1
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
2
|
Zhang Y, Shan C, Zhang X, Liu Y, Xia Y, Wang Y. Cardiovascular adverse events associated with targeted therapies for multiple myeloma: a pharmacovigilance study. Front Immunol 2024; 15:1400101. [PMID: 39391316 PMCID: PMC11464337 DOI: 10.3389/fimmu.2024.1400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Multiple myeloma (MM) is a leading cause of hematopoietic cancer-related mortality, accounting for 20% of deaths. MM-targeted therapies have demonstrated efficacy, and since 2015, the United States Food and Drug Administration (FDA) has approved five targeted drugs. However, their cardiovascular safety has not been comprehensively evaluated. Objective This study aimed to investigate the association between MM-targeted therapy and cardiovascular adverse events (AEs). Methods Disproportionality analysis was conducted on reports from the FDA AE Reporting System database from 2014 to the second quarter of 2023. Cardiovascular AEs were grouped into nine narrow categories using the Standardized Medical Dictionary for Regulatory Activities Queries (SMQs). Results A total of 3,228 cardiovascular AE cases involving MM-targeted therapy were extracted and analyzed. Significant disproportionality was identified for daratumumab, elotuzumab, and isatuximab. Among the nine narrow SMQ categories, the three most reported cardiovascular AEs were cardiomyopathy, cardiac arrhythmias, and embolic and thrombotic events. Noninfectious myocarditis/pericarditis, cardiac arrhythmias, and embolic and thrombotic events exhibited the strongest signal strengths. The cardiovascular AE risk was higher within the first month and gradually decreased thereafter; however, it increased rapidly again after 1 year. This trend was observed for all cardiovascular AEs. The Kaplan-Meier curve and the log-rank test revealed that isatuximab and elotuzumab exhibited a significantly lower probability of cardiovascular AEs than daratumumab (p < 0.001). Conclusions MM-targeted therapy is significantly associated with an increased risk of previously unknown cardiovascular AE profiles, with the range and onset differing among various drugs, thereby warranting specific monitoring and appropriate management.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chang Shan
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinxin Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
4
|
Panaampon J, Okada S. Promising immunotherapeutic approaches for primary effusion lymphoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:699-713. [PMID: 38966176 PMCID: PMC11220309 DOI: 10.37349/etat.2024.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 07/06/2024] Open
Abstract
Primary effusion lymphoma (PEL) is a large B-cell neoplasm usually presenting as a serious effusion in body cavities without detectable tumor masses. It is an AIDS-related non-Hodgkin's lymphoma (HL) with human herpes virus 8 (HHV8)/Kaposi sarcoma-associated herpes virus (KSHV) infection. A combination antiretroviral therapy (cART) prolongs the lifespan of AIDS and AIDS-related malignant lymphoma patients, but PEL continues to have a dismal prognosis. PEL showed disappointing outcomes with standard chemotherapy such as CHOP or CHOP-like regimens. A PEL status highlights the urgent need for new therapeutic approaches and treatment strategies and improve clinical outcomes. This review discusses the current knowledge and some recent clinical trials for PEL in the platform of immunotherapy as well as promising future immunotherapeutic approaches for PEL.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
5
|
Zhou X, Xiao X, Kortuem KM, Einsele H. Bispecific Antibodies in the Treatment of Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:361-381. [PMID: 38199897 DOI: 10.1016/j.hoc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The treatment of multiple myeloma (MM) is evolving rapidly. In recent years, T-cell-based novel immunotherapies emerged as new treatment strategies for patients with relapsed/refractory MM, including highly effective new options like chimeric antigen receptor (CAR)-modified T cells and bispecific antibodies (bsAbs). Currently, B-cell maturation antigen is the most commonly used target antigen for CAR T-cell and bsAb therapies in MM. Results from different clinical trials have demonstrated promising efficacy and acceptable safety profile of bsAb in RRMM.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Xianghui Xiao
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Klaus Martin Kortuem
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Fu T, Chen Y, Lou L, Li Z, Shi W, Zhang X, Yang J. Risk of atrial fibrillation in patients with multiple myeloma: what is known and directions for future study. Egypt Heart J 2024; 76:14. [PMID: 38300373 PMCID: PMC10834890 DOI: 10.1186/s43044-023-00434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a prevalent hematological tumor, and recent clinical data have highlighted the significance of atrial fibrillation (AF) as a crucial complication affecting the prognosis of MM. This review aims to consolidate findings from published clinical studies, focusing on the epidemiological characteristics of AF in MM patients and the associated risks arising from MM treatments such as autologous hematopoietic stem cell transplantation, proteasome inhibitors, and immunomodulatory agents. MAIN BODY While existing data partially demonstrate a strong correlation between MM and AF, further clinical studies are necessary to comprehensively investigate their association. These studies should encompass various aspects, including the risk of AF resulting from MM treatment, the impact of AF-induced embolic events and heart failure on MM prognosis, as well as the influence of AF management methods like catheter ablation or left atrial appendage closure on MM prognosis. CONCLUSIONS The supplementation of future data will provide more precise guidance for managing MM patients. By incorporating information regarding AF risk associated with MM treatment and examining the effects of AF management strategies on MM prognosis, healthcare professionals can enhance their decision-making process when caring for individuals with MM.
Collapse
Affiliation(s)
- Ting Fu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Cardiology, Yiwu Central Hospital, Jinhua, China
| | - Yuxiao Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lian Lou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhihang Li
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wen Shi
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuan Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Johan MF. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics (Basel) 2023; 13:2328. [PMID: 37510072 PMCID: PMC10378430 DOI: 10.3390/diagnostics13142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
8
|
Wu Y, Shi X, Yao X, Du X. Biological research on the occurrence and development of multiple myeloma and its treatment. Immun Inflamm Dis 2023; 11:e850. [PMID: 37249283 PMCID: PMC10165958 DOI: 10.1002/iid3.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION To review the pathogenesis and treatment of multiple myeloma (MM). MM is a hematological malignancy with abnormal plasma cell proliferation in bone marrow. Due to the emergence of drug resistance, MM is still an incurable malignancy, which requires further exploration of pathogenesis and effective therapeutic targets. METHODS In this paper, the method of literature review is adopted to obtain the information about MM. Based on the literature, comprehensive and systematic review is made. RESULTS MM is a complex pathophysiological process with great heterogeneity, mainly reflected in genomic instability and bone marrow microenvironment. At present, the treatment of MM has made great progress, proteasome inhibitors and immunomodulatory drugs are widely used in clinic. Allogeneic stem cell transplantation may be the only promising cure for MM, and its high transplant-related mortality limits its clinical application. CONCLUSIONS The future of MM treatment lies in the development of more targeted therapies, novel immunotherapies, and a better understanding of the disease's molecular and genetic basis.
