1
|
Zhang G, Huang C, Wang R, Guo J, Qin Y, Lv S. Chondroprotective effects of Apolipoprotein D in knee osteoarthritis mice through the PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2024; 133:112005. [PMID: 38626543 DOI: 10.1016/j.intimp.2024.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Because the pathophysiology of osteoarthritis (OA) has not been fully elucidated, targeted treatments are lacking. In this study, we assessed the role and underlying mechanism apolipoprotein D (APOD) on the development of OA. METHODS To establish an in vitro OA model, we extracted primary chondrocytes from the cartilage of C57BL/6 mice and stimulated the chondrocytes with IL-1β. After APOD intervention or incubation with an overexpressing plasmid, we detected inflammatory-related markers using RT-qPCR, Western blotting, and ELISA. To detect apoptosis and autophagy-related markers, we used flow cytometry, immunofluorescence, and transmission electron microscopy (TEM). Finally, we measured the level of oxidative stress. We also used RNA-seq to identify the APOD-regulated downstream signaling pathways. We used an in vivo mice OA model of the anterior cruciate ligament transection (ACLT) and administered intra-articular adenovirus overexpressing APOD. To examine cartilage damage severity, we used immunohistochemical analysis (IHC), micro-CT, scanning electron microscopy (SEM), and Safranin O-fast green staining. RESULTS Our results showed that APOD inhibited chondrocyte inflammation, degeneration, and apoptosis induced by IL-1β. Additionally, APOD reversed autophagy inhibition and oxidative stress and also blocked activation of the PI3K/AKT/mTOR signaling pathway induced by IL-1β. Finally, overexpression of the APOD gene through adenovirus was sufficient to mitigate OA progression. CONCLUSIONS Our findings revealed that APOD had a chondroprotective role in OA progression by the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Orthopedics, Harbin First Hospital, Harbin, Heilongjiang Province, China; Future Medical Laboratory of the Second Affiliated Hospital of Harbin Medical University, China
| | - Chao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ren Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiangrong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Songcen Lv
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Wu Y, Chen W, Jian J, Liu W, Wang H, Gao D, Liu W. The potential molecular markers of inflammatory response in KOA with AD based on single-cell transcriptome sequencing analysis and identification of ligands by virtual screening. Mol Divers 2024:10.1007/s11030-024-10854-4. [PMID: 38622351 DOI: 10.1007/s11030-024-10854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.
Collapse
Affiliation(s)
- Yufeng Wu
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Junde Jian
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Weinian Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The First Clinical Medical College, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Dawei Gao
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wengang Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China.
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| |
Collapse
|
3
|
Xu W, Gu S, Zhang G, Wang R, Lv S, Yan J, Qin Y. APOD acts on fibroblast-like synoviocyte and chondrocyte to alleviate the process of osteoarthritis in vitro. J Orthop Res 2024; 42:296-305. [PMID: 37728985 DOI: 10.1002/jor.25690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The pathogenesis of osteoarthritis (OA) is still unclear, leading to the lack of targeted treatment. We aimed to probe into the effect of apolipoprotein D (APOD), the key gene from our previous study through bioinformatics analysis, on fibroblast-like synoviocyte (FLS) and chondrocytes in vitro to confirm its potential roles on the delay of OA progression. Primary FLS and chondrocytes were extracted from synovium and cartilage of OA patients and stimulated with interleukin 1β (IL-1β) in vitro. After APOD intervention, viability and proliferation of FLS and chondrocytes were detected. Subsequently, the inflammatory factors of the two cells were detected by quantitative reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blot, and the apoptosis and autophagy-related substances were determined at the same time. Finally, the oxidation level in FLS and chondrocytes were detected. APOD reversed the change of gene expression stimulated by IL-1β in FLS and chondrocytes. APOD alleviated the proliferation of FLS while promoted proliferation of chondrocytes, and reduced the expression of inflammatory factors. Moreover, APOD promoted apoptosis of FLS and autography of chondrocytes, while reduced apoptosis of chondrocytes. Finally, decrease level of reactive oxygen species (ROS) in both cells were observed after APOD intervention, as well as the increased expression of antioxidant-related genes. APOD had effects on the proliferation of FLS and chondrocytes through apoptosis and autography as well as the reduction of oxidative stress, delaying the progress of OA.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shoubin Gu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ren Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songcen Lv
