1
|
Chen Y, Jin E, Abdouh M, Bonneil É, Jimenez Cruz DA, Tsering T, Zhou Q, Fuentes-Rodriguez A, Bartolomucci A, Goyeneche A, Landreville S, Burnier MN, Burnier JV. Co-isolation of human donor eye cells and development of oncogene-mutated melanocytes to study uveal melanoma. BMC Biol 2025; 23:16. [PMID: 39838458 PMCID: PMC11752652 DOI: 10.1186/s12915-025-02118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM. RESULTS Given the precious value of human donor eyes for studying multiple ocular cell types, we validated a co-isolation protocol of both human NCMs and retinal pigment epithelial (RPE) cells from a single eye. To this end, NCMs and RPE cells were sequentially isolated from 20 donors, with success rates of 95% and 75%, respectively. MutCMs were generated from 10 donors using GNAQQ209L-carried lentivirus with high mutant copies (up to 98.8% of total GNAQ copies being mutant). NCM growth and behavior were characterized under different culture conditions (i.e., supplementation with serum and 12-O-tetradecanoylphorbol-13-acetate) to determine optimized protocols. Particularly, Matrigel™ coating induced spheroid growth under certain coating thickness and cell seeding density but did not improve NCM metabolic activity. Current methodologies in NCM isolation, culture, and research applications were summarized. Proteomic profiling of 4 NCMs, 1 MutCM, and 3 UMs allowed to discover significant differences in UMs including a downregulation of proteins linked to melanocyte differentiation and an upregulation of proteins involved in RNA metabolism. RNA sequencing revealed enriched pathways related to cancer, notably PI3K-Akt and MAPK signaling pathways, in MutCMs and UM cells compared to NCMs, providing insights into molecular changes in GNAQQ209L-mutated pre-cancer cell models and UM cells. CONCLUSIONS We successfully isolated and established NCM, RPE, and MutCM cell lines. We describe efficient methods for the isolation and growth of NCMs and report their phenotypic, proteomic, and transcriptomic characteristics, which will facilitate the investigation of UM development and progression. The co-isolated RPE cells could benefit research on other ocular pathologies, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Eva Jin
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | | | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Qianqian Zhou
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alicia Goyeneche
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Miguel N Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- The Henry C. Witelson Ocular Pathology and Translation Research Laboratory, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Zimmermann JA, Irlenbusch L, Hansen U, Himmler M, Zeng C, Eter N, Fuchsluger T, Heiduschka P. Long-term cultivation of retinal pigment epithelium cells on nanofiber scaffolds. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-024-06707-3. [PMID: 39812800 DOI: 10.1007/s00417-024-06707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds. METHODS Nanofiber scaffolds consisting of polycaprolactone (PCL) and collagen were prepared by electrospinning. Porcine RPE cell cultures were maintained on PCL scaffolds, PCL-collagen scaffolds, and controls at the bottom of 24-well plates. Cell culture analysis was performed by immunohistochemistry, while the release of inflammatory cytokines IL-6, IL-8, TNF-α, and PDGF-β was measured by ELISA and multiplex assays. Ultrastructural features were examined by transmission electron microscopy. RESULTS The observation period averaged 42.7 weeks for controls, 38.7 weeks for PCL scaffold cultures, and 36.1 weeks for PCL-collagen scaffold cultures, with cell number and morphology remaining stable. TNF-α levels in the supernatants were minimal, IL-6 levels were consistently low, and IL-8 levels decreased from initially high to lower levels over time. CONCLUSION RPE cells were stably cultured on nanofiber scaffolds for extended periods of time. The long-term physiological properties of RPE cells, including phagocytic ability and visual cycle enzyme activity, need to be further investigated before clinical application. In addition, controlling the expression of inflammatory mediators is a major challenge. Despite these hurdles, overcoming them is critical given the increasing prevalence of retinal degenerative diseases.
Collapse
Affiliation(s)
| | - Lucy Irlenbusch
- Department of Ophthalmology, University Hospital Munster, Munster, Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - Marcus Himmler
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Chun Zeng
- Department of Ophthalmology, University Hospital Munster, Munster, Germany
| | - Nicole Eter
- Department of Ophthalmology, University Hospital Munster, Munster, Germany
| | - Thomas Fuchsluger
- Department of Ophthalmology, University Medical Center Rostock, Rostock, Germany
| | - Peter Heiduschka
- Department of Ophthalmology, University Hospital Munster, Munster, Germany.
| |
Collapse
|
3
|
Goenka S. E-cigarette flavoring chemicals and vehicles adversely impact the functions of pigmented human retinal ARPE-19 cells. Toxicol Rep 2024; 13:101789. [PMID: 39526232 PMCID: PMC11550671 DOI: 10.1016/j.toxrep.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Electronic cigarettes (ECs) have been shown to adversely impact the human eye's retinal pigment epithelium (RPE). Flavored e-liquids induced cytotoxicity in unpigmented human ARPE-19 cells independent of nicotine's presence in my previous study. In the current study, human ARPE-19 cells pigmented by sepia melanin were employed to examine the effects of four flavoring chemicals, vanillin, menthol, furanone, and cinnamaldehyde, and EC vehicles propylene glycol (PG)/vegetable glycerin (VG) ratios (0:100, 80:20, 100:0 % v/v), on metabolic activity, membrane integrity, oxidative stress, and wound healing capacity of these cells. Results demonstrate that cinnamaldehyde was the most cytotoxic flavoring, and all vehicles showed marked cytotoxicity at the highest concentration of 10 %. All four flavorings elicited a significant production of reactive oxygen species (ROS), while the three vehicles did not impact ROS levels. Vanillin significantly (p < 0.05) suppressed wound healing, while furanone and cinnamaldehyde had no effects, although menthol promoted wound healing at the lowest concentration. Moreover, the vehicles with two ratios of 0:100 PG/VG and 80:20 PG/VG suppressed wound healing. Together, these results suggest that vanillin and VG-containing vehicles exert the greatest adverse effects on ARPE-19 cells. These findings underscore the potential harm that exposure to ECs can cause to the human retina.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Umabharathi P, Karpagam S, Dasgupta T, Tamizhselvi R. Benzothiazole-quinoline based probe for simultaneous colorimetric detection of CN- and Cu2+ ions, with fluorescence sensing for Cu2+: Mechanistic insights and practical applications in environmental monitoring and cellular analysis. Heliyon 2024; 10:e38593. [PMID: 39640613 PMCID: PMC11619958 DOI: 10.1016/j.heliyon.2024.e38593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
The development and synthesis of notably targeted and colorimetric sensor based on an azomethine compound for the distinct recognition of Cu2+ and CN- ion individually in an aqueous dimethyl formamide solution is performed. In the presence of CN- and Cu2+, the sensor BTZ showed impressive colorimetric changes, going from pale yellow to orange and pale yellow to dark yellow, respectively. In the meantime, FL spectrum (Cu2+) and UV-vis spectroscopy (CN-/Cu2+) were used to assess the sensing features. The plausible binding mechanisms of CN- and Cu2+ ions with sensor BTZ have been studied using the 1H NMR titration, Job's plot and DFT technique. The bathochromic shift produced by the intramolecular charge transfer (ICT) transition may have been the source of the phenomenon. Furthermore, CN- ion in the commercial substance is quickly identified and measured with the naked eye by using sensor BTZ. It was found that the BTZ's LOD for CN- and Cu2+ was 0.280 × 10-7 M and 1.153 × 10-7 M, respectively. Moreover, 1:1 binding ratio for the reaction of CN- and Cu2+ ions with sensor BTZ were demonstrated by Job's plot, which was dependent on analytical data. The findings show that BTZ is an easy-to-use and practical probe for concurrently sensing cyanide and copper ions in environmental samples and living cells that have less cytotoxicity.
Collapse
Affiliation(s)
- P.S. Umabharathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 14, Tamil Nadu, India
| | - S. Karpagam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 14, Tamil Nadu, India
| | - Tiasha Dasgupta
- School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 14, Tamilnadu, India
| | - Ramasamy Tamizhselvi
- School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 14, Tamilnadu, India
| |
Collapse
|
5
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
6
|
Herardot E, Liboz M, Lamour G, Malo M, Plancheron A, Habeler W, Geiger C, Frank E, Campillo C, Monville C, Ben M'Barek K. Biomechanical Characterization of Retinal Pigment Epitheliums Derived from hPSCs Using Atomic Force Microscopy. Stem Cell Rev Rep 2024; 20:1340-1352. [PMID: 38627341 PMCID: PMC11222240 DOI: 10.1007/s12015-024-10717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 07/04/2024]
Abstract
The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research. However, despite their critical interest in therapy, there is a lack of biomechanical RPE surface description. Such biomechanical properties are tightly related to their functions. Herein, we used atomic force microscopy (AFM) to analyze both the structural and mechanical properties of RPEs obtained from four cell lines and at different stages of epithelial formation. To characterize epitheliums, we used apical markers in immunofluorescence and showed the increase of transepithelial resistance, as well as the ability to secrete cytokines with an apico-basal polarity. Then, we used AFM to scan the apical surface of living or fixed RPE cells. We show that RPE monolayers underwent softening of apical cell center as well as stiffening of cell borders over epithelial formation. We also observed apical protrusions that depend on actin network, suggesting the formation of microvilli at the surface of RPE epitheliums. These RPE cell characteristics are essential for their functions into the retina and AFM studies may improve the characterization of the RPE epithelium suitable for cell therapy.
