1
|
Nordberg RC, Donahue RP, Espinosa MG, Salinas EY, Hu JC, Athanasiou KA. A cell bank paradigm for preclinical evaluation of an analogous cellular product for an allogeneic cell therapy. Biofabrication 2024; 16:10.1088/1758-5090/ad4de2. [PMID: 38768586 PMCID: PMC11534090 DOI: 10.1088/1758-5090/ad4de2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Toward the translation of allogeneic cell therapy products, cell banks are needed not only to manufacture the final human product but also during the preclinical evaluation of an animal-based analogous cellular product (ACP). These cell banks need to be established at both the master cell bank (MCB) level and the working cell bank (WCB) level. Inasmuch as most of the development of cell therapy products is at academic centers, it is imperative that academic researchers understand how to establish MCBs and WCBs within an academic environment. To illustrate this process, using articular cartilage as the model, a cell bank for an ACP was developed (MCBs at passage 2, WCBs at passage 5) to produce self-assembled neocartilage for preclinical evaluation (constructs at passage 7). The cell bank system is estimated to be able to produce between 160 000 and 400 000 constructs for each of the six MCBs. Overall, the ACP cell bank yielded constructs that are analogous to the intended human product, which is critical toward conducting preclinical evaluations of the ACP for inclusion in an Investigational New Drug application to the FDA.
Collapse
Affiliation(s)
- Rachel C. Nordberg
- Department of Biomedical Engineering, 3131 Engineering Hall, University of California, Irvine, California 92617, USA
| | - Ryan P. Donahue
- Department of Biomedical Engineering, 3131 Engineering Hall, University of California, Irvine, California 92617, USA
| | - M. Gabriela Espinosa
- Department of Biomedical Engineering, 3131 Engineering Hall, University of California, Irvine, California 92617, USA
- Concordia University Irvine, 1530 Concordia West, Irvine, CA, USA 92612
| | - Evelia Y. Salinas
- Department of Biomedical Engineering, 3131 Engineering Hall, University of California, Irvine, California 92617, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, 3131 Engineering Hall, University of California, Irvine, California 92617, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, 3131 Engineering Hall, University of California, Irvine, California 92617, USA
| |
Collapse
|
2
|
Callan KT, Otarola G, Brown WE, Athanasiou KA, Wang D. The Longer-Term Effects of a Single Bupivacaine Exposure on the Mechanical Properties of Native Cartilage Explants. Cartilage 2024; 15:156-163. [PMID: 36992533 PMCID: PMC11368901 DOI: 10.1177/19476035231164751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE The purpose of this study was to determine the in vitro effects of a single exposure of bupivacaine on the mechanical properties of bovine cartilage explants at 3 weeks. DESIGN Femoral condyle articular cartilage explants were aseptically harvested from juvenile bovine stifle joints before being exposed to chondrogenic medium containing 0.50% (wt/vol) bupivacaine, 0.25% (wt/vol) bupivacaine, or no medication (control) for 1 hour. Explants were then washed and maintained in culture in vitro for 3 weeks before testing. Cell viability, tensile and compressive mechanical properties, histological properties, and biochemical properties were then assessed. RESULTS Explants exhibited a dose-dependent decrease in mean tensile Young's modulus with increasing bupivacaine concentration (9.86 MPa in the controls, 6.48 MPa in the 0.25% bupivacaine group [P = 0.048], and 4.72 MPa in the 0.50% bupivacaine group [P = 0.005]). Consistent with these results, collagen content and collagen crosslinking decreased with bupivacaine exposure as measured by mass spectrometry. Compressive properties of the explants were unaffected by bupivacaine exposure. Explants also exhibited a trend toward dose-dependent decreases in viability (51.2% for the controls, 47.3% for the 0.25% bupivacaine-exposed group, and 37.0% for the 0.50% bupivacaine-exposed group [P = 0.072]). CONCLUSIONS Three weeks after 1-hour bupivacaine exposure, the tensile properties of bovine cartilage explants were significantly decreased, while the compressive properties remained unaffected. These decreases in tensile properties corresponded with reductions in collagen content and crosslinking of collagen fibers. Physicians should be judicious regarding the intra-articular administration of bupivacaine in native joints.
