1
|
Ghosh A, Bera AK, Singh V, Basu S, Pati F. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. BIOMATERIALS ADVANCES 2024; 165:214007. [PMID: 39216318 DOI: 10.1016/j.bioadv.2024.214007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corneal scarring is a common cause of blindness, affecting millions globally each year. A huge gap between the demand and supply of donor tissue currently limits corneal transplantation, the only definitive therapy for patients with corneal scarring. To overcome this challenge, researchers have harnessed the efficacy of 3D bioprinting to fabricate artificial corneal stromal constructs. With all the different bioinks available, the decellularized corneal matrix-based bioprinted construct can fulfill the required biological functionality but is limited by the lack of mechanical stiffness. Additionally, from a biophysical standpoint, it is necessary for an ideal corneal substitute to mimic the anisotropy of the cornea from the central optic zone to the surrounding periphery. In this study, we enhanced the mechanical robustness of decellularized cornea matrix (DCM) hydrogel by blending it with another natural polymer, sonicated silk fibroin solution in a defined ratio. Although hybrid hydrogel has an increased complex modulus than DCM hydrogel, it has a lower in vitro degradation rate and increased opaqueness due to the presence of crystalline beta-sheet conformation within the hydrogel. Therefore, we used this multi-material bioink-based approach to fabricate a corneal stromal equivalent where the outer peripheral corneal rim was printed with a mechanically robust polymeric blend of DCM and sonicated silk fibroin and the central optic zone was printed with only DCM. The bioprinted corneal stroma thus maintained its structural integrity and did not break when lifted with forceps. The two different bioinks were encapsulated with human limbus-derived mesenchymal stem cells (hLMSC) individually and 3D bioprinted in different patterns (concentric and parallel) to attain a native-like structure in terms of architecture and transparency. Thus, the bilayer cornea constructs maintained high cell viability and expressed keratocyte core proteins indicating optimal functionality. This approach helped to gain insight into bioprinting corneas with heterogeneous mechanical property without disturbing the structural clarity of the central optic zone.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Vivek Singh
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Sayan Basu
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
2
|
Wu KY, Osman R, Kearn N, Kalevar A. Three-Dimensional Bioprinting for Retinal Tissue Engineering. Biomimetics (Basel) 2024; 9:733. [PMID: 39727737 DOI: 10.3390/biomimetics9120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional bioprinting (3DP) is transforming the field of regenerative medicine by enabling the precise fabrication of complex tissues, including the retina, a highly specialized and anatomically complex tissue. This review provides an overview of 3DP's principles, its multi-step process, and various bioprinting techniques, such as extrusion-, droplet-, and laser-based methods. Within the scope of biomimicry and biomimetics, emphasis is placed on how 3DP potentially enables the recreation of the retina's natural cellular environment, structural complexity, and biomechanical properties. Focusing on retinal tissue engineering, we discuss the unique challenges posed by the retina's layered structure, vascularization needs, and the complex interplay between its numerous cell types. Emphasis is placed on recent advancements in bioink formulations, designed to emulate retinal characteristics and improve cell viability, printability, and mechanical stability. In-depth analyses of bioinks, scaffold materials, and emerging technologies, such as microfluidics and organ-on-a-chip, highlight the potential of bioprinted models to replicate retinal disease states, facilitating drug development and testing. While challenges remain in achieving clinical translation-particularly in immune compatibility and long-term integration-continued innovations in bioinks and scaffolding are paving the way toward functional retinal constructs. We conclude with insights into future research directions, aiming to refine 3DP for personalized therapies and transformative applications in vision restoration.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Rahma Osman
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Natalie Kearn
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
3