Collapse
Affiliation(s)
- Elise Herardot
- Université Paris-Saclay, Univ Evry, INSERM, IStem, UMR861, 91100, Corbeil-Essonnes, France
| | - Maxime Liboz
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Alexandra Plancheron
- Université Paris-Saclay, Univ Evry, INSERM, IStem, UMR861, 91100, Corbeil-Essonnes, France
- IStem, CECS, 91100, Corbeil-Essonnes, France
| | - Walter Habeler
- Université Paris-Saclay, Univ Evry, INSERM, IStem, UMR861, 91100, Corbeil-Essonnes, France
- IStem, CECS, 91100, Corbeil-Essonnes, France
| | - Camille Geiger
- Université Paris-Saclay, Univ Evry, INSERM, IStem, UMR861, 91100, Corbeil-Essonnes, France
- IStem, CECS, 91100, Corbeil-Essonnes, France
| | - Elie Frank
- Université Paris-Saclay, Univ Evry, INSERM, IStem, UMR861, 91100, Corbeil-Essonnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), Paris, France
| | - Christelle Monville
- Université Paris-Saclay, Univ Evry, INSERM, IStem, UMR861, 91100, Corbeil-Essonnes, France.
| | - Karim Ben M'Barek
- Université Paris-Saclay, Univ Evry, INSERM, IStem, UMR861, 91100, Corbeil-Essonnes, France.
- IStem, CECS, 91100, Corbeil-Essonnes, France.
| |
Collapse
|
7
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
8
|
Zhou D, Petersen A, Adelöf J, Hernebring M, Zetterberg M. A Novel Primary Porcine Retinal Pigment Epithelium Cell Model with Preserved Properties. Curr Eye Res 2024; 49:97-107. [PMID: 37725007 DOI: 10.1080/02713683.2023.2259636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE To establish an ethical, reliable, and expandable retinal pigment epithelial (RPE) cell model with maintained RPE properties compatible with multifarious assays. METHODS RPE cells from abattoir-obtained porcine eyes were cultured under various conditions. Morphology, RPE cell-specific protein markers (RPE-65, CRALBP), and the tight junction marker ZO-1 were analyzed by phase-contrast microscopy, immunocytochemistry, and western blot, and transepithelial electrical resistance (TEER) was determined to assess barrier function. RESULTS The porcine RPE cells (pRPE) were best established using TrypLE Express, 10% fetal bovine serum (FBS) supplemented high-glucose media, and subculturing at semi-confluency. The pRPE cells maintained epithelioid morphology with ZO-1 positive tight junctions at the cell-to-cell borders, the ability to establish proper barrier function (TEERmax: 346/375 Ω⋅cm2 at passage I/passage VI), and expressed CRALBP and RPE-65 for several passages. The RPE characteristics decreased and disappeared with transdifferentiation. CONCLUSIONS This work describes, for the first time, a pRPE cell model that exhibits preserved RPE properties for several passages on cell culture plastic plates. Though RPE characteristics were maintained for at least 6 passages, the reduced CRALBP and RPE-65 with passaging emphasize that lower passage cells are advantageous to utilize, and that morphology, barrier function, and ZO-1 localization cannot be solely employed as a quality measure of RPE identity. Pigs are phylogenetically similar to humans, including similar physiology, anatomy and immune system. Therefore, porcine RPE cells constitute a relevant model system for studying human eye diseases, such as AMD.
Collapse
Affiliation(s)
- Dinna Zhou
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anne Petersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia Adelöf
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Hernebring
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
9
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
10
|
Choi SW, Seo S, Hong HK, Yoon SJ, Kim M, Moon S, Lee JY, Lim J, Lee JB, Woo SJ. Therapeutic Extracellular Vesicles from Tonsil-Derived Mesenchymal Stem Cells for the Treatment of Retinal Degenerative Disease. Tissue Eng Regen Med 2023; 20:951-964. [PMID: 37440108 PMCID: PMC10519919 DOI: 10.1007/s13770-023-00555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Retinal degenerative disease (RDD), one of the most common causes of blindness, is predominantly caused by the gradual death of retinal pigment epithelial cells (RPEs) and photoreceptors due to various causes. Cell-based therapies, such as stem cell implantation, have been developed for the treatment of RDD, but potential risks, including teratogenicity and immune reactions, have hampered their clinical application. Stem cell-derived extracellular vesicles (EVs) have recently emerged as a cell-free alternative therapeutic strategy; however, additional invasiveness and low yield of the stem cell extraction process is problematic. METHODS To overcome these limitations, we developed therapeutic EVs for the treatment of RDD which were extracted from tonsil-derived mesenchymal stem cells obtained from human tonsil tissue discarded as medical waste following tonsillectomy (T-MSC EVs). To verify the biocompatibility and cytoprotective effect of T-MSC EVs, we measured cell viability by co-culture with human RPE without or with toxic all-trans-retinal. To elucidate the cytoprotective mechanism of T-MSC EVs, we performed transcriptome sequencing using RNA extracted from RPEs. The in vivo protective effect of T-MSC EVs was evaluated using Pde6b gene knockout rats as an animal model of retinitis pigmentosa. RESULTS T-MSC EVs showed high biocompatibility and the human pigment epithelial cells were significantly protected in the presence of T-MSC EVs from the toxic effect of all-trans-retinal. In addition, T-MSC EVs showed a dose-dependent cell death-delaying effect in real-time quantification of cell death. Transcriptome sequencing analysis revealed that the efficient ability of T-MSC EVs to regulate intracellular oxidative stress may be one of the reasons explaining their excellent cytoprotective effect. Additionally, intravitreally injected T-MSC EVs had an inhibitory effect on the destruction of the outer nuclear layer in the Pde6b gene knockout rat. CONCLUSIONS Together, the results of this study indicate the preventive and therapeutic effects of T-MSC EVs during the initiation and development of retinal degeneration, which may be a beneficial alternative for the treatment of RDD.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sooin Seo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - So Jung Yoon
- Bundang CHA Biobank, CHA University College of Medicine, CHA University Bundang Medical Center, Seongnam, 13496, Korea
| | - Minah Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc, Seongnam, 13487, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.
| |
Collapse
|
11
|
Jang HY, Cho CS, Shin YM, Kwak J, Sung YH, Kang BC, Kim JH. Isolation and Characterization of the Primary Marmoset ( Callithrix jacchus) Retinal Pigment Epithelial Cells. Cells 2023; 12:1644. [PMID: 37371114 DOI: 10.3390/cells12121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Marmosets have emerged as a valuable primate model in ophthalmic research due to their similarity to the human visual system and their potential for generating transgenic models to advance the development of therapies. In this study, we isolated and cultured primary retinal pigment epithelium (RPE) cells from marmosets to investigate the mechanisms underlying RPE dysfunction in aging and age-related macular degeneration (AMD). We confirmed that our culture conditions and materials supported the formation of RPE monolayers with functional tight junctions that closely resembled the in vivo RPE. Since serum has been shown to induce epithelial-mesenchymal transition (EMT) in RPE cells, we compared the effects of fetal bovine serum (FBS) with serum-free supplements B27 on transepithelial electrical resistance (TER), cell proliferation, and morphological characteristics. Additionally, we assessed the age-related morphological changes of in vivo and primary RPE cells. Our results indicate that primary marmoset RPE cells exhibit in vivo-like characteristics, while cells obtained from an older donor show evidence of aging, including a failure to form a polarized monolayer, low TER, and delayed cell cycle. In conclusion, our primary marmoset RPE cells provide a reliable in vitro model for developing novel therapeutics for visual-threatening disorders such as AMD, which can be used before animal experiments using marmosets.
Collapse
Affiliation(s)
- Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Young Mi Shin
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Jina Kwak
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
12
|
Serttas R, Erdogan S. Pretreatment of prostate cancer cells with salinomycin and Wnt inhibitor increases the efficacy of cabazitaxel by inducing apoptosis and decreasing cancer stem cells. Med Oncol 2023; 40:194. [PMID: 37264204 DOI: 10.1007/s12032-023-02062-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Cancer stem cells (CSCs) are associated with metastasis and recurrence in prostate cancer as well as other cancers. We aimed to enhance the sensitivity of cabazitaxel in prostate cancer cell therapy by targeting CSCs with a Wnt inhibitor and salinomycin pretreatment. PC3, DU-145, and LNCaP human prostate cancer cells were exposed to Wnt/β-catenin pathway inhibitor CCT036477 (iWnt) with salinomycin for 48 h, followed by cabazitaxel treatment for 48 h. Cell viability, mRNA, and protein expression changes were evaluated by MTT, RT-qPCR, and Western blot assays, respectively. Apoptosis was determined by image-based cytometry, and cell migration was assessed by wound healing assay. Three-dimensional culture was established to assess the malignant phenotype and stemness potential of transformed or cancer cells. CD44 + CSCs were isolated using magnetic-activated cell sorting system. Pretreatment of PC3, DU-145, and LNCaP cells with salinomycin iWnt significantly sensitized the cells to cabazitaxel therapy. Spheroid culture confirmed that the treatment modality was more effective than a single administration of chemotherapy. The pretreatment of PC3 cells increased the rate of apoptosis compared to single administration of cabazitaxel, which downregulated Bcl-2 and upregulated caspase 3, caspase 8 expressions. The pretreatment suppressed cell migration, downregulated the expression of Sox2 and Nanog, and significantly reduced CD44 + CSC numbers. Notably, the treatment modality reduced pAKT, p-P38 MAPK, and pERK1/2. The data suggest that pretreatment of prostate cancer cells with salinomycin and Wnt inhibitor may increase the efficacy of cabazitaxel therapy by inhibiting cell proliferation and migration, and eliminating cancer stem cells.