Collapse
Affiliation(s)
- Kylie T. Callan
- University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Gaston Otarola
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Wendy E. Brown
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | | | - Dean Wang
- University of California, Irvine School of Medicine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Orthopaedic Surgery, University of California Irvine Health, Orange, CA, USA
| |
Collapse
|
3
|
Lehmenkötter N, Greven J, Hildebrand F, Kobbe P, Eschweiler J. Electrical Stimulation of Mesenchymal Stem Cells as a Tool for Proliferation and Differentiation in Cartilage Tissue Engineering: A Scaffold-Based Approach. Bioengineering (Basel) 2024; 11:527. [PMID: 38927763 PMCID: PMC11201185 DOI: 10.3390/bioengineering11060527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Electrical stimulation (ES) is a widely discussed topic in the field of cartilage tissue engineering due to its ability to induce chondrogenic differentiation (CD) and proliferation. It shows promise as a potential therapy for osteoarthritis (OA). In this study, we stimulated mesenchymal stem cells (MSCs) incorporated into collagen hydrogel (CH) scaffolds, consisting of approximately 500,000 cells each, for 1 h per day using a 2.5 Vpp (119 mV/mm) 8 Hz sinusoidal signal. We compared the cell count, morphology, and CD on days 4, 7, and 10. The results indicate proliferation, with an increase ranging from 1.86 to 9.5-fold, particularly on day 7. Additionally, signs of CD were observed. The stimulated cells had a higher volume, while the stimulated scaffolds showed shrinkage. In the ES groups, up-regulation of collagen type 2 and aggrecan was found. In contrast, SOX9 was up-regulated in the control group, and MMP13 showed a strong up-regulation, indicating cell stress. In addition to lower stress levels, the control groups also showed a more spheroidic shape. Overall, scaffold-based ES has the potential to achieve multiple outcomes. However, finding the appropriate stimulation pattern is crucial for achieving successful chondrogenesis.
Collapse
Affiliation(s)
- Nicolas Lehmenkötter
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Johannes Greven
- Department of Thoracic Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Philipp Kobbe
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Straße 165, 06112 Halle (Saale), Germany; (P.K.); (J.E.)
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany
| | - Jörg Eschweiler
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle, Merseburger Straße 165, 06112 Halle (Saale), Germany; (P.K.); (J.E.)
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Shi F, Wang Y, Chang Y, Liu K, Xue C. Establishment of a targeted proteomics method for the quantification of collagen chain: Revealing the chain stoichiometry of heterotypic collagen fibrils in sea cucumber. Food Chem 2024; 433:137335. [PMID: 37678116 DOI: 10.1016/j.foodchem.2023.137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Collagen is the most abundant and important structural biomacromolecule in sea cucumbers. The sea cucumber collagen fibrils were previously confirmed to be heterotypic, nevertheless, the stoichiometry of collagen α-chains governing the complexity of collagen fibrils is still poorly understood. Herein, four representative collagen α-chains in sea cucumber including two clade A fibrillar collagens, one clade B fibrillar collagen, and one fibril-associated collagen with interrupted triple helices were selected. After the screening of signature peptides and optimization of multiple reaction monitoring (MRM) acquisition parameters including fragmentation, collision energy, and ion transition, a feasible MRM-based method was established. Consequently, the stoichiometry of the four collagen chains was determined to be approximately 100:54:3:4 based on the method. The assembly forms of sea cucumber collagen fibrils were further hypothesized according to the chain stoichiometry. This study facilitated the quantification of collagen and understanding of the collagen constituents in sea cucumber.
Collapse
Affiliation(s)
- Feifei Shi
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao 266237, China.
| | - Kaimeng Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
5
|
Fackler NP, Donahue RP, Bielajew BJ, Amirhekmat A, Hu JC, Athanasiou KA, Wang D. Characterization of the Age-Related Differences in Porcine Acetabulum and Femoral Head Articular Cartilage. Cartilage 2023:19476035231214724. [PMID: 38018451 DOI: 10.1177/19476035231214724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE The use of porcine animal models for cartilage injury has increased recently due to their similarity with humans with regard to cartilage thickness, limited intrinsic healing of chondral defects, and joint loading biomechanics. However, variations in the mechanical and biochemical properties of porcine hip articular cartilage among various tissue ages and weightbearing (WB) regions are still unknown. This study's aim was to characterize the mechanical and biochemical properties of porcine hip articular cartilage across various ages and WB regions. METHODS Articular cartilage explants were harvested from WB and non-weightbearing (NWB) surfaces of the femoral head and acetabulum of domesticated pigs (Sus scrofa domesticus) at fetal (gestational age: 80 days), juvenile (6 months), and adult (2 years) ages. Explants underwent compressive stress-relaxation mechanical testing, biochemical analysis for total collagen and glycosaminoglycan (GAG) content, and histological staining. RESULTS Juvenile animals consistently had the highest mechanical properties, with 2.2- to 7.6-time increases in relaxation modulus, 1.3- to 2.3-time increases in instantaneous modulus, and 4.1- to 14.2-time increases in viscosity compared with fetal cartilage. Mechanical properties did not significantly differ between the WB and NWB regions. Collagen content was highest in the NWB regions of the juvenile acetabulum (65.3%/dry weight [DW]) and femoral head (75.4%/DW) cartilages. GAG content was highest in the WB region of the juvenile acetabulum (23.7%/DW) and the WB region of the fetal femoral head (27.5%/DW) cartilages. Histological staining for GAG and total collagen content followed the trends from the quantitative biochemical assays. CONCLUSION This study provides a benchmark for the development and validation of preclinical porcine models for hip cartilage pathologies.