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Deng Y, Li L, Xu J, Yao Y, Ding J, Wang L, Luo C, Yang W, Li L. A biomimetic human disease model of bacterial keratitis using a cornea-on-a-chip system. Biomater Sci 2024; 12:5239-5252. [PMID: 39233608 DOI: 10.1039/d4bm00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Bacterial keratitis is a common form of inflammation caused by the bacterial invasion of the corneal stroma after trauma. In extreme cases, it can lead to severe visual impairment or even blindness; therefore, timely medical intervention is imperative. Unfortunately, widespread misuse of antibiotics has led to the development of drug resistance. In recent years, organ-on-chips that integrate multiple cell co-cultures have extensive applications in fundamental research and drug screening. In this study, immortalized human corneal epithelial cells and primary human corneal fibroblasts were co-cultured on a porous polydimethylsiloxane membrane to create a cornea-on-a-chip model. The developed multilayer epithelium closely mimicked clinical conditions, demonstrating high structural resemblance and repeatability. By introducing a consistently defective epithelium and bacterial infection using the space-occupying method, we successfully established an in vitro model of bacterial keratitis using S. aureus. We validate this model by evaluating the efficacy of antibiotics, such as levofloxacin, tobramycin, and chloramphenicol, through simultaneously observing the reactions of bacteria and the two cell types to these antibiotics. Our study has revealed the barrier function of epithelium of the model and differentiated efficacy of three drugs in terms of bactericidal activity, reducing cellular apoptosis, and mitigating scar formation. Altogether, the cornea on chip enables the assessment of ocular antibiotics, distinguishing the impact on corneal cells and structural integrity. This study introduced a biomimetic in vitro disease model to evaluate drug efficacy and provided significant insights into the extensive effects of antibiotics on diverse cell populations within the cornea.
Collapse
Affiliation(s)
- Yudan Deng
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingjun Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jian Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Yili Yao
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Jiangtao Ding
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Chunxiong Luo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Wei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
| | - Lingli Li
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Feliciano AJ, Alaoui Selsouli Y, Habibovic P, Birgani ZNT, Moroni L, Baker MB. Granular polyrotaxane microgels as injectable hydrogels for corneal tissue regeneration. Biomater Sci 2024; 12:4993-5009. [PMID: 39169887 DOI: 10.1039/d4bm00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Corneal diseases, a leading cause of global vision impairment, present challenges in treatment due to corneal tissue donor scarcity and transplant rejection. Hydrogel biomaterials in the form of corneal implants for tissue regeneration, while promising, have faced obstacles related to cellular and tissue integration. This study develops and investigates the potential of granular polyrotaxane (GPR) hydrogels as a scaffold for corneal keratocyte growth and transparent tissue generation. Employing host-guest driven supramolecular interactions, we developed injectable, cytocompatible hydrogels. By optimizing cyclodextrin (CD) concentrations in thiol-ene crosslinked PEG microgels, we observed improved mechanical properties and thermoresponsiveness while preserving injectability. These microgels, adaptable for precise defect filling, 3D printing or tissue culture facilitate enhanced cellular integration with corneal keratocytes and exhibit tissue-like structures in culture. Our findings demonstrate the promise of GPR hydrogels as a minimally invasive avenue for corneal tissue regeneration. These results have the potential to address transplantation challenges, enhance clinical outcomes, and restore vision.
Collapse
Affiliation(s)
- Antonio J Feliciano
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
| | - Yousra Alaoui Selsouli
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Zeinab Niloofar Tahmasebi Birgani
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| |
Collapse
|
7
|
Kong JS, Kim JJ, Riva L, Ginestra PS, Cho DW. In vitrothree-dimensional volumetric printing of vitreous body models using decellularized extracellular matrix bioink. Biofabrication 2024; 16:045030. [PMID: 39142325 DOI: 10.1088/1758-5090/ad6f46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Hyalocytes, which are considered to originate from the monocyte/macrophage lineage, play active roles in vitreous collagen and hyaluronic acid synthesis. Obtaining a hyalocyte-compatible bioink during the 3D bioprinting of eye models is challenging. In this study, we investigated the suitability of a cartilage-decellularized extracellular matrix (dECM)-based bioink for printing a vitreous body model. Given that achieving a 3D structure and environment identical to those of the vitreous body necessitates good printability and biocompatibility, we examined the mechanical and biological properties of the developed dECM-based bioink. Furthermore, we proposed a 3D bioprinting strategy for volumetric vitreous body fabrication that supports cell viability, transparency, and self-sustainability. The construction of a 3D structure composed of bioink microfibers resulted in improved transparency and hyalocyte-like macrophage activity in volumetric vitreous mimetics, mimicking real vitreous bodies. The results indicate that our 3D structure could serve as a platform for drug testing in disease models and demonstrate that the proposed printing technology, utilizing a dECM-based bioink and volumetric vitreous body, has the potential to facilitate the development of advanced eye models for future studies on floater formation and visual disorders.