Collapse
Affiliation(s)
- Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, 22030, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, 22030, Edirne, Turkey.
| |
Collapse
|
13
|
Kim J, Kong JS, Kim H, Jo Y, Cho DW, Jang J. A Bioprinted Bruch's Membrane for Modeling Smoke-Induced Retinal Pigment Epithelium Degeneration via Hybrid Membrane Printing Technology. Adv Healthc Mater 2022; 11:e2200728. [PMID: 35841587 DOI: 10.1002/adhm.202200728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/17/2022] [Indexed: 01/28/2023]
Abstract
The retinal pigment epithelium (RPE) not only forms the outer blood-retinal barrier (oBRB) but also plays a multifunctional role in the ocular system. The loss of this epithelium leads to serious diseases resulting in vision impairment. No effective treatment is available for the repair of RPE damage. A functional in vitro RPE model that allows the recapitulation of oBRB-related pathophysiological responses is lacking. Here, a hybrid membrane printing technology is developed to fabricate cellular monolayers on the basement membrane to mimic human Bruch's membrane (BM). Using this technology, in vitro oBRB model containing the RPE monolayer on the printed BM with stable mechanical properties and fibril diameter similar to that of natural BM is developed. Compared to traditional collagen bioink, BM-based bioink significantly promotes RPE functions in vitro. Finally, smoking-like conditions are exposed to the model to recapitulate the absorption of mainstream cigarette smoke which is known as one of the risk factors for the disease progression. RPE function is damaged due to oxidative stress. Furthermore, the versatility of the model as a drug-testing platform is confirmed by the suppression of oxidative stress via antioxidants. This technology shows potential for fabricating a functional oBRB model that reflects patient conditions.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jeong Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| |
Collapse
|
14
|
Bharti K, den Hollander AI, Lakkaraju A, Sinha D, Williams DS, Finnemann SC, Bowes-Rickman C, Malek G, D'Amore PA. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Exp Eye Res 2022; 222:109170. [PMID: 35835183 PMCID: PMC9444976 DOI: 10.1016/j.exer.2022.109170] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.
Collapse
Affiliation(s)
- Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA.
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, USA.
| | - Debasish Sinha
- Department of Ophthalmology, Cell Biology and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David S Williams
- Stein Eye Institute, Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Silvia C Finnemann
- Center of Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Catherine Bowes-Rickman
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Patricia A D'Amore
- Mass Eye and Ear, Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Hall JC, Paull D, Pébay A, Lidgerwood GE. Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review. Clin Exp Ophthalmol 2022; 50:667-677. [PMID: 35739648 PMCID: PMC9546239 DOI: 10.1111/ceo.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 12/05/2022]
Abstract
Human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, are powerful tools for studying human development, physiology and disease, including those affecting the retina. Cells from selected individuals, or specific genetic backgrounds, can be differentiated into distinct cell types allowing the modelling of diseases in a dish for therapeutic development. hPSC‐derived retinal cultures have already been used to successfully model retinal pigment epithelium (RPE) degeneration for various retinal diseases including monogenic conditions and complex disease such as age‐related macular degeneration. Here, we will review the current knowledge gained in understanding the molecular events involved in retinal disease using hPSC‐derived retinal models, in particular RPE models. We will provide examples of various conditions to illustrate the scope of applications associated with the use of hPSC‐derived RPE models.
Collapse
Affiliation(s)
- Jenna C Hall
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute New York New York USA
| | - Alice Pébay
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
- Department of Surgery, Royal Melbourne Hospital The University of Melbourne Parkville Victoria Australia
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
16
|
Zinc transport from the endoplasmic reticulum to the cytoplasm via Zip7 is necessary for barrier dysfunction mediated by inflammatory signaling in RPE cells. PLoS One 2022; 17:e0271656. [PMID: 35901031 PMCID: PMC9333247 DOI: 10.1371/journal.pone.0271656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Inflammatory signaling induces barrier dysfunction in retinal-pigmented epithelium (RPE) cells and plays a role in the pathology of age-related macular degeneration (AMD). We studied the role of Zn flux from the endoplasmic reticulum (ER) to the cytoplasm via Zip7 during inflammatory signaling in RPE cells. In ARPE-19 cells, Zip7 inhibition reduced impedance loss, FITC-dextran permeability and cytokine induction caused by challenge with IL-1β/TNF-α. Zip7 inhibition in iPS-derived RPE cells challenged with TNF- α reduced barrier loss in TER assays. In ARPE-19 cells, a Zn ionophore restored cytokine induction and barrier loss in cells challenged with IL-1 β /TNF- α despite Zip7 inhibition. A cell permeable Zn chelator demonstrated that Zn is essential for IL-1 β /TNF- α signaling. ER stress caused by Zip7 inhibition in ARPE-19 cells was found to partially contribute to reducing barrier dysfunction caused by IL-1 β /TNF- α. Overall, it was shown that Zn flux through Zip7 from the ER to the cytoplasm plays a critical role in driving barrier dysfunction caused by inflammatory cytokines in RPE cells.
Collapse
|
17
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
18
|
Dynamic full-field optical coherence tomography allows live imaging of retinal pigment epithelium stress model. Commun Biol 2022; 5:575. [PMID: 35688936 PMCID: PMC9187748 DOI: 10.1038/s42003-022-03479-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
Retinal degenerative diseases lead to the blindness of millions of people around the world. In case of age-related macular degeneration (AMD), the atrophy of retinal pigment epithelium (RPE) precedes neural dystrophy. But as crucial as understanding both healthy and pathological RPE cell physiology is for those diseases, no current technique allows subcellular in vivo or in vitro live observation of this critical cell layer. To fill this gap, we propose dynamic full-field OCT (D-FFOCT) as a candidate for live observation of in vitro RPE phenotype. In this way, we monitored primary porcine and human stem cell-derived RPE cells in stress model conditions by performing scratch assays. In this study, we quantified wound healing parameters on the stressed RPE, and observed different cell phenotypes, displayed by the D-FFOCT signal. In order to decipher the subcellular contributions to these dynamic profiles, we performed immunohistochemistry to identify which organelles generate the signal and found mitochondria to be the main contributor to D-FFOCT contrast. Altogether, D-FFOCT appears to be an innovative method to follow degenerative disease evolution and could be an appreciated method in the future for live patient diagnostics and to direct treatment choice. Dynamic full-field optical coherence tomography (D-FFOCT) is used for live cell imaging of primary porcine retinal pigment epithelium (ppRPE) cultures and human induced pluripotent stem cell-derived RPE (hiRPE) cultures, allowing non-invasive realtime access to organelles and cytoskeleton dynamics in RPE cells.
Collapse
|
19
|
Müller-Bühl AM, Safaei A, Tsai T. [Are organ and co-cultures an alternative to animal models in ophthalmology?]. Ophthalmologe 2022; 119:530-532. [PMID: 35522337 DOI: 10.1007/s00347-021-01565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ana M Müller-Bühl
- Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - Armin Safaei
- Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - Teresa Tsai
- Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland.
| |
Collapse
|
20
|
Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs. Biomedicines 2022; 10:biomedicines10030669. [PMID: 35327471 PMCID: PMC8945676 DOI: 10.3390/biomedicines10030669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. Methods: The hRPEs were collected from human cadaver donor eyes and cultivated on ultrathin nanofibrous carriers prepared via the electrospinning of poly(L-lactide-co-DL-lactide) (PDLLA). “Libechov” minipigs (12–36 months old) were used in the study, supported by preoperative tacrolimus immunosuppressive therapy. The subretinal implantation of the hRPE-nanofibrous carrier was conducted using general anesthesia via a custom-made injector during standard three-port 23-gauge vitrectomy, followed by silicone oil endotamponade. The observational period lasted 1, 2, 6 and 8 weeks, and included in vivo optical coherence tomography (OCT) of the retina, as well as post mortem immunohistochemistry using the following antibodies: HNAA and STEM121 (human cell markers); Bestrophin and CRALBP (hRPE cell markers); peanut agglutining (PNA) (cone photoreceptor marker); PKCα (rod bipolar marker); Vimentin, GFAP (macroglial markers); and Iba1 (microglial marker). Results: The hRPEs assumed cobblestone morphology, persistent pigmentation and measurable trans-epithelial electrical resistance on the nanofibrous PDLLA carrier. The surgical delivery of the implants in the subretinal space of the immunosuppressed minipigs was successfully achieved and monitored by fundus imaging and OCT. The implanted hRPEs were positive for HNAA and STEM121 and were located between the minipig’s neuroretina and RPE layers at week 2 post-implantation, which was gradually attenuated until week 8. The neuroretina over the implants showed rosette or hypertrophic reaction at week 6. The implanted cells expressed the typical RPE marker bestrophin throughout the whole observation period, and a gradual diminishing of the CRALBP expression in the area of implantation at week 8 post-implantation was observed. The transplanted hRPEs appeared not to form a confluent layer and were less capable of keeping the inner and outer retinal segments intact. The cone photoreceptors adjacent to the implant scaffold were unchanged initially, but underwent a gradual change in structure after hRPE implantation; the retina above and below the implant appeared relatively healthy. The glial reaction of the transplanted and host retina showed Vimentin and GFAP positivity from week 1 onward. Microglial activation appeared in the retinal area of the transplant early after the surgery, which seemed to move into the transplant area over time. Conclusions: The differentiated hRPEs can serve as an alternative cell source for RPE replacement in animal studies. These cells can be cultivated on nanofibrous PDLLA and implanted subretinally into minipigs using standard 23-gauge vitrectomy and implantation injector. The hRPE-laden scaffolds demonstrated relatively good incorporation into the host retina over an eight-week observation period, with some indication of a gliotic scar formation, and a likely neuroinflammatory response in the transplanted area despite the use of immunosuppression.