Collapse
Affiliation(s)
- Yue Wu
- Department of OrthopaedicsBeijing Chao‐Yang HospitalBeijingChina
| | - Xiangjun Shi
- Department of OrthopaedicsBeijing Chao‐Yang HospitalBeijingChina
| | - Xinchen Yao
- Department of OrthopaedicsBeijing Chao‐Yang HospitalBeijingChina
| | - Xinru Du
- Department of OrthopaedicsBeijing Chao‐Yang HospitalBeijingChina
| |
Collapse
|
9
|
Noori M, Fayyaz F, Rezaei N. Safety and efficacy of Elotuzumab combination therapy for patients with multiple myeloma: A systematic review and meta-analysis. Expert Rev Anticancer Ther 2023; 23:327-338. [PMID: 36638778 DOI: 10.1080/14737140.2023.2169139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE We evaluate the efficacy and safety of Elotuzumab, an immunostimulatory monoclonal antibody, in combination with concomitant treatment regimens for multiple myeloma (MM) patients. RESEARCH DESIGN AND METHODS PubMed, Scopus, Web of Science, and EMBASE databases were searched systematically up to 2 August 2022. RESULTS Five randomized control trials with a total of 1,763 participants were included. Elotuzumab combination therapy improved PFS and OS by 14% (hazard ratio [HR] 0.86) and 20% (HR 0.80), respectively, relative to the non-Elotuzumab regimen. Adding Elotuzumab to Lenalidomide plus Dexamethasone regimen (HR 0.82) or Pomalidomide plus Dexamethasone regimen (HR 0.54) were considered to improve the PFS. Meanwhile, the risk of disease progression was only reduced for patients with relapsed/refractory MM (HR 0.70) but not for newly diagnosed/untreated MM (HR 0.93). Finally, the risk of serious adverse events (RR 1.12) and the risk of infection (RR 1.09) and cardiac disorders (RR 1.32) were higher for the experimental group compared to the control group. CONCLUSIONS Our findings showed that Elotuzumab combination therapy prolonged OS and PFS compared to non-Elotuzumab treatments in patients with MM. However, further investigations are required to establish the most effective combination of the Elotuzumab regimen.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Urology Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Al-Yafeai Z, Ghoweba M, Ananthaneni A, Abduljabar H, Aziz D. Cardiovascular complications of modern multiple myeloma therapy: A pharmacovigilance study. Br J Clin Pharmacol 2023; 89:641-648. [PMID: 35996166 DOI: 10.1111/bcp.15499] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS Multiple myeloma accounts for over 10-15% of haematological malignancies. Continued molecular advances have resulted in the development of new drugs for treatment of multiple myeloma. Four drugs were approved by the Food and Drug Administration (FDA) in 2015, but their safety is not well defined. The aim of this study is to delineate the cardiovascular adverse events of these drugs. METHODS We reviewed the adverse cardiac events of newly approved FDA drugs since 2015 using the US FDA Adverse Events Reporting System (FAERS) database. We calculated the reporting odds ratio (ROR) with 95% confidence interval (CIs) for the drugs that have the highest incidence of cardiovascular adverse events. RESULTS Among the medications that have approved for multiple myeloma between 2015 and 2020, 4 novel drugs showed the highest incidence of cardiotoxicity. ROR (95% CI) for atrial fibrillation due to elotuzumab, ixazomib, daratumumab and panobinostat compared to other FAERS drugs was 5.8 (4.4-7.7), 1.9 (1.5-2.3), 4.8 (4.2-5.6) and 5.7 (4.1-8.1), respectively. The ROR (95% CI) for cardiac failure was 8.2 (6.4-10.5), 4.7 (4.1-5.4), 5.8 (4.9-6.7) and 5.6 (3.8-8.1) and ROR (95% CI) for coronary disease was 2.7 (1.9-3.9), 2.7 (2.3-3.2), 2.3 (1.9-2.8) and 4.6 (3.2-6.6) due to elotuzumab, ixazomib, daratumumab and panobinostat compared to all other drugs in FAERS. CONCLUSION Our results demonstrated that certain newly approved antimyeloma therapies are significantly associated with previously unknown cardiotoxicity. These results warrant further studies and highlight the importance of considering the cardiac history of patients with multiple myeloma when utilizing these novel agents.
Collapse
Affiliation(s)
- Zaki Al-Yafeai
- Department of Internal Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Mohamed Ghoweba
- Department of Internal Medicine, CHRISTUS Good Shepherd/Texas A&M College of Medicine, Longview, TX, USA
| | - Anil Ananthaneni
- Department of Internal Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Hamzah Abduljabar
- Department of Internal Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - David Aziz
- Department of Internal Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| |
Collapse
|
11
|
Liu E, Becker N, Sudha P, Dong C, Liu Y, Keats J, Morgan G, Walker BA. Alternative splicing in multiple myeloma is associated with the non-homologous end joining pathway. Blood Cancer J 2023; 13:16. [PMID: 36670103 PMCID: PMC9859791 DOI: 10.1038/s41408-023-00783-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Alternative splicing plays a pivotal role in tumorigenesis and proliferation. However, its pattern and pathogenic role has not been systematically analyzed in multiple myeloma or its subtypes. Alternative splicing profiles for 598 newly diagnosed myeloma patients with comprehensive genomic annotation identified primary translocations, 1q amplification, and DIS3 events to have more differentially spliced events than those without. Splicing levels were correlated with expression of splicing factors. Moreover, the non-homologous end joining pathway was an independent factor that was highly associated with splicing frequency as well as an increased number of structural variants. We therefore identify an axis of high-risk disease encompassing expression of the non-homologous end joining pathway, increase structural variants, and increased alternative splicing that are linked together. This indicates a joint pathogenic role for DNA damage response and alternative RNA processing in myeloma.
Collapse
Affiliation(s)
- Enze Liu
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Nathan Becker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Parvathi Sudha
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Chuanpeng Dong
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jonathan Keats
- Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, USA
| | - Gareth Morgan
- NYU Langone Medical Center, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Bertuglia G, Cani L, Larocca A, Gay F, D'Agostino M. Normalization of the Immunological Microenvironment and Sustained Minimal Residual Disease Negativity: Do We Need Both for Long-Term Control of Multiple Myeloma? Int J Mol Sci 2022; 23:15879. [PMID: 36555520 PMCID: PMC9781462 DOI: 10.3390/ijms232415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the treatment landscape for multiple myeloma (MM) has progressed significantly, with the introduction of several new drug classes that have greatly improved patient outcomes. At present, it is well known how the bone marrow (BM) microenvironment (ME) exerts an immunosuppressive action leading to an exhaustion of the immune system cells and promoting the proliferation and sustenance of tumor plasma cells. Therefore, having drugs that can reconstitute a healthy BM ME can improve results in MM patients. Recent findings clearly demonstrated that achieving minimal residual disease (MRD) negativity and sustaining MRD negativity over time play a pivotal prognostic role. However, despite the achievement of MRD negativity, patients may still relapse. The understanding of immunologic changes in the BM ME during treatment, complemented by a deeper knowledge of plasma cell genomics and biology, will be critical to develop future therapies to sustain MRD negativity over time and possibly achieve an operational cure. In this review, we focus on the components of the BM ME and their role in MM, on the prognostic significance of MRD negativity and, finally, on the relative contribution of tumor plasma cell biology and BM ME to long-term disease control.