Collapse
Affiliation(s)
- Jeong Sik Kong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea
| | - Joeng Ju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea
| | - Leonardo Riva
- Department of Industrial and Mechanical Engineering, University of Brescia, Via Branze 38, 25125 Brescia, Italy
| | - Paola Serena Ginestra
- Department of Industrial and Mechanical Engineering, University of Brescia, Via Branze 38, 25125 Brescia, Italy
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea
| |
Collapse
|
8
|
Mirsky NA, Ehlen QT, Greenfield JA, Antonietti M, Slavin BV, Nayak VV, Pelaez D, Tse DT, Witek L, Daunert S, Coelho PG. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering (Basel) 2024; 11:777. [PMID: 39199735 PMCID: PMC11351251 DOI: 10.3390/bioengineering11080777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Since three-dimensional (3D) bioprinting has emerged, it has continuously to evolved as a revolutionary technology in surgery, offering new paradigms for reconstructive and regenerative medical applications. This review highlights the integration of 3D printing, specifically bioprinting, across several surgical disciplines over the last five years. The methods employed encompass a review of recent literature focusing on innovations and applications of 3D-bioprinted tissues and/or organs. The findings reveal significant advances in the creation of complex, customized, multi-tissue constructs that mimic natural tissue characteristics, which are crucial for surgical interventions and patient-specific treatments. Despite the technological advances, the paper introduces and discusses several challenges that remain, such as the vascularization of bioprinted tissues, integration with the host tissue, and the long-term viability of bioprinted organs. The review concludes that while 3D bioprinting holds substantial promise for transforming surgical practices and enhancing patient outcomes, ongoing research, development, and a clear regulatory framework are essential to fully realize potential future clinical applications.
Collapse
Affiliation(s)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Tse
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Wiebe-Ben Zakour KE, Kaya S, Grumm L, Matros J, Hacker MC, Geerling G, Witt J. Modulation of Decellularized Lacrimal Gland Hydrogel Biodegradation by Genipin Crosslinking. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 38748430 PMCID: PMC11098053 DOI: 10.1167/iovs.65.5.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by β-hexosaminidase assay. Results The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.
Collapse
Affiliation(s)
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luis Grumm
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Matros
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael C. Hacker
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Borouman S, Sigaroodi F, Ahmadi Tafti SM, Khoshmaram K, Soleimani M, Khani MM. ECM-based bioadhesive hydrogel for sutureless repair of deep anterior corneal defects. Biomater Sci 2024; 12:2356-2368. [PMID: 38497791 DOI: 10.1039/d4bm00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Corneal transplantation is the gold standard treatment for corneal-related blindness; however, this strategy faces challenges such as limited donor cornea, graft rejection, suture-related complications, and the need for specialized equipment and advanced surgical skills. Development of tissue adhesives for corneal regeneration is of great clinical value. However, currently available corneal tissue sealants pose challenges, such as lack of safety, biocompatibility, and desired mechanical properties. To meet these requirements simultaneously, a bovine stromal corneal extracellular matrix (dCor) was used to design a bioadhesive photocurable hydrogel based on gelatin methacrylate (GelMA) and polyethylene glycol diacrylate (PEGDA) hydrogels (dCor/Gel-PEG). Integration of dCor into the dual networks of GelMA and PEGDA (Gel-PEG) led to a bioadhesive hydrogel for curing corneal defects, which could be crosslinked by Irgacure 2959 within 5 min ultraviolet irradiation. The viability of corneal stromal stem cells (CSSCs) was improved on the dCor/Gel-PEG hydrogel in comparison to the Gel-PEG hydrogel. The gene expression profile supported the keratocyte differentiation of CSSCs seeded on dCor/Gel-PEG via increased KERA and ALDH, with inhibited myofibroblast transdifferentiation via decreased α-SMA due to the presence of dCor. Interestingly, the dCor/Gel-PEG hydrogel exhibited favorable mechanical performance in terms of elasticity and bioadherence to the host corneal stroma. Ex vivo and in vivo examinations proved the feasibility of this hydrogel for the sutureless reconstruction of deep anterior corneal defects with promising histopathological results.