Collapse
|
21
|
Yazdani M. Uncontrolled Oxygen Levels in Cultures of Retinal Pigment Epithelium: Have We Missed the Obvious? Curr Eye Res 2022; 47:651-660. [PMID: 35243933 DOI: 10.1080/02713683.2022.2050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Retinal pigment epithelium (RPE) is the outermost layer of retina located between the photoreceptor cells and the choroid. This highly-polarized monolayer provides critical support for the functioning of the other parts of the retina, especially photoreceptors. Methods of culturing RPE have been under development since its establishment in 1920s. Despite considering various factors, oxygen (O2) levels in RPE microenvironments during culture preparation and experimental procedure have been overlooked. O2 is a crucial parameter in the cultures, and therefore, maintaining RPE cells at O2 levels different from their native environment (70-90 mm Hg of O2) could have unintended consequences. Owing to the importance of the topic, lack of sufficient discussion in the literature and to encourage future research, this paper will focus on uncontrolled O2 level in cultures of RPE cells.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
22
|
Baba K, Goyal V, Tosini G. Circadian Regulation of Retinal Pigment Epithelium Function. Int J Mol Sci 2022; 23:2699. [PMID: 35269840 PMCID: PMC8910459 DOI: 10.3390/ijms23052699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a single layer of cells located between the choriocapillaris vessels and the light-sensitive photoreceptors in the outer retina. The RPE performs physiological processes necessary for the maintenance and support of photoreceptors and visual function. Among the many functions performed by the RPE, the timing of the peak in phagocytic activity by the RPE of the photoreceptor outer segments that occurs 1-2 h. after the onset of light has captured the interest of many investigators and has thus been intensively studied. Several studies have shown that this burst in phagocytic activity by the RPE is under circadian control and is present in nocturnal and diurnal species and rod and cone photoreceptors. Previous investigations have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE cells. However, the anatomical location of the circadian controlling this activity is not clear. Experimental evidence indicates that the circadian clock, melatonin, dopamine, and integrin signaling play a key role in controlling this rhythm. A series of very recent studies report that the circadian clock in the RPE controls the daily peak in phagocytic activity. However, the loss of the burst in phagocytic activity after light onset does not result in photoreceptor or RPE deterioration during aging. In the current review, we summarized the current knowledge on the mechanism controlling this phenomenon and the physiological role of this peak.
Collapse
Affiliation(s)
| | | | - Gianluca Tosini
- Department of Pharmacology & Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA; (K.B.); (V.G.)
| |
Collapse
|
23
|
Koller A, Preishuber-Pflügl J, Runge C, Ladek AM, Brunner SM, Aigner L, Reitsamer H, Trost A. Chronobiological activity of cysteinyl leukotriene receptor 1 during basal and induced autophagy in the ARPE-19 retinal pigment epithelial cell line. Aging (Albany NY) 2021; 13:25670-25693. [PMID: 34919533 PMCID: PMC8751616 DOI: 10.18632/aging.203787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is an important cellular mechanism for maintaining cellular homeostasis, and its impairment correlates highly with age and age-related diseases. Retinal pigment epithelial (RPE) cells of the eye represent a crucial model for studying autophagy, as RPE functions and integrity are highly dependent on an efficient autophagic process. Cysteinyl leukotriene receptor 1 (CysLTR1) acts in immunoregulation and cellular stress responses and is a potential regulator of basal and adaptive autophagy. As basal autophagy is a dynamic process, the aim of this study was to define the role of CysLTR1 in autophagy regulation in a chronobiologic context using the ARPE-19 human RPE cell line. Effects of CysLTR1 inhibition on basal autophagic activity were analyzed at inactive/low and high lysosomal degradation activity with the antagonists zafirlukast (ZTK) and montelukast (MTK) at a dosage of 100 nM for 3 hours. Abundances of the autophagy markers LC3-II and SQSTM1 and LC3B particles were analyzed in the absence and presence of lysosomal inhibitors using western blot analysis and immunofluorescence microscopy. CysLTR1 antagonization revealed a biphasic effect of CysLTR1 on autophagosome formation and lysosomal degradation that depended on the autophagic activity of cells at treatment initiation. ZTK and MTK affected lysosomal degradation, but only ZTK regulated autophagosome formation. In addition, dexamethasone treatment and serum shock induced autophagy, which was repressed by CysLTR1 antagonization. As a newly identified autophagy modulator, CysLTR1 appears to be a key player in the chronobiological regulation of basal autophagy and adaptive autophagy in RPE cells.
Collapse
Affiliation(s)
- Andreas Koller
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Reitsamer
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
24
|
Dabiri SMH, Samiei E, Shojaei S, Karperien L, Khun Jush B, Walsh T, Jahanshahi M, Hassanpour S, Hamdi D, Seyfoori A, Ahadian S, Khademhosseini A, Akbari M. Multifunctional Thermoresponsive Microcarriers for High-Throughput Cell Culture and Enzyme-Free Cell Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103192. [PMID: 34558181 DOI: 10.1002/smll.202103192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
An effective treatment of human diseases using regenerative medicine and cell therapy approaches requires a large number of cells. Cultivation of cells on microcarriers is a promising approach due to the high surface-to-volume ratios that these microcarriers offer. Here, multifunctional temperature-responsive microcarriers (cytoGel) made of an interpenetrating hydrogel network composed of poly(N-isopropylacrylamide) (PNIPAM), poly(ethylene glycol) diacrylate (PEGDA), and gelatin methacryloyl (GelMA) are developed. A flow-focusing microfluidic chip is used to produce microcarriers with diameters in the range of 100-300 μm and uniform size distribution (polydispersity index of ≈0.08). The mechanical properties and cells adhesion properties of cytoGel are adjusted by changing the composition hydrogel composition. Notably, GelMA regulates the temperature response and enhances microcarrier stiffness. Human-derived glioma cells (U87) are grown on cytoGel in static and dynamic culture conditions with cell viabilities greater than 90%. Enzyme-free cell detachment is achieved at room temperature with up to 70% detachment efficiency. Controlled release of bioactive molecules from cytoGel is accomplished for over a week to showcase the potential use of microcarriers for localized delivery of growth factors to cell surfaces. These microcarriers hold great promise for the efficient expansion of cells for the industrial-scale culture of therapeutic cells.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Shahla Shojaei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Lucas Karperien
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Maryam Jahanshahi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sadegh Hassanpour
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - David Hamdi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| |
Collapse
|
25
|
Alfonsetti M, Castelli V, d’Angelo M, Benedetti E, Allegretti M, Barboni B, Cimini A. Looking for In Vitro Models for Retinal Diseases. Int J Mol Sci 2021; 22:10334. [PMID: 34638674 PMCID: PMC8508697 DOI: 10.3390/ijms221910334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Retina is a layered structure of the eye, composed of different cellular components working together to produce a complex visual output. Because of its important role in visual function, retinal pathologies commonly represent the main causes of visual injury and blindness in the industrialized world. It is important to develop in vitro models of retinal diseases to use them in first screenings before translating in in vivo experiments and clinics. For this reason, it is important to develop bidimensional (2D) models that are more suitable for drug screening and toxicological studies and tridimensional (3D) models, which can replicate physiological conditions, for investigating pathological mechanisms leading to visual loss. This review provides an overview of the most common retinal diseases, relating to in vivo models, with a specific focus on alternative 2D and 3D in vitro models that can replicate the different cellular and matrix components of retinal layers, as well as injury insults that induce retinal disease and loss of the visual function.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | | | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
26
|
Williamson B, Pilla Reddy V. Blood retinal barrier and ocular pharmacokinetics: Considerations for the development of oncology drugs. Biopharm Drug Dispos 2021; 42:128-136. [PMID: 33759216 DOI: 10.1002/bdd.2276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are an example of targeted drug therapy to treat cancer while minimizing damage to healthy tissue. In contrast to traditional oncology drugs, the toxicity profile of targeted therapies is less well understood and can include severe ocular adverse events, which are among the most common toxicity reported by these therapeutics. Inhibition of Mer receptor tyrosine kinase (MERTK) promotes innate tumor immunity by decreasing M2-macrophage polarization and efferocytosis. This mechanism offers the opportunity for targeted immunotherapy to treat cancer; however, the ocular expression of MERTK increases the difficulty for developing a targeted drug due to toxicity concerns. In this article we review the pharmacokinetic (PK) parameters and in vitro absorption, distribution, metabolism, and excretion (ADME) assays available to evaluate ocular disposition and assess the relationship between clinical PK and reported ocular events for TKIs to allow backtranslation to preclinical models. Understanding the ocular disposition in the context of PK and safety remains an evolving area and is likely to be a key aspect of developing safe and efficacious oncology drugs, devoid of ocular toxicity.
Collapse
Affiliation(s)
- Beth Williamson
- Drug Metabolism and Pharmacokinetics, Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Venkatesh Pilla Reddy
- Modelling and Simulation, Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK.,Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
27
|
Mahlumba P, Kumar P, du Toit LC, Poka MS, Ubanako P, Choonara YE. Fabrication and Characterisation of a Photo-Responsive, Injectable Nanosystem for Sustained Delivery of Macromolecules. Int J Mol Sci 2021; 22:3359. [PMID: 33805969 PMCID: PMC8037466 DOI: 10.3390/ijms22073359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/31/2023] Open
Abstract
The demand for biodegradable sustained release carriers with minimally invasive and less frequent administration properties for therapeutic proteins and peptides has increased over the years. The purpose of achieving sustained minimally invasive and site-specific delivery of macromolecules led to the investigation of a photo-responsive delivery system. This research explored a biodegradable prolamin, zein, modified with an azo dye (DHAB) to synthesize photo-responsive azoprolamin (AZP) nanospheres loaded with Immunoglobulin G (IgG). AZP nanospheres were incorporated in a hyaluronic acid (HA) hydrogel to develop a novel injectable photo-responsive nanosystem (HA-NSP) as a potential approach for the treatment of chorio-retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. AZP nanospheres were prepared via coacervation technique, dispersed in HA hydrogel and characterised via infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Size and morphology were studied via scanning electron microscopy (SEM) and dynamic light scattering (DLS), UV spectroscopy for photo-responsiveness. Rheological properties and injectability were investigated, as well as cytotoxicity effect on HRPE cell lines. Particle size obtained was <200 nm and photo-responsiveness to UV = 365 nm by decreasing particle diameter to 94 nm was confirmed by DLS. Encapsulation efficiency of the optimised nanospheres was 85% and IgG was released over 32 days up to 60%. Injectability of HA-NSP was confirmed with maximum force 10 N required and shear-thinning behaviour observed in rheology studies. In vitro cell cytotoxicity effect of both NSPs and HA-NSP showed non-cytotoxicity with relative cell viability of ≥80%. A biocompatible, biodegradable injectable photo-responsive nanosystem for sustained release of macromolecular IgG was successfully developed.