Collapse
Affiliation(s)
- Giuseppe Bertuglia
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Lorenzo Cani
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Alessandra Larocca
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesca Gay
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
13
|
Panaampon J, Kariya R, Okada S. Elotuzumab, a potential therapeutic humanized anti-SLAMF7 monoclonal antibody, enhances natural killer cell-mediated killing of primary effusion lymphoma cells. Cancer Immunol Immunother 2022; 71:2497-2509. [PMID: 35262781 PMCID: PMC10991573 DOI: 10.1007/s00262-022-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Primary effusion lymphoma (PEL) is a rare aggressive B-cell non-Hodgkin's lymphoma with no optimal treatment. Signaling lymphocytic activation molecule-F7 (SLAMF7, CD319), a type I transmembrane glycoprotein highly expressed in multiple myeloma (MM), represents a promising target for mAb-based immunotherapy. SLAMF7 also expresses on several hematopoietic lineages including NK cells. Elotuzumab (Elo), a humanized antibody targeting SLAMF7, is approved by FDA for MM treatment. In this study, we analyzed the expression of SLAMF7 on seven PEL cell lines. All PEL cells and NK cells showed high expression of SLAMF7. NK cells were enriched from PBMCs of healthy donors by MACS and expanded by co-culturing with MHC-class I negative K562 cells in the presence of IL-2 and IL-15. Expanded NK cells showed direct killing, and Elo demonstrated potent ADCC against PEL in an Effector:Target (E:T) dependent manner. Surface expression of CD107a on NK cells also increased in the process of ADCC. We also examined SLAMF7 expression of NK subpopulations and found that the CD56+CD16+ NK subpopulation demonstrated the highest SLAMF7 expression. Full-length-Elo but not F(ab')2-Elo exerts direct engagement to the expressing SLAMF7 on NK cells, promotes CD107a expression, and further augments NK cytotoxicity toward PEL. Elo enhanced survival of PEL-bearing immunodeficient mice with adoptive transfer of human NK cells. Taken together, our results show that NK cells play roles in PEL killing, and Elo causes ADCC/SLAMF7 ligation to boost NK cytotoxicity against PEL, offering promising preclinical evidence of Elo as a therapeutic monoclonal antibody treatment for PEL.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
14
|
Epstein M, Morrison C. Practical guidance for new multiple myeloma treatment regimens: A nursing perspective. Semin Oncol 2022; 49:103-117. [PMID: 35197198 PMCID: PMC9149030 DOI: 10.1053/j.seminoncol.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Abstract
As is the case for solid tumors, treatment paradigms have shifted from non-specific chemotherapeutic agents towards novel targeted drugs in the treatment of patients with multiple myeloma (MM). Currently, multiple targeted therapies are available to treat patients augmenting the arsenal of modalities which also includes chemotherapy, immunotherapy, radiation therapy, hematopoietic stem cell transplantation (HSCST) and chimeric antigen T-cell therapy (CAR-T). These novel, targeted agents have dramatically increased optimism for patients, who may now be treated over many years with successive regimens. As fortunate as we are to have these new therapies available for our patients, this advantage is juxtaposed with the challenges involved with delivering them safely. While each class of agents has demonstrated efficacy, in terms of response rates and survival, they also exert class effects which pose risks for toxicity. In addition, newer generation agents within the classes often have slightly different toxicity profiles than did their predecessors. These factors must be addressed, and their risks mitigated by the multidisciplinary team. This review presents a summary of the evolution of drug development for MM. For each targeted agent, the efficacy data from pivotal trials and highlights of the risks that were demonstrated in trials, as well as during post-marketing surveillance, are presented. Specific risks associated with agents within the classes, that are not shared with all new class members, are described. A table presenting these potential risks, with recommended nursing actions to mitigate toxicity, is provided as a quick reference that nurses may use during the planning, and provision, of patient care.
Collapse
Affiliation(s)
- Monica Epstein
- National Cancer Institute, Office of Research Nursing, Bethesda, MD.
| | - Candis Morrison
- United States Food and Drug Administration, 10903 New Hampshire Ave, Building 22 Room 2319 Silver Spring Maryland 20993
| |
Collapse
|
15
|
FDA-Approved Drugs for Hematological Malignancies-The Last Decade Review. Cancers (Basel) 2021; 14:cancers14010087. [PMID: 35008250 PMCID: PMC8750348 DOI: 10.3390/cancers14010087] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Hematological malignancies are diseases involving the abnormal production of blood cells. The aim of the study is to collect comprehensive information on new drugs used in the treatment of blood cancers which have introduced into therapy in the last decade. The approved drugs were analyzed for their structures and their biological activity mechanisms. Abstract Hematological malignancies, also referred to as blood cancers, are a group of diseases involving abnormal cell growth and persisting in the blood, lymph nodes, or bone marrow. The development of new targeted therapies including small molecule inhibitors, monoclonal antibodies, bispecific T cell engagers, antibody-drug conjugates, recombinant immunotoxins, and, finally, Chimeric Antigen Receptor T (CAR-T) cells has improved the clinical outcomes for blood cancers. In this review, we summarized 52 drugs that were divided into small molecule and macromolecule agents, approved by the Food and Drug Administration (FDA) in the period between 2011 and 2021 for the treatment of hematological malignancies. Forty of them have also been approved by the European Medicines Agency (EMA). We analyzed the FDA-approved drugs by investigating both their structures and mechanisms of action. It should be emphasized that the number of targeted drugs was significantly higher (46 drugs) than chemotherapy agents (6 drugs). We highlight recent advances in the design of drugs that are used to treat hematological malignancies, which make them more effective and less toxic.
Collapse
|
16
|
Kumar D, Gauthami S, Bayry J, Kaveri SV, Hegde NR. Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclon Antib Immunodiagn Immunother 2021; 40:36-49. [PMID: 33900819 DOI: 10.1089/mab.2021.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dawn of the 20th century saw the formative years of developments in immunology. In particular, immunochemistry, specifically pertaining to antibodies, was extensively studied. These studies laid the foundations for employing antibodies in a variety of ways. Not surprisingly, antibodies have been used for applications ranging from biomedical research to disease diagnostics and therapeutics to evaluation of immune responses during natural infection and those elicited by vaccines. Despite recent advancements in cellular immunology and the excitement of T cell therapy, use of antibodies represents a large proportion of immunotherapeutic approaches as well as clinical interventions. Polyclonal antibodies in the form of plasma or sera continue to be used to treat a number of diseases, including autoimmune disorders, cancers, and infectious diseases. Historically, antisera to toxins have been the longest serving biotherapeutics. In addition, intravenous immunoglobulins (IVIg) have been extensively used to treat not only immunodeficiency conditions but also autoimmune disorders. Beyond the simplistic suppositions of their action, the IVIg have also unraveled the immune regulatory and homeostatic ramifications of their use. The advent of monoclonal antibodies (MAbs), on the other hand, has provided a clear pathway for their development as drug molecules. MAbs have found a clear place in the treatment of cancers and extending lives and have been used in a variety of other conditions. In this review, we capture the important developments in the therapeutic applications of antibodies to alleviate disease, with a focus on some of the recent developments.