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
5
|
Paz-González R, Turkiewicz A, Ali N, Ruiz-Romero C, Blanco FJ, Englund M, Önnerfjord P. Proteomic profiling of human menisci from mild joint degeneration and end-stage osteoarthritis versus healthy controls. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100417. [PMID: 38098679 PMCID: PMC10720269 DOI: 10.1016/j.ocarto.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To gain new insight into the molecular changes of the meniscus by comparing the proteome profiles of healthy controls with mild degeneration and end-stage osteoarthritis (OA). Method We obtained tissue plugs from lateral and medial menisci of 37 individuals (central part of the posterior horn) classified as healthy (n = 12), mild signs of joint damage (n = 13) and end-stage OA (n = 12). The protein profile was analysed by nano-liquid chromatography-mass spectrometry using data-independent acquisition and quantified by Spectronaut. Linear-mixed effects modelling was applied to extract the between-group comparisons. Results A similar protein profile was observed for the mild group as compared to healthy controls while the most different group was end-stage OA mainly for the medial compartment. When a pattern of gradual change in protein levels from healthy to end-stage OA was required, a 42-proteins panel was identified, suggesting a potential role in OA development. The levels of QSOX1 were lower and G6PD higher in the mild group following the proposed protein abundance pattern. Qualitative protein changes suggest lower levels of CYTL1 as a potential biomarker of early joint degradation. Conclusion For future targeted proteomic approaches, we propose a candidate panel of 42 proteins based on gradually altered meniscal posterior horn protein abundance patterns associated with joint degradation.
Collapse
Affiliation(s)
- Rocío Paz-González
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Neserin Ali
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica. INIBIC-Hospital Universitario A Coruña, SERGAS, 15006, A Coruña, Spain
- Grupo de Reumatología y Salud, Departamento de Fisioterapia y Medicina. Centro de investigaciones Avanzadas (CICA), Universidad de A Coruña, A Coruña, Spain
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Da Z, Guo R, Sun J, Wang A. Identification of osteoarthritis-characteristic genes and immunological micro-environment features through bioinformatics and machine learning-based approaches. BMC Med Genomics 2023; 16:236. [PMID: 37805587 PMCID: PMC10559406 DOI: 10.1186/s12920-023-01672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifaceted chronic joint disease characterized by complex mechanisms. It has a detrimental impact on the quality of life for individuals in the middle-aged and elderly population while also imposing a significant socioeconomic burden. At present, there remains a lack of comprehensive understanding regarding the pathophysiology of OA. The objective of this study was to examine the genes, functional pathways, and immune infiltration characteristics associated with the development and advancement of OA. METHODS The Gene Expression Omnibus (GEO) database was utilized to acquire gene expression profiles. The R software was employed to conduct the screening of differentially expressed genes (DEGs) and perform enrichment analysis on these genes. The OA-characteristic genes were identified using the Weighted Gene Co-expression Network Analysis (WGCNA) and the Lasso algorithm. In addition, the infiltration levels of immune cells in cartilage were assessed using single-sample gene set enrichment analysis (ssGSEA). Subsequently, a correlation analysis was conducted to examine the relationship between immune cells and the OA-characteristic genes. RESULTS A total of 80 DEGs were identified. As determined by functional enrichment, these DEGs were associated with chondrocyte metabolism, apoptosis, and inflammation. Three OA-characteristic genes were identified using WGCNA and the lasso algorithm, and their expression levels were then validated using the verification set. Finally, the analysis of immune cell infiltration revealed that T cells and B cells were primarily associated with OA. In addition, Tspan2, HtrA1 demonstrated a correlation with some of the infiltrating immune cells. CONCLUSIONS The findings of an extensive bioinformatics analysis revealed that OA is correlated with a variety of distinct genes, functional pathways, and processes involving immune cell infiltration. The present study has successfully identified characteristic genes and functional pathways that hold potential as biomarkers for guiding drug treatment and facilitating molecular-level research on OA.