Collapse
Affiliation(s)
- Pakama Mahlumba
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Madan S. Poka
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa;
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.M.); (P.K.); (L.C.d.T.); (P.U.)
| |
Collapse
|
28
|
Oliveira CR, Paiva MRBD, Ribeiro MCS, Andrade GF, Carvalho JL, Gomes DA, Nehemy M, Fialho SL, Silva-Cunha A, Góes AMD. Human Stem Cell-Derived Retinal Pigment Epithelial Cells as a Model for Drug Screening and Pre-Clinical Assays Compared to ARPE-19 Cell Line. Int J Stem Cells 2021; 14:74-84. [PMID: 33377455 PMCID: PMC7904525 DOI: 10.15283/ijsc20094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background and Objectives Eye diseases have a high socioeconomic impact on society and may be one of the fields in which most stem cell-related scientific accomplishments have been achieved recently. In this context, human Pluripotent Stem Cell (hPSC) technology arises as an important tool to produce and study human Embryonic Stem cell derived-Retinal Pigmented Epithelial Cells (hES-RPE) for several applications, such as cell therapy, disease modeling, and drug screening. The use of this technology in pre-clinical phases attends to the overall population desire for animal-free product development. Here, we aimed to compare hES-RPE cells with ARPE-19, one of the most commonly used retinal pigmented epithelial immortalized cell lines. Methods and Results Functional, cellular and molecular data obtained suggest that hES-RPE cells more closely resembles native RPEs compared to ARPE-19. Furthermore, hES-RPE revealed an interesting robustness when cultured on human Bruch’s membrane explants and after exposure to Cyclosporine (CSA), Sirolimus (SRL), Tacrolimus (TAC), Leflunomide (LEF) and Teriflunomide (TER). On these conditions, hES-RPE cells were able to survive at higher drug concentrations, while ARPE-19 cell line was more susceptible to cell death. Conclusions Therefore, hES-RPEs seem to have the ability to incur a broader range of RPE functions than ARPE-19 and should be more thoroughly explored for drug screening.
Collapse
Affiliation(s)
- Carolina Reis Oliveira
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Gracielle Ferreira Andrade
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Lott Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Dawidson Assis Gomes
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Nehemy
- Department of Ophthalmology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sílvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Góes
- 1Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Kim J, Park JY, Kong JS, Lee H, Won JY, Cho DW. Development of 3D Printed Bruch's Membrane-Mimetic Substance for the Maturation of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031095. [PMID: 33499245 PMCID: PMC7865340 DOI: 10.3390/ijms22031095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a monolayer of the pigmented cells that lies on the thin extracellular matrix called Bruch's membrane. This monolayer is the main component of the outer blood-retinal barrier (BRB), which plays a multifunctional role. Due to their crucial roles, the damage of this epithelium causes a wide range of diseases related to retinal degeneration including age-related macular degeneration, retinitis pigmentosa, and Stargardt disease. Unfortunately, there is presently no cure for these diseases. Clinically implantable RPE for humans is under development, and there is no practical examination platform for drug development. Here, we developed porcine Bruch's membrane-derived bioink (BM-ECM). Compared to conventional laminin, the RPE cells on BM-ECM showed enhanced functionality of RPE. Furthermore, we developed the Bruch's membrane-mimetic substrate (BMS) via the integration of BM-ECM and 3D printing technology, which revealed structure and extracellular matrix components similar to those of natural Bruch's membrane. The developed BMS facilitated the appropriate functions of RPE, including barrier and clearance functions, the secretion of anti-angiogenic growth factors, and enzyme formation for phototransduction. Moreover, it could be used as a basement frame for RPE transplantation. We established BMS using 3D printing technology to grow RPE cells with functions that could be used for an in vitro model and RPE transplantation.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Ju Young Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Jeong Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| | - Dong Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| |
Collapse
|
30
|
Viheriälä T, Sorvari J, Ihalainen TO, Mörö A, Grönroos P, Schlie-Wolter S, Chichkov B, Skottman H, Nymark S, Ilmarinen T. Culture surface protein coatings affect the barrier properties and calcium signalling of hESC-RPE. Sci Rep 2021; 11:933. [PMID: 33441679 PMCID: PMC7806758 DOI: 10.1038/s41598-020-79638-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Human pluripotent stem cell-derived retinal pigment epithelium (RPE) transplantation is currently under evaluation as treatment for macular degeneration. For therapeutic applications, cryostorage during cell production is typically needed with potential consequences to cell functionality. We have previously shown that the culture substrate affects human embryonic stem cell-derived RPE (hESC-RPE) properties in fresh cultures. Here, we aimed to further identify the role of RPE basement membrane proteins type IV collagen (Col-IV), laminin (LN), and nidogen-1 in the maturation and functionality of hESC-RPE after cryopreservation. In addition to cell attachment and morphology, transepithelial electrical resistance, expression of key RPE proteins, phagocytosis capacity and Ca2+ signalling were analysed. After cryostorage, attachment of hESC-RPE on culture surfaces coated with Col-IV alone was poor. Combining Col-IV and LN with or without nidogen-1 significantly improved cell attachment and barrier properties of the epithelium. Furthermore, functional homogeneity of the hESC-RPE monolayer was enhanced in the presence of nidogen-1. Our results suggest that the choice of coating proteins for the cell culture may have implications to the functional properties of these cells after cryostorage cell banking.
Collapse
Affiliation(s)
- Taina Viheriälä
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Juhana Sorvari
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Anni Mörö
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Pyry Grönroos
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Sabrina Schlie-Wolter
- Institute for Multiphase Processes, Leibniz University of Hannover, Hannover, Germany
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University of Hannover, Hannover, Germany
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| |
Collapse
|
31
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
32
|
Cysteinyl leukotriene receptor 1 modulates autophagic activity in retinal pigment epithelial cells. Sci Rep 2020; 10:17659. [PMID: 33077798 PMCID: PMC7573618 DOI: 10.1038/s41598-020-74755-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
The retinal pigment epithelium (RPE), which is among the tissues in the body that are exposed to the highest levels of phagocytosis and oxidative stress, is dependent on autophagy function. Impaired autophagy and continuous cellular stress are associated with various disorders, such as dry age-related macular degeneration (AMD), a disease for which effective therapies are lacking. Cysteinyl leukotriene receptor (CysLTR) 1 is a potential modulator of autophagy; thus, the aim of this study was to investigate the role of CysLTR1 in autophagy regulation in the RPE cell line ARPE-19. The polarized ARPE-19 monolayer exhibited expression of CysLTR1, which was colocalized with β-tubulin III. In ARPE-19 cells, autophagic activity was rhythmically regulated and was increased upon CysLTR1 inhibition by Zafirlukast (ZK) treatment. H2O2 affected the proautophagic regulatory effect of ZK treatment depending on whether it was applied simultaneously with or prior to ZK treatment. Furthermore, mRNA levels of genes related to the leukotriene system, autophagy and the unfolded protein response were positively correlated. As CysLTR1 is involved in autophagy regulation under basal and oxidative stress conditions, a dysfunctional leukotriene system could negatively affect RPE functions. Therefore, CysLTR1 is a potential target for new treatment approaches for neurodegenerative disorders, such as AMD.
Collapse
|
33
|
The Petri Dish-N2B27 Culture Condition Maintains RPE Phenotype by Inhibiting Cell Proliferation and mTOR Activation. J Ophthalmol 2020; 2020:4892978. [PMID: 32855817 PMCID: PMC7443227 DOI: 10.1155/2020/4892978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Objective To develop a method for the rapid isolation of rat RPE cells with high yield and maintain its epithelial state in modified culture system. Methods The eyeballs were incubated with dispase. The retina was isolated with RPE attached and cut into several pieces. Following a brief incubation in growth medium, large RPE sheets can be harvested rapidly. RPE cells were divided into four groups and cultured for several weeks, that is, (1) in cell culture dishes with 10% FBS containing medium (CC dish-FBS), (2) in petri dishes with 10% FBS containing medium (Petri dish-FBS), (3) in cell culture dishes with N2 and B27 containing medium (CC dish-N2B27), and (4) in petri dishes with N2 and B27 containing medium (Petri dish-N2B27). Morphological and biological characteristics were investigated using light microscopy, Q-PCR, and western blot. Results The retina would curl inwardly during the growth medium incubation period, releasing RPE sheets in the medium. Compared with low density group (5,000 cells/cm2), RPE cells plated at high density (15,000 cells/cm2) can maintain RPE morphology for a more extended period. Meanwhile, plating RPE cells at low density significantly reduced the expression of RPE cell type-specific genes (RPE65, CRALBP, and bestrophin) and increased the expression of EMT-related genes (N-cadherin, fibronectin, and α-SMA), in comparison with the samples from the high density group. The petri dish culture condition reduced cell adhesion and thus inhibited RPE cell proliferation. As compared with other culture conditions, RPE cells in the petri dish-N2B27 condition could maintain RPE phenotype with increased expression of RPE-specific genes and decreased expression of EMT-related genes. The AKT/mTOR pathway was also decreased in petri dish-N2B27 condition. Conclusion The current study provided an alternative method for easy isolation of RPE cells with high yield and maintenance of its epithelial morphology in the petri dish-N2B27 condition.