Collapse
Affiliation(s)
- Safieh Borouman
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran (1417935840), Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Puistola P, Kethiri A, Nurminen A, Turkki J, Hopia K, Miettinen S, Mörö A, Skottman H. Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15761-15772. [PMID: 38513048 PMCID: PMC10995904 DOI: 10.1021/acsami.3c17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/23/2024]
Abstract
Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor corneas that are used for treating corneal blindness, often resulting from damage in the corneal stromal microstructure. Human adipose tissue is one of the most abundant tissues and easy to access, and adipose tissue-derived stem cells (hASCs) are a highly advantageous cell type for tissue engineering. Furthermore, hASCs have already been studied in clinical trials for treating corneal stromal pathologies. In this study, a corneal stroma-specific ECM was engineered without the need for donor corneas by differentiating hASCs toward corneal stromal keratocytes (hASC-CSKs). Furthermore, this ECM was utilized as a component for corneal stroma-specific bioink where hASC-CSKs were printed to produce corneal stroma structures. This cost-effective approach combined with a clinically relevant cell type provides valuable information on developing more sustainable tissue-specific solutions and advances the field of corneal tissue engineering.
Collapse
Affiliation(s)
- Paula Puistola
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Abhinav Kethiri
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Antti Nurminen
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Johannes Turkki
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Karoliina Hopia
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult
Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Tays
Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, 33520 Tampere, Finland
| | - Anni Mörö
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Heli Skottman
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
13
|
Vijayaraghavan R, Loganathan S, Valapa RB. 3D bioprinted photo crosslinkable GelMA/methylcellulose hydrogel mimicking native corneal model with enhanced in vitro cytocompatibility and sustained keratocyte phenotype for stromal regeneration. Int J Biol Macromol 2024; 264:130472. [PMID: 38428773 DOI: 10.1016/j.ijbiomac.2024.130472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Corneal transplantation serves as the standard clinical therapy for serious corneal disorders. However, rejection of grafts, significant expenditures, and most crucially, the global donor shortage, may affect the outcome. Recently, 3D bioprinting using biodegradable polymeric materials has become a suitable method for creating tissue replicas with identical architecture. One such most renowned material is GelMA, for its scaffold's three-dimensional structure, biocompatibility, robust mechanics, and favourable optical transmittance. However, GelMA's inadequate viscosity to print at body temperature with better form integrity remains an obstacle. The aim of this work is to create 3D printed GelMA/MC hydrogels for corneal stroma tissue engineering using MC's printability at room temperature and GelMA's irreversible photo cross-linking with UV irradiation. The print speed and pressure conditions for 3D GelMA/MC hydrogels were tuned. Thermal, morphological and physicochemical characteristics were studied for two distinct concentrations of GelMA/MC hydrogels. The hydrogels achieved a transparency of ~78 % (at 700 nm), which was on par with that of the normal cornea (80 %). The in vitro studies conducted using goat corneal stromal cells demonstrated the ability of both hydrogels to promote cell adhesion and proliferation. Expression of Vimentin and keratan sulphate validated the phenotype of keratocytes in the hydrogel. This 3D printed GelMA/MC hydrogel model mimics biophysical characteristics of the native corneal stroma, which may hold promise for clinical corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Gadre M, Kasturi M, Agarwal P, Vasanthan KS. Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting. ACS OMEGA 2024; 9:7375-7392. [PMID: 38405516 PMCID: PMC10883024 DOI: 10.1021/acsomega.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.