Collapse
Affiliation(s)
| | - Sulgey Gauthami
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Bureau India, IFI, New Delhi, India
| | | |
Collapse
|
17
|
Wang H, Shi H, He X, Liao A. Downregulation of Chemokine CCL20 Involved in Myeloma Cells Resistant to Elotuzumab and Lenalidomide. Onco Targets Ther 2021; 14:2789-2795. [PMID: 33907421 PMCID: PMC8071208 DOI: 10.2147/ott.s300328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Few studies have focused on investigating resistance mechanisms in myeloma immunotherapy. This study aimed to explore the relevant factor involved in the resistance of Elotuzumab and lenalidomide. Methods Cell models which are resistant to Elotuzumab and lenalidomide were constructed; different expression genes in U266/WT (UW) and resistant UR, UE, and URE cells were detected by using gene expression microarray. RT-qPCR validated CCL20 mRNA expression of four cell lines and patient samples; bioinformatics analysis of CCL20 expressions in NDMM and RRMM; ELISA detected the presence of CCL20 in the plasma of MM patients; constructed UR mouse xenograft model to explore whether or not CCL20 reverse lenalidomide treatment in vivo. Results Cell models which are resistant to Elotuzumab and lenalidomide (UR, UE, URE) were successfully constructed. CCL20 gene expression decreased in resistant myeloma cell lines and RRMM patients. Furthermore, RRMM patients were found to have lower levels of CCL20 protein in their plasma compared to NDMM. CCL20 increase the sensitivity of drug-resistant myeloma cells to immunomodulatory drugs both in vivo and in vitro. Conclusion The expression of CCL20 was decreased in lenalidomide and Elotuzumab resistant U266 cells and in RRMM patients. CCL20 could therefore possibly increase the sensitivity of lenalidomide and Elotuzumab.
Collapse
Affiliation(s)
- Huihan Wang
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Hua Shi
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xiaowei He
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Aijun Liao
- Haematology Department of Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
18
|
Martino M, Paviglianiti A. An update on B-cell maturation antigen-targeted therapies in Multiple Myeloma. Expert Opin Biol Ther 2021; 21:1025-1034. [PMID: 33412948 DOI: 10.1080/14712598.2021.1872540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: B-cell maturation antigen (BCMA) targeted therapy (BCMA-TT) has emerged as a promising treatment for Multiple Myeloma (MM). the three most common treatment modalities for targeting BCMA are antibody-drug conjugates (ADCs), bispecific antibody constructs, including BiTE (bispecific T-cell engager) immuno-oncology therapies, and chimeric antigen receptor (CAR)-modified T-cell therapy.Areas covered: The review provides an overview of the main published studies on clinical and pre-clinical data from trials using BCMA-TT.Expert opinion: Despite progresses in survival outcomes and the availability of new drugs, MM remains an incurable disease. ADC is a promising antibody-based treatment and Belantamab mafodotin showed an anti-myeloma effect alone or in combination with other drugs. The major issue of ADC is the occurrence of events interfering with the efficacy and the off-target cytotoxicity. Bispecific antibody constructs are off-the-shelf therapies characterized by a potential rapid availability. The most critical limitation of bispecific antibody constructs is their short half-life necessitating prolonged intravenous infusion. CAR-T cells produced unprecedented results in heavily pretreated RRMM. The most common toxicities include neurologic toxicity and cytokine release syndrome, B-cell aplasia, cytopenias, and hypogammaglobulinemia. Further studies are needed to detect which are the eligible patients who could benefit from one treatment more than another.
Collapse
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Annalisa Paviglianiti
- Stem Cell Transplant and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| |
Collapse
|
19
|
Morè S, Petrucci MT, Corvatta L, Fazio F, Offidani M, Olivieri A. Monoclonal Antibodies: Leading Actors in the Relapsed/Refractory Multiple Myeloma Treatment. Pharmaceuticals (Basel) 2020; 13:E426. [PMID: 33260960 PMCID: PMC7760536 DOI: 10.3390/ph13120426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma is a complex hematologic malignancy, and despite a survival improvement related to the growing number of available therapeutic options since 2000s, it remains an incurable disease with most patients experiencing relapse. However, therapeutic options for this disease are constantly evolving and immunotherapy is becoming the mainstay of the therapeutic armamentarium of Multiple Myeloma (MM), starting with monoclonal antibodies (MoAbs) as elotuzumab, daratumumab and isatuximab. Elotuzumab, the first in class targeting SLAMF7, in combination with lenalidomide and dexamethasone and daratumumab, directed against CD38, in combination with Rd and with bortezomib and dexamethasone (Vd), have been approved for the treatment of relapsed/refractory MM (RRMM) after they demonstrated excellent efficacy. More recently, another anti-CD38 MoAb named isatuximab was approved by FDA in combination with pomalidomide-dexamethasone (Pd) in the same setting. Many phase II and III trials with regimens containing these MoAbs are ongoing, and when available, preliminary data are very encouraging. In this review we will describe the results of major clinical studies that have been conducted with elotuzumab, daratumumab and isatuximab in RRMM, focusing on phase III trials. Moreover, we will summarized the emerging MoAbs-based combinations in the RRMM landscape.
Collapse
Affiliation(s)
- Sonia Morè
- Clinica di Ematologia, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, 60126 Ancona, Italy; (S.M.); (A.O.)
| | - Maria Teresa Petrucci
- Sezione di Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Azienda Ospedaliera Policlinico Umberto I, Università “Sapienza” di Roma, 00161 Roma, Italy; (M.T.P.); (F.F.)
| | - Laura Corvatta
- UOC Medicina, Ospedale Profili Fabriano, 60044 Fabriano, Italy;
| | - Francesca Fazio
- Sezione di Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Azienda Ospedaliera Policlinico Umberto I, Università “Sapienza” di Roma, 00161 Roma, Italy; (M.T.P.); (F.F.)
| | - Massimo Offidani
- Clinica di Ematologia, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, 60126 Ancona, Italy; (S.M.); (A.O.)
| | - Attilio Olivieri
- Clinica di Ematologia, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, 60126 Ancona, Italy; (S.M.); (A.O.)
| |
Collapse
|
20
|
Meyers S, Henning C, Swift R, Eades B, Spektor TM, Berenson JR. Treatment With Elotuzumab in Combination With Dexamethasone Achieves a Complete Remission in a Previously Treated Patient With Multiple Myeloma: A Case Report. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e801-e804. [PMID: 32682685 DOI: 10.1016/j.clml.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022]
Affiliation(s)
| | | | | | | | | | - James R Berenson
- James R. Berenson, MD, Inc, West Hollywood, CA; Oncotherapeutics, West Hollywood, CA; Institute for Myeloma and Bone Cancer Research, West Hollywood, CA.