Collapse
Affiliation(s)
- Nathan P Fackler
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Ryan P Donahue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Arya Amirhekmat
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Bielajew BJ, Nordberg RC, Hu JC, Athanasiou KA, Eleswarapu SV. Tissue anisotropy and collagenomics in porcine penile tunica albuginea: Implications for penile structure-function relationships and tissue engineering. Acta Biomater 2023; 169:130-137. [PMID: 37579910 PMCID: PMC11520779 DOI: 10.1016/j.actbio.2023.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
The tunica albuginea (TA) of the penis is an elastic layer that serves a structural role in penile erection. Disorders affecting the TA cause pain, deformity, and erectile dysfunction. There is a substantial clinical need for engineered replacements of TA, but data are scarce on the material properties and biochemical composition of healthy TA. The objective of this study was to assess tissue organization, protein content, and mechanical properties of porcine TA to establish structure-function relationships and design criteria for tissue engineering efforts. TA was isolated from six pigs and subjected to histomorphometry, quantification of collagen content and pyridinoline crosslinks, bottom-up proteomics, and tensile mechanical testing. Collagen was 20 ± 2%/wet weight (WW) and 53 ± 4%/dry weight (DW). Pyridinoline content was 426 ±131 ng/mg WW, 1011 ± 190 ng/mg DW, and 45 ± 8 mmol/mol hydroxyproline. Bottom-up proteomics identified 14 proteins with an abundance of >0.1% of total protein. The most abundant collagen subtype was type I, representing 95.5 ± 1.5% of the total protein in the samples. Collagen types III, XII, and VI were quantified at 1.7 ± 1.0%, 0.8 ± 0.2%, and 0.4 ± 0.2%, respectively. Tensile testing revealed anisotropy: Young's modulus was significantly higher longitudinally than circumferentially (60 ± 18 MPa vs. 8 ± 5 MPa, p < 0.01), as was ultimate tensile strength (16 ± 4 MPa vs. 3 ± 3 MPa, p < 0.01). Taken together, the tissue mechanical and compositional data obtained in this study provide important benchmarks for the development of TA biomaterials. STATEMENT OF SIGNIFICANCE: The tunica albuginea of the penis serves an important structural role in physiologic penile erection. This tissue can become damaged by disease or trauma, leading to pain and deformity. Treatment options are limited. Little is known about the precise biochemical composition and biomechanical properties of healthy tunica albuginea. In this study, we characterize the tissue using proteomic analysis and tensile testing to establish design parameters for future tissue engineering efforts. To our knowledge, this is the first study to quantify tissue anisotropy and to use bottom-up proteomics to characterize the composition of penile tunica albuginea.
Collapse
Affiliation(s)
- Benjamin J Bielajew
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Rachel C Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Sriram V Eleswarapu
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Brown WE, Lavernia L, Bielajew BJ, Hu JC, Athanasiou KA. Human nasal cartilage: Functional properties and structure-function relationships for the development of tissue engineering design criteria. Acta Biomater 2023; 168:113-124. [PMID: 37454708 DOI: 10.1016/j.actbio.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Nose reconstruction often requires scarce cartilage grafts. Nasal cartilage properties must be determined to serve as design criteria for engineering grafts. Thus, mechanical and biochemical properties were obtained in multiple locations of human nasal septum, upper lateral cartilage (ULC), and lower lateral cartilage (LLC). Within each region, no statistical differences among locations were detected, but anisotropy at some septum locations was noted. In the LLC, the tensile modulus and ultimate tensile strength (UTS) in the inferior-superior direction were statistically greater than in the anterior-posterior direction. Cartilage from all regions exhibited hyperelasticity in tension, but regions varied in degree of hyalinicity (i.e., Col II:Col I ratio). The septum contained the most collagen II and least collagen I and III, making it more hyaline than the ULC and LLC. The septum had a greater aggregate modulus, UTS, and lower total collagen/wet weight (Col/WW) than the ULC and LLC. The ULC had greater tensile modulus, DNA/WW, and lower glycosaminoglycan/WW than the septum and LLC. The ULC had a greater pyridinoline/Col than the septum. Histological staining suggested the presence of chondrons in all regions. In the ULC and LLC, tensile modulus correlated with total collagen content, while aggregate modulus correlated with pyridinoline content and weakly with pentosidine content. However, future studies should be performed to validate these proposed structure-function relationships. This study of human nasal cartilage provides 1) crucial design criteria for nasal cartilage tissue engineering efforts, 2) quantification of major and minor collagen subtypes and crosslinks, and 3) structure-function relationships. Surprisingly, the large mechanical properties found, particularly in the septum, suggests that nasal cartilage may experience higher-than-expected mechanical loads. STATEMENT OF SIGNIFICANCE: While tissue engineering holds promise to generate much-needed cartilage grafts for nasal reconstruction, little is known about nasal cartilage from an engineering perspective. In this study, the mechanical and biochemical properties of the septum, upper lateral cartilage (ULC), and lower lateral cartilage (LLC) were evaluated using cartilage-specific methods. For the first time in this tissue, all major and minor collagens and collagen crosslinks were measured, demonstrating that the septum was more hyaline than the ULC and LLC. Additionally, new structure-function relationships in the ULC and LLC were identified. This study greatly expands upon the quantitative understanding of human nasal cartilage and provides crucial engineering design criteria for much-needed nasal cartilage tissue engineering efforts.
