Bhuyan DJ, Alsherbiny MA, Perera S, Low M, Basu A, Devi OA, Barooah MS, Li CG, Papoutsis K. The Odyssey of Bioactive Compounds in Avocado ( Persea americana) and Their Health Benefits. Antioxidants (Basel) 2019; 8:E426. [PMID: 31554332 PMCID: PMC6826385 DOI: 10.3390/antiox8100426] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Persea americana, commonly known as avocado, has recently gained substantial popularity and is often marketed as a "superfood" because of its unique nutritional composition, antioxidant content, and biochemical profile. However, the term "superfood" can be vague and misleading, as it is often associated with unrealistic health claims. This review draws a comprehensive summary and assessment of research performed in the last few decades to understand the nutritional and therapeutic properties of avocado and its bioactive compounds. In particular, studies reporting the major metabolites of avocado, their antioxidant as well as bioavailability and pharmacokinetic properties, are summarized and assessed. Furthermore, the potential of avocado in novel drug discovery for the prevention and treatment of cancer, microbial, inflammatory, diabetes, and cardiovascular diseases is highlighted. This review also proposes several interesting future directions for avocado research.
Collapse
Affiliation(s)
- Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Saumya Perera
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Amrita Basu
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno 62500, Czech.
| | - Okram Abemsana Devi
- Department of Food Science and Nutrition, College of Community Science, Assam Agricultural University, Assam 785013, India.
| | - Mridula Saikia Barooah
- Department of Food Science and Nutrition, College of Community Science, Assam Agricultural University, Assam 785013, India.
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Konstantinos Papoutsis
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Haghighatdoost F, Hariri M. The effect of alpha-lipoic acid on inflammatory mediators: a systematic review and meta-analysis on randomized clinical trials. Eur J Pharmacol 2019; 849:115-123. [DOI: 10.1016/j.ejphar.2019.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022]
|
16
|
Secor EJ, Grzanna MW, Rashmir-Raven AM, Frondoza CG. Chondrocyte Production of Pro-Inflammatory Chemokine MCP-1 (CCL-2) and Prostaglandin E-2 Is Inhibited by Avocado/Soybean Unsaponifiables, Glucosamine, Chondroitin Sulfate Combination. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/pp.2018.91002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|