| |
Collapse
|
21
|
Zhou X, Einsele H, Danhof S. Bispecific Antibodies: A New Era of Treatment for Multiple Myeloma. J Clin Med 2020; 9:jcm9072166. [PMID: 32659909 PMCID: PMC7408718 DOI: 10.3390/jcm9072166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the introduction of novel agents such as proteasome inhibitors, immunomodulatory drugs, and autologous stem cell transplant, multiple myeloma (MM) largely remains an incurable disease. In recent years, monoclonal antibody-based treatment strategies have been developed to target specific surface antigens on MM cells. Treatment with bispecific antibodies (bsAbs) is an immunotherapeutic strategy that leads to an enhanced interaction between MM cells and immune effector cells, e.g., T-cells and natural killer cells. With the immune synapse built by bsAbs, the elimination of MM cells can be facilitated. To date, bsAbs have demonstrated encouraging results in preclinical studies, and clinical trials evaluating bsAbs in patients with MM are ongoing. Early clinical data show the promising efficacy of bsAbs in relapsed/refractory MM. Together with chimeric antigen receptor-modified (CAR)-T-cells, bsAbs represent a new dimension of precision medicine. In this review, we provide an overview of rationale, current clinical development, resistance mechanisms, and future directions of bsAbs in MM.
Collapse
|
22
|
Shah N, Aiello J, Avigan DE, Berdeja JG, Borrello IM, Chari A, Cohen AD, Ganapathi K, Gray L, Green D, Krishnan A, Lin Y, Manasanch E, Munshi NC, Nooka AK, Rapoport AP, Smith EL, Vij R, Dhodapkar M. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma. J Immunother Cancer 2020; 8:e000734. [PMID: 32661116 PMCID: PMC7359060 DOI: 10.1136/jitc-2020-000734] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Outcomes in multiple myeloma (MM) have improved dramatically in the last two decades with the advent of novel therapies including immunomodulatory agents (IMiDs), proteasome inhibitors and monoclonal antibodies. In recent years, immunotherapy for the treatment of MM has advanced rapidly, with the approval of new targeted agents and monoclonal antibodies directed against myeloma cell-surface antigens, as well as maturing data from late stage trials of chimeric antigen receptor CAR T cells. Therapies that engage the immune system to treat myeloma offer significant clinical benefits with durable responses and manageable toxicity profiles, however, the appropriate use of these immunotherapy agents can present unique challenges for practicing physicians. Therefore, the Society for Immunotherapy of Cancer convened an expert panel, which met to consider the current role of approved and emerging immunotherapy agents in MM and provide guidance to the oncology community by developing consensus recommendations. As immunotherapy evolves as a therapeutic option for the treatment of MM, these guidelines will be updated.
Collapse
Affiliation(s)
- Nina Shah
- Division of Hematology-Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jack Aiello
- Patient Empowerment Network, San Jose, California, USA
| | - David E Avigan
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jesus G Berdeja
- Department of Medicine, Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Ivan M Borrello
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center of Johns Hopkins, Baltimore, Maryland, USA
| | - Ajai Chari
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam D Cohen
- Department of Medicine, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karthik Ganapathi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lissa Gray
- University of California San Francisco, San Francisco, CA, USA
| | - Damian Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Amrita Krishnan
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Multiple Myeloma Center for Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Yi Lin
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elisabet Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ajay K Nooka
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Aaron P Rapoport
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Eric L Smith
- Myeloma Service and Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ravi Vij
- Division of Medical Oncology, Siteman Cancer Center, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Madhav Dhodapkar
- School of Medicine, Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Checkpoint Inhibitors and Engineered Cells: New Weapons for Natural Killer Cell Arsenal Against Hematological Malignancies. Cells 2020; 9:cells9071578. [PMID: 32610578 PMCID: PMC7407972 DOI: 10.3390/cells9071578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells represent one of the first lines of defense against malignant cells. NK cell activation and recognition are regulated by a balance between activating and inhibitory receptors, whose specific ligands can be upregulated on tumor cells surface and tumor microenvironment (TME). Hematological malignancies set up an extensive network of suppressive factors with the purpose to induce NK cell dysfunction and impaired immune-surveillance ability. Over the years, several strategies have been developed to enhance NK cells-mediated anti-tumor killing, while other approaches have arisen to restore the NK cell recognition impaired by tumor cells and other cellular components of the TME. In this review, we summarize and discuss the strategies applied in hematological malignancies to block the immune check-points and trigger NK cells anti-tumor effects through engineered chimeric antigen receptors.
Collapse
|
24
|
Davis JS, Ferreira D, Paige E, Gedye C, Boyle M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin Microbiol Rev 2020; 33:e00035-19. [PMID: 32522746 PMCID: PMC7289788 DOI: 10.1128/cmr.00035-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 2 decades have seen a revolution in our approach to therapeutic immunosuppression. We have moved from relying on broadly active traditional medications, such as prednisolone or methotrexate, toward more specific agents that often target a single receptor, cytokine, or cell type, using monoclonal antibodies, fusion proteins, or targeted small molecules. This change has transformed the treatment of many conditions, including rheumatoid arthritis, cancers, asthma, and inflammatory bowel disease, but along with the benefits have come risks. Contrary to the hope that these more specific agents would have minimal and predictable infectious sequelae, infectious complications have emerged as a major stumbling block for many of these agents. Furthermore, the growing number and complexity of available biologic agents makes it difficult for clinicians to maintain current knowledge, and most review articles focus on a particular target disease or class of agent. In this article, we review the current state of knowledge about infectious complications of biologic and small molecule immunomodulatory agents, aiming to create a single resource relevant to a broad range of clinicians and researchers. For each of 19 classes of agent, we discuss the mechanism of action, the risk and types of infectious complications, and recommendations for prevention of infection.