Collapse
Affiliation(s)
- Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Laura Lavernia
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Salinas EY, Otarola GA, Kwon H, Wang D, Hu JC, Athanasiou KA. Topographical Characterization of the Young, Healthy Human Femoral Medial Condyle. Cartilage 2023; 14:338-350. [PMID: 36537020 PMCID: PMC10601569 DOI: 10.1177/19476035221141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The medial femoral condyle of the knee exhibits some of the highest incidences of chondral degeneration. However, a dearth of healthy human tissues has rendered it difficult to ascertain whether cartilage in this compartment possesses properties that predispose it to injuries. Assessment of young, healthy tissue would be most representative of the tissue's intrinsic properties. DESIGN This work examined the topographical differences in tribological, tensile, and compressive properties of young (n = 5, 26.2 ± 5.6 years old), healthy, human medial femoral condyles, obtained from viable allograft specimens. Corresponding to clinical incidences of pathology, it was hypothesized that the lowest mechanical properties would be found in the posterior region of the medial condyle, and that tissue composition would correspond to the established structure-function relationships of cartilage. RESULTS Young's modulus, ultimate tensile strength, aggregate modulus, and shear modulus in the posterior region were 1.0-, 2.8-, 1.1-, and 1.0-fold less than the values in the anterior region, respectively. Surprisingly, although glycosaminoglycan content is thought to correlate with compressive properties, in this study, the aggregate and shear moduli correlated more robustly to the amount of pyridinoline crosslinks per collagen. Also, the coefficient of friction was anisotropic and ranged 0.22-0.26 throughout the condyle. CONCLUSION This work showed that the posteromedial condyle displays lower tensile and compressive properties, which correlate to collagen crosslinks and may play a role in this region's predisposition to injuries. Furthermore, new structure-function relationships may need to be developed to account for the role of collagen crosslinks in compressive properties.
Collapse
Affiliation(s)
- Evelia Y. Salinas
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Gaston A. Otarola
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Heenam Kwon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
- Department of Orthopaedic Surgery, University of California Irvine Health, Orange, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | | |
Collapse
|
9
|
Donahue RP, Kallins EG, Hu JC, Athanasiou KA. Characterization of the Temporomandibular Joint Disc Complex in the Yucatan Minipig. Tissue Eng Part A 2023; 29:439-448. [PMID: 37073459 PMCID: PMC10440658 DOI: 10.1089/ten.tea.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
The temporomandibular joint (TMJ) disc complex (i.e., the TMJ disc and its six attachments) is crucial to everyday functions such as mastication and speaking. The TMJ can be afflicted by many conditions, including disc displacement and defects. Pathologies of the TMJ disc complex most commonly present first as anterior disc displacement, which the field hypothesizes may implicate the two posterior attachments. As a result of anterior disc displacement, defects may develop in the lateral disc complex. Tissue engineering is poised to improve treatment paradigms for these indications of the TMJ disc complex by engineering biomimetic implants, but, first, gold-standard design criteria for such implants should be established through characterization studies. This study's objective was to characterize the structural, mechanical, biochemical, and crosslinking differences among the two posterior attachments and the lateral disc in the Yucatan minipig, a well-accepted TMJ animal model. In tension, it was found that the posterior inferior attachment (PIA) was significantly stiffer and stronger by 2.13 and 2.30 times, respectively, than the posterior superior attachment (PSA). It was found that collagen in both attachments was primarily aligned mediolaterally; however, the lateral disc was much more aligned and anisotropic than either attachment. Among the three locations, the PSA exhibited the greatest degree of heterogeneity and highest proportion of fat vacuoles. The PIA and lateral disc were 1.93 and 1.91 times more collagenous, respectively, by dry weight (DW) than the PSA. The PIA also exhibited 1.78 times higher crosslinking per DW than the PSA. Glycosaminoglycan per DW was significantly higher in the lateral disc by 1.48 and 5.39 times than the PIA and PSA, respectively. Together, these results establish design criteria for tissue-engineering of the TMJ disc complex and indicate that the attachments are less fibrocartilaginous than the disc, while still significantly contributing to the mechanical stability of the TMJ disc complex during articulation. These results also support the biomechanical function of the PIA and PSA, suggesting that the stiffer PIA anchors the disc to the mandibular condyle during articulation, while the softer PSA serves to allow translation over the articular eminence. Impact Statement Characterization of the temporomandibular joint (TMJ) disc complex (i.e., the disc and its attachments) has important implications for those aiming to tissue-engineer functional replacements and can help elucidate its biomechanical function. For example, the findings shown here suggest that the stiffer posterior inferior attachment anchors the disc during articulation, while the softer posterior superior attachment allows translation over the articular eminence.
