1
|
Zhang Y, Zhang H, Wang K, Liu X, Li Z. Can Spinal Cord Stimulation be Considered as a Frontier for Chronic Pain in Diabetic Foot? Pain Ther 2025:10.1007/s40122-025-00710-0. [PMID: 39910016 DOI: 10.1007/s40122-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic pain in the diabetic foot (DF) is a common complication of diabetes, bringing a significant burden to patients, their families, and even society. There is no very effective treatment for it, traditional treatments such as medication, lumbar sympathetic nerve block, and alternative therapies are often not very effective and have more adverse effects. The emergence of neuromodulation technology has brought new hope for the treatment of DF, among which spinal cord stimulation (SCS) is a hotspot in current research and has achieved remarkable efficacy in the study of DF treatment by blocking pain signaling and improving circulation and other mechanisms. This article reviews the SCS technique and clinical trails of SCS for chronic DF pain, and describes the prospects and current challenges of SCS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Huifeng Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China.
| |
Collapse
|
2
|
AnandaKumar SR, Veerapur VP, Roopesh M, Ambika M, Babitha S, Thippeswamy BS. Beneficial effect of Caesalpinia pulcherrima linn., on diabetic neuropathy, cognitive dysfunction and cardiac complications in streptozotocin-induced diabetic rats. Heliyon 2024; 10:e39774. [PMID: 39553592 PMCID: PMC11564056 DOI: 10.1016/j.heliyon.2024.e39774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Pharmacological relevance Caesalpinia pulcherrima L. is used in Indian Traditional Medicinal system to treat Diabetes. Aim This study was carried out to evaluate the standardized alcoholic extract of Caesalpinia pulcherrima seed (CPS) in Streptozotocin (STZ)-induced diabetic neuropathic and cardiac complications in rodents. Materials and methods HPLC finger printing profile of CPS was performed to identify the bioactive molecules. Two doses of CPS (100 & 200 mg/kg b.w.) was orally administered daily once for six weeks to streptozotocin (50 mg/kg, i.v.)-induced diabetic rats. Every week intervals hot & cold immersion tests were carried to know the effect of CPS on peripheral neuropathy. In addition, blood glucose, body weight, food and water intake were also monitored. At the end of the study, sciatic nerve conduction velocity, diabetic cardiomyopathy and diabetic cognitive parameters were evaluated. Furthermore, histopathological studies of sciatic nerve and aortic strip were also carried out. Results HPLC finger print experiment showed the presence of gallic acid and protocatechuic acid. Administration of CPS for six weeks significantly prevented the development of diabetic peripheral neuropathy (DPN), cardiomyopathy and cognitive dysfunction in diabetic rats. The CPS treated rats displayed prominent (P < 0.001) improvement in motor coordination, muscle grip, locomotor activity and memory in diabetic rats. CPS treatment restored elevated systolic, diastolic, mean arterial blood pressure (MABP), and heart rate to near normal in diabetic condition. These observed beneficial effects were well correlated and justified with histopathological studies. In addition, CPS treatment also exhibited significant (P < 0.001) reduction of loss in body weight, and reduce the water and feed intake throughout the study. Conclusion Taken together, the present study provided a good insight in the therapeutic efficacy of Caesalpinia pulcherrima seed extract in dealing with diabetic complications. The study also scientifically justifies the ethnomedicinal/traditional claims of the title plant.
Collapse
Affiliation(s)
- Seethakallu Ramachandraiah AnandaKumar
- Department of Pharmacology, Sree Siddaganga College of Pharmacy, Tumakuru - 572 103, Karnataka, India
- Department of Pharmacology, PESU Institute of Pharmacy, PES University, Bangalore, 560100, Karnataka, India
| | - Veeresh Prabhakar Veerapur
- Department of Pharmaceutical Quality Assurance, Sree Siddaganga College of Pharmacy, Tumakuru, 572 103, Karnataka, India
| | - Marulasiddeshwara Roopesh
- Department of Pharmacology, Sree Siddaganga College of Pharmacy, Tumakuru - 572 103, Karnataka, India
| | - M.V. Ambika
- Department of Pharmacology, Sree Siddaganga College of Pharmacy, Tumakuru - 572 103, Karnataka, India
| | - S. Babitha
- Department of Pharmacology, Sree Siddaganga College of Pharmacy, Tumakuru - 572 103, Karnataka, India
| | - Boreddy Shivanandappa Thippeswamy
- Department of Pharmacology, College of Pharmacy, Al-Dawadmi, Shaqra University, Ministry of Higher Education, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Pingali U, Sravanasandya P, Mekala P, Yareeda S, Sireesha K, Khan I. A randomized, double-blind, placebo controlled study to evaluate the effect of alpha-lipoic acid on inhibition of ADP-and collagen-induced platelet aggregation ex vivo in diabetic neuropathy patients on gabapentin or pregabalin. J Postgrad Med 2024; 70:191-197. [PMID: 39641383 PMCID: PMC11722717 DOI: 10.4103/jpgm.jpgm_310_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a chronic microvascular complication in diabetic mellitus patients due to chronic hyperglycemia, resulting in platelet hyperactivity and dyslipidemia. Alpha-lipoic acid (ALA) is a potent antioxidant which has antiplatelet activity and lipid-modulating characteristics and plays a major role in the prevention of disease progression. AIM To evaluate the effect of ALA on inhibition of platelet aggregation and lipid profile. SETTINGS AND DESIGN This was a prospective, randomized, double-blind, placebo-controlled study conducted at the Department of Clinical Pharmacology and Therapeutics at a tertiary care hospital. MATERIALS AND METHODS We recorded efficacy parameters including changes in inhibition of platelet aggregation, lipid profile, blood sugars, and glycated hemoglobin over 12 weeks of ALA (600 mg once daily orally) supplementation in DPN patients on gabapentin (300 mg twice daily [BD]) or pregabalin (75 mg BD) compared to placebo. We used Student's t-test paired and unpaired for within-group and between-group comparisons, respectively. RESULTS A total of 52 study participants (males = 22, females = 30) with a mean age 55.63 ± 7.5 years were randomized to receive either ALA or placebo. Between-group analysis at 12 weeks showed that ALA significantly inhibited both collagen-induced platelet aggregation (from 32.61 ± 8.00 to 24.88 ± 5.30; P < 0.001) and adenosine diphosphate-induced platelet aggregation (from 34.00 ± 6.97 to 25.96 ± 6.45; P < 0.001) compared to placebo. Significant reduction in total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and triglycerides was found in the ALA group at 12 weeks compared to baseline. No serious adverse events were reported. CONCLUSION ALA, an antioxidant, demonstrated a protective effect against DPN by the virtue of its inhibitory effect on platelet aggregation and lipid-modulating effects and was found to have good safety.
Collapse
Affiliation(s)
- U Pingali
- Department of Clinical Pharmacology and Therapeutics, NIMS, Hyderabad, Telangana, India
| | - P Sravanasandya
- Department of Clinical Pharmacology and Therapeutics, NIMS, Hyderabad, Telangana, India
| | - P Mekala
- Department of Clinical Pharmacology and Therapeutics, NIMS, Hyderabad, Telangana, India
| | - S Yareeda
- Department of Neurology, NIMS, Hyderabad, Telangana, India
| | - K Sireesha
- Department of Clinical Pharmacology and Therapeutics, NIMS, Hyderabad, Telangana, India
| | - I Khan
- Department of Clinical Pharmacology and Therapeutics, NIMS, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Hohenschurz-Schmidt D, Cherkin D, Rice AS, Dworkin RH, Turk DC, McDermott MP, Bair MJ, DeBar LL, Edwards RR, Evans SR, Farrar JT, Kerns RD, Rowbotham MC, Wasan AD, Cowan P, Ferguson M, Freeman R, Gewandter JS, Gilron I, Grol-Prokopczyk H, Iyengar S, Kamp C, Karp BI, Kleykamp BA, Loeser JD, Mackey S, Malamut R, McNicol E, Patel KV, Schmader K, Simon L, Steiner DJ, Veasley C, Vollert J. Methods for pragmatic randomized clinical trials of pain therapies: IMMPACT statement. Pain 2024; 165:2165-2183. [PMID: 38723171 PMCID: PMC11404339 DOI: 10.1097/j.pain.0000000000003249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/30/2024] [Accepted: 03/08/2024] [Indexed: 09/18/2024]
Abstract
ABSTRACT Pragmatic, randomized, controlled trials hold the potential to directly inform clinical decision making and health policy regarding the treatment of people experiencing pain. Pragmatic trials are designed to replicate or are embedded within routine clinical care and are increasingly valued to bridge the gap between trial research and clinical practice, especially in multidimensional conditions, such as pain and in nonpharmacological intervention research. To maximize the potential of pragmatic trials in pain research, the careful consideration of each methodological decision is required. Trials aligned with routine practice pose several challenges, such as determining and enrolling appropriate study participants, deciding on the appropriate level of flexibility in treatment delivery, integrating information on concomitant treatments and adherence, and choosing comparator conditions and outcome measures. Ensuring data quality in real-world clinical settings is another challenging goal. Furthermore, current trials in the field would benefit from analysis methods that allow for a differentiated understanding of effects across patient subgroups and improved reporting of methods and context, which is required to assess the generalizability of findings. At the same time, a range of novel methodological approaches provide opportunities for enhanced efficiency and relevance of pragmatic trials to stakeholders and clinical decision making. In this study, best-practice considerations for these and other concerns in pragmatic trials of pain treatments are offered and a number of promising solutions discussed. The basis of these recommendations was an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) meeting organized by the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks.