Collapse
Affiliation(s)
- Joshua S Davis
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - David Ferreira
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Emma Paige
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Craig Gedye
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Oncology, Calvary Mater Hospital, Newcastle, NSW, Australia
| | - Michael Boyle
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
25
|
Chen R, Rajan S, Overstreet MG, Hurt EM, Thomas SB, Muniz-Medina V, Ward C, Sadowska A, Fleming R, Karanth S, Breen S, Zheng B, Wu Y, Iverson WO, Novick S, O'Day T, Shah DP, Dimasi N, Tiberghien AC, Osbourn J, Walker J. Preclinical Characterization of an Antibody-Drug Conjugate Targeting CS-1 and the Identification of Uncharacterized Populations of CS-1-Positive Cells. Mol Cancer Ther 2020; 19:1649-1659. [PMID: 32404408 DOI: 10.1158/1535-7163.mct-19-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/21/2019] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a hematologic cancer that disrupts normal bone marrow function and has multiple lines of therapeutic options, but is incurable as patients ultimately relapse. We developed a novel antibody-drug conjugate (ADC) targeting CS-1, a protein that is highly expressed on multiple myeloma tumor cells. The anti-CS-1 mAb specifically bound to cells expressing CS-1 and, when conjugated to a cytotoxic pyrrolobenzodiazepine payload, reduced the viability of multiple myeloma cell lines in vitro In mouse models of multiple myeloma, a single administration of the CS-1 ADC caused durable regressions in disseminated models and complete regression in a subcutaneous model. In an exploratory study in cynomolgus monkeys, the CS-1 ADC demonstrated a half-life of 3 to 6 days; however, no highest nonseverely toxic dose was achieved, as bone marrow toxicity was dose limiting. Bone marrow from dosed monkeys showed reductions in progenitor cells as compared with normal marrow. In vitro cell killing assays demonstrated that the CS-1 ADC substantially reduced the number of progenitor cells in healthy bone marrow, leading us to identify previously unreported CS-1 expression on a small population of progenitor cells in the myeloid-erythroid lineage. This finding suggests that bone marrow toxicity is the result of both on-target and off-target killing by the ADC.
Collapse
Affiliation(s)
- Ruoyan Chen
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Saravanan Rajan
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | - Elaine M Hurt
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | | | | | | | - Ryan Fleming
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | - Shannon Breen
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Bo Zheng
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Yuling Wu
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | - Steven Novick
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Terrence O'Day
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Dipesha P Shah
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | | | - Jane Osbourn
- Research and Development, AstraZeneca, Cambridge, United Kingdom
| | - Jill Walker
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
26
|
Zah E, Nam E, Bhuvan V, Tran U, Ji BY, Gosliner SB, Wang X, Brown CE, Chen YY. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun 2020; 11:2283. [PMID: 32385241 PMCID: PMC7210316 DOI: 10.1038/s41467-020-16160-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown remarkable clinical efficacy against B-cell malignancies, yet marked vulnerability to antigen escape and tumor relapse exists. Here we report the rational design and optimization of bispecific CAR-T cells with robust activity against heterogeneous multiple myeloma (MM) that is resistant to conventional CAR-T cell therapy targeting B-cell maturation antigen (BCMA). We demonstrate that BCMA/CS1 bispecific CAR-T cells exhibit superior CAR expression and function compared to T cells that co-express individual BCMA and CS1 CARs. Combination therapy with anti-PD-1 antibody further accelerates the rate of initial tumor clearance in vivo, while CAR-T cell treatment alone achieves durable tumor-free survival even upon tumor re-challenge. Taken together, the BCMA/CS1 bispecific CAR presents a promising treatment approach to prevent antigen escape in CAR-T cell therapy against MM, and the vertically integrated optimization process can be used to develop robust cell-based therapy against novel disease targets.
Collapse
Affiliation(s)
- Eugenia Zah
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | - Eunwoo Nam
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA
| | - Vinya Bhuvan
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA
| | - Uyen Tran
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA
| | - Brenda Y Ji
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA
| | - Stanley B Gosliner
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, 1500 E. Duarte Rd., Duarte, CA, USA
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, 1500 E. Duarte Rd., Duarte, CA, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy Center at UCLA, 420 Westwood Plaza, BH 5513, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Sharma N, Chen DT, Zhao Q, Williams NY, Rosko A, Benson DM, Chaudhry M, Bumma N, Khan A, Devarakonda S, Hofmeister CC, Sborov D, Efebera YA. Lenalidomide and Vorinostat Maintenance after Autologous Transplantation in Multiple Myeloma: Long- Term Follow-Up. Biol Blood Marrow Transplant 2020; 26:44-49. [DOI: 10.1016/j.bbmt.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
|
28
|
Weisel K, Majer I, DeCosta L, Oriol A, Goldschmidt H, Ludwig H, Campioni M, Szabo Z, Dimopoulos M. Carfilzomib and dexamethasone versus eight cycles of bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma: an indirect comparison using data from the phase 3 ENDEAVOR and CASTOR trials. Leuk Lymphoma 2019; 61:37-46. [PMID: 31640435 DOI: 10.1080/10428194.2019.1648806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In ENDEAVOR, carfilzomib and dexamethasone (Kd56) demonstrated significant improvement in progression-free survival (PFS) compared with bortezomib and dexamethasone (Vd). Both agents were administered until disease progression; the EU label for Vd, however, stipulates a maximum of eight treatment cycles. Here, matching-adjusted treatment comparison was used to compare efficacy of Kd56 with Vd, if Vd was administered for 8 cycles (Vd-8). Data from ENDEAVOR and CASTOR trials (which compared daratumumab, bortezomib, and dexamethasone with Vd-8) were used. Hazard ratios of PFS were estimated for Vd vs. Vd-8 and Kd vs. Vd-8. For cycles 1-8, risk reduction in PFS for Kd56 vs. Vd-8 was equal to that estimated in ENDEAVOR (HR: 0.53; 95% CI 0.44-0.65). Beyond eight cycles, risk reduction in PFS for Kd56 and Vd-8 was estimated to be 60% (HR: 0.40; 95% CI 0.26-0.63). The analysis suggested that PFS benefit of Kd56 over Vd increases when Vd is given for eight cycles only.
Collapse
Affiliation(s)
- Katja Weisel
- Department of Oncology and Hematology, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany.,Department of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, Medical Clinic II, Tübingen, Germany
| | | | | | - Albert Oriol
- Hospital Germans Trias i Pujol, Institut Josep Carreras, Barcelona, Spain
| | - Hartmut Goldschmidt
- Internal Medicine V and National Center of Tumor Diseases, University Clinic Heidelberg, Heidelberg, Germany
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | | | | | - Meletios Dimopoulos
- School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| |
Collapse
|
29
|
Baluchi I, Anani H, Hassanshahi G, Fatemi A, Khalilabadi RM. The effect of maslinic acid on apoptotic genes in u266 multiple myeloma cell line. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Klener P, Etrych T, Klener P. Biological Therapy of Hematologic Malignancies: Toward a Chemotherapy- free Era. Curr Med Chem 2019; 26:1002-1018. [PMID: 28990505 DOI: 10.2174/0929867324666171006144725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Less than 70 years ago, the vast majority of hematologic malignancies were untreatable diseases with fatal prognoses. The development of modern chemotherapy agents, which had begun after the Second World War, was markedly accelerated by the discovery of the structure of DNA and its role in cancer biology and tumor cell division. The path travelled from the first temporary remissions observed in children with acute lymphoblastic leukemia treated with single-agent antimetabolites until the first cures achieved by multi-agent chemotherapy regimens was incredibly short. Despite great successes, however, conventional genotoxic cytostatics suffered from an inherently narrow therapeutic index and extensive toxicity, which in many instances limited their clinical utilization. In the last decade of the 20th century, increasing knowledge on the biology of certain malignancies resulted in the conception and development of first molecularly targeted agents designed to inhibit specific druggable molecules involved in the survival of cancer cells. Advances in technology and genetic engineering enabled the production of structurally complex anticancer macromolecules called biologicals, including therapeutic monoclonal antibodies, antibody-drug conjugates and antibody fragments. The development of drug delivery systems (DDSs), in which conventional drugs were attached to various types of carriers including nanoparticles, liposomes or biodegradable polymers, represented an alternative approach to the development of new anticancer agents. Despite the fact that the antitumor activity of drugs attached to DDSs was not fundamentally different, the improved pharmacokinetic profiles, decreased toxic side effects and significantly increased therapeutic indexes resulted in their enhanced antitumor efficacy compared to conventional (unbound) drugs. Approval of the first immune checkpoint inhibitor for the treatment of cancer in 2011 initiated the era of cancer immunotherapy. Checkpoint inhibitors, bispecific T-cell engagers, adoptive T-cell approaches and cancer vaccines have joined the platform so far, represented mainly by recombinant cytokines, therapeutic monoclonal antibodies and immunomodulatory agents. In specific clinical indications, conventional drugs have already been supplanted by multi-agent, chemotherapy-free regimens comprising diverse immunotherapy and/or targeted agents. The very distinct mechanisms of the anticancer activity of new immunotherapy approaches not only call for novel response criteria, but might also change fundamental treatment paradigms of certain types of hematologic malignancies in the near future.