Collapse
Affiliation(s)
- Ryan P. Donahue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Eston G. Kallins
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
10
|
Upadhyay U, Kolla S, Chelluri LK. Extracellular matrix composition analysis of human articular cartilage for the development of organ-on-a-chip. Biochem Biophys Res Commun 2023; 667:81-88. [PMID: 37209566 DOI: 10.1016/j.bbrc.2023.04.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Articular cartilage has a complex extracellular matrix (ECM) that provides it a defined architecture for its load-bearing properties. The complete understanding of ECM components is imperative for developing biomimetic organ-on-a-chip tissue construct. OBJECTIVE This study aimed to decellularize and characterize the ECM for its protein profiling to generate a niche for enhanced chondrocyte proliferation. METHODS Articular cartilage scrapings were subjected to mechanical and collagenase digestion, followed by sodium dodecyl sulfate (SDS) treatment for 8 h and 16 h. The de-cellularization efficiency was confirmed by hematoxylin & eosin, alcian blue, masson's trichrome staining, and scanning electron microscopy (SEM). The ECM protein profile was quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a bottom-up approach. RESULTS Histological characterization revealed void lacunae that lacked staining for cellular components. The ECM, sulfated glycosaminoglycan content, and collagen fibers were preserved after 8 h and 16 h of de-cellularization. The SEM ultrastructure images showed that few chondrocytes adhered to the ECM after 8 h and cell-free ECM after 16 h of de-cellularization. LC-MS/MS analysis identified 66 proteins with heterotypic collagen types COL1A1-COL6A1, COL14A1, COL22A1 and COL25A1 showed moderate fold change and expression levels, while COL18A1, COL26A1, chondroitin sulfate, matrix metalloproteinase-9 (MMP9), fibronectin, platelet glycoprotein 1 beta alpha (GP1BA), vimentin, bone morphogenetic protein 6 (BMP6), fibroblast growth factor 4 (FGF4) and growth hormone receptor (GHR) showed maximum fold change and expression levels. CONCLUSIONS The standardized de-cellularization process could preserve majority of ECM components, providing structural integrity and architecture to the ECM. The Identified proteins quantified for their expression levels provided insight into engineering the ECM composition for developing cartilage-on-a-chip.
Collapse
Affiliation(s)
- Upasna Upadhyay
- Stem Cell Unit, Global Medical Education and Research Foundation, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
| | - Saketh Kolla
- Department of Orthopedics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
| | - Lakshmi Kiran Chelluri
- Stem Cell Unit, Global Medical Education and Research Foundation, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India; Advanced Diagnostics & Therapeutics, Gleneagles Global Hospitals, Hyderabad, 500004, India.
| |
Collapse
|
11
|
Bielajew BJ, Donahue RP, Lamkin EK, Hu JC, Hascall VC, Athanasiou KA. Proteomic, mechanical, and biochemical development of tissue-engineered neocartilage. Biomater Res 2022; 26:34. [PMID: 35869489 PMCID: PMC9308280 DOI: 10.1186/s40824-022-00284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The self-assembling process of cartilage tissue engineering is a promising technique to heal cartilage defects, preventing osteoarthritic changes. Given that chondrocytes dedifferentiate when expanded, it is not known if cellular expansion affects the development of self-assembled neocartilage. The objective of this study was to use proteomic, mechanical, and biochemical analyses to quantitatively investigate the development of self-assembled neocartilage derived from passaged, rejuvenated costal chondrocytes. Methods Yucatan minipig costal chondrocytes were used to create self-assembled neocartilage constructs. After 1, 4, 7, 14, 28, 56, or 84 days of self-assembly, constructs were analyzed through a variety of histological, biomechanical, biochemical, and proteomic techniques. Results It was found that temporal trends in neocartilage formation are similar to those seen in native hyaline articular cartilage development. For example, between days 7 and 84 of culture, tensile Young’s modulus increased 4.4-times, total collagen increased 2.7-times, DNA content decreased 69.3%, collagen type II increased 1.5-times, and aggrecan dropped 55.3%, mirroring trends shown in native knee cartilage. Importantly, collagen type X, which is associated with cartilage calcification, remained at low levels (≤ 0.05%) at all neocartilage developmental time points, similar to knee cartilage (< 0.01%) and unlike donor rib cartilage (0.98%). Conclusions In this work, bottom-up proteomics, a powerful tool to interrogate tissue composition, was used for the first time to quantify and compare the proteome of a developing engineered tissue to a recipient tissue. Furthermore, it was shown that self-assembled, costal chondrocyte-derived neocartilage is suitable for a non-homologous approach in the knee. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00284-4.