Collapse
Affiliation(s)
- David Hohenschurz-Schmidt
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, United Kingdom
- Research Department, University College of Osteopathy, London, United Kingdom
| | - Dan Cherkin
- Osher Center for Integrative Health, Department of Family Medicine, University of Washington, Seattle, WA, United States
| | - Andrew S.C. Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, United Kingdom
| | - Robert H. Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Dennis C. Turk
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Matthew J. Bair
- VA Center for Health Information and Communication, Regenstrief Institute, and Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lynn L. DeBar
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | | | - Scott R. Evans
- Biostatistics Center and the Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Rockville, MD, United States
| | - John T. Farrar
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert D. Kerns
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Michael C. Rowbotham
- Department of Anesthesia, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Ajay D. Wasan
- Departments of Anesthesiology & Perioperative Medicine, and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Penney Cowan
- American Chronic Pain Association, Rocklin, CA, United States
| | - McKenzie Ferguson
- Department of Pharmacy Practice, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Roy Freeman
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Jennifer S. Gewandter
- Department of Anesthesiology and Perioperative, University of Rochester, Rochester, NY, United States
| | - Ian Gilron
- Departments of Anesthesiology & Perioperative Medicine, Biomedical & Molecular Sciences, Centre for Neuroscience Studies, and School of Policy Studies, Queen's University, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Hanna Grol-Prokopczyk
- Department of Sociology, University at Buffalo, State University of New York, Buffalo, NY, United States
| | | | - Cornelia Kamp
- Center for Health and Technology (CHeT), Clinical Materials Services Unit (CMSU), University of Rochester Medical Center, Rochester, NY, United States
| | | | - Bethea A. Kleykamp
- University of Maryland, School of Medicine, Baltimore, MD, United States
| | - John D. Loeser
- Departments of Neurological Surgery and Anesthesia and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Sean Mackey
- Stanford University School of Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Neurosciences and Neurology, Palo Alto, CA, United States
| | | | - Ewan McNicol
- Department of Pharmacy Practice, Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, United States
| | - Kushang V. Patel
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - Kenneth Schmader
- Department of Medicine-Geriatrics, Center for the Study of Aging, Duke University Medical Center, and Geriatrics Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, United States
| | - Lee Simon
- SDG, LLC, Cambridge, MA, United States
| | | | | | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Yamaguchi M, Noda-Asano S, Inoue R, Himeno T, Motegi M, Hayami T, Nakai-Shimoda H, Kono A, Sasajima S, Miura-Yura E, Morishita Y, Kondo M, Tsunekawa S, Kato Y, Kato K, Naruse K, Nakamura J, Kamiya H. Dipeptidyl Peptidase (DPP)-4 Inhibitors and Pituitary Adenylate Cyclase-Activating Polypeptide, a DPP-4 Substrate, Extend Neurite Outgrowth of Mouse Dorsal Root Ganglia Neurons: A Promising Approach in Diabetic Polyneuropathy Treatment. Int J Mol Sci 2024; 25:8881. [PMID: 39201570 PMCID: PMC11354620 DOI: 10.3390/ijms25168881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Individuals suffering from diabetic polyneuropathy (DPN) experience debilitating symptoms such as pain, paranesthesia, and sensory disturbances, prompting a quest for effective treatments. Dipeptidyl-peptidase (DPP)-4 inhibitors, recognized for their potential in ameliorating DPN, have sparked interest, yet the precise mechanism underlying their neurotrophic impact on the peripheral nerve system (PNS) remains elusive. Our study delves into the neurotrophic effects of DPP-4 inhibitors, including Diprotin A, linagliptin, and sitagliptin, alongside pituitary adenylate cyclase-activating polypeptide (PACAP), Neuropeptide Y (NPY), and Stromal cell-derived factor (SDF)-1a-known DPP-4 substrates with neurotrophic properties. Utilizing primary culture dorsal root ganglia (DRG) neurons, we meticulously evaluated neurite outgrowth in response to these agents. Remarkably, all DPP-4 inhibitors and PACAP demonstrated a significant elongation of neurite length in DRG neurons (PACAP 0.1 μM: 2221 ± 466 μm, control: 1379 ± 420, p < 0.0001), underscoring their potential in nerve regeneration. Conversely, NPY and SDF-1a failed to induce neurite elongation, accentuating the unique neurotrophic properties of DPP-4 inhibition and PACAP. Our findings suggest that the upregulation of PACAP, facilitated by DPP-4 inhibition, plays a pivotal role in promoting neurite elongation within the PNS, presenting a promising avenue for the development of novel DPN therapies with enhanced neurodegenerative capabilities.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Saeko Noda-Asano
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Rieko Inoue
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
- Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Mikio Motegi
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Tomohide Hayami
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Hiromi Nakai-Shimoda
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Ayumi Kono
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Sachiko Sasajima
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Emiri Miura-Yura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Koichi Kato
- Department of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan
| | - Keiko Naruse
- Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya 464-0821, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
- Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1185, Japan
| |
Collapse
|
6
|
Peng Y, Zhang AH, Wei L, Welsh WJ. Preclinical Evaluation of Sigma 1 Receptor Antagonists as a Novel Treatment for Painful Diabetic Neuropathy. ACS Pharmacol Transl Sci 2024; 7:2358-2368. [PMID: 39144554 PMCID: PMC11320727 DOI: 10.1021/acsptsci.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
The global prevalence of diabetes is steadily rising, with an estimated 537 million adults affected by diabetes in 2021, projected to reach 783 million by 2045. A severe consequence of diabetes is the development of painful diabetic neuropathy (PDN), afflicting approximately one in every three diabetic patients and significantly compromising their quality of life. Current pharmacotherapies for PDN provide inadequate pain relief for many patients, underscoring the need for novel treatments that are both safe and effective. The Sigma 1 Receptor (S1R) is a ligand-operated chaperone protein that resides at the mitochondria-associated membrane of the endoplasmic reticulum. The S1R has been shown to play crucial roles in regulating cellular processes implicated in pain modulation. This study explores the potential of PW507, a novel S1R antagonist, as a therapeutic candidate for PDN. PW507 exhibited promising in vitro and in vivo properties in terms of ADME, toxicity, pharmacokinetics, and safety. In preclinical rat models of Streptozotocin-induced diabetic neuropathy, PW507 demonstrated significant efficacy in alleviating mechanical allodynia and thermal hyperalgesia following both acute and chronic (2-week) administration, without inducing tolerance and visual evidence of toxicity. To the best of our knowledge, this is the first report to evaluate an S1R antagonist in STZ-induced diabetic rats following both acute and 2-week chronic administration, offering compelling preclinical evidence for the potential use of PW507 as a promising therapeutic option for PDN.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical
Informatics Shared Resource, Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Allen H. Zhang
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Liping Wei
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - William J. Welsh
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
Ahmed LA, Al-Massri KF. Exploring the Role of Mesenchymal Stem Cell-Derived Exosomes in Diabetic and Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2024; 61:5916-5927. [PMID: 38252384 PMCID: PMC11249772 DOI: 10.1007/s12035-024-03916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
8
|
Evans AA, Jesus CHA, Martins LL, Fukuyama AH, Gasparin AT, Crippa JA, Zuardi AW, Hallak JEC, Genaro K, de Castro Junior CJ, Zanoveli JM, Cunha JMD. Pharmacological Interaction Between Cannabidiol and Tramadol on Experimental Diabetic Neuropathic Pain: An Isobolographic Analysis. Cannabis Cannabinoid Res 2024; 9:728-739. [PMID: 37205869 DOI: 10.1089/can.2021.0242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Introduction: Diabetic neuropathies are the most prevalent chronic complications of diabetes, characterized by pain and substantial morbidity. Although many drugs have been approved for the treatment of this type of pain, including gabapentin, tramadol (TMD), and classical opioids, it is common to report short-term results or potentially severe side effects. TMD, recommended as a second-line treatment can lead to unwanted side effects. Cannabidiol (CBD) has been gaining attention recently due to its therapeutic properties, including pain management. This study aimed to characterize the pharmacological interaction between CBD and TMD over the mechanical allodynia associated with experimental diabetes using isobolographic analysis. Materials and Methods: After diabetes induction by streptozotocin (STZ), diabetic rats were systemically treated with CBD or TMD alone or in combination (doses calculated based on linear regression of effective dose 40% [ED40]) and had the mechanical threshold evaluated using the electronic Von Frey apparatus. Both experimental and theoretical additive ED40 values (Zmix and Zadd, respectively) were determined for the combination of CBD plus TMD in this model. Results: Acute treatment with CBD (3 or 10 mg/kg) or TMD (2.5, 5, 10, or 20 mg/kg) alone or in combination (0.38+1.65 or 1.14+4.95 mg/kg) significantly improved the mechanical allodynia in STZ-diabetic rats. Isobolographic analysis revealed that experimental ED40 of the combination (Zmix) was 1.9 mg/kg (95% confidence interval [CI]=1.2-2.9) and did not differ from the theoretical additive ED40 2.0 mg/kg (95% CI=1.5-2.8; Zadd), suggesting an additive antinociceptive effect in this model. Conclusions: Using an isobolographic analysis, these results provide evidence of additive pharmacological interaction between CBD and TMD over the neuropathic pain associated with experimental diabetes induced by STZ.
Collapse
Affiliation(s)
- Allan Arnold Evans
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Carlos Henrique Alves Jesus
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Lucas Latchuk Martins
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alisson Hideki Fukuyama
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alexia Thamara Gasparin
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil
- Department of Neuroscience and Behavior, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Waldo Zuardi
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil
- Department of Neuroscience and Behavior, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Jaime Eduardo Cecílio Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil
- Department of Neuroscience and Behavior, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Karina Genaro
- Department of Anesthesiology, University of California, Irvine, California, USA
| | | | - Janaina Menezes Zanoveli
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Joice Maria da Cunha
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
Ali MY, Zamponi GW, Abdul QA, Seong SH, Min BS, Jung HA, Choi JS. Prunin from Poncirus trifoliata (L.) Rafin Inhibits Aldose Reductase and Glucose-Fructose-Mediated Protein Glycation and Oxidation of Human Serum Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7203-7218. [PMID: 38518258 DOI: 10.1021/acs.jafc.3c09716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Diabetes complications are associated with aldose reductase (AR) and advanced glycation end products (AGEs). Using bioassay-guided isolation by column chromatography, 10 flavonoids and one coumarin were isolated from Poncirus trifoliata Rafin and tested in vitro for an inhibitory effect against human recombinant AR (HRAR) and rat lens AR (RLAR). Prunin, narirutin, and naringin inhibited RLAR (IC50 0.48-2.84 μM) and HRAR (IC50 0.68-4.88 μM). Docking simulations predicted negative binding energies and interactions with the RLAR and HRAR binding pocket residues. Prunin (0.1 and 12.5 μM) prevented the formation of fluorescent AGEs and nonfluorescent Nε-(carboxymethyl) lysine (CML), as well as the fructose-glucose-mediated protein glycation and oxidation of human serum albumin (HSA). Prunin suppressed the formation of the β-cross-amyloid structure of HSA. These results indicate that prunin inhibits oxidation-dependent protein damage, AGE formation, and AR, which may help prevent diabetes complications.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, AB, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, AB, Canada
| | - Qudeer Ahmed Abdul
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Natural Products Research Division, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Byung-Sun Min
- Drug Research and Development Center, College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Thakur V, Gonzalez MA, Parada M, Martinez RD, Chattopadhyay M. Role of Histone Deacetylase Inhibitor in Diabetic Painful Neuropathy. Mol Neurobiol 2024; 61:2283-2296. [PMID: 37875708 DOI: 10.1007/s12035-023-03701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Diabetic painful neuropathy (DPN) is one of the most detrimental complications of diabetes. Alterations in neuroinflammatory mediators play significant roles in the development of DPN. Infiltration of the neutrophils and monocyte/macrophages contributes substantial role in the degenerative process of the distal sciatic nerve by forming neutrophil extracellular traps (NETs) under diabetic condition. Citrullination of histones due to increase in protein arginine deiminase (PAD) enzyme activity under hyperglycemia may promote NET formation, which can further increase the cytokine production by activating macrophages and proliferation of neutrophils. This study reveals that the increase in histone deacetylases (HDAC) is crucial in DPN and inhibition of HDAC using HDAC inhibitor (HDACi) FK228 would suppress NETosis and alleviate diabetic nerve degeneration and pain. FK228, also known as romidepsin, is FDA approved for the treatment of cutaneous T-cell lymphoma yet the molecular mechanisms of this drug are not completely understood in DPN. In this study, type 2 diabetic (T2D) mice with pain were treated with HDACi, FK228 1 mg/kg; I.P. 2 × /week for 3 weeks. The results demonstrate that FK228 treatment can alleviate thermal hyperalgesia and mechanical allodynia significantly along with changes in the expression of HDACs in the dorsal root ganglia (DRG) and spinal cord dorsal horn neurons of diabetic animals. The results also indicate that FK228 treatment can alter the expression of neutrophil elastase (NE), extracellular or cell free DNA (cfDNA), citrullinated histone-3 (CitH3), PADI4, growth-associated protein (GAP)-43, and glucose transporter (GLUT)-4. Overall, this study suggests that FK228 could amend the expression of nerve regeneration markers and inflammatory mediators in diabetic animals and may offer an alternative treatment approach for DPN.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Mayra A Gonzalez
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Maria Parada
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Robert D Martinez
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
11
|
Kulkarni A, Thool AR, Daigavane S. Understanding the Clinical Relationship Between Diabetic Retinopathy, Nephropathy, and Neuropathy: A Comprehensive Review. Cureus 2024; 16:e56674. [PMID: 38646317 PMCID: PMC11032697 DOI: 10.7759/cureus.56674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Diabetic retinopathy, nephropathy, and neuropathy are significant microvascular complications of diabetes mellitus, contributing to substantial morbidity and mortality worldwide. This comprehensive review examines the clinical relationship between these complications, focusing on shared pathophysiological mechanisms, bidirectional relationships, and implications for patient management. The review highlights the importance of understanding the interconnected nature of diabetic complications and adopting a holistic approach to diabetes care. Insights gleaned from this review underscore the necessity for early detection, timely intervention, and integrated care models involving collaboration among healthcare professionals. Furthermore, the review emphasizes the need for continued research to elucidate underlying mechanisms, identify novel therapeutic targets, and assess the efficacy of integrated care strategies in improving patient outcomes. By fostering interdisciplinary collaboration and knowledge exchange, future research endeavors hold the potential to advance our understanding and management of diabetic complications, ultimately enhancing patient care and quality of life.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Archana R Thool
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Rasmussen NH, Driessen JHM, Kvist AV, Souverein PC, van den Bergh J, Vestergaard P. Fracture patterns in adult onset type 1 diabetes and associated risk factors - A nationwide cohort study. Bone 2024; 179:116977. [PMID: 38006906 DOI: 10.1016/j.bone.2023.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE This study aimed to determine the hazard ratios (HR) for various fracture sites and identify associated risk factors in a cohort of relatively healthy adult people with newly diagnosed type 1 diabetes (T1D). METHODS The study utilized data from the UK Clinical Practice Research Datalink GOLD (1987-2017). Participants included people aged 20 and above with a T1D diagnosis code (n = 3281) and a new prescription for insulin. Controls without diabetes were matched based on sex, year of birth, and practice. Cox regression analysis was conducted to estimate HRs for any fracture, major osteoporotic fractures (MOFs), and peripheral fractures (lower-arm and lower-leg) in people with T1D compared to controls. Risk factors for T1D were examined and included sex, age, diabetic complications, medication usage, Charlson comorbidity index (CCI), hypoglycemia, previous fractures, falls, and alcohol consumption. Furthermore, T1D was stratified by duration of disease and presence of microvascular complications. RESULTS The proportion of any fracture was higher in T1D (10.8 %) than controls (7.3). Fully adjusted HRs for any fracture (HR: 1.43, CI95%: 1.17-1.74), MOFs (HR: 1.46, CI95%: 1.04-2.05), and lower-leg fractures (HR: 1.37, CI95%: 1.01-1.85) were statistically significantly increased in people with T1D compared to controls. The primary risk factor across all fracture sites in T1D was a previous fracture. Additional risk factors at different sites included previous falls (HR: 1.64, CI95%: 1.17-2.31), antidepressant use (HR: 1.34, CI95%: 1.02-1.76), and anxiolytic use (HR: 1.54, CI95%: 1.08-2.29) for any fracture; being female (HR: 1.65, CI95%: 1.14-2.38) for MOFs; the presence of retinopathy (HR: 1.47, CI95%: 1.02-2.11) and previous falls (HR: 2.04, CI95%: 1.16-3.59) for lower-arm and lower-leg fractures, respectively. Lipid-lowering medication use decreased the risk of MOFs (HR: 0.66, CI95%: 0.44-0.99). Stratification of T1D by disease duration showed that the relative risk of any fracture in T1D did not increase with longer diabetes duration (0-4 years: HR: 1.52, CI95%: 1.23-1.87; 5-9 years: HR: 1.30, CI95%: 0.99-1.71; <10 years: HR: 1.07, CI95%: 0.74-1.55). Similar patterns were observed for other fracture sites. Moreover, the occurrence of microvascular complications in T1D was linked to a heightened risk of fractures in comparison to controls. However, when considering the T1D cohort independently, the association was not statistically significant. CONCLUSION In a cohort of relatively healthy and newly diagnosed people with T1D HRs for any fracture, MOFs, and lower-leg fractures compared to controls were increased. A previous fracture was the most consistent risk factor for a subsequent fracture, whereas retinopathy was the only diabetes related one. We postulate a potential initial fracture risk, succeeded by a subsequent risk reduction, which might potentially increase in later years due to the accumulation of complications and other factors.