Collapse
Affiliation(s)
- Zheng Da
- Xingtai People's Hospital Affiliated to Hebei Medical University, Xingtai City, Hebei Province, China
| | - Rui Guo
- Xingtai People's Hospital Affiliated to Hebei Medical University, Xingtai City, Hebei Province, China.
| | - Jianjian Sun
- Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo City, Zhejiang Province, China
| | - Ai Wang
- Zhongshan Hospital Affiliated to Fudan University, Shanghai City, China
| |
Collapse
|
7
|
Raggi F, Bartolucci M, Cangelosi D, Rossi C, Pelassa S, Trincianti C, Petretto A, Filocamo G, Civino A, Eva A, Ravelli A, Consolaro A, Bosco MC. Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers. Front Immunol 2023; 14:1134747. [PMID: 37205098 PMCID: PMC10186353 DOI: 10.3389/fimmu.2023.1134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Clinical Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Rossi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Trincianti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Filocamo
- Division of Pediatric Immunology and Rheumatology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Adele Civino
- Pediatric Rheumatology and Immunology, Ospedale “Vito Fazzi”, Lecce, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Consolaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Maria Carla Bosco,
| |
Collapse
|
8
|
Wang Y, Zhou W, Chen Y, He D, Qin Z, Wang Z, Liu S, Zhou L, Su J, Zhang C. Identification of susceptibility modules and hub genes of osteoarthritis by WGCNA analysis. Front Genet 2022; 13:1036156. [DOI: 10.3389/fgene.2022.1036156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) is a major cause of pain, disability, and social burden in the elderly throughout the world. Although many studies focused on the molecular mechanism of OA, its etiology remains unclear. Therefore, more biomarkers need to be explored to help early diagnosis, clinical outcome measurement, and new therapeutic target development. Our study aimed to retrieve the potential hub genes of osteoarthritis (OA) by weighted gene co-expression network analysis (WGCNA) and assess their clinical utility for predicting OA. Here, we integrated WGCNA to identify novel OA susceptibility modules and hub genes. In this study, we first selected 477 and 834 DEGs in the GSE1919 and the GSE55235 databases, respectively, from the Gene Expression Omnibus (GEO) website. Genes with p-value<0.05 and | log2FC | > 1 were included in our analysis. Then, WGCNA was conducted to build a gene co-expression network, which filtered out the most relevant modules and screened out 23 overlapping WGCNA-derived hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses elucidated that these hub genes were associated with cell adhesion molecules pathway, leukocyte activation, and inflammatory response. In addition, we conducted the protein–protein interaction (PPI) network in 23 hub genes, and the top four upregulated hub genes were sorted out (CD4, SELL, ITGB2, and CD52). Moreover, our nomogram model showed good performance in predicting the risk of OA (C-index = 0.76), and this model proved to be efficient in diagnosis by ROC curves (AUC = 0.789). After that, a single-sample gene set enrichment (ssGSEA) analysis was performed to discover immune cell infiltration in OA. Finally, human primary synoviocytes and immunohistochemistry study of synovial tissues confirmed that those candidate genes were significantly upregulated in the OA groups compared with normal groups. We successfully constructed a co-expression network based on WGCNA and found out that OA-associated susceptibility modules and hub genes, which may provide further insight into the development of pre-symptomatic diagnosis, may contribute to understanding the molecular mechanism study of OA risk genes.
Collapse
|
9
|
Li B, Zhan H, Luo J, Wang X, Cao T, Wei B. A novel serological biomarker are associated with disease severity in patients with osteoarthritis. J Bone Miner Metab 2022; 40:1007-1013. [PMID: 36036835 DOI: 10.1007/s00774-022-01364-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND AND AIM Apolipoprotein D (ApoD) is a 25-30 kDa glycoprotein, as a distinct component of the human plasma lipoprotein system. Its known biological functions are mainly related to lipid metabolism. The purpose of this study was to explore the potential role of ApoD concentration in knee osteoarthritis (KOA). METHODS This study was performed in a population of 113 KOA subjects and 97 healthy controls. Serum ApoD was detected using the commercial ELISA kit (Cusabio, Wu Han, China, Cat No. CSB-EL001935HU). Radiographic progression was evaluated using Kellgren-Lawrence (KL) classification. The clinical severity of KOA was assessed by visual analog score (VAS), Hospital for special surgery (HSS) knee score disease duration and TNF-α. Receiver-operating characteristic (ROC) curve was performed to test the potential diagnostic value of ApoD in radiographic progression. RESULTS The serum ApoD level of patients with KOA was significantly lower than that of healthy controls. The serum ApoD level was negatively correlated with KL grades, VAS score, disease duration, TNF-α concentrations. On the contrary, it was positively correlated with HSS score. However, there was no correlation between this serological indicator and which side was affected. ROC curve analysis indicated that attenuated serum ApoD could serve as an appropriate biomarker concerning the diagnosis of KOA. CONCLUSIONS Serum ApoD concentration was correlated with the presence and severity of KOA.