Collapse
|
34
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|
35
|
Konduri AK, Deepak CS, Purohit S, Narayan KS. An integrated 3D fluidic device with bubble guidance mechanism for long-term primary and secondary cell recordings on multi-electrode array platform. Biofabrication 2020; 12:045019. [PMID: 32650326 DOI: 10.1088/1758-5090/aba500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A 3D fluidic device (3D-FD) is designed and developed with the capability of auto bubble guidance via a helical pathway in a 3D geometry. This assembly is integrated to a multi-electrode array (MEA) to maintain secondary cell lines, primary cells and primary retinal tissue explants of chick embryos for continuous monitoring of the growth and electrophysiology recording. The ability to maintain the retinal tissue explant, extracted from day 14 (E-14) and day 21 (E-21) chick embryos in an integrated 3D-FD MEA for long duration (>100 h) and study the development is demonstrated. The enhanced duration of monitoring offered by this device is due to the controlled laminar flow and the maintenance of a stable microenvironment. The spontaneous electrical activity of the retina, including the spike recordings from the retinal ganglion layer, was monitored over a long duration. Specifically, the spiking activity in embryonic chick retinas of different days (E-14 to 21) is studied, and the presence of light-stimulated firings along with a distinct electroretinogram for E-21 mature retina provides the evidence of a stable microenvironment over a sustained period.
Collapse
Affiliation(s)
- Anil Krishna Konduri
- Chemistry and Physics of Material Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur-560064, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
36
|
Zhang W, Kantaria T, Zhang Y, Kantaria T, Kobauri S, Tugushi D, Brücher V, Katsarava R, Eter N, Heiduschka P. Biodegradable Nanoparticles Based on Pseudo-Proteins Show Promise as Carriers for Ophthalmic Drug Delivery. J Ocul Pharmacol Ther 2020; 36:421-432. [PMID: 32639222 DOI: 10.1089/jop.2019.0148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose: Drug delivery to treat ocular diseases still is a challenge in ophthalmology. One way to achieve drug delivery that is investigated currently is topical administration of drug-loaded polymeric nanoparticles (NPs) that are able to penetrate ocular barriers. The purpose of this study was optimal preparation of NPs made from pseudo-proteins and evaluation of their ability to penetrate ocular tissues. Methods: Biodegradable NPs of various types were prepared by nanoprecipitation of pseudo-protein composed of l-leucine (L), 1,6-hexanediol (6), and sebacic acid (8) (8L6). Arginine-based cationic polyester amides 8R6 and comb-like polyester amide containing lateral PEG-2000 chains along with 8L6 anchoring fragments in the backbones were used to construct positively charged and PEGylated NPs. They were loaded with fluorescein diacetate (FDA) or rhodamine 6G (Rh6G) as fluorescent probes. Suspensions of the NPs were given to cultivated microglial cells and retinal pigment epithelial (RPE) cells as well as topically on eyes of C57BL/6 mice. Penetration of NPs into the eyes was checked by fluorescence analysis. Results: NPs were prepared, and their properties were characterized. Cultured microglial cells and RPE cells took up the NPs. After topical administration, penetration of NPs into the cornea of the eyes was clearly seen. Small amounts of fluorescent dyes were also found in the lens, the retina, and the sclera depending on the type of NPs. Conclusions: The results showed that the new NPs penetrate ocular tissues after topical administration and are internalized by the cells. This raises confidence that the NPs may be useful carriers of therapeutic agents for ocular delivery.
Collapse
Affiliation(s)
- Wenliang Zhang
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Yahan Zhang
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Tengiz Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Sophio Kobauri
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - David Tugushi
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Viktoria Brücher
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Nicole Eter
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Peter Heiduschka
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| |
Collapse
|
37
|
Transcriptome-Wide Analysis of CXCR5 Deficient Retinal Pigment Epithelial (RPE) Cells Reveals Molecular Signatures of RPE Homeostasis. Biomedicines 2020; 8:biomedicines8060147. [PMID: 32492870 PMCID: PMC7345337 DOI: 10.3390/biomedicines8060147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible blindness in the elderly population. In our previous studies, we found that deficiency of CXCR5 causes AMD-like pathological phenotypes in mice, characterized by abnormalities and dysfunction of the retinal pigment epithelium (RPE) cells. The abnormalities included abnormal cellular shape and impaired barrier function. In the present study, primary RPE cells were derived separately from CXCR5 knockout (KO) mice and from C57BL6 wild type (WT). The isolated primary cells were cultured for several days, and then total RNA was isolated and used for library preparation, sequencing, and the resultant raw data analyzed. Relative to the WT, a total of 1392 differentially expressed genes (DEG) were identified. Gene ontology analysis showed various biological processes, cellular components, and molecular functions were enriched. Pathway enrichment analysis revealed several pathways, including the PI3K-Akt signaling, mTOR signaling, FoxO, focal adhesion, endocytosis, ubiquitin-mediated proteolysis, TNFα-NF-kB Signaling, adipogenesis genes, p53 signaling, Ras, autophagy, epithelial–mesenchymal transition (EMT), and mitochondrial pathway. This study explores molecular signatures associated with deficiency of CXCR5 in RPE cells. Many of these signatures are important for homeostasis of this tissue. The identified pathways and genes require further evaluation to better understand the pathophysiology of AMD.
Collapse
|
38
|
Figueroa AG, McKay BS. A G-Protein Coupled Receptor and Macular Degeneration. Cells 2020; 9:cells9040910. [PMID: 32276449 PMCID: PMC7226737 DOI: 10.3390/cells9040910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. The risk of AMD increases with age and is most common among the white population. Here, we discuss the convergence of factors related to race, pigmentation, and susceptibility to AMD, where the primary defect occurs in retinal support cells, the retinal pigment epithelium (RPE). We explore whether the observed racial bias in AMD incidence is related to innate differences in the basal level of pigmentation between races, and whether the pigmentation pathway activity in the RPE might protect from retinal degeneration. More specifically, we explore whether the downstream signaling activity of GPR143, a G-protein coupled receptor in the pigmentation pathway, might underly the racial bias of AMD and be a target to prevent the disease. Lastly, we summarize the past findings of a large retrospective study that investigated the relationship between the stimulation of GPR143 with L-DOPA, the pigmentation pathway, and AMD, to potentially help develop new ways to prevent or treat AMD. The reader of this review will come to understand the racial bias of AMD, which is related to the function of the RPE.
Collapse
|
39
|
Zhang M, Jiang N, Chu Y, Postnikova O, Varghese R, Horvath A, Cheema AK, Golestaneh N. Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep 2020; 10:2464. [PMID: 32051464 PMCID: PMC7016007 DOI: 10.1038/s41598-020-59244-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration is a major cause of vision impairment in the Western world among people of 55 years and older. Recently we have shown that autophagy is dysfunctional in the retinal pigment epithelium (RPE) of the AMD donor eyes (AMD RPE). We also showed increased reactive oxygen (ROS) production, increased cytoplasmic glycogen accumulation, mitochondrial dysfunction and disintegration, and enlarged and annular LAMP-1-positive organelles in AMD RPE. However, the underlying mechanisms inducing these abnormalities remain to be elucidated. Here, by performing a comprehensive study, we show increased PAPR2 expression, deceased NAD+, and SIRT1, increased PGC-1α acetylation (inactive form), lower AMPK activity, and overactive mTOR pathway in AMD RPE as compared to normal RPE. Metabolomics and lipidomics revealed dysregulated metabolites in AMD RPE as compared to normal RPE, including glycerophospholipid metabolism, involved in autophagy, lipid, and protein metabolisms, glutathione, guanosine, and L-glutamic acid, which are implicated in protection against oxidative stress and neurotoxicity, further supporting our observations. Our data show dysregulated metabolic pathways as important contributors to AMD pathophysiology, and facilitate the development of new treatment strategies for this debilitating disease of the visual system.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Nisi Jiang
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Yi Chu
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga Postnikova
- Laboratory of Retinal Cell & Molecular Biology (HNW28), NIH/NEI, Bethesda, MD, 20814, USA
| | - Rency Varghese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, 20037, USA
| | - Amrita K Cheema
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.,Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Nady Golestaneh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neurology, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
40
|
Michelet F, Balasankar A, Teo N, Stanton LW, Singhal S. Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res Ther 2020; 11:47. [PMID: 32014053 PMCID: PMC6998340 DOI: 10.1186/s13287-020-1568-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/13/2019] [Accepted: 01/21/2020] [Indexed: 11/26/2022] Open
Abstract