Collapse
|
12
|
Zhao C, Jia X, Dong F, Zhang M, Li T, Wang H. Therapeutic effect of alternating red and blue light irradiation combined with collagen in patients with acne vulgaris and the risk factors of short-term recurrence. Am J Transl Res 2022; 14:7870-7879. [PMID: 36505308 PMCID: PMC9730115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the therapeutic effect of alternating red and blue light irradiation combined with collagen in patients with acne vulgaris and the risk factors of short-term recurrence. METHOD A retrospective analysis was conducted on 105 patients with acne vulgaris treated in Baoji Hospital of Traditional Chinese Medicine from January 2019 to February 2020. 50 patients received conventional treatment (Pumen red and blue light) were taken as the control group, and the other 55 patients treated with collagen dressing on the basis of control group were taken as the research group. Clinical efficacy, changes of serum interleukin-1β (IL-1β) and interleukin-6 (IL-6) before and after treatment, and the occurrence of adverse reactions were compared between the two groups of patients. The scores of inflammatory skin lesions, facial seborrhea scores, stratum corneum water content and transepidermal water loss (TEWL) were compared before and after the treatment. The 1-year review records of patients were queried, and they were divided into a relapse group and a non-relapse group according to the recurrence situation. Logistic regression was used to analyze the risk factors affecting the recurrence of the patients. RESULTS The clinical efficacy of the patients in research group after treatment was significantly higher than that in the control group (P<0.05). IL-1β and IL-6 in the serum of patients after treatment were markedly decreased, and such decline in the research group was more evident after treatment (P<0.05). The incidence of adverse reactions, the scores of inflammatory skin lesions, and facial seborrhea and TEWL in the research group after treatment were all lower than those in the control group (all P<0.05), while the water content of the stratum corneum was higher comparatively (P<0.05). 17 patients were confirmed with recurrence within 1 year after treatment. Logistic regression analysis found that age, monthly income, pre-treatment IL-1β and pre-treatment IL-6 were risk factors for recurrence. CONCLUSION Alternating red and blue light irradiation combined with collagen can improve the treatment efficacy in patients with acne vulgaris. And indexes like age, monthly income, pre-treatment IL-1β and pre-treatment IL-6 are risk factors affecting the recurrence of patients.
Collapse
Affiliation(s)
- Chan Zhao
- Dermatological Department (Department of Cosmetic Dermatology, Department of Surgery of Traditional Chinese Medicine), Baoji Hospital of Traditional Chinese MedicineNo. 43, Baofu Road, Jintai District, Baoji 721000, Shaanxi, China
| | - Xinlei Jia
- Dermatological Department (Department of Cosmetic Dermatology, Department of Surgery of Traditional Chinese Medicine), Baoji Hospital of Traditional Chinese MedicineNo. 43, Baofu Road, Jintai District, Baoji 721000, Shaanxi, China
| | - Fangfang Dong
- Dermatological Department (Department of Cosmetic Dermatology, Department of Surgery of Traditional Chinese Medicine), Shaanxi University of Chinese MedicineShaanxi, China
| | - Min Zhang
- Dermatological Department (Department of Cosmetic Dermatology, Department of Surgery of Traditional Chinese Medicine), Baoji Hospital of Traditional Chinese MedicineNo. 43, Baofu Road, Jintai District, Baoji 721000, Shaanxi, China
| | - Tong Li
- Dermatological Department (Department of Cosmetic Dermatology, Department of Surgery of Traditional Chinese Medicine), Baoji Hospital of Traditional Chinese MedicineNo. 43, Baofu Road, Jintai District, Baoji 721000, Shaanxi, China
| | - Hua Wang
- Dermatological Department (Department of Cosmetic Dermatology, Department of Surgery of Traditional Chinese Medicine), Baoji Hospital of Traditional Chinese MedicineNo. 43, Baofu Road, Jintai District, Baoji 721000, Shaanxi, China
| |
Collapse
|
13
|
Otarola GA, Hu JC, Athanasiou KA. Ion modulatory treatments toward functional self-assembled neocartilage. Acta Biomater 2022; 153:85-96. [PMID: 36113725 PMCID: PMC11575480 DOI: 10.1016/j.actbio.2022.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Signals that recapitulate in vitro the conditions found in vivo, such as hypoxia or mechanical forces, contribute to the generation of tissue-engineered hyaline-like tissues. The cell regulatory processes behind hypoxic and mechanical stimuli rely on ion concentration; iron is required to degrade the hypoxia inducible factor 1a (HIF1α) under normoxia, whereas the initiation of mechanotransduction requires the cytoplasmic increase of calcium concentration. In this work, we propose that ion modulation can be used to improve the biomechanical properties of self-assembled neocartilage constructs derived from rejuvenated expanded minipig rib chondrocytes. The objectives of this work were 1) to determine the effects of iron sequestration on self-assembled neocartilage constructs using two doses of the iron chelator deferoxamine (DFO), and 2) to evaluate the performance of the combined treatment of DFO and ionomycin, a calcium ionophore that triggers cytoplasmic calcium accumulation. This study employed a two-phase approach. In Phase I, constructs treated with a high dose of DFO (100 µM) exhibited an 87% increase in pyridinoline crosslinks, a 57% increase in the Young's modulus, and a 112% increase in the ultimate tensile strength (UTS) of the neotissue. In Phase II, the combined use of both ion modulators resulted in 150% and 176% significant increases in the Young's modulus and UTS of neocartilage constructs, respectively; for the first time, neocartilage constructs achieved a Young's modulus of 11.76±3.29 MPa and UTS of 4.20±1.24 MPa. The results of this work provide evidence that ion modulation can be employed to improve the biomechanical properties in engineered neotissues. STATEMENT OF SIGNIFICANCE: The translation of tissue-engineered products requires the development of strategies capable of producing biomimetic neotissues in a replicable, controllable, and cost-effective manner. Among other functions, Fe2+ and Ca2+ are involved in the control of the hypoxic response and mechanotransduction, respectively. Both stimuli, hypoxia and mechanical forces, are known to favor chondrogenesis. This study utilized ion modulators to improve the mechanical properties self-assembled neocartilage constructs derived from expanded and rejuvenated costal chondrocytes via Fe2+ sequestration and Ca2+ influx, alone or in combination. The results indicate that ion modulation induced tissue maturation and a significant improvement of the mechanical properties, and holds potential as a tool to mitigate the need for bioreactors and engineer hyaline-like tissues.