Collapse
Affiliation(s)
- Mrunmayi Gadre
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meghana Kasturi
- Department
of Mechanical Engineering, University of
Michigan, Dearborn, Michigan 48128, United States
| | - Prachi Agarwal
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
15
|
Puistola P, Miettinen S, Skottman H, Mörö A. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design. Mater Today Bio 2024; 24:100924. [PMID: 38226015 PMCID: PMC10788621 DOI: 10.1016/j.mtbio.2023.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
Three-dimensional (3D) bioprinting offers an automated, customizable solution to manufacture highly detailed 3D tissue constructs and holds great promise for regenerative medicine to solve the severe global shortage of donor tissues and organs. However, uni-material 3D bioprinting is not sufficient for manufacturing heterogenous 3D constructs with native-like microstructures and thus, innovative multi-material solutions are required. Here, we developed a novel multi-material 3D bioprinting strategy for bioprinting human corneal stroma. The human cornea is the transparent outer layer of your eye, and vision loss due to corneal blindness has serious effects on the quality of life of individuals. One of the main reasons for corneal blindness is the damage in the detailed organization of the corneal stroma where collagen fibrils are arranged in layers perpendicular to each other and the corneal stromal cells grow along the fibrils. Donor corneas for treating corneal blindness are scarce, and the current tissue engineering (TE) technologies cannot produce artificial corneas with the complex microstructure of native corneal stroma. To address this, we developed a novel multi-material 3D bioprinting strategy to mimic detailed organization of corneal stroma. These multi-material 3D structures with heterogenous design were bioprinted by using human adipose tissue -derived stem cells (hASCs) and hyaluronic acid (HA) -based bioinks with varying stiffnesses. In our novel design of 3D models, acellular stiffer HA-bioink and cell-laden softer HA-bioink were printed in alternating filaments, and the filaments were printed perpendicularly in alternating layers. The multi-material bioprinting strategy was applied for the first time in corneal stroma 3D bioprinting to mimic the native microstructure. As a result, the soft bioink promoted cellular growth and tissue formation of hASCs in the multi-material 3D bioprinted composites, whereas the stiff bioink provided mechanical support as well as guidance of cellular organization upon culture. Interestingly, cellular growth and tissue formation altered the mechanical properties of the bioprinted composite constructs significantly. Importantly, the bioprinted composite structures showed good integration to the host tissue in ex vivo cornea organ culture model. As a conclusion, the developed multi-material bioprinting strategy provides great potential as a biofabrication solution for manufacturing organized, heterogenous microstructures of native tissues. To the best of our knowledge, this multi-material bioprinting strategy has never been applied in corneal bioprinting. Therefore, our work advances the technological achievements in additive manufacturing and brings the field of corneal TE to a new level.
Collapse
Affiliation(s)
- Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Heli Skottman
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
16
|
Wiebe-Ben Zakour KE, Kaya S, Matros JC, Hacker MC, Cheikh-Rouhou A, Spaniol K, Geerling G, Witt J. Enhancement of lacrimal gland cell function by decellularized lacrimal gland derived hydrogel. Biofabrication 2024; 16:025008. [PMID: 38241707 DOI: 10.1088/1758-5090/ad2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Sustainable treatment of aqueous deficient dry eye (ADDE) represents an unmet medical need and therefore requires new curative and regenerative approaches based on appropriatein vitromodels. Tissue specific hydrogels retain the individual biochemical composition of the extracellular matrix and thus promote the inherent cell´s physiological function. Hence, we created a decellularized lacrimal gland (LG) hydrogel (dLG-HG) meeting the requirements for a bioink as the basis of a LG model with potential forin vitroADDE studies. Varying hydrolysis durations were compared to obtain dLG-HG with best possible physical and ultrastructural properties while preserving the original biochemical composition. A particular focus was placed on dLG-HG´s impact on viability and functionality of LG associated cell types with relevance for a futurein vitromodel in comparison to the unspecific single component hydrogel collagen type-I (Col) and the common cell culture substrate Matrigel. Proliferation of LG epithelial cells (EpC), LG mesenchymal stem cells, and endothelial cells cultured on dLG-HG was enhanced compared to culture on Matrigel. Most importantly with respect to a functionalin vitromodel, the secretion capacity of EpC cultured on dLG-HG was higher than that of EpC cultured on Col or Matrigel. In addition to these promising cell related properties, a rapid matrix metalloproteinase-dependent biodegradation was observed, which on the one hand suggests a lively cell-matrix interaction, but on the other hand limits the cultivation period. Concluding, dLG-HG possesses decisive properties for the tissue engineering of a LGin vitromodel such as cytocompatibility and promotion of secretion, making it superior to unspecific cell culture substrates. However, deceleration of biodegradation should be addressed in future experiments.