Collapse
Affiliation(s)
| | - Johanna H M Driessen
- NUTRIM Research School, Maastricht University, Maastricht, the Netherlands; Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Annika Vestergaard Kvist
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark; Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH-Zurich, Zurich, Switzerland
| | - Patrick C Souverein
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Joop van den Bergh
- School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark; Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
13
|
Saleh DO, Sedik AA. Novel drugs affecting diabetic peripheral neuropathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:657-670. [PMID: 38645500 PMCID: PMC11024403 DOI: 10.22038/ijbms.2024.75367.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Diabetic peripheral neuropathy (DPN) poses a significant threat, affecting half of the global diabetic population and leading to severe complications, including pain, impaired mobility, and potential amputation. The delayed manifestation of diabetic neuropathy (DN) makes early diagnosis challenging, contributing to its debilitating impact on individuals with diabetes mellitus (DM). This review examines the multifaceted nature of DPN, focusing on the intricate interplay between oxidative stress, metabolic pathways, and the resulting neuronal damage. It delves into the challenges of diagnosing DN, emphasizing the critical role played by hyperglycemia in triggering these cascading effects. Furthermore, the study explores the limitations of current neuropathic pain drugs, prompting an investigation into a myriad of pharmaceutical agents tested in both human and animal trials over the past decade. The methodology scrutinizes these agents for their potential to provide symptomatic relief for DPN. The investigation reveals promising results from various pharmaceutical agents tested for DPN relief, showcasing their efficacy in ameliorating symptoms. However, a notable gap persists in addressing the underlying problem of DPN. The results underscore the complexity of DPN and the challenges in developing therapies that go beyond symptomatic relief. Despite advancements in treating DPN symptoms, there remains a scarcity of options addressing the underlying problem. This review consolidates the state-of-the-art drugs designed to combat DPN, highlighting their efficacy in alleviating symptoms. Additionally, it emphasizes the need for a deeper understanding of the diverse processes and pathways involved in DPN pathogenesis.
Collapse
Affiliation(s)
- Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Ahmed A. Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| |
Collapse
|
14
|
Alipour A, Mohammadi R. Evaluation of the separate and combined effects of anodal tDCS over the M1 and F3 regions on pain relief in patients with type-2 diabetes suffering from neuropathic pain. Neurosci Lett 2024; 818:137554. [PMID: 37951301 DOI: 10.1016/j.neulet.2023.137554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Neuropathic pain (NP) is a common complication of chronic diabetes that negatively affects the routine functioning and sleep of patients. The present study aimed to investigate the separate and combined effects of anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and left dorsolateral prefrontal cortex (F3) regions on pain relief in patients with type-2 diabetes suffering from NP. METHODS The statistical population of this double-blind randomized clinical trial consisted of all the members of the Bonab Diabetes Association in 2022 aged 45 to 65 years who were diagnosed with NP by a specialist. A total of 48 patients who met the inclusion criteria were selected as the sample through purposive sampling. The participants were then randomly assigned into 4 groups, each attending 12 sessions of a special intervention (three times a week). The Short Form-McGill Pain Questionnaire-2 (SF-MPQ-2) was used for data collection. Data were statistically analyzed using SPANOVA, analysis of covariance, and the Bonferroni test. RESULTS The results showed that tDCS had the potential to induce pain relief in patients with type-2 diabetes suffering from NP (F = 11.48, P < 0.001). The mean perceived pain intensity in the posttest was lower in the M1 stimulation group than in the F3 stimulation group. Nevertheless, there was no significant difference between the two groups in terms of perceived pain intensity in the one-month and two-month follow-up stages. CONCLUSIONS The tDCS approach (over both M1 and F3) showed promising effects for pain management in patients with type-2 diabetes suffering from NP and may be an effective add-on treatment. However, more trials with larger sample sizes are necessary to define clinically relevant effects.
Collapse
Affiliation(s)
- Ahmad Alipour
- Department of Psychology, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
15
|
Bana S, Kumar N, Sartaj A, Alhalmi A, Qurtam AA, Nasr FA, Al-Zharani M, Singh N, Gaur P, Mishra R, Bhardwaj S, Ali H, Goel R. Rubia cordifolia L. Attenuates Diabetic Neuropathy by Inhibiting Apoptosis and Oxidative Stress in Rats. Pharmaceuticals (Basel) 2023; 16:1586. [PMID: 38004451 PMCID: PMC10674165 DOI: 10.3390/ph16111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Diabetic neuropathy is a debilitating manifestation of long-term diabetes mellitus. The present study explored the effects of the roots of Rubia cordifolia L. (R. cordifolia L.) in the Wistar rat model for diabetic neuropathy and possible neuroprotective, antidiabetic, and analgesic mechanisms underlying this effect. MATERIALS AND METHODS Rats were divided into five experimental groups. An amount of 0.25% carboxy methyl cellulose (CMC) in saline and streptozotocin (STZ) (60 mg/kg) was given to group 1 and group 2, respectively. Group 3 was treated with STZ and glibenclamide simultaneously while groups 4 and 5 were simultaneously treated with STZ and hydroalcoholic extract of the root of R. cordifolia, respectively. Hot plate and cold allodynias were used to evaluate the pain threshold. The antioxidant effects of R. cordifolia were assessed by measuring Thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). At the end of the study, sciatic nerve and brain tissues were collected for histopathological study. Bcl-2 proteins, cleaved caspase-3, and Bax were assessed through the Western blot method. RESULTS R. cordifolia significantly attenuated paw withdrawal and tail flick latency in diabetic neuropathic rats. R. cordifolia significantly (p < 0.01) improved the levels of oxidative stress. It was found to decrease blood glucose levels and to increase animal weight in R. cordifolia-treated groups. Treatment with R. cordifolia suppressed the cleaved caspase-3 and reduced the Bax:Bcl2 ratio in sciatic nerve and brain tissue compared to the diabetic group. Histopathological analysis also revealed a marked improvement in architecture and loss of axons in brain and sciatic nerve tissues at a higher dose of R. cordifolia (400 mg/kg). CONCLUSION R. cordifolia attenuated diabetic neuropathy through its antidiabetic and analgesic properties by ameliorating apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Sweeti Bana
- Department of Pharmacology, Lloyd School of Pharmacy, Greater Noida 201306, India;
| | - Nitin Kumar
- Department of Pharmacy, Meerut Institute of Technology, Meerut 250103, India; (N.K.); (H.A.)
| | - Ali Sartaj
- Department of Pharmaceutics, Lloyd School of Pharmacy, Greater Noida 201306, India;
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Ashraf Ahmed Qurtam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.A.Q.); (F.A.N.); (M.A.-Z.)
| | - Fahd A. Nasr
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.A.Q.); (F.A.N.); (M.A.-Z.)
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.A.Q.); (F.A.N.); (M.A.-Z.)
| | - Neelam Singh
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar 201206, India;
| | - Praveen Gaur
- Department of Pharmacy, Metro College of Health Sciences and Research, Plot No.-41, Knowledge Park-III, Uttar Pradesh 201306, India; (P.G.); (R.M.)
| | - Rosaline Mishra
- Department of Pharmacy, Metro College of Health Sciences and Research, Plot No.-41, Knowledge Park-III, Uttar Pradesh 201306, India; (P.G.); (R.M.)
| | - Snigdha Bhardwaj
- Department of Pharmacy, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Hasan Ali
- Department of Pharmacy, Meerut Institute of Technology, Meerut 250103, India; (N.K.); (H.A.)
| | - Radha Goel
- Department of Pharmacology, Lloyd Institute of Management & Technology, Plot No.-11, Knowledge Park-II, Greater Noida 201306, India
| |
Collapse
|
16
|
Abd-Elsayed AA, Marcondes LP, Loris ZB, Reilly D. Painful Diabetic Peripheral Neuropathy - A Survey of Patient Experiences. J Pain Res 2023; 16:2269-2285. [PMID: 37425223 PMCID: PMC10329444 DOI: 10.2147/jpr.s409876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose An online survey was conducted in the USA to obtain information about the knowledge and experiences of patients with painful diabetic peripheral neuropathy (pDPN). Patients and Methods 506 adults with diabetes and pDPN affecting the feet for ≥6 months, for which pain medication had been prescribed for ≥6 months, completed an online survey questionnaire in March 2021. Results 79% of respondents had type 2 diabetes, 60% were male, 82% were Caucasian and 87% had comorbidities. Pain was significant to severe in 49% of respondents, and 66% had disability due to nerve pain. Anticonvulsants, over-the-counter pills and supplements were the most commonly used medications. Topical creams/patches were prescribed in 23% of respondents. 70% had tried multiple medications for their pain. 61% of respondents had to see ≥2 doctors before receiving a correct diagnosis of pDPN. 85% of respondents felt that the doctor understood their pain and its impact on their life. 70% had no difficulty finding the information they wanted. 34% felt insufficiently informed about their condition. A medical professional was the primary, and most trusted, source of information. Frustration, worry, anxiety and uncertainty were the most commonly reported emotions. Respondents were generally eager to find new medications for pain relief and desperate for a cure. Lifestyle changes because of nerve pain were most commonly associated with physical disabilities and sleep disturbance. Better treatments and freedom from pain were the overriding perspectives when considering the future. Conclusion Patients with pDPN are generally well informed about their pain and trust their doctor but remain unsatisfied with their current treatment and struggle to find a lasting solution for their pain. Early identification and diagnosis of pain in diabetics, and education about treatments, is important to minimize the impact of pain on quality of life and emotional well-being.
Collapse
Affiliation(s)
- Alaa A Abd-Elsayed
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
17
|
Jafarzadeh E, Beheshtirouy S, Aghamohammadzadeh N, Ghaffary S, Sarbakhsh P, Shaseb E. Management of diabetic neuropathy with memantine: A randomized clinical trial. Diab Vasc Dis Res 2023; 20:14791641231191093. [PMID: 37495223 PMCID: PMC10387673 DOI: 10.1177/14791641231191093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Diabetes patients frequently experience diabetic neuropathy (DN), a microvascular complication that significantly reduces patients' quality of life. Memantine has demonstrated potential benefits for neuropathic pains in preclinical studies. This study aimed to assess the efficacy of memantine in the management of peripheral neuropathy in patients with type 2 diabetes mellitus (T2DM). METHOD This randomized clinical trial includes 143 diabetic patients (aged between 18 and 75 years) with a confirmed diagnosis of diabetic neuropathy. Patients were randomly assigned to receive memantine 5 mg twice daily for 1 week, followed by 10 mg twice daily plus gabapentin 300 mg daily (n = 72) or just gabapentin 300 mg daily (n = 71) for 8 weeks. The DN4 questionnaire, monofilament, tuning fork, and Tip-therm tests were used to measure neuropathy at baseline and after the 8-week intervention. RESULTS The mean score of the DN4 questionnaire in the memantine group was significantly lower than the control group (p. value: .001). The number of patients with diabetic neuropathy remarkably decreased in the memantine group at the end of the study based on the performed tests (p. value: .001). CONCLUSION Memantine functions as a beneficial agent in the management of diabetic neuropathy, which would significantly improve the quality of life in diabetic patients.