Collapse
Affiliation(s)
- Gaston A Otarola
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Jerry C Hu
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Kyriacos A Athanasiou
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
14
|
Nordberg RC, Otarola GA, Wang D, Hu JC, Athanasiou KA. Navigating regulatory pathways for translation of biologic cartilage repair products. Sci Transl Med 2022; 14:eabp8163. [PMID: 36001677 PMCID: PMC9918326 DOI: 10.1126/scitranslmed.abp8163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Long-term clinical repair of articular cartilage remains elusive despite advances in cartilage tissue engineering. Only one cartilage repair therapy classified as a "cellular and gene therapy product" has obtained Food and Drug Administration (FDA) approval within the past decade although more than 200 large animal cartilage repair studies were published. Here, we identify the challenges impeding translation of strategies and technologies for cell-based cartilage repair, such as the disconnect between university funding and regulatory requirements. Understanding the barriers to translation and developing solutions to address them will be critical for advancing cell therapy products for cartilage repair to clinical use.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Gaston A Otarola
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA 92868, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
15
|
Jagiełło A, Castillo U, Botvinick E. Cell mediated remodeling of stiffness matched collagen and fibrin scaffolds. Sci Rep 2022; 12:11736. [PMID: 35817812 PMCID: PMC9273755 DOI: 10.1038/s41598-022-14953-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Cells are known to continuously remodel their local extracellular matrix (ECM) and in a reciprocal way, they can also respond to mechanical and biochemical properties of their fibrous environment. In this study, we measured how stiffness around dermal fibroblasts (DFs) and human fibrosarcoma HT1080 cells differs with concentration of rat tail type 1 collagen (T1C) and type of ECM. Peri-cellular stiffness was probed in four directions using multi-axes optical tweezers active microrheology (AMR). First, we found that neither cell type significantly altered local stiffness landscape at different concentrations of T1C. Next, rat tail T1C, bovine skin T1C and fibrin cell-free hydrogels were polymerized at concentrations formulated to match median stiffness value. Each of these hydrogels exhibited distinct fiber architecture. Stiffness landscape and fibronectin secretion, but not nuclear/cytoplasmic YAP ratio differed with ECM type. Further, cell response to Y27632 or BB94 treatments, inhibiting cell contractility and activity of matrix metalloproteinases, respectively, was also dependent on ECM type. Given differential effect of tested ECMs on peri-cellular stiffness landscape, treatment effect and cell properties, this study underscores the need for peri-cellular and not bulk stiffness measurements in studies on cellular mechanotransduction.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Ulysses Castillo
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA
| | - Elliot Botvinick
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA.
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, 92612, USA.
- Department of Surgery, University of California Irvine, 333 City Boulevard, Suite 700, Orange, CA, 92868, USA.
- The Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, 92697-2730, USA.
| |
Collapse
|
16
|
Bielajew BJ, Donahue RP, Lamkin EK, Hu JC, Hascall VC, Athanasiou KA. Proteomic, mechanical, and biochemical characterization of cartilage development. Acta Biomater 2022; 143:52-62. [PMID: 35235865 DOI: 10.1016/j.actbio.2022.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023]
Abstract
The objective of this work is to examine the development of porcine cartilage by analyzing its mechanical properties, biochemical content, and proteomics at different developmental stages. Cartilage from the knees of fetal, neonatal, juvenile, and mature pigs was analyzed using histology, mechanical testing, biochemical assays, fluorophore-assisted carbohydrate electrophoresis, and bottom-up proteomics. Mature cartilage has 2.2-times the collagen per dry weight of fetal cartilage, and fetal cartilage has 2.1-times and 17.9-times the glycosaminoglycan and DNA per dry weight of mature cartilage, respectively. Tensile and compressive properties peak in the juvenile stage, with a tensile modulus 4.7-times that of neonatal. Proteomics analysis reveals increases in collagen types II and III, while collagen types IX, XI, and XIV, and aggrecan decrease with age. For example, collagen types IX and XI decrease 9.4-times and 5.1-times, respectively from fetal to mature. Mechanical and biochemical measurements have their greatest developmental changes between the neonatal and juvenile stages, where mechanotransduction plays a major role. Bottom-up proteomics serves as a powerful tool for tissue characterization, showing results beyond those of routine biochemical analysis. For example, proteomic analysis shows significant drops in collagen types IX, XI, and XIV throughout development, which shows insight into the permanence of cartilage's matrix. Changes in overall glycosaminoglycan content compared to aggrecan and link protein indicate non-enzymatic degradation of aggrecan structures or hyaluronan in mature cartilage. In addition to tissue characterization, bottom-up proteomics techniques are critical in tissue engineering efforts toward repair or regeneration of cartilage in animal models. STATEMENT OF SIGNIFICANCE: In this study, the development of porcine articular cartilage is interrogated through biomechanical, biochemical, and proteomic techniques, to determine how mechanics and extracellular matrix composition change from fetal to mature cartilage. For the first time, a bottom-up proteomics approach is used to reveal a wide variety of protein changes through aging; for example, the collagen subtype composition of the cartilage increases in collagen types II and III, and decreases in collagen types IX, XI, and XIV. This analysis shows that bottom-up proteomics is a critical tool in tissue characterization, especially toward developing a deeper understanding of matrix composition and development in tissue engineering studies.