Collapse
Affiliation(s)
- Pavel Klener
- First Medical Department- Dept. of Hematology, First Faculty of Medicine and General University Hospital, Charles University, Czech Republic.,Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Czech Republic
| | - Tomas Etrych
- Department of biomedical polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic
| | - Pavel Klener
- First Medical Department- Dept. of Hematology, First Faculty of Medicine and General University Hospital, Charles University, Czech Republic
| |
Collapse
|
31
|
Paul B, Lipe B, Ocio EM, Usmani SZ. Induction Therapy for Newly Diagnosed Multiple Myeloma. Am Soc Clin Oncol Educ Book 2019; 39:e176-e186. [PMID: 31099624 DOI: 10.1200/edbk_238527] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The frontline therapy for newly diagnosed multiple myeloma (MM) has continued to evolve over the last 10 years. There has been a growing emphasis on achieving the best depth of response in the context of minimal residual disease negativity, given its prognostic correlation with superior overall survival. Another important area of emphasis has been to improve prognostication and staging by including information on disease biology. There also a growing appreciation of global differences in drug access and patterns of care. The current review explores each of these areas and how best to incorporate the emerging induction regimens in to schema of MM therapy.
Collapse
Affiliation(s)
| | - Brea Lipe
- 2 Wilmont Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Enrique M Ocio
- 3 University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - Saad Z Usmani
- 4 Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC
| |
Collapse
|
32
|
Harding T, Baughn L, Kumar S, Van Ness B. The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia 2019; 33:863-883. [PMID: 30683909 DOI: 10.1038/s41375-018-0362-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy that is considered mostly incurable in large part due to the inability of standard of care therapies to overcome refractory disease and inevitable drug-resistant relapse. The post-genomic era has been a productive period of discovery where modern sequencing methods have been applied to large MM patient cohorts to modernize our current perception of myeloma pathobiology and establish an appreciation for the vast heterogeneity that exists between and within MM patients. Numerous pre-clinical studies conducted in the last two decades have unveiled a compendium of mechanisms by which malignant plasma cells can escape standard therapies, many of which have potentially quantifiable biomarkers. Exhaustive pre-clinical efforts have evaluated countless putative anti-MM therapeutic agents and many of these have begun to enter clinical trial evaluation. While the palette of available anti-MM therapies is continuing to expand it is also clear that malignant plasma cells still have mechanistic avenues by which they can evade even the most promising new therapies. It is therefore becoming increasingly clear that there is an outstanding need to develop and employ precision medicine strategies in MM management that harness emerging tumor profiling technologies to identify biomarkers that predict efficacy or resistance within an individual's sub-clonally heterogeneous tumor. In this review we present an updated overview of broad classes of therapeutic resistance mechanisms and describe selected examples of putative biomarkers. We also outline several emerging tumor profiling technologies that have the potential to accurately quantify biomarkers for therapeutic sensitivity and resistance at genomic, transcriptomic and proteomic levels. Finally, we comment on the future of implementation for precision medicine strategies in MM and the clear need for a paradigm shift in clinical trial design and disease management.
Collapse
Affiliation(s)
- Taylor Harding
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Linda Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic Rochester, Rochester, USA
| | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Brynjolfsson SF, Persson Berg L, Olsen Ekerhult T, Rimkute I, Wick MJ, Mårtensson IL, Grimsholm O. Long-Lived Plasma Cells in Mice and Men. Front Immunol 2018; 9:2673. [PMID: 30505309 PMCID: PMC6250827 DOI: 10.3389/fimmu.2018.02673] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Even though more than 30 years have passed since the eradication of smallpox, high titers of smallpox-specific antibodies are still detected in the blood of subjects vaccinated in childhood. In fact, smallpox-specific antibody levels are maintained in serum for more than 70 years. The generation of life-long immunity against infectious diseases such as smallpox and measles has been thoroughly documented. Although the mechanisms behind high persisting antibody titers in the absence of the causative agent are still unclear, long lived plasma cells (LLPCs) play an important role. Most of the current knowledge on LLPCs is based on experiments performed in mouse models, although the amount of data derived from human studies is increasing. As the results from mouse models are often directly extrapolated to humans, it is important to keep in mind that there are differences. These are not only the obvious such as the life span but there are also anatomical differences, for instance the adiposity of the bone marrow (BM) where LLPCs reside. Whether these differences have an effect on the function of the immune system, and in particular on LLPCs, are still unknown. In this review, we will briefly discuss current knowledge of LLPCs, comparing mice and humans.
Collapse
Affiliation(s)
- Siggeir F Brynjolfsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linn Persson Berg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Teresa Olsen Ekerhult
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Inga Rimkute
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary-Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
34
|
Shachar I, Barak A, Lewinsky H, Sever L, Radomir L. SLAMF receptors on normal and malignant B cells. Clin Immunol 2018; 204:23-30. [PMID: 30448442 DOI: 10.1016/j.clim.2018.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
The Signaling Lymphocyte Activation Molecule family (SLAMF) is a collection of nine surface receptors expressed mainly on hematopoietic cells, and was found to modulate the behavior of immune cells. SLAMF receptors are expressed on B cells in health and disease. Each SLAM receptor has a unique differential expression pattern during the development and activation of B cells. Furthermore, recent findings have revealed a principal role for this family of receptors in B cell malignancies, emphasizing their importance in the control of malignant cell survival, cell to cell communication within the tumor microenvironment, retention in the supporting niches and regulation of T cell anti-tumor response. This review summarizes the latest studies regarding SLAMF expression and behavior in B cells and in B cell pathologies, and discusses the therapeutic potential of these receptors.