Collapse
Affiliation(s)
- Elnaz Jafarzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Shaseb
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Espiritu-Picar RB, Matawaran BJ, Lim JM, Ratnasingham P. Mapping the Journey of Patients with Painful Diabetic Peripheral Neuropathy in the Philippines. ACTA MEDICA PHILIPPINA 2023; 57:46-51. [PMID: 39483691 PMCID: PMC11522588 DOI: 10.47895/amp.vi0.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Objective Knowing the limited epidemiological studies on painful diabetic peripheral neuropathy (pDPN) in the Philippines, the present review aimed to map the prevalence of pDPN and identify the associated healthcare gaps. Materials and Methods A systematic search of MEDLINE, Embase and BIOSIS was conducted using predefined inclusion criteria, and relevant studies published in English between 2004 and 2021 were identified. An unstructured literature search was also conducted on public and government websites with no date restriction. Data combined from all sources were synthesized and presented as a simple mean. Results Three studies were considered for final analyses of the 26 articles retrieved from structured and unstructured searches. The sample sizes for the three studies were 103, 172, and 100, respectively. The simple mean prevalence of pDPN was estimated at 26.5%. Awareness of pDPN based on a published study was 89%. According to published studies, screening and diagnosis of pDPN were 65% and 76.7%, respectively. One-third of the patients with pDPN (75%) were treated. No literature is available for adherence and control. Conclusion Limited data exist on the different management stages of patients with pDPN in the Philippines. The study analysis will help address the knowledge gaps, improve patient care and pain management, and aid decision making.
Collapse
Affiliation(s)
| | - Bien J. Matawaran
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Philippines
| | | | | |
Collapse
|
19
|
Chen C, Smith MT. The NLRP3 inflammasome: role in the pathobiology of chronic pain. Inflammopharmacology 2023:10.1007/s10787-023-01235-8. [PMID: 37106238 DOI: 10.1007/s10787-023-01235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Chronic pain is not only one of the most common health problems, it is often challenging to treat adequately. Chronic pain has a high prevalence globally, affecting approximately 20% of the adult population. Chronic inflammatory pain and neuropathic (nerve) pain conditions are areas of large unmet medical need because analgesic/adjuvant agents recommended for alleviation of these types of chronic pain often lack efficacy and/or they produce dose-limiting side effects. Recent work has implicated the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in the pathobiology of chronic pain, especially neuropathic and inflammatory pain conditions. NLRP3 is activated by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). This in turn leads to recruitment and activation of caspase-1 an enzyme that cleaves the inactive IL-1β and IL-18 precursors to their respective mature pro-inflammatory cytokines (IL-1β and IL-18) for release into the cellular milieu. Caspase-1 also cleaves the pyroptosis-inducing factor, gasdermin D, that leads to oligomerization of its N-terminal fragment to form pores in the host cell membrane. This then results in cellular swelling, lysis and release of cytoplasmic contents in an inflammatory form of cell death, termed pyroptosis. The ultimate outcome may lead to the development of neuropathic pain and/or chronic inflammatory pain. In this review, we address a role for NLRP3 inflammasome activation in the pathogenesis of various chronic pain conditions.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Science, School of Chemistry and Molecular Biosciences and School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
20
|
Sethi Y, Uniyal N, Vora V, Agarwal P, Murli H, Joshi A, Patel N, Chopra H, Hasabo EA, Kaka N. Hypertension the 'Missed Modifiable Risk Factor' for Diabetic Neuropathy: a Systematic Review. Curr Probl Cardiol 2023; 48:101581. [PMID: 36584725 DOI: 10.1016/j.cpcardiol.2022.101581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Diabetes and hypertension stand as the major non-infectious diseases affecting 34.2 million and 1.28 billion people respectively. The literature on the impact of diabetes on hypertension and vice versa is evolving. The major objectives of this review were to compile the evolving literature establishing the role of hypertension in diabetic neuropathy, derive the exact mechanisms for its pathogenesis, and describe evidence-based precise individualized management of diabetic neuropathy in patients having diabetes complicated by hypertension. A systematic review was conducted by searching databases of PubMed, Embase, and Scopus covering the literature from inception to 2022. We included all observational and experimental studies, including both human and animal studies looking into the correlation between diabetic neuropathy and hypertension. Hypertension poses to be the leading modifiable risk factor for the development of diabetic neuropathy, especially distal symmetrical polyneuropathy, producing abnormal nerve conduction parameters and increased vibration perception threshold in patients with diabetes mellitus. Thus, we advocate that good glycemic control in patients with diabetes needs to be supported with strict blood pressure control for preventing and delaying the onset of diabetic neuropathy.
Collapse
Affiliation(s)
- Yashendra Sethi
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, Government Doon Medical College, Dehradun, Uttarakhand, India.
| | - Nidhi Uniyal
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, Gautam Buddha Chikitsa Mahavidyalaya, Ras Bihari Bose Subharti University, Dehradun, Uttarakhand, India
| | - Vidhi Vora
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, Lokmanya Tilak Municipal Medical College, Sion, Mumbai, India
| | - Pratik Agarwal
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, Lokmanya Tilak Municipal Medical College, Sion, Mumbai, India
| | - Hamsa Murli
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, Lokmanya Tilak Municipal Medical College, Sion, Mumbai, India
| | - Archi Joshi
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, Government Medical College, Haldwani, Uttarakhand, India
| | - Neil Patel
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, GMERS Medical College, Himmatnagar, Gujarat, India
| | - Hitesh Chopra
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Elfatih A Hasabo
- Faculty of Medicine, University of Khartoum, Khartoum, Khartoum State, Sudan
| | - Nirja Kaka
- PearResearch, Dehradun, Uttarakhand, India; Department of Medicine, GMERS Medical College, Himmatnagar, Gujarat, India
| |
Collapse
|
21
|
Tung DD, Minh NN, Nguyen HT, Nguyen Thi PN, Nguyen Thi HL, Nguyen DL, Pham DTN, Tran TQ, Nguyen DT, Nguyen LP. Lower Extremity Nerve Conduction Abnormalities in Vietnamese Patients with Type 2 Diabetes: A Cross-Sectional Study on Peripheral Neuropathy and Its Correlation with Glycemic Control and Renal Function. J Pers Med 2023; 13:jpm13040617. [PMID: 37109004 PMCID: PMC10142910 DOI: 10.3390/jpm13040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Peripheral neuropathy is a common complication of type 2 diabetes mellitus (T2DM) that results in nerve conduction abnormalities. This study aimed to investigate the parameters of nerve conduction in lower extremities among T2DM patients in Vietnam. A cross-sectional study was conducted on 61 T2DM patients aged 18 years and older, diagnosed according to the American Diabetes Association’s criteria. Data on demographic characteristics, duration of diabetes, hypertension, dyslipidemia, neuropathy symptoms, and biochemical parameters were collected. Nerve conduction parameters were measured in the tibial and peroneal nerves, including peripheral motor potential time, response amplitude M, and motor conduction speed, as well as sensory conduction in the shallow nerve. The study found a high rate of peripheral neuropathy among T2DM patients in Vietnam, with decreased conduction rate, motor response amplitude, and nerve sensation. The incidence of nerve damage was highest in the right peroneal nerve and left peroneal nerve (86.7% for both), followed by the right tibial nerve and left tibial nerve (67.2% and 68.9%, respectively). No significant differences were found in the rate of nerve defects between different age groups, body mass index (BMI) groups, or groups with hypertension or dyslipidemia. However, a statistically significant association was found between the rate of clinical neurological abnormalities and the duration of diabetes (p < 0.05). Patients with poor glucose control and/or decreased renal function also had a higher incidence of nerve defects. The study highlights the high incidence of peripheral neuropathy among T2DM patients in Vietnam and the association between nerve conduction abnormalities and poor glucose control and/or decreased renal function. The findings underscore the importance of early diagnosis and management of neuropathy in T2DM patients to prevent serious complications.
Collapse
Affiliation(s)
- Do Dinh Tung
- Saint Paul General Hospital, 12A Chu Van An, Ba Dinh District, Ha Noi 100000, Vietnam
- Vietnam Diabetes Educators Association, 52/A1 Dai Kim Urban Area, Hoang Mai District, Ha Noi 100000, Vietnam
| | - Nui Nguyen Minh
- Department of Joints and Endocrinology, Military Medical University, 160, Phung Hung Street, Hadong District, Ha Noi 100000, Vietnam
| | - Hanh Thi Nguyen
- Department of Joints and Endocrinology, Military Medical University, 160, Phung Hung Street, Hadong District, Ha Noi 100000, Vietnam
| | - Phi Nga Nguyen Thi
- Department of Joints and Endocrinology, Military Medical University, 160, Phung Hung Street, Hadong District, Ha Noi 100000, Vietnam
| | - Huong Lan Nguyen Thi
- Saint Paul General Hospital, 12A Chu Van An, Ba Dinh District, Ha Noi 100000, Vietnam
| | - Duc Long Nguyen
- Saint Paul General Hospital, 12A Chu Van An, Ba Dinh District, Ha Noi 100000, Vietnam
| | - Dung Thuy Nguyen Pham
- NTT Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Toan Quoc Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Ha Noi 100000, Vietnam
| | - Duong Thanh Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Ha Noi 100000, Vietnam
| | - Linh Phuong Nguyen
- School of Preventive Medicine and Public Health, Ha Noi Medical University, 1, Ton That Tung Street, Dong Da District, Ha Noi 100000, Vietnam
| |
Collapse
|
22
|
Oggianu L, Garrone B, Fiorentini F, Del Bene F, Rosignoli MT, Di Giorgio FP, Kaminski RM. PK/PD analysis of trazodone and gabapentin in neuropathic pain rodent models: Translational PK-PD modeling from nonclinical to clinical development. Clin Transl Sci 2023; 16:606-617. [PMID: 36785922 PMCID: PMC10087074 DOI: 10.1111/cts.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 02/15/2023] Open
Abstract
A pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the time course of writhings after intraperitoneal injection of acetic acid in mice. The model was applied to investigate the antinociceptive effect of trazodone and gabapentin alone and in combination. Writhings time course was described by a transit compartment model with the delay due to the transit of the acetic acid being represented by a chain of intermediate compartments. In the drug-treated animals, the number of writhings decreases according to a k2 factor linking drug concentration and antinociceptive effect. Compounds' potency parameters were 10.9 and 0.0459 L/μmoles/min for trazodone and gabapentin, respectively, indicating a much higher in vivo potency of trazodone in the PD writhing test. The PK/PD parameters were used to simulate the expected writhing counts in mice at combined doses without efficacy alone, assuming pharmacological additivity. Simulation results indicated that, at low dose combinations, experimental data were mostly below the simulated writhings median, suggesting possible synergic effect. Such hypothesis was tested by adding the γ parameter in the PK/PD model to represent the deviation from the assumption of no-interaction, leading to a reduction of the objective function compared to the additive model. On this basis, several simulations were performed to identify possible starting dose combinations of trazodone and gabapentin in humans, by selecting doses yielding systemic exposures close to those being synergic in the mouse. Simulations indicated that doses of 50-100 mg trazodone could enhance gabapentin antinociceptive effect in humans, supporting the development of a low dose combination for optimal analgesia treatment.
Collapse
|
23
|
Quiroz-Aldave J, Durand-Vásquez M, Gamarra-Osorio E, Suarez-Rojas J, Jantine Roseboom P, Alcalá-Mendoza R, Coronado-Arroyo J, Zavaleta-Gutiérrez F, Concepción-Urteaga L, Concepción-Zavaleta M. Diabetic neuropathy: Past, present, and future. CASPIAN JOURNAL OF INTERNAL MEDICINE 2023; 14:153-169. [PMID: 37223297 PMCID: PMC10201131 DOI: 10.22088/cjim.14.2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 05/25/2023]
Abstract
Background A sedentary lifestyle and an unhealthy diet have considerably increased the incidence of diabetes mellitus worldwide in recent decades, which has generated a high rate of associated chronic complications. Methods A narrative review was performed in MEDLINE, EMBASES and SciELO databases, including 162 articles. Results Diabetic neuropathy (DN) is the most common of these complications, mainly producing two types of involvement: sensorimotor neuropathy, whose most common form is symmetric distal polyneuropathy, and autonomic neuropathies, affecting the cardiovascular, gastrointestinal, and urogenital system. Although hyperglycemia is the main metabolic alteration involved in its genesis, the presents of obesity, dyslipidemia, arterial hypertension, and smoking, play an additional role in its appearance. In the pathophysiology, three main phenomena stand out: oxidative stress, the formation of advanced glycosylation end-products, and microvasculature damage. Diagnosis is clinical, and it is recommended to use a 10 g monofilament and a 128 Hz tuning fork as screening tools. Glycemic control and non-pharmacological interventions constitute the mainstay of DN treatment, although there are currently investigations in antioxidant therapies, in addition to pain management. Conclusions Diabetes mellitus causes damage to peripheral nerves, being the most common form of this, distal symmetric polyneuropathy. Control of glycemia and comorbidities contribute to prevent, postpone, and reduce its severity. Pharmacological interventions are intended to relieve pain.