Background Despite increasing demand, current protocols for human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) remain time, labor, and cost intensive. Additionally, absence of robust methods for selective RPE purification and removal of non-RPE cell impurities prevents upscaling of clinical quality RPE production. We aimed to address these challenges by developing a simplified hPSC-derived RPE production and purification system that yields high-quality RPE monolayers within 90 days. Methods Human pluripotent stem cells were differentiated into RPE using an innovative time and cost-effective protocol relying entirely on 2D cultures and minimal use of cytokines. Once RPE identity was obtained, cells were transferred onto permeable membranes to acquire mature RPE morphology. RPE differentiation was verified by electron microscopy, polarized VEGF expression, establishment of high transepithelial electrical resistance and photoreceptor phagocytosis assay. After 4 weeks on permeable membranes, RPE cell cultures were incubated with Dil-AcLDL (DiI-conjugated acetylated low-density lipoproteins) and subjected to fluorescence-activated cell sorting (FACS) for purification and subculture. Results Using our 2D cytokine scarce protocol, hPSC-derived functional RPE cells can be obtained within 2 months. Nevertheless, at this stage, most samples contain a percentage of non-RPE/early RPE progenitor cells that make them unsuitable for clinical application. We demonstrate that functional RPE cells express high levels of lipoprotein receptors and that this correlates with their ability to uptake lipoproteins. Combining photoreceptor uptake assay with lipoprotein uptake assay further confirms that only functional RPE cells uptake AcLDL. Incubation of mixed RPE/non-RPE cell cultures with fluorophore conjugated AcLDL and subsequent FACS-based isolation of labeled cells allows selective purification of mature functional RPE. When subcultured, DiI-AcLDL-labeled cells rapidly form pure homogenous high-quality RPE monolayers. Conclusions Pure functional RPE monolayers can be derived from hPSC within 90 days using simplified 2D cultures in conjunction with our RPE PLUS protocol (RPE Purification by Lipoprotein Uptake-based Sorting). The simplicity of this protocol makes it scalable, and the rapidity of production and purification allows for high-quality RPE to be produced in a short span of time making them ideally suited for downstream clinical and in vitro applications. Electronic supplementary material The online version of this article (10.1186/s13287-020-1568-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabio Michelet
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
| | - Aishwarya Balasankar
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | | | - Lawrence W Stanton
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore, Singapore.,Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shweta Singhal
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Duke-NUS, Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Pueraria lobata Extract Protects Hydrogen Peroxide-Induced Human Retinal Pigment Epithelial Cells Death and Membrane Permeability. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5710289. [PMID: 31534464 PMCID: PMC6732599 DOI: 10.1155/2019/5710289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 07/14/2019] [Indexed: 12/24/2022]
Abstract
Background Pueraria lobata is used in traditional Asian medicine to treat cardiovascular diseases, diarrhea, diabetes mellitus, and diabetic complications such as diabetic retinopathy. Oxidative stress in retinal pigment epithelial cells is implicated in the pathogenesis of retinopathy and age-related macular degeneration (AMD). Here, we evaluated whether the P. lobata extract can prevent cell death and decrease membrane permeability in oxidative stress-induced human retinal pigment epithelial cells. Methods The effects of P. lobata extract on hydrogen peroxide- (H2O2-) induced oxidative stress were investigated using 2′,7′–dichlorofluorescin diacetate, western blotting, and immunohistochemistry in human retinal pigment epithelial cells. The effects of puerarin, daidzein, and daidzin isolated from P. lobata extract were also studied by determining cell death, reactive oxygen species (ROS) generation, and p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation. Results Our results showed that the P. lobata extract inhibited ROS generation, suppressed the disruption of zonula occludens-1 (ZO-1), and reduced membrane permeability in H2O2-induced human retinal pigment epithelial cells. Additionally, the P. lobata extract prevented the inhibition of p38 MAPK and JNK phosphorylation. Conclusion Our findings suggest that the P. lobata extract has the potential to prevent AMD development by inhibiting the mechanism underlying oxidative stress-mediated ocular disorders.
Collapse
|
42
|
Churm R, Dunseath GJ, Prior SL, Thomas RL, Banerjee S, Owens DR. Development and characterization of an in vitro system of the human retina using cultured cell lines. Clin Exp Ophthalmol 2019; 47:1055-1062. [PMID: 31254428 DOI: 10.1111/ceo.13578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previously developed in vitro cultures of the human retina have been solo or dual cell cultures. We developed a triple-cell culture in vitro model utilizing a membrane system to produce a better representation of a functional and morphological human retina. METHODS Retinal microvascular endothelial cells (HRMVEC/ACBRI181, cell systems), retinal pigment epithelium cells (RPE/ARPE-19, ATCC) and Müller glial cells (Moorfield Institute of Ophthalmology-Müller 1, UCL) were grown in a triple culture. Our optimized triple-culture media contained a mix of specific endothelial medium and high glucose Dulbecco's Modified Eagle's medium, where all three layers were viable for up to 5 days. Co-culture effect on morphological changes (cell staining) and gene expression of functional genes (pigment epithelium derived factor [PEDF] and vascular endothelial growth factor [VEGF]) were measured from RNA via real-time polymerase chain reaction. Expression of tight junction protein 1 (TJP1) was measured in RNA isolated from ARPE-19s, to assess barrier stability. RESULTS The triple-culture promotes certain cell functionality through up-regulation of TJP1, increasing PEDF and decreasing VEGF expression highlighting its importance for the assessment of disease mechanisms distinct from a solo culture which would not allow the true effect of the native microenvironment to be elucidated. CONCLUSIONS This model's novelty and reliability allows for the assessment of singular cellular function within the retinal microenvironment and overall assessment of retinal health, while eliminating the requirement of animal-based models.
Collapse
Affiliation(s)
- Rachel Churm
- Diabetes Research Group, Swansea University, Swansea, UK
| | | | - Sarah L Prior
- Diabetes Research Group, Swansea University, Swansea, UK
| | | | - Sanjiv Banerjee
- Cardiff and Vale Health Board, University of Wales Hospital, Cardiff, UK
| | - David R Owens
- Diabetes Research Group, Swansea University, Swansea, UK
| |
Collapse
|
43
|
Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, Lohner D, Huang J, Dinterman M, Zhao C, Chao JR, Du J. Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem 2019; 294:10278-10289. [PMID: 31110046 PMCID: PMC6664195 DOI: 10.1074/jbc.ra119.007983] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.
Collapse
Affiliation(s)
- Michelle Yam
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Abbi L Engel
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Siyan Zhu
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Allison Hauer
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Rui Zhang
- From the Departments of Ophthalmology and
- the Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | - Daniel Lohner
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Jiancheng Huang
- From the Departments of Ophthalmology and
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
- the Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Marlee Dinterman
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Chen Zhao
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
| | - Jennifer R Chao
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109,
| | - Jianhai Du
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
44
|
Lie S, Rochet E, Segerdell E, Ma Y, Ashander LM, Shadforth AMA, Blenkinsop TA, Michael MZ, Appukuttan B, Wilmot B, Smith JR. Immunological Molecular Responses of Human Retinal Pigment Epithelial Cells to Infection With Toxoplasma gondii. Front Immunol 2019; 10:708. [PMID: 31118929 PMCID: PMC6506780 DOI: 10.3389/fimmu.2019.00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Ocular toxoplasmosis is the commonest clinical manifestation of infection with obligate intracellular parasite, Toxoplasma gondii. Active ocular toxoplasmosis is characterized by replication of T. gondii tachyzoites in the retina, with reactive inflammation. The multifunctional retinal pigment epithelium is a key target cell population for T. gondii. Since the global gene expression profile is germane to understanding molecular involvements of retinal pigment epithelial cells in ocular toxoplasmosis, we performed RNA-Sequencing (RNA-Seq) of human cells following infection with T. gondii tachyzoites. Primary cell isolates from eyes of cadaveric donors (n = 3), and the ARPE-19 human retinal pigment epithelial cell line, were infected for 24 h with GT-1 strain T. gondii tachyzoites (multiplicity of infection = 5) or incubated uninfected as control. Total and small RNA were extracted from cells and sequenced on the Illumina NextSeq 500 platform; results were aligned to the human hg19 reference sequence. Multidimensional scaling showed good separation between transcriptomes of infected and uninfected primary cell isolates, which were compared in edgeR software. This differential expression analysis revealed a sizeable response in the total RNA transcriptome-with significantly differentially expressed genes totaling 7,234 (28.9% of assigned transcripts)-but very limited changes in the small RNA transcriptome-totaling 30 (0.35% of assigned transcripts) and including 8 microRNA. Gene ontology and pathway enrichment analyses of differentially expressed total RNA in CAMERA software, identified a strong immunologic transcriptomic signature. We conducted RT-qPCR for 26 immune response-related protein-coding and long non-coding transcripts in epithelial cell isolates from different cadaveric donors (n = 3), extracted by a different isolation protocol but similarly infected with T. gondii, to confirm immunological activity of infected cells. For microRNA, increases in miR-146b and miR-212 were detected by RT-qPCR in 2 and 3 of these independent cell isolates. Biological network analysis in the InnateDB platform, including 735 annotated differentially expressed genes plus 2,046 first-order interactors, identified 10 contextural hubs and 5 subnetworks in the transcriptomic immune response of cells to T. gondii. Our observations provide a solid base for future studies of molecular and cellular interactions between T. gondii and the human retinal pigment epithelium to illuminate mechanisms of ocular toxoplasmosis.