Collapse
Affiliation(s)
- Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Israel.
| | - Avital Barak
- Department of Immunology, Weizmann Institute of Science, Israel
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Israel
| | - Lital Sever
- Department of Immunology, Weizmann Institute of Science, Israel
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Israel
| |
Collapse
|
35
|
Abstract
Nowadays, in cancer treatments, immunotherapy which can be classified as a cancer type specific therapy is more popular than non-specific therapy methods such as surgery, radiotherapy and chemotherapy. The main aim of immunotherapy is to enable patients' immune system to target cancer cells and destroy them. The mainly used treatment methods in cancer immunotherapy are cancer vaccines, adoptive cell therapy, cytokines and monoclonal antibodies. In this review, we discuss the immunotherapy approaches, especially monoclonal antibodies which are mostly used in cancer immunotherapy in clinical applications.
Collapse
|
36
|
Rotolo A, Karadimitris A, Ruella M. Building upon the success of CART19: chimeric antigen receptor T cells for hematologic malignancies. Leuk Lymphoma 2018; 59:2040-2055. [PMID: 29165008 PMCID: PMC6814196 DOI: 10.1080/10428194.2017.1403024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor T cell (CART) therapy has dramatically changed the therapeutic prospects for B cell malignancies. Over the last decade CD19-redirected CART have demonstrated the ability to induce deep, long-lasting remissions and possibly cure patients with relapsing B cell neoplasms. Such impressive results with CART19 fostered efforts to expand this technology to other incurable malignancies that naturally do not express CD19, such as acute myeloid leukemia (AML), Hodgkin lymphoma (HL) and multiple myeloma (MM). However, to reach this goal, several hurdles have to be overcome, in particular: (i) the apparent lack of suitable targets as effective as CD19; (ii) the immunosuppressive tumor microenvironment; (iii) intra-tumoral heterogeneity and antigen-negative relapses. Therefore, new strategies that allow safer and more potent CART platforms are under development and may provide grounds for new exciting breakthroughs in the field.
Collapse
Affiliation(s)
- Antonia Rotolo
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
37
|
Liu P, Jin Y, Sattar H, Liu H, Xie W, Zhou F. Natural killer cell immunotherapy against multiple myeloma: Progress and possibilities. J Leukoc Biol 2018; 103:821-828. [PMID: 29733502 DOI: 10.1002/jlb.2ru0517-176rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Pan Liu
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Yanxia Jin
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Haseeb Sattar
- Department of Clinical Pharmacy; Wuhan Union Hospital; affiliated Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan P.R. China
| | - Hailing Liu
- Department of Clinical Hematology; Second Affiliated Hospital; Xi'an Jiao Tong University; Xi'an P.R. China
| | - Weiling Xie
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Fuling Zhou
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Tumor Biological Behavior; Wuhan P.R. China
| |
Collapse
|
38
|
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front Immunol 2017; 8:1804. [PMID: 29312320 PMCID: PMC5742572 DOI: 10.3389/fimmu.2017.01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.
Collapse
Affiliation(s)
- Isabel Corraliza-Gorjón
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| |
Collapse
|
39
|
Richardson PG, Holstein SA, Schlossman RL, Anderson KC, Attal M, McCarthy PL. Lenalidomide in combination or alone as maintenance therapy following autologous stem cell transplant in patients with multiple myeloma: a review of options for and against. Expert Opin Pharmacother 2017; 18:1975-1985. [DOI: 10.1080/14656566.2017.1409207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Michel Attal
- Department of Hematology, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Philip L. McCarthy
- Blood and Marrow Transplant Program, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
40
|
Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, Bruno B. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Front Immunol 2017; 8:1444. [PMID: 29163516 PMCID: PMC5682004 DOI: 10.3389/fimmu.2017.01444] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a progressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug development and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression. These NK-cell enhancing treatment strategies may be identified in two major groups: (1) immunomodulatory biologics and small molecules, namely, immune checkpoint inhibitors, therapeutic antibodies, lenalidomide, and indoleamine 2,3-dioxygenase inhibitors and (2) NK cell therapy, namely, adoptive transfer of unmanipulated and chimeric antigen receptor-engineered NK cells. Here, we summarize the mechanisms responsible for NK cell functional suppression in the context of cancer and, specifically, myeloma. Subsequently, contemporary strategies potentially able to reverse NK dysfunction in MM are discussed.
Collapse
Affiliation(s)
- Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Moreno Festuccia
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Deena Mudawi
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luisa Giaccone
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
41
|
Offidani M, Corvatta L. A review discussing elotuzumab and its use in the second-line plus treatment of multiple myeloma. Future Oncol 2017; 14:319-329. [PMID: 29091475 DOI: 10.2217/fon-2017-0371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Monoclonal antibodies (mAb) represent a new frontier to treat newly diagnosed and relapsed-refractory multiple myeloma (MM). Elotuzumab, an mAb targeted SLAM7 in the plasma cells and natural killer cells surface, is the first mAb approved for the treatment of relapsed-refractory MM in combination with lenalidomide and dexamethasone. This approval was the final result of several preclinical and Phase I-II clinical studies leading to ELOQUENT-2 Phase III trial that demonstrated that elotuzumab adds a significant and durable value to standard therapy, paved the way of this new treatment strategy for MM. In this review we will describe elotuzumab mechanisms of action, clinical pharmacology and clinical studies that have led to these developments.
Collapse
Affiliation(s)
- Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | | |
Collapse
|
42
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|
43
|
Abstract
From the application of Coley's toxin in the early 1900s to the present clinical trials using immune checkpoint regulatory inhibitors, the history of cancer immunotherapy has consisted of extremely high levels of enthusiasm after anecdotal case reports of enormous success, followed by decreasing levels of enthusiasm as the results of controlled clinical trials are available. In this review, this pattern will be documented for the various immunotherapeutic approaches over the years. The sole exception being vaccination against cancer causing viruses, which have already prevented thousands of cancers. We can only hope that the present high level of enthusiasm for the use of immune stimulation by removal of blocks to cancer immunity will be more productive than the incremental improvements using previous immunotherapies.
Collapse
Affiliation(s)
- Stewart Sell
- Wadsworth Center, New York State Department of Health and Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
44
|
Cejalvo MJ, de la Rubia J. Which therapies will move to the front line for multiple myeloma? Expert Rev Hematol 2017; 10:383-392. [DOI: 10.1080/17474086.2017.1317589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- María J Cejalvo
- Hematology Service, University Hospital Doctor Peset, Valencia, Spain
| | - Javier de la Rubia
- Hematology Service, University Hospital Doctor Peset, Valencia, Spain
- Department of Internal Medicine, Universidad Católica de Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
45
|
Affiliation(s)
- Heinz Ludwig
- Wilhelminen Cancer Research Institute c/o First Department of Medicine, Center for Oncology, Haematology and Palliative Care, Vienna 1160, Austria.
| | - Michel Delforge
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|