Collapse
Affiliation(s)
| | | | | | | | - Pela Jantine Roseboom
- Division of Emergency Medicine, Hospital Regional Docente de Trujillo, Trujillo, Peru
| | - Rosa Alcalá-Mendoza
- Division of Physical Medicine and Rehabilitation, Hospital Víctor Lazarte Echegaray, Trujillo, Peru
| | - Julia Coronado-Arroyo
- Division of Obstetrics and Gynecology, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | | | | | | |
Collapse
|
24
|
Heidari N, Ashraf A, Mohamadi Jahromi LS, Parvin R. Efficacy of perineural hypertonic saline injection versus acupoints of foot in the management of diabetic neuropathy: a multicenter, double-blinded randomized controlled trial. Pain Manag 2023; 13:35-43. [PMID: 36384321 DOI: 10.2217/pmt-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aim: Painful diabetic polyneuropathy is one of the most common disabling problems worldwide. We aimed to determine if a perineural injection of hypertonic saline compared with foot acupoints decreased the neuropathic pain score in patients with diabetes. Patients & methods/materials: Patients were assigned to receive either perineural or acupoints injection of hypertonic saline 5% in their feet for three weekly sessions. Douleur Neuropathique 4 (DN4) questionnaire for neuropathic pain was assessed. Results: Both groups observed a significant reduction of the DN4 score throughout 8 weeks of follow-up. Conclusion: Both perineural and acupoints hypertonic saline injections of the foot could improve neuropathic pain in patients with diabetes.
Collapse
Affiliation(s)
- Nina Heidari
- M.D., Physiatrist, Department of Physical Medicine & Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ashraf
- M.D., Shiraz Geriatric Research Center, Professor of Department of Physical Medicine & Rehabilitation, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Sadat Mohamadi Jahromi
- M.D., Physiatrist, Assistant Professor of Department of Physical Medicine & Rehabilitation, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhaneh Parvin
- M.D., Physiatrist, Department of Physical Medicine & Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Yiping S, Jiayi S, Guang H, Yun J, Bingjie M, Xuehua H, Zhiyuan Y, Pingchuan M, Ke M. The efficacy and safety of epidural morphine/hydromorphone in the treatment of intractable postherpetic neuralgia: A single-center, double-blinded, randomized controlled, prospective, and non-inferiority study. Front Pharmacol 2022; 13:1051357. [PMID: 36561344 PMCID: PMC9763618 DOI: 10.3389/fphar.2022.1051357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Objective: Postherpetic neuralgia (PHN) is a clinical puzzle, especially in patients who still suffered from moderate and severe pain after standard treatment. This single-center, double-blinded, randomized controlled, prospective, and non-inferiority study observed the safety and effectiveness of the epidural application of morphine or hydromorphone, trying to provide an alternative method for those patients with refractory PHN. Methods: Eighty PHN patients with a visual analogue scale (VAS) still greater than 50 mm after routine management were randomly divided into two groups according to 1:1, respectively. One group received epidural morphine (EMO group), and the other group received epidural hydromorphone (EHM group). VAS, the number of breakthrough pain, quality of life (QOL), and anxiety/depression assessment (GAD-7 and PHQ-9 scores) were also observed before treatment, at 1, 3, 7, 14, 21, 28, 60, and 90 days after treatment, as well as side effects. Opioid withdrawal symptoms (OWSs) were also measured from 3 to 28 days after treatment. Results: The EHM group was non-inferior to the EMO group in terms of the VAS decrease relative to baseline (VDRB) after 1-week treatment. The VAS of the two groups on all days after treatment was significantly lower than the corresponding baseline findings (p < 0.05). The breakthrough pain (BTP) decreased significantly after treatment and lasted until 14 days after treatment (p < 0.05). There was no significant difference in BTP between the two groups at each time point (p > 0.05). In terms of the QOL, GAD-7, and PHQ-9 outcomes, those were significantly improved after treatment (p < 0.05), and there was no difference between the two groups (p > 0.05). No significant AE difference across the two groups was observed in this study. Few reports of OWS were found in this trial, and there were no significant differences between the two groups (p > 0.05). Conclusion: EHM was non-inferior to EMO in terms of the VDRB after 1-week treatment. For patients with VAS still greater than 50 mm after standard treatment, short-term application of EMO or EHM can ameliorate intractable pain, improve the quality of life, and have no obvious side effects. Short-term epidural opioid application will not lead to the appearance of OWS.
Collapse
Affiliation(s)
- Sun Yiping
- Department of Clinical Research, Xinhua Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shen Jiayi
- Department of Clinical Research, Xinhua Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Hei Guang
- Department of Algology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji Yun
- Department of Algology, Xinhua Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ma Bingjie
- Department of Algology, Xinhua Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huang Xuehua
- Department of Algology, Xinhua Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yu Zhiyuan
- Department of Algology, Xinhua Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ma Pingchuan
- High School of Jiguang, Hongkou District, Shanghai, China
| | - Ma Ke
- Department of Algology, Xinhua Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Zhao LM, Chen X, Zhang YM, Qu ML, Selvarajah D, Tesfaye S, Yang FX, Ou CY, Liao WH, Wu J. Changed cerebral function and morphology serve as neuroimaging evidence for subclinical type 2 diabetic polyneuropathy. Front Endocrinol (Lausanne) 2022; 13:1069437. [PMID: 36506054 PMCID: PMC9729333 DOI: 10.3389/fendo.2022.1069437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Central and peripheral nervous systems are all involved in type 2 diabetic polyneuropathy mechanisms, but such subclinical changes and associations remain unknown. This study aims to explore subclinical changes of the central and peripheral and unveil their association. Methods A total of 55 type-2 diabetes patients consisting of symptomatic (n = 23), subclinical (n = 12), and no polyneuropathy (n = 20) were enrolled in this study. Cerebral morphology, function, peripheral electrophysiology, and clinical information were collected and assessed using ANOVA and post-hoc analysis. Gaussian random field correction was used for multiple comparison corrections. Pearson/Spearman correlation analysis was used to evaluate the association of the cerebral with the peripheral. Results When comparing the subclinical group with no polyneuropathy groups, no statistical differences were shown in peripheral evaluations except amplitudes of tibial nerves. At the same time, functional connectivity from the orbitofrontal to bilateral postcentral and middle temporal cortex increased significantly. Gray matter volume of orbitofrontal and its functional connectivity show a transient elevation in the subclinical group compared with the symptomatic group. Besides, gray matter volume in the orbitofrontal cortex negatively correlated with the Neuropathy Symptom Score (r = -0.5871, p < 0.001), Neuropathy Disability Score (r = -0.3682, p = 0.009), and Douleur Neuropathique en 4 questions (r = -0.4403, p = 0.003), and also found correlated positively with bilateral peroneal amplitude (r > 0.4, p < 0.05) and conduction velocities of the right sensory sural nerve(r = 0.3181, p = 0.03). Similarly, functional connectivity from the orbitofrontal to the postcentral cortex was positively associated with cold detection threshold (r = 0.3842, p = 0.03) and negatively associated with Neuropathy Symptom Score (r = -0.3460, p = 0.01). Discussion Function and morphology of brain changes in subclinical type 2 diabetic polyneuropathy might serve as an earlier biomarker. Novel insights from subclinical stage to investigate the mechanism of type 2 diabetic polyneuropathy are warranted.
Collapse
Affiliation(s)
- Lin-Mei Zhao
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xin Chen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - You-Ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Min-Li Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Fang-Xue Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chu-Ying Ou
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Munawar N, Nader J, Khadadah NH, Al Madhoun A, Al-Ali W, Varghese LA, Masocha W, Al-Mulla F, Bitar MS. Guanfacine Normalizes the Overexpression of Presynaptic α-2A Adrenoceptor Signaling and Ameliorates Neuropathic Pain in a Chronic Animal Model of Type 1 Diabetes. Pharmaceutics 2022; 14:pharmaceutics14102146. [PMID: 36297581 PMCID: PMC9609777 DOI: 10.3390/pharmaceutics14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Diabetes is associated with several complications, including neuropathic pain, which is difficult to manage with currently available drugs. Descending noradrenergic neurons possess antinociceptive activity; however, their involvement in diabetic neuropathic pain remains to be explored. Methods: To infer the regulatory role of this system, we examined as a function of diabetes, the expression and localization of alpha-2A adrenoceptors (α2-AR) in the dorsal root ganglia and key regions of the central nervous system, including pons and lumbar segment of the spinal cord using qRT-PCR, Western blotting, and immunofluorescence-based techniques. Results: The data revealed that presynaptic synaptosomal-associated protein-25 labeled α2-AR in the central and peripheral nervous system of streptozotocin diabetic rats was upregulated both at the mRNA and protein levels. Interestingly, the levels of postsynaptic density protein-95 labeled postsynaptic neuronal α2-AR remained unaltered as a function of diabetes. These biochemical abnormalities in the noradrenergic system of diabetic animals were associated with increased pain sensitivity as typified by the presence of thermal hyperalgesia and cold/mechanical allodynia. The pain-related behaviors were assessed using Hargreaves apparatus, cold-plate and dynamic plantar aesthesiometer. Chronically administered guanfacine, a selective α2-AR agonist, to diabetic animals downregulated the upregulation of neuronal presynaptic α2-AR and ameliorated the hyperalgesia and the cold/mechanical allodynia in these animals. Conclusion: Together, these findings demonstrate that guanfacine may function as a potent analgesic and highlight α2-AR, a key component of the descending neuronal autoinhibitory pathway, as a potential therapeutic target in the treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Joelle Nader
- Department of Mathematics and Natural Sciences, American University of Kuwait, Salmiya 20002, Kuwait
| | - Najat H. Khadadah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Linu A. Varghese
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
- Correspondence:
| |
Collapse
|
28
|
Tiecke E, Rainisio M, Guentert T, Müller S, Hochman L, Kaplan E, Mangialaio S. First-in-Human Single-Ascending-Dose, Multiple-Dose, and Food Interaction Studies of NRD.E1, an Innovative Nonopioid Therapy for Painful Diabetic Peripheral Neuropathy. Clin Pharmacol Drug Dev 2022; 11:1012-1027. [PMID: 35699261 PMCID: PMC9541015 DOI: 10.1002/cpdd.1103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/21/2022] [Indexed: 01/26/2023]
Abstract
Painful diabetic peripheral neuropathy is characterized by burning, stabbing, or electric shock-type pain, which severely impacts day-to-day functioning and quality of life. Here, we report the results of 3 phase I studies with NRD135S.E1 (referred to as NRD.E1), a new, orally available chemical entity, presently developed for the treatment of painful diabetic peripheral neuropathy. The first study was a first-in-human, randomized, placebo-controlled, single-ascending-dose study, where NRD.E1 was administered to healthy male subjects in single dosages ranging from 300 to 1200 mg. The second study was a randomized, placebo-controlled multiple-dose study, where healthy male subjects received 300 mg of NRD.E1 once daily for 5 consecutive days. The third study was an open-label food interaction study in healthy men and women following a crossover design, where NRD.E1 was administered under fed and fasted conditions at 40 mg. The studies revealed dose-dependent absorption, increased exposure to NRD.E1 when administered with food, and no relevant accumulation after once-daily administration. All 3 phase I studies consistently showed rapid absorption of orally administered NRD.E1 followed by fast elimination, mainly via metabolization (glucuronidation), and small secondary increases in plasma concentrations. NRD.E1 was well tolerated, with no subject discontinuation due to treatment-emergent adverse events in any study.
Collapse
|
29
|
Kaur S, Bali A, Singh N, Jaggi AS. Demystifying the dual role of the angiotensin system in neuropathic pain. Neuropeptides 2022; 94:102260. [PMID: 35660757 DOI: 10.1016/j.npep.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022]
Abstract
Neuropathic Pain is caused by damage to a nerve or disease of the somatosensory nervous system. Apart from the blood pressure regulating actions of angiotensin ligands, studies have shown that it also modulates neuropathic pain. In the animal models including surgical, chemotherapeutic, and retroviral-induced neuropathic pain, an increase in the levels of angiotensin II has been identified and it has been proposed that an increase in angiotensin II may participate in the induction of neuropathic pain. The pain-inducing actions of the angiotensin system are primarily due to the activation of AT1 and AT2 receptors, which trigger the diverse molecular mechanisms including the induction of neuroinflammation to initiate and maintain the state of neuropathic pain. On the other hand, the pain attenuating action of the angiotensin system has been attributed to decreasing in the levels of Ang(1-7), and Ang IV and an increase in the levels of bradykinin. Ang(1-7) may attenuate neuropathic pain via activation of the spinal Mas receptor. However, the detailed molecular mechanism involved in Ang(1-7) and Ang IV-mediated pain attenuating actions needs to be explored. The present review discusses the dual role of angiotensin ligands in neuropathic pain along with the possible mechanisms involved in inducing or attenuating the state of neuropathic pain.