Collapse
Affiliation(s)
- Katharina E Wiebe-Ben Zakour
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia C Matros
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Amina Cheikh-Rouhou
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
17
|
Elomaa L, Almalla A, Keshi E, Hillebrandt KH, Sauer IM, Weinhart M. Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. BIOMATERIALS AND BIOSYSTEMS 2023; 12:100084. [PMID: 38035034 PMCID: PMC10685010 DOI: 10.1016/j.bbiosy.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Thanks to its natural complexity and functionality, decellularized extracellular matrix (dECM) serves as an excellent foundation for creating highly cell-compatible bioinks and bioresins. This enables the bioprinted cells to thrive in an environment that closely mimics their native ECM composition and offers customizable biomechanical properties. To formulate dECM bioinks and bioresins, one must first pulverize and/or solubilize the dECM into non-crosslinked fragments, which can then be chemically modified as needed. In bioprinting, the solubilized dECM-derived material is typically deposited and/or crosslinked in a layer-by-layer fashion to build 3D hydrogel structures. Since the introduction of the first liver-derived dECM-based bioinks, a wide variety of decellularized tissue have been employed in bioprinting, including kidney, heart, cartilage, and adipose tissue among others. This review aims to summarize the critical steps involved in tissue-derived dECM bioprinting, starting from the decellularization of the ECM to the standardized formulation of bioinks and bioresins, ultimately leading to the reproducible bioprinting of tissue constructs. Notably, this discussion also covers photocrosslinkable dECM bioresins, which are particularly attractive due to their ability to provide precise spatiotemporal control over the gelation in bioprinting. Both in extrusion printing and vat photopolymerization, there is a need for more standardized protocols to fully harness the unique properties of dECM-derived materials. In addition to mammalian tissues, the most recent bioprinting approaches involve the use of microbial extracellular polymeric substances in bioprinting of bacteria. This presents similar challenges as those encountered in mammalian cell printing and represents a fascinating frontier in bioprinting technology.
Collapse
Affiliation(s)
- Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Eriselda Keshi
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Karl H. Hillebrandt
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, Berlin 10117, Germany
| | - Igor M. Sauer
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, Hannover 30167, Germany
| |
Collapse
|
18
|
Wang F, Zhang W, Qiao Y, Shi D, Hu L, Cheng J, Wu J, Zhao L, Li D, Shi W, Xie L, Zhou Q. ECM-Like Adhesive Hydrogel for the Regeneration of Large Corneal Stromal Defects. Adv Healthc Mater 2023; 12:e2300192. [PMID: 37097884 DOI: 10.1002/adhm.202300192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Indexed: 04/26/2023]
Abstract
The repair of large-diameter corneal stroma defects is a major clinical problem. Although some studies have attempted to use hydrogels to repair corneal damage, most of these hydrogels can only be used for focal stromal defects that are ≤3.5 mm in diameter due to poor hydrogel adhesion. Here, a photocurable adhesive hydrogel that mimics the extracellular matrix (ECM) with regard to composition for repairing 6 mm-diameter corneal stromal defects in rabbits is investigated. This ECM-like adhesive can be rapidly cured after light exposure, with high light transmittance and good mechanical properties. More importantly, this hydrogel maintains the viability and adhesion of cornea-derived cells and promotes their migration in vitro in 2D and 3D culture environments. Proteomics analysis confirms that the hydrogel promotes cell proliferation and ECM synthesis. Furthermore, in rabbit corneal stromal defect repair experiments, it is proven by histological and proteomic analysis that this hydrogel can effectively promote corneal stroma repair, reduce scar formation, and increase corneal stromal-neural regeneration at the six months follow-up. This work demonstrates the great application of ECM-like adhesive hydrogels for the regeneration of large-diameter corneal defects.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yujie Qiao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Depeng Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lizhi Hu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Jingyi Wu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Long Zhao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Donfang Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| |