Collapse
|
17
|
Gonzalez-Leon EA, Hu JC, Athanasiou KA. Yucatan Minipig Knee Meniscus Regional Biomechanics and Biochemical Structure Support its Suitability as a Large Animal Model for Translational Research. Front Bioeng Biotechnol 2022; 10:844416. [PMID: 35265605 PMCID: PMC8899164 DOI: 10.3389/fbioe.2022.844416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Knee meniscus injuries are the most frequent causes of orthopedic surgical procedures in the U.S., motivating tissue engineering attempts and the need for suitable animal models. Despite extensive use in cardiovascular research and the existence of characterization data for the menisci of farm pigs, the farm pig may not be a desirable preclinical model for the meniscus due to rapid weight gain. Minipigs are conducive to in vivo experiments due to their slower growth rate than farm pigs and similarity in weight to humans. However, characterization of minipig knee menisci is lacking. The objective of this study was to extensively characterize structural and functional properties within different regions of both medial and lateral Yucatan minipig knee menisci to inform this model’s suitability as a preclinical model for meniscal therapies. Menisci measured 23.2–24.8 mm in anteroposterior length (33–40 mm for human), 7.7–11.4 mm in width (8.3–14.8 mm for human), and 6.4–8.4 mm in peripheral height (5–7 mm for human). Per wet weight, biochemical evaluation revealed 23.9–31.3% collagen (COL; 22% for human) and 1.20–2.57% glycosaminoglycans (GAG; 0.8% for human). Also, per dry weight, pyridinoline crosslinks (PYR) were 0.12–0.16% (0.12% for human) and, when normalized to collagen content, reached as high as 1.45–1.96 ng/µg. Biomechanical testing revealed circumferential Young’s modulus of 78.4–116.2 MPa (100–300 MPa for human), circumferential ultimate tensile strength (UTS) of 18.2–25.9 MPa (12–18 MPa for human), radial Young’s modulus of 2.5–10.9 MPa (10–30 MPa for human), radial UTS of 2.5–4.2 MPa (1–4 MPa for human), aggregate modulus of 157–287 kPa (100–150 kPa for human), and shear modulus of 91–147 kPa (120 kPa for human). Anisotropy indices ranged from 11.2–49.4 and 6.3–11.2 for tensile stiffness and strength (approximately 10 for human), respectively. Regional differences in mechanical and biochemical properties within the minipig medial meniscus were observed; specifically, GAG, PYR, PYR/COL, radial stiffness, and Young’s modulus anisotropy varied by region. The posterior region of the medial meniscus exhibited the lowest radial stiffness, which is also seen in humans and corresponds to the most prevalent location for meniscal lesions. Overall, similarities between minipig and human menisci support the use of minipigs for meniscus translational research.
Collapse
|
18
|
Jiang YH, Lou YY, Li TH, Liu BZ, Chen K, Zhang D, Li T. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering. Am J Transl Res 2022; 14:1146-1159. [PMID: 35273719 PMCID: PMC8902548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Cartilage defects are one of the hardest injures to cure, given the limited regenerative ability of cartilage tissues. Moreover, cartilage defects affect an increasing number of people worldwide. Therefore, scientists have attempted to develop effective strategies to repair cartilage defects in recent years. Recent advances in tissue engineering have led to the strategies for inducing cartilage regeneration. Among the emerging strategies, scaffolds are commonly used in cartilage tissue engineering (CTE) as they provide favorable environment for the growth and proliferation of chondrocytes. An ideal scaffolding material should be highly biocompatible. Type I collagen is one such material, which is widely used in CTE. However, type I collagen has poor mechanical properties and stability, which limit its use. Cross-linking is a simple method known to improve degradability, biological and mechanical properties of biomaterials by enhancing chemical and physical interactions between polymers. Cross-linking can be induced through chemical, physical or biological processes. In this review, we present cross-linking methods that can enhance the mechanical strength of type I collagen for CTE and highlight future directions in this field.
Collapse
|