Collapse
Affiliation(s)
- Sahibpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India.
| |
Collapse
|
30
|
Sahba K, Berk L, Bussell M, Lohman E, Zamora F, Gharibvand L. Treating peripheral neuropathy in individuals with type 2 diabetes mellitus with intraneural facilitation: a single blind randomized control trial. J Int Med Res 2022; 50:3000605221109390. [PMID: 35922961 PMCID: PMC9358562 DOI: 10.1177/03000605221109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the effectiveness of intraneural facilitation (INF) for the treatment of diabetic peripheral neuropathy (DPN). Methods This single-blind, randomized clinical trial enrolled patients with type 2 diabetes mellitus and moderate-to-severe DPN symptoms below the ankle. Patients were randomly assigned to receive INF or sham treatment. In the INF group, trained INF physical therapists provided therapy for 50–60 min, three times a week for 3 weeks. Sham treatment consisted of patients believing they received anodyne therapy for 3 weeks. Pre- and post-treatment data were compared between the two groups for quality of life, balance, gait, protective sensory function and pain outcome measures. Results A total of 28 patients (17 males) were enrolled in the study (INF group n = 17; sham group n = 11). There was a significant decrease in the overall pain score in both the INF and sham groups over time, but the decrease was greater in the INF group (1.11 versus 0.82). Between-group comparisons demonstrated significant differences in unpleasant pain and protective sensory function. The INF group showed post-treatment improvements in protective sensory function and composite static balance score. Conclusions INF treatment improved pain perception, the composite static balance score and protective sensations in patients with DPN. Research Registry number: CNCT04025320
Collapse
Affiliation(s)
- Kyan Sahba
- Department of Allied Health Studies, School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA
| | - Lee Berk
- Department of Allied Health Studies, School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA.,Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Mark Bussell
- Neuropathic Therapy Center, Loma Linda University Health, Loma Linda, CA, USA
| | - Everett Lohman
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA
| | - Francis Zamora
- Department of Allied Health Studies, School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA
| | - Lida Gharibvand
- Department of Allied Health Studies, School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
31
|
Wang FX, Xu CL, Su C, Li J, Lin JY. β-Hydroxybutyrate Attenuates Painful Diabetic Neuropathy via Restoration of the Aquaporin-4 Polarity in the Spinal Glymphatic System. Front Neurosci 2022; 16:926128. [PMID: 35898407 PMCID: PMC9309893 DOI: 10.3389/fnins.2022.926128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Waste removal is essential for maintaining homeostasis and the normal function of the central nervous system (CNS). The glymphatic system based on aquaporin-4 (AQP4) water channels on the endfeet of astrocytes is recently discovered as the excretion pathway for metabolic waste products of CNS. In the CNS, α-syntrophin (SNTA1) directly or indirectly anchors AQP4 in astrocyte membranes facing blood vessels. Studies have indicated that β-hydroxybutyrate (BHB) can raise the expression of SNTA1 and thus restoring AQP4 polarity in mice models with Alzheimer’s disease. The study aims to evaluate the neuroprotective mechanism of BHB in rats with painful diabetic neuropathy (PDN). PDN rats were modeled under a high-fat and high-glucose diet with a low dose of streptozotocin. Magnetic resonance imaging (MRI) was applied to observe the clearance of contrast to indicate the functional variability of the spinal glymphatic system. Mechanical allodynia was assessed by paw withdrawal threshold. The expressions of SNTA1 and AQP4 were tested, and the polarity reversal of AQP4 protein was measured. As demonstrated, PDN rats were manifested with deceased contrast clearance of the spinal glymphatic system, enhanced mechanical allodynia, lower expression of SNTA1, higher expression of AQP4, and reversed polarity of AQP4 protein. An opposite change in the above characteristics was observed in rats being treated with BHB. This is the first study that demonstrated the neuroprotective mechanism of BHB to attenuate PDN via restoration of the AQP4 polarity in the spinal glymphatic system and provides a promising therapeutic strategy for PDN.
Collapse
Affiliation(s)
- Fei-xiang Wang
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chi-liang Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Can Su
- Department of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-yan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Jing-yan Lin,
| |
Collapse
|
32
|
Wang GQ, Wang FX, He YN, Lin JY. Plasticity of the spinal glymphatic system in male SD rats with painful diabetic neuropathy induced by type 2 diabetes mellitus. J Neurosci Res 2022; 100:1908-1920. [PMID: 35796387 PMCID: PMC9541551 DOI: 10.1002/jnr.25104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
The glymphatic system is a recently discovered glial‐dependent macroscopic interstitial waste clearance system that promotes the efficient elimination of soluble proteins and metabolites from the central nervous system. Its anatomic foundation is the astrocytes and aquaporin‐4 (AQP4) water channels on the endfeet of astrocytes. The aim of this study is to evaluate the plasticity of the spinal glymphatic system in male SD rats with painful diabetic neuropathy (PDN) induced by type 2 diabetes mellitus. PDN rats were modeled under a high‐fat and high‐glucose diet with a low dose of streptozotocin. MRI was applied to observe the infiltration and clearance of contrast to indicate the functional variability of the glymphatic system at the spinal cord level. The paw withdrawal threshold was used to represent mechanical allodynia. The numerical change of glial fibrillary acidic protein (GFAP) positive astrocytes was assessed and the polarity reversal of AQP4 protein was measured by immunofluorescence. As a result, deceased contrast infiltration and clearance, enhanced mechanical allodynia, increased number of GFAP positive astrocytes, and reversed polarity of AQP4 protein were found in the PDN rats. The above molecular level changes may contribute to the impairment of the spinal glymphatic system in PDN rats. This study revealed the molecular and functional variations of the spinal glymphatic system in PDN rats and for the first time indicated that there might be a correlation between the impaired spinal glymphatic system and PDN rats.
Collapse
Affiliation(s)
- Guo-Qiang Wang
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Pain Treatment, Physical and Mental Hospital of Nanchong City, Nanchong, China
| | - Fei-Xiang Wang
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yi-Na He
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, China
| | - Jing-Yan Lin
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
33
|
Patel MV, Patel MM, Patel KB, Chhayani PV, Mittwede M, Scheidbach D, Gupta SN. A randomized placebo-compared study on the efficacy of classical ayurvedic pharmaceutical form versus aqueous alcoholic extracts of Phyllanthus niruri Linn. Plus Sida cordifolia Linn. in patients of diabetic sensory polyneuropathy. J Ayurveda Integr Med 2022; 13:100619. [PMID: 36027804 PMCID: PMC9424570 DOI: 10.1016/j.jaim.2022.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In routine, Ayurveda practitioners prefer classical pharmaceutical form of herbal medicines in compare to modern extracts. OBJECTIVE To explore the difference of efficiency between whole drug powder of Phyllanthus niruri plus root decoction of Sida cordifolia and modern extracts of the same in compared to placebo in patients of diabetic poly-neuropathy. MATERIAL AND METHODS A randomized, partly-double-blinded, placebo-controlled trial evaluated the efficacy of two different pharmaceutical forms of herbal medicines over placebo in 90 patients (30 in each group) of diabetic sensory polyneuropathy for first three weeks period. After three weeks, active herbal medication groups were continued with their assigned medicaments for next 5 weeks period and all placebo-patients were randomized again into 2 groups of active medication and treated for next 8 weeks. Patients were assessed with Neuropathy Total Symptom Score 6 and sensation thresholds. RESULTS Significant effect of both form of herbal medicines over placebo was found in aching pain [F (2, 49) = 6.79, p = 0.002], allodynia [F (2, 59) = 6.74, p = 0.002], burning pain [F (2, 82) = 14.66, p < 0.0001], numbness [F (2, 77) = 16.37, p < 0.0001] and pricking pain [F (2, 50) = 14.23, p < 0.0001]. After the 8 weeks period, no significant difference was identified between the effect of both the herbal treatment on aching pain (U = 220, p = 0.03), allodynia (U = 421.5, p = 0.29), burning pain (U = 881.5, p = 0.846), numbness (U = 778, p = 0.92) and pricking pain (U = 260, p = 0.15). CONCLUSION Both herbal groups have significant effect to reduce NTSS-6 score in compare to placebo. No significant difference found between the effect of two different pharmaceutical forms of Phyllanthus niruri and S. cordifolia.
Collapse
Affiliation(s)
- Manish V Patel
- Department of Kayachikitsa, J. S. Ayurved Mahavidyalaya, Nadiad, India.
| | - Mansi M Patel
- Department of Panchakarma, J. S. Ayurved Mahavidyalaya, Nadiad, India
| | - Kalapi B Patel
- Department of Panchakarma, J. S. Ayurved Mahavidyalaya, Nadiad, India
| | - Pankaj V Chhayani
- Department of Kayachikitsa, J. S. Ayurved Mahavidyalaya, Nadiad, India
| | - Martin Mittwede
- Goethe University Frankfurt / Main and Rosenberg European Academy for Ayurveda, Birstein, Germany
| | | | | |
Collapse
|
34
|
D'Souza RS, Barman R, Joseph A, Abd-Elsayed A. Evidence-Based Treatment of Painful Diabetic Neuropathy: a Systematic Review. Curr Pain Headache Rep 2022; 26:583-594. [PMID: 35716275 DOI: 10.1007/s11916-022-01061-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Painful diabetic neuropathy (PDN) manifests with pain typically in the distal lower extremities and can be challenging to treat. The authors appraised the literature for evidence on conservative, pharmacological, and neuromodulation treatment options for PDN. RECENT FINDINGS Intensive glycemic control with insulin in patients with type 1 diabetes may be associated with lower odds of distal symmetric polyneuropathy compared to patients who receive conventional insulin therapy. First-line pharmacologic therapy for PDN includes gabapentinoids (pregabalin and gabapentin) and duloxetine. Additional pharmacologic modalities that are approved by the Food and Drug Administration (FDA) but are considered second-line agents include tapentadol and 8% capsaicin patch, although studies have revealed modest treatment effects from these modalities. There is level I evidence on the use of dorsal column spinal cord stimulation (SCS) for treatment of PDN, delivering either a 10-kHz waveform or tonic waveform. In summary, this review provides an overview of treatment options for PDN. Furthermore, it provides updates on the level of evidence for SCS therapy in cases of PDN refractory to conventional medical therapy.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ross Barman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amira Joseph
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology and Perioperative Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
35
|
Pathak R, Sachan N, Chandra P. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review. Biomed Pharmacother 2022; 150:113025. [PMID: 35658222 DOI: 10.1016/j.biopha.2022.113025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic neuropathy, also called peripheral diabetic neuropathy (PDN), is among the most significant diabetes health consequences, alongside diabetic nephropathy, diabetic cardiomyopathy and diabetic retinopathy. Diabetic neuropathy is the existence of signs and indications of peripheral nerve damage in patients with diabetes after other causes have been governed out. Diabetic neuropathy is a painful and severe complication of diabetes that affects roughly 20% of people. The development of diabetic neuropathy is regulated by blood arteries that nourish the peripheral nerves and metabolic problems such as increased stimulation of polyol pathway, loss of myo-inositol and enhanced non-enzymatic glycation. It's divided into four types based on where neurons are most affected: autonomic, peripheral, proximal, and focal, with each kind presenting different symptoms like numbing, gastrointestinal disorders, and heart concerns. Pharmacotherapy for neuropathic pain is complex and for many patients, effective treatment is lacking; as a result, scientific proof recommendations are crucial. As a result, the current demand is to give the most vital medications or combinations of drugs that work directly on the nerves to help diabetic neuropathy patients feel less pain without causing any adverse effects. In diabetic neuropathy research, animal models are ubiquitous, with rats and mice being the most typically chosen for various reasons. This review covers the epidemiology, clinical features, pathology, clinical symptom, mechanism of diabetic neuropathy development, diagnosis, screening models of animals, diabetic neuropathy pharmacotherapy.
Collapse
Affiliation(s)
- Rashmi Pathak
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India
| | - Phool Chandra
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India.
| |
Collapse
|
36
|
Inhibition of Aldose Reductase by Ginsenoside Derivatives via a Specific Structure Activity Relationship with Kinetics Mechanism and Molecular Docking Study. Molecules 2022; 27:molecules27072134. [PMID: 35408532 PMCID: PMC9000482 DOI: 10.3390/molecules27072134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
This present work is designed to evaluate the anti-diabetic potential of 22 ginsenosides via the inhibition against rat lens aldose reductase (RLAR), and human recombinant aldose reductase (HRAR), using DL-glyceraldehyde as a substrate. Among the ginsenosides tested, ginsenoside Rh2, (20S) ginsenoside Rg3, (20R) ginsenoside Rg3, and ginsenoside Rh1 inhibited RLAR significantly, with IC50 values of 0.67, 1.25, 4.28, and 7.28 µM, respectively. Moreover, protopanaxadiol, protopanaxatriol, compound K, and ginsenoside Rh1 were potent inhibitors of HRAR, with IC50 values of 0.36, 1.43, 2.23, and 4.66 µM, respectively. The relationship of structure-activity exposed that the existence of hydroxyl groups, linkages, and their stereo-structure, as well as the sugar moieties of the ginsenoside skeleton, represented a significant role in the inhibition of HRAR and RLAR. Additional, various modes of ginsenoside inhibition and molecular docking simulation indicated negative binding energies. It was also indicated that it has a strong capacity and high affinity to bind the active sites of enzymes. Further, active ginsenosides suppressed sorbitol accumulation in rat lenses under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. The findings of the present study suggest the potential of ginsenoside derivatives for use in the development of therapeutic or preventive agents for diabetic complications.