Collapse
Affiliation(s)
- Shervi Lie
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Elise Rochet
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Erik Segerdell
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Yuefang Ma
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Liam M. Ashander
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Audra M. A. Shadforth
- Queensland Eye Institute, Brisbane, QLD, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Timothy A. Blenkinsop
- Departments of Cell, Developmental and Regenerative Biology, and Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael Z. Michael
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Binoy Appukuttan
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Beth Wilmot
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Justine R. Smith
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| |
Collapse
|
45
|
Matsumoto E, Koide N, Hanzawa H, Kiyama M, Ohta M, Kuwabara J, Takeda S, Takahashi M. Fabricating retinal pigment epithelial cell sheets derived from human induced pluripotent stem cells in an automated closed culture system for regenerative medicine. PLoS One 2019; 14:e0212369. [PMID: 30865653 PMCID: PMC6415881 DOI: 10.1371/journal.pone.0212369] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Regenerative medicine has received a lot of attention as a novel strategy for injuries and diseases that are difficult to cure using current techniques. Cell production, which is vital for regenerative medicine, has undergone remarkable progress via breakthroughs in developmental biology and tissue engineering; currently, cell production requires numerous experimental operators performing manual, small-scale cell cultures. Other major obstacles for cell production and regenerative medicine include the variable quality of products based on the experimental procedure, the skills of operators, the level of labor required for production, and costs. Technological developments are required to overcome this, including automation instead of manual culture. Age-related macular regeneration (AMD) is a refractory ocular disease that causes severe deterioration in central vision due to senescence in the retinal pigment epithelium (RPE). Recently, we performed an autologous transplantation of induced pluripotent stem (iPS) cell-derived RPE cell sheets and started clinical research on allografts from RPE cell suspensions differentiated from iPS cells. The use of regenerative therapies for AMD using iPS cell-derived RPE is expected to become more widespread. In the present study, human iPS cell-derived RPE cells were cultured to form RPE cell sheets using equipment with a closed culture module. The quality of the automated cultured RPE cell sheets was confirmed by comparing their morphological and biological properties with those of manually generated RPE cell sheets. As a result, machine-cultured RPE sheets displayed the same quality as manually cultured RPE sheets, showing that iPS cell-derived RPE cell sheets were successfully cultured by an automated process.
Collapse
Affiliation(s)
- Erino Matsumoto
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Naoshi Koide
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiroko Hanzawa
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Masaharu Kiyama
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Mari Ohta
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Junichi Kuwabara
- Planning and Development Division, Sanplatec Co., Ltd., Osaka, Japan
| | - Shizu Takeda
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| |
Collapse
|
46
|
Aboutaleb Kadkhodaeian H, Salati A, Lashay A. High efficient differentiation of human adipose-derived stem cells into retinal pigment epithelium-like cells in medium containing small molecules inducers with a simple method. Tissue Cell 2019; 56:52-59. [PMID: 30736904 DOI: 10.1016/j.tice.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/18/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The induction of retinal pigmented epithelium cells (RPE) is one of the most important objectives in research focused on treating retinal degenerative diseases. The present study aims to differentiate human adipose stem cells (hADSCs) into RPE cells for replacement therapies in cases of retinal degenerative diseases. METHODS Lipoaspirate-derived human adipose stem cells (LA-hADSCs) were obtained from abdominal samples and examined by immunocytochemistry for the expression of mesenchymal adipose stem cell markers. RPE cells were also obtained from human samples and cultured to be used as control after being examined for the expression of their designated markers. hADSCs differentiated into RPE cells after 80 days using chemical inducers in one steps. The differentiated cells were then compared to control cells in marker expression. The differentiated cells were also examined under a scanning electron microscope for the presence of apical microvilli and cell connection. RESULTS Cultured hADSCs at the fourth passage was shown to express the surface markers CD90 (98 ± 2%), CD11b (96 ± 3%), and CD105 (95 ± 4%). The RPE cells obtained from human samples expressed the marker RPE65 quite well. 80 days after differentiation, the previously hADSCs expressed both RPE65 (100%) and CRALBP (96 ± 1%) and were thus significantly similar to the RPE cells obtained from human samples. Morphologically, differentiated cells appeared to have epithelial and cytoplasmic pigment granules. Observations using a scanning electron microscope recorded clear connections among the differentiated RPE cells and revealed apical microvilli. CONCLUSION Human adipose stem cells can differentiate into retinal pigmented epithelium cells, which can be used in cell replacement therapy for degenerative diseases including age-related macular degeneration (AMD) as well as retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Hamid Aboutaleb Kadkhodaeian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomical Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amir Salati
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Lashay
- Farabi Eye Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
An in vitro protocol to study the effect of hyperglycemia on intracellular redox signaling in human retinal pigment epithelial (ARPE-19) cells. Mol Biol Rep 2019; 46:1263-1274. [DOI: 10.1007/s11033-019-04597-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/04/2019] [Indexed: 01/12/2023]
|
48
|
Simonin Y, Erkilic N, Damodar K, Clé M, Desmetz C, Bolloré K, Taleb M, Torriano S, Barthelemy J, Dubois G, Lajoix AD, Foulongne V, Tuaillon E, Van de Perre P, Kalatzis V, Salinas S. Zika virus induces strong inflammatory responses and impairs homeostasis and function of the human retinal pigment epithelium. EBioMedicine 2019; 39:315-331. [PMID: 30579862 PMCID: PMC6354710 DOI: 10.1016/j.ebiom.2018.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) has recently re-emerged as a pathogenic agent with epidemic capacities as was well illustrated in South America. Because of the extent of this health crisis, a number of more serious symptoms have become associated with ZIKV infection than what was initially described. In particular, neuronal and ocular disorders have been characterized, both in infants and in adults. Notably, the macula and the retina can be strongly affected by ZIKV, possibly by a direct effect of the virus. This is supported by the detection of replicative and infectious virus in lachrimal fluid in human patients and mouse models. METHODS Here, we used an innovative, state-of-the-art iPSC-derived human retinal pigment epithelium (RPE) model to study ZIKV retinal impairment. FINDINGS We showed that the human RPE is highly susceptible to ZIKV infection and that a ZIKV African strain was more virulent and led to a more potent epithelium disruption and stronger anti-viral response than an Asian strain, suggesting lineage differences. Moreover, ZIKV infection led to impaired membrane dynamics involved in endocytosis, organelle biogenesis and potentially secretion, key mechanisms of RPE homeostasis and function. INTERPRETATION Taken together, our results suggest that ZIKV has a highly efficient ocular tropism, which creates a strong inflammatory environment that could have acute or chronic adverse effects. FUND: This work was funded by Retina France, REACTing and La Région Languedoc-Roussillon.
Collapse
Affiliation(s)
- Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, Etablissement Français du Sang, University of Montpellier, Montpellier, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Krishna Damodar
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Marion Clé
- Pathogenesis and Control of Chronic Infections, INSERM, Etablissement Français du Sang, University of Montpellier, Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique, University of Montpellier, Montpellier, France
| | - Karine Bolloré
- Pathogenesis and Control of Chronic Infections, INSERM, Etablissement Français du Sang, University of Montpellier, Montpellier, France
| | - Mehdi Taleb
- Pathogenesis and Control of Chronic Infections, INSERM, Etablissement Français du Sang, University of Montpellier, Montpellier, France
| | - Simona Torriano
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, INSERM, Etablissement Français du Sang, University of Montpellier, Montpellier, France
| | - Grégor Dubois
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Anne Dominique Lajoix
- BioCommunication en CardioMétabolique, University of Montpellier, Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections. INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections. INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections. INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France.
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, Etablissement Français du Sang, University of Montpellier, Montpellier, France.
| |
Collapse
|
49
|
The Zinc-Metallothionein Redox System Reduces Oxidative Stress in Retinal Pigment Epithelial Cells. Nutrients 2018; 10:nu10121874. [PMID: 30513827 PMCID: PMC6315569 DOI: 10.3390/nu10121874] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress affects all the structures of the human eye, particularly the retina and its retinal pigment epithelium (RPE). The RPE limits oxidative damage by several protective mechanisms, including the non-enzymatic antioxidant system zinc-metallothionein (Zn-MT). This work aimed to investigate the role of Zn-MT in the protection of RPE from the oxidative damage of reactive oxygen intermediates by analytical and biochemical-based techniques. The Zn-MT system was induced in an in vitro model of RPE cells and determined by elemental mass spectrometry with enriched isotopes and mathematical calculations. Induced-oxidative stress was quantified using fluorescent probes. We observed that 25, 50 or 100 μM of zinc induced Zn-MT synthesis (1.6-, 3.6- and 11.9-fold, respectively), while pre-treated cells with zinc (25, 50, and 100 μM) and subsequent 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) treatment increased Zn-MT levels in a lesser extent (0.8-, 2.1-, 6.1-fold, respectively), exerting a stoichiometric transition in the Zn-MT complex. Moreover, AAPH treatment decreased MT levels (0.4-fold), while the stoichiometry remained constant or slightly higher when compared to non-treated cells. Convincingly, induction of Zn-MT significantly attenuated oxidative stress produced by free radicals’ generators. We conclude that the stoichiometry of Zn-MT plays an important role in oxidative stress response, related with cellular metal homeostasis.
Collapse
|
50
|
Singh S, Kumar A. Ocular Manifestations of Emerging Flaviviruses and the Blood-Retinal Barrier. Viruses 2018; 10:v10100530. [PMID: 30274199 PMCID: PMC6213219 DOI: 10.3390/v10100530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
Despite flaviviruses remaining the leading cause of systemic human infections worldwide, ocular manifestations of these mosquito-transmitted viruses are considered relatively uncommon in part due to under-reporting. However, recent outbreaks of Zika virus (ZIKV) implicated in causing multiple ocular abnormalities, such as conjunctivitis, retinal hemorrhages, chorioretinal atrophy, posterior uveitis, optic neuritis, and maculopathies, has rejuvenated a significant interest in understanding the pathogenesis of flaviviruses, including ZIKV, in the eye. In this review, first, we summarize the current knowledge of the major flaviviruses (Dengue, West Nile, Yellow Fever, and Japanese Encephalitis) reported to cause ocular manifestations in humans with emphasis on recent ZIKV outbreaks. Second, being an immune privilege organ, the eye is protected from systemic infections by the presence of blood-retinal barriers (BRB). Hence, we discuss how flaviviruses modulate retinal innate response and breach the protective BRB to cause ocular or retinal pathology. Finally, we describe recently identified infection signatures of ZIKV and discuss whether these system biology-predicted genes or signaling pathways (e.g., cellular metabolism) could contribute to the pathogenesis of ocular manifestations and assist in the development of ocular antiviral therapies against ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|