Collapse
Affiliation(s)
- Bin Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Femoral Head, Linyi People's Hospital, The Intersection of Wuhan Road and Wohushan Road, Linyi, 276000, Shandong, China
| | - Huixian Zhan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Femoral Head, Linyi People's Hospital, The Intersection of Wuhan Road and Wohushan Road, Linyi, 276000, Shandong, China
| | - Jintao Luo
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Femoral Head, Linyi People's Hospital, The Intersection of Wuhan Road and Wohushan Road, Linyi, 276000, Shandong, China
| | - Xuewen Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Femoral Head, Linyi People's Hospital, The Intersection of Wuhan Road and Wohushan Road, Linyi, 276000, Shandong, China
| | - Ting Cao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Femoral Head, Linyi People's Hospital, The Intersection of Wuhan Road and Wohushan Road, Linyi, 276000, Shandong, China
| | - Biaofang Wei
- Department of Femoral Head, Linyi People's Hospital, The Intersection of Wuhan Road and Wohushan Road, Linyi, 276000, Shandong, China.
| |
Collapse
|
10
|
Luo Y, Wu Z, Chen S, Luo H, Mo X, Wang Y, Tang J. Protein N-glycosylation aberrations and glycoproteomic network alterations in osteoarthritis and osteoarthritis with type 2 diabetes. Sci Rep 2022; 12:6977. [PMID: 35484284 PMCID: PMC9051103 DOI: 10.1038/s41598-022-10996-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Whether the relationship between type 2 diabetes mellitus (T2DM) and osteoarthritis (OA) can be solely attributed to the shared risk factors, such as obesity, remains controversial. Several studies have revealed the critical role of abnormal glycosylation in the pathogenesis of OA and T2DM. Therefore, we speculate that T2DM may contribute to the pathogenesis of OA through the intrinsic mechanisms of N-glycosylation aberrations. Using N-glycoproteomics, we compared the changes in N-glycosylated protein abundance in cartilage samples from patients with OA without and with T2DM (DM-OA), and from patients with traumatic joint injury (NC) as controls. We identified 847 N-glycosylation sites corresponding to 729 peptides fragments from 374 proteins. The number of N-glycosylated proteins in the DM-OA group tended to decrease compared with that in the OA and NC groups. We identified 22 upregulated and 1 down-regulated N-glycosylated peptides in the OA group compared to the NC group, while only fibronectin 1 (FN1) at position N1007, cartilage intermediate layer protein 1 (CILP) at N346, and collagen type VI alpha 1 chain (COL6A1) at N804, were also identified in the DM-OA group. Compared to the OA group, the downregulation of secreted protein acidic and rich in cysteine (SPARC) at N116, collagen type VI alpha 1 chain (COL6A2) at N785, and asporin (ASPN) at N282, and the upregulation of complement component C8 alpha chain (C8α) at N437, were the most remarkable alterations in the DM-OA group. The differentially expressed N-glycosylated proteins between the OA and DM-OA groups were mainly located extracellularly and enriched in the KEGG pathways involving PI3K/Akt signaling, focal adhesion, and ECM-receptor interaction. Their predicted protein–protein interactions were also depicted. We were thus able to show the general characteristics of N-glycosylation aberrations in OA and DM-OA. Moreover, the upregulated glycosylated complement C8α in the DM-OA group might augment membrane attack complex activity, thereby exacerbating cartilage destruction. Although further confirmation is required, our hypothesis proposes a possible explanation for the deduction that T2DM is an independent risk factor for OA.
Collapse
Affiliation(s)
- Yi Luo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ziguang Wu
- Zhongshan Hospital of Chinese Medicine, No. 3 Kangxin Road, Xi District, Zhongshan, 528400, Guangdong Province, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Huanhuan Luo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Xiaoying Mo
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yao Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Jianbang Tang
- Zhongshan Hospital of Chinese Medicine, No. 3 Kangxin Road, Xi District, Zhongshan, 528400, Guangdong Province, China.
| |
Collapse
|