Collapse
|
37
|
Staudt MD, Prabhala T, Sheldon BL, Quaranta N, Zakher M, Bhullar R, Pilitsis JG, Argoff CE. Current Strategies for the Management of Painful Diabetic Neuropathy. J Diabetes Sci Technol 2022; 16:341-352. [PMID: 32856490 PMCID: PMC8861791 DOI: 10.1177/1932296820951829] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of painful diabetic neuropathy (PDN) is a common complication of chronic diabetes that can be associated with significant disability and healthcare costs. Prompt symptom identification and aggressive glycemic control is essential in controlling the development of neuropathic complications; however, adequate pain relief remains challenging and there are considerable unmet needs in this patient population. Although guidelines have been established regarding the pharmacological management of PDN, pain control is inadequate or refractory in a high proportion of patients. Pharmacotherapy with anticonvulsants (pregabalin, gabapentin) and antidepressants (duloxetine) are common first-line agents. The use of oral opioids is associated with considerable morbidity and mortality and can also lead to opioid-induced hyperalgesia. Their use is therefore discouraged. There is an emerging role for neuromodulation treatment modalities including intrathecal drug delivery, spinal cord stimulation, and dorsal root ganglion stimulation. Furthermore, consideration of holistic alternative therapies such as yoga and acupuncture may augment a multidisciplinary treatment approach. This aim of this review is to focus on the current management strategies for the treatment of PDN, with a discussion of treatment rationale and practical considerations for their implementation.
Collapse
Affiliation(s)
- Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York, USA
| | - Tarun Prabhala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Breanna L Sheldon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Nicholas Quaranta
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Michael Zakher
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Ravneet Bhullar
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Charles E Argoff
- Department of Neurology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
38
|
Chen JL, Hesseltine AW, Nashi SE, Sills SM, McJunkin TL, Patil S, Bharara M, Caraway DL, Brooks ES. A Real-World Analysis of High-Frequency 10 kHz Spinal Cord Stimulation for the Treatment of Painful Diabetic Peripheral Neuropathy. J Diabetes Sci Technol 2022; 16:282-288. [PMID: 34842489 PMCID: PMC8861794 DOI: 10.1177/19322968211060316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is one of the most prevalent chronic health conditions and diabetic neuropathy one of its most prevalent and debilitating complications. While there are treatments available for painful diabetic peripheral neuropathy (pDPN), their effectiveness is limited. METHOD This retrospective, multi-center, real-world review assessed pain relief and functional improvements for consecutive patients with diabetic neuropathy aged ≥18 years of age who were permanently implanted with a high-frequency (10 kHz) spinal cord stimulation (SCS) device. Available data were extracted from a commercial database. RESULTS In total 89 patients consented to being included in the analysis. Sixty-one percent (54/89) of participants were male and the average age was 64.4 years (SD = 9.1). Most patients (78.7%, 70/89) identified pain primarily in their feet or legs bilaterally. At the last assessment, 79.5% (58/73) of patients were treatment responders, defined as having at least 50% patient-reported pain relief from baseline. The average time of follow-up was 21.8 months (range: 4.3 to 46.3 months). A majority of patients reported improvements in sleep and overall function relative to their baseline. CONCLUSIONS This real-world study in typical clinical practices found 10 kHz SCS provided meaningful pain relief for a substantial proportion of patients refractory to current pDPN management, similar to published literature. This patient population has tremendous unmet needs and this study helps demonstrate the potential for 10 kHz SCS to provide an alternative pain management approach.
Collapse
Affiliation(s)
- Jeffrey L. Chen
- Center for Pain, University of
California San Diego, San Diego, CA, USA
- Jeffrey Chen, MD, MHS, Associate Professor
of Anesthesiology, Center for Pain, University of California San Diego, 9300
Campus Point Dr., MC 7651, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Qureshi Z, Ali MN, Khalid M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J Diabetes Res 2022; 2022:9989272. [PMID: 35127954 PMCID: PMC8813291 DOI: 10.1155/2022/9989272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is the 4th most common disease affecting the world's population. It is accompanied by many complications that deteriorate the quality of life. Painful diabetic neuropathy (PDN) is one of the debilitating consequences of diabetes that effects one-third of diabetic patients. Unfortunately, there is no internationally recommended drug that directly hinders the pathological mechanisms that result in painful diabetic neuropathy. Clinical studies have shown that anticonvulsant and antidepressant therapies have proven fruitful in management of pain associated with PDN. Currently, the FDA approved medications for painful diabetic neuropathies include duloxetine, pregabalin, tapentadol extended release, and capsaicin (for foot PDN only). The FDA has also approved the use of spinal cord stimulation system for the treatment of diabetic neuropathy pain. The drugs recommended by other regulatory bodies include gabapentin, amitriptyline, dextromethorphan, tramadol, venlafaxine, sodium valproate, and 5 % lidocaine patch. These drugs are only partially effective and have adverse effects associated with their use. Treating painful symptoms in diabetic patient can be frustrating not only for the patients but also for health care workers, so additional clinical trials for novel and conventional treatments are required to devise more effective treatment for PDN with minimal side effects. This review gives an insight on the pathways involved in the pathogenesis of PDN and the potential pharmacotherapeutic agents. This will be followed by an overview on the FDA-approved drugs for PDN and commercially available topical analgesic and their effects on painful diabetic neuropathies.
Collapse
Affiliation(s)
- Zunaira Qureshi
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Minahil Khalid
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
40
|
Abstract
Diabetic painless and painful peripheral neuropathy remains the most frequent complication of diabetes mellitus, but the pathophysiology remains undescribed, there are no robust clinical endpoints and no efficient treatment exists. This hampers good clinical practice, fruitful clinical research and successful pharmacological trials, necessary for the development of early detection, prevention and treatment. This chapter supplies an update on background and treatment of diabetic peripheral neuropathy. Goals and perspectives for future clinical and scientific approaches are also described.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Faculty of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
41
|
Albrecht PJ, Houk G, Ruggiero E, Dockum M, Czerwinski M, Betts J, Wymer JP, Argoff CE, Rice FL. Keratinocyte Biomarkers Distinguish Painful Diabetic Peripheral Neuropathy Patients and Correlate With Topical Lidocaine Responsiveness. FRONTIERS IN PAIN RESEARCH 2021; 2:790524. [PMID: 35295428 PMCID: PMC8915676 DOI: 10.3389/fpain.2021.790524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/11/2023] Open
Abstract
This study investigated quantifiable measures of cutaneous innervation and algesic keratinocyte biomarkers to determine correlations with clinical measures of patient pain perception, with the intent to better discriminate between diabetic patients with painful diabetic peripheral neuropathy (PDPN) compared to patients with low-pain diabetic peripheral neuropathy (lpDPN) or healthy control subjects. A secondary objective was to determine if topical treatment with a 5% lidocaine patch resulted in correlative changes among the quantifiable biomarkers and clinical measures of pain perception, indicative of potential PDPN pain relief. This open-label proof-of-principle clinical research study consisted of a pre-treatment skin biopsy, a 4-week topical 5% lidocaine patch treatment regimen for all patients and controls, and a post-treatment skin biopsy. Clinical measures of pain and functional interference were used to monitor patient symptoms and response for correlation with quantitative skin biopsy biomarkers of innervation (PGP9.5 and CGRP), and epidermal keratinocyte biomarkers (Nav1.6, Nav1.7, CGRP). Importantly, comparable significant losses of epidermal neural innervation (intraepidermal nerve fibers; IENF) and dermal innervation were observed among PDPN and lpDPN patients compared with control subjects, indicating that innervation loss alone may not be the driver of pain in diabetic neuropathy. In pre-treatment biopsies, keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling were all significantly increased among PDPN patients compared with control subjects. Importantly, no keratinocyte biomarkers were significantly increased among the lpDPN group compared with control. In post-treatment biopsies, the keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling intensities were no longer different between control, lpDPN, or PDPN cohorts, indicating that lidocaine treatment modified the PDPN-related keratinocyte increases. Analysis of the PDPN responder population demonstrated that increased pretreatment keratinocyte biomarker immunolabeling for Nav1.6, Nav1.7, and CGRP correlated with positive outcomes to topical lidocaine treatment. Epidermal keratinocytes modulate the signaling of IENF, and several analgesic and algesic signaling systems have been identified. These results further implicate epidermal signaling mechanisms as modulators of neuropathic pain conditions, highlight a novel potential mode of action for topical treatments, and demonstrate the utility of comprehensive skin biopsy evaluation to identify novel biomarkers in clinical pain studies.
Collapse
Affiliation(s)
- Phillip J. Albrecht
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
- Division of Health Sciences, University at Albany, Albany, NY, United States
- *Correspondence: Phillip J. Albrecht
| | - George Houk
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | - Elizabeth Ruggiero
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | - Marilyn Dockum
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | | | - Joseph Betts
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
| | - James P. Wymer
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Charles E. Argoff
- Department of Neurology, Albany Medical Center, Albany, NY, United States
| | - Frank L. Rice
- Neuroscience and Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, United States
- Division of Health Sciences, University at Albany, Albany, NY, United States
| |
Collapse
|
42
|
Arora K, Tomar PC, Mohan V. Diabetic neuropathy: an insight on the transition from synthetic drugs to herbal therapies. J Diabetes Metab Disord 2021; 20:1773-1784. [PMID: 34900824 PMCID: PMC8630252 DOI: 10.1007/s40200-021-00830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The global pandemic of prediabetes and diabetes has led to a severe corresponding complication of these disorders. Neuropathy is one of the most prevalent complication of diabetes is, affecting blood supply of the peripheral nervous system that may eventually results into loss of sensations, injuries, diabetic foot and death. The utmost identified risk of diabetic neuropathy is uncontrolled high blood glucose levels. However, aging, body mass index (BMI), oxidative stress, inflammation, increased HbA1c levels and blood pressure are among the other key factors involved in the upsurge of this disease. The so far treatment to deal with diabetic neuropathy is controlling metabolic glucose levels. Apart from this, drugs like reactive oxygen species (ROS) inhibitors, aldose reductase inhibitors, PKC inhibitors, Serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, N-methyl-D-aspartate receptor (NMDAR) antagonists, are the other prescribed medications. However, the related side-effects (hallucinations, drowsiness, memory deficits), cost, poor pharmacokinetics and drug resistance brought the trust of patients down and thus herbal renaissance is occurring all over the word as the people have shifted their intentions from synthetic drugs to herbal remedies. Medicinal plants have widely been utilized as herbal remedies against number of ailments in Indian medicinal history. Their bioactive components are very much potent to handle different chronic disorders and complications with lesser-known side effects. Therefore, the current article mainly concludes the etiology and pathophysiology of diabetic neuropathy. Furthermore, it also highlights the important roles of medicinal plants and their naturally occurring bioactive compounds in addressing this disease.
Collapse
Affiliation(s)
- Komal Arora
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| | - Pushpa C. Tomar
- Department of Biotechnology, Faculty of Engineering & Technology, Manav Rachna International Institute of Research & Studies, Haryana 121004 Faridabad, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| |
Collapse
|
43
|
Berfelo T, Krabbenbos IP, van Den Berg B, Gefferie SR, Buitenweg JR. Exploring Nociceptive Detection Thresholds Combined with Evoked Potentials in Patients with Diabetes Mellitus. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1358-1361. [PMID: 34891536 DOI: 10.1109/embc46164.2021.9629620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a lack of diagnostic tools that can objectively measure small fiber neuropathy (SFN) in patients with diabetes mellitus (DM). Recently, nociceptive nerve function was observed by nociceptive detection thresholds (NDTs) and brain evoked potentials (EPs) during intra-epidermal electrical stimulation (IES) targeting Aδ-fibers. In this proof of principle, we studied whether it is possible to measure NDTs combined with EPs in DM patients with and without neuropathic pain. Furthermore, we explored the sensitivity of NDTs and EPs for polyneuropathy in these patients. Five DM patients diagnosed with painful neuropathy (DMp), five DM patients without painful neuropathy (DM), and five healthy controls (HC) were analyzed. These preliminary results showed that we can accurately measure NDTs and EPs in patients with diabetes. Strikingly, increased NDTs were found in DM and DMp compared to HC, of which the DMp showed the largest NDTs. This suggests that NDTs during IES could be a powerful biomarker for monitoring peripheral dysfunctions. Current EEG data of patients did not show any significant differences. The population needs to be enlarged before we can investigate the sensitivity of these NDTs and EPs to diabetic polyneuropathy and associated changes in nociceptive processing in more detail.Clinical Relevance- This proof of principle in a small group of patients with diabetes mellitus potentially treats the observation of the loss of nociceptive function occurring with small fiber neuropathy. That helps the development of a diagnostic measure to monitor future (early-stage) nociceptive dysfunctions in a clinical environment.
Collapse
|
44
|
Srinivasan A, Dutta P, Bansal D, Chakrabarti A, Bhansali AK, Hota D. Efficacy and safety of low-dose naltrexone in painful diabetic neuropathy: A randomized, double-blind, active-control, crossover clinical trial. J Diabetes 2021; 13:770-778. [PMID: 34014028 DOI: 10.1111/1753-0407.13202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There is a need for newer therapies for chronic painful diabetic neuropathy as the existing drugs have their own limitations. Clinical trials on low-dose naltrexone (1-5 mg/d) showed efficacy and safety in certain chronic painful conditions, but not in painful diabetic neuropathy. Hence the present study was planned. METHODS Sixty-seven participants with painful diabetic neuropathy were randomized to receive either 2 mg naltrexone or 10 mg amitriptyline daily following a 2-week run-in period. The participants were followed up every 2 weeks for a total of 6 weeks. Up-titration was done (to 4 mg naltrexone or 25/50 mg amitriptyline) if the pain reduction was less than 20% on the visual analog scale (VAS) during the next follow-up visit. Efficacy was assessed using the change in VAS score at the end of 6 weeks from baseline. Safety was evaluated at each follow-up visit. After 2 weeks of washout period, the participants were crossed over to receive the comparator drug for another 6 weeks with similar evaluations. RESULTS The difference (confidence interval) in the change in VAS score between groups from baseline was 1.64 (-0.92 to 4.20) in per-protocol analysis and 1.5 (-1.11 to 4.13) in intention-to-treat analysis. Eight and fifty-two adverse events were reported in the naltrexone and amitriptyline groups, respectively (P < .001). The most common adverse events were mild diarrhea with naltrexone and somnolence with amitriptyline. CONCLUSIONS Low-dose naltrexone exhibited similar efficacy and a superior safety profile compared with amitriptyline in painful diabetic neuropathy.
Collapse
Affiliation(s)
- Anand Srinivasan
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipika Bansal
- Department of Clinical Research, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Kumar Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Debasish Hota
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
45
|
Park SY, Park CH. Diagnosis of Muscle Fatigue Using Surface Electromyography and Analysis of Associated Factors in Type 2 Diabetic Patients with Neuropathy: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9635. [PMID: 34574559 PMCID: PMC8469078 DOI: 10.3390/ijerph18189635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Diabetic neuropathy (DN) is a major complication associated with diabetes mellitus (DM) and results in fatigue. We investigated whether type 2 diabetic patients with or without neuropathy experienced muscle fatigue and determined the most influencing factor on muscle fatigue. Overall, 15 out of 25 patients with type 2 DM were diagnosed with DN using a nerve conduction study in the upper and lower extremities, and the composite score (CS) was calculated. We obtained the duration of DM and body mass index (BMI) from subjects, and they underwent a series of laboratory tests including HbA1c, fasting plasma glucose, triglycerides, and high- and low-density lipoprotein. To qualify muscle fatigue, this study used surface electromyography (sEMG). Anode and cathode electrodes were attached to the medial gastrocnemius. After 100% isometric maximal voluntary contracture of plantarflexion, the root mean square, median frequency (MDF), and mean power frequency (MNF) were obtained. We showed a correlation among laboratory results, duration of DM, BMI, CS, and parameters of muscle fatigue. The duration of DM was related to fatigue of the muscle and CS (p < 0.05). However, CS was not related to fatigue. The MDF and MNF of muscle parameters were positively correlated with HbA1c and fasting plasma glucose (p < 0.05). In conclusion, we suggest that the duration of DM and glycemic control play important roles in muscle fatigue in patients with DN. Additionally, sEMG is useful for diagnosing muscle fatigue in patients with DN.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul 02447, Korea;
| | - Chan Hyuk Park
- Department of Physical & Rehabilitation Medicine, Inha University Hospital, Incheon 22332, Korea
| |
Collapse
|
46
|
Mizobuchi H, Yamamoto K, Yamashita M, Inagawa H, Kohchi C, Soma GI. Prevention of streptozotocin‑induced Neuro‑2a cell death by C8‑B4 microglia transformed with repetitive low‑dose lipopolysaccharide. Mol Med Rep 2021; 24:687. [PMID: 34328201 DOI: 10.3892/mmr.2021.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes‑associated neuronal dysfunction (DAND) is one of the serious complications of diabetes, but there is currently no remedy for it. Streptozotocin [2‑deoxy‑2‑(3‑methy1‑3‑nitrosoureido) D‑glucopyranose; STZ] is one of the most well‑established diabetes inducers and has been used in vivo and in vitro DAND models. The aim of the present study was to demonstrate that C8‑B4 microglia transformed by the stimulus of repetitive low‑dose lipopolysaccharide (LPSx3‑microglia) prevent STZ‑induced Neuro‑2a neuronal cell death in vitro. The ELISA results showed that neurotrophin‑4/5 (NT‑4/5) secretion was promoted in LPSx3‑microglia and the cell viability assay with trypan blue staining revealed that the culture supernatant of LPSx3‑microglia prevented STZ‑induced neuronal cell death. In addition, reverse transcription‑quantitative PCR showed that neurons treated with the culture supernatant of LPSx3‑microglia promoted the gene expression of B‑cell lymphoma‑extra large and glucose‑dependent insulinotropic polypeptide receptor. Furthermore, the inhibition of tyrosine kinase receptor B, a receptor of NT‑4/5, suppressed the neuroprotective effect of LPSx3‑microglia. Taken together, the present study demonstrated that LPSx3‑microglia prevent STZ‑induced neuronal death and that NT‑4/5 may be involved in the neuroprotective mechanism of LPSx3‑microglia.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Kazushi Yamamoto
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Masashi Yamashita
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Collaborative Innovation Partnership, Takamatsu‑shi, Kagawa 761‑0301, Japan
| |
Collapse
|
47
|
Jacob L, Kaiser M, Kostev K. Incidence of antiepileptic drug therapy and factors associated with their prescribing in outpatients with diabetic polyneuropathy. Prim Care Diabetes 2021; 15:535-540. [PMID: 33422430 DOI: 10.1016/j.pcd.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
Abstract
AIMS The goal of this retrospective cohort study was to analyze the incidence of, and factors associated with the antiepileptic drug (AED) therapy in the five years following the diagnosis of diabetic polyneuropathy in patients followed in Germany. METHODS The study included patients aged 18-80 years with an initial diagnosis of diabetic polyneuropathy in 1238 general and diabetologist practices in Germany between January 2008 and December 2017 (index date). The main outcome of the study was the incidence of the AED therapy in the five years following the diagnosis of diabetic polyneuropathy. Adjusted Cox regression analyses were conducted to investigate the association between study covariates and the incidence of the AED therapy. RESULTS The present study included 48,324 patients (mean [standard deviation] age 65.8 [10.6] years, 55.6% male). Within five years of the diagnosis of diabetic polyneuropathy, 16.4% of patients were prescribed at least one AED. The three most frequent drugs were pregabalin, gabapentin, and carbamazepine. Female sex (HR = 1.22), private health insurance coverage (HR = 1.22), follow-up in a general practice (HR = 1.85), HbA1c ≥10% (HR = 1.36), previous referral to a neurological practice (HR = 1.47), previous hospital admission (HR = 1.51) and depression (HR = 1.15) were positively associated with the incidence of the AED therapy. CONCLUSIONS The incidence of the AED therapy was low in patients recently diagnosed with diabetic polyneuropathy in Germany. More research is warranted to understand the infrequent use of AEDs in diabetic polyneuropathy patients from this country.
Collapse
Affiliation(s)
- Louis Jacob
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France; Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, Barcelona 08830, Spain
| | - Marcel Kaiser
- Diabetologische Schwerpunktpraxis, Frankfurt, Germany
| | | |
Collapse
|
48
|
Correia Rocha IR, Chacur M. Modulatory effects of photobiomodulation in the anterior cingulate cortex of diabetic rats. Photochem Photobiol Sci 2021; 20:781-790. [PMID: 34053000 DOI: 10.1007/s43630-021-00059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Anterior Cingulate Cortex (ACC) has a crucial contribution to higher order pain processing. Photobiomodulation (PBM) has being used as integrative medicine for pain treatment and for a variety of nervous system disorders. This study evaluated the effects of PBM in the ACC of diabetic rats. Type 1 diabetes was induced by a single dose of streptozotocin (85 mg/Kg). A total of ten sessions of PBM (pulsed gallium-arsenide laser, 904 nm, 9500 Hz, 6.23 J/cm2) was applied to the rat peripheral nervous system. Glial fibrillary acidic protein (GFAP), mu-opioid receptor (MOR), glutamate receptor 1 (GluR1), and glutamic acid decarboxylase (GAD65/67) protein level expression were analyzed in the ACC of diabetic rats treated with PBM. Our data revealed that PBM decreased 79.5% of GFAP protein levels in the ACC of STZ rats. Moreover, STZ + PBM rats had protein levels of MOR increased 14.7% in the ACC. Interestingly, STZ + PBM rats had a decrease in 70.7% of GluR1 protein level in the ACC. Additionally, PBM decreased 45.5% of GAD65/67 protein levels in the ACC of STZ rats.
Collapse
Affiliation(s)
- Igor Rafael Correia Rocha
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenue Lineu Prestes 2415, room 007, São Paulo, 05508-900, Brazil
| | - Marucia Chacur
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenue Lineu Prestes 2415, room 007, São Paulo, 05508-900, Brazil.
| |
Collapse
|
49
|
Gupta M, Knezevic NN, Abd-Elsayed A, Ray M, Patel K, Chowdhury B. Treatment of Painful Diabetic Neuropathy-A Narrative Review of Pharmacological and Interventional Approaches. Biomedicines 2021; 9:biomedicines9050573. [PMID: 34069494 PMCID: PMC8161066 DOI: 10.3390/biomedicines9050573] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus that is associated with a significant decline in quality of life. Like other painful neuropathic conditions, PDN is difficult to manage clinically, and a variety of pharmacological and non-pharmacological options are available for this condition. Recommended pharmacotherapies include anticonvulsive agents, antidepressant drugs, and topical capsaicin; and tapentadol, which combines opioid agonism and norepinephrine reuptake inhibition, has also recently been approved for use. Additionally, several neuromodulation therapies have been successfully used for pain relief in PDN, including intrathecal therapy, transcutaneous electrical nerve stimulation (TENS), and spinal cord stimulation (SCS). Recently, 10 kHz SCS has been shown to provide clinically meaningful pain relief for patients refractory to conventional medical management, with a subset of patients demonstrating improvement in neurological function. This literature review is intended to discuss the dosage and prospective data associated with pain management therapies for PDN.
Collapse
Affiliation(s)
- Mayank Gupta
- Kansas Pain Management & Neuroscience Research Center, Overland Park, KS 66201, USA;
- Correspondence:
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA;
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53715, USA;
| | - Mahoua Ray
- Kansas Pain Management & Neuroscience Research Center, Overland Park, KS 66201, USA;
| | - Kiran Patel
- Department of Pain Management, Spine and Pain Institute of New York, New York, NY 10065, USA;
| | - Bhavika Chowdhury
- Department of Endocrinology, Saint Luke’s South Hospital, Overland Park, KS 66213, USA;
| |
Collapse
|
50
|
Ferdousi M, Azmi S, Kalteniece A, Petropoulos IN, Ponirakis G, Asghar O, Alam U, Marshall A, Boulton AJM, Efron N, Soran H, Jeziorska M, Malik RA. Greater small nerve fibre damage in the skin and cornea of type 1 diabetic patients with painful compared to painless diabetic neuropathy. Eur J Neurol 2021; 28:1745-1751. [PMID: 33523534 DOI: 10.1111/ene.14757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM Damage to small nociceptive fibres may contribute to painful diabetic neuropathy. We aimed to compare large and small nerve fibre measurements together with skin biopsy and corneal confocal microscopy in patients with type 1 diabetes and painful or painless diabetic neuropathy. METHODS We have assessed the McGill pain questionnaire, neuropathy disability score, vibration perception threshold, warm and cold sensation thresholds, electrophysiology, corneal confocal microscopy and skin biopsy in participants with type 1 diabetes and painful (n = 41) or painless (n = 50) diabetic neuropathy and control subjects (n = 50). RESULTS The duration of diabetes, body mass index, glycated haemoglobin (HbA1c), blood pressure and lipid profile did not differ between subjects with painful and painless neuropathy. Neuropathy disability score and vibration perception threshold were higher and sural nerve conduction velocity was lower, but sural nerve amplitude, peroneal nerve amplitude and conduction velocity and cold and warm sensation thresholds did not differ between patients with painful compared to painless diabetic neuropathy. However, intraepidermal nerve fibre density, corneal nerve fibre density, corneal nerve branch density and corneal nerve fibre length were significantly lower in subjects with painful compared to painless diabetic neuropathy. CONCLUSIONS There is evidence of more severe neuropathy, particularly small fibre damage in the skin and cornea, of patients with painful compared to painless diabetic neuropathy.
Collapse
Affiliation(s)
- Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | | | | | - Omar Asghar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J M Boulton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Handrean Soran
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Maria Jeziorska
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK.,Division of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|