Collapse
|
19
|
Soleimani M, Ebrahimi Z, Ebrahimi KS, Farhadian N, Shahlaei M, Cheraqpour K, Ghasemi H, Moradi S, Chang AY, Sharifi S, Baharnoori SM, Djalilian AR. Application of biomaterials and nanotechnology in corneal tissue engineering. J Int Med Res 2023; 51:3000605231190473. [PMID: 37523589 PMCID: PMC10392709 DOI: 10.1177/03000605231190473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Corneal diseases are among the most common causes of blindness worldwide. Regardless of the etiology, corneal opacity- or globe integrity-threatening conditions may necessitate corneal replacement procedures. Several procedure types are currently available to address these issues, based on the complexity and extent of injury. Corneal allograft or keratoplasty is considered to be first-line treatment in many cases. However, a significant proportion of the world's population are reported to have no access to this option due to limitations in donor preparation. Thus, providing an appropriate, safe, and efficient synthetic implant (e.g., artificial cornea) may revolutionize this field. Nanotechnology, with its potential applications, has garnered a lot of recent attention in this area, however, there is seemingly a long way to go. This narrative review provides a brief overview of the therapeutic interventions for corneal pathologies, followed by a summary of current biomaterials used in corneal regeneration and a discussion of the nanotechnologies that can aid in the production of superior implants.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zohreh Ebrahimi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Sadat Ebrahimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ghasemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sina Sharifi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Seyed Mahbod Baharnoori
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Zhang M, Yang F, Han D, Zhang SY, Dong Y, Li X, Ling L, Deng Z, Cao X, Tian J, Ye Q, Wang Y. 3D bioprinting of corneal decellularized extracellular matrix: GelMA composite hydrogel for corneal stroma engineering. Int J Bioprint 2023; 9:774. [PMID: 37555081 PMCID: PMC10406171 DOI: 10.18063/ijb.774] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 08/10/2023] Open
Abstract
Millions of individuals across the world suffer from corneal stromal diseases that impair vision. Fortunately, three-dimensional (3D) bioprinting technology which has revolutionized the field of regenerative tissue engineering makes it feasible to create personalized corneas. In this study, an artificial cornea with a high degree of precision, smoothness, and programmable curvature was prepared by using digital light processing (DLP) 3D bioprinting in one piece with no support structure, and the construct was then confirmed by optical coherence tomography (OCT). On the basis of this approach, we developed a novel corneal decellularized extracellular matrix/gelatin methacryloyl (CECM-GelMA) bioink that can produce complex microenvironments with highly tunable mechanical properties while retaining high optical transmittance. Furthermore, the composite hydrogel was loaded with human corneal fibroblasts (hCFs), and in vitro experiments showed that the hydrogel maintained high cell viability and expressed core proteins. In vivo tests revealed that the hydrogel might promote epithelial regeneration, keep the matrix aligned, and restore clarity. This demonstrates how crucial a role CECM plays in establishing a favorable environment that encourages the transformation of cell function. Therefore, artificial corneas that can be rapidly customized have a huge potential in the development of in vitro corneal matrix analogs.
Collapse
Affiliation(s)
- Mingshan Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
- Institute of Modern Optics, Eye Institute, Nankai
University, Tianjin, China
- Nankai University Eye Institute, Nankai University
Afflicted Eye Hospital, Nankai University, Tianjin, China
| | - Fang Yang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
- Department of Ophthalmology, Renmin Hospital, Hubei
University of Medicine, Shiyan, China
| | - Daobo Han
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Shi-yao Zhang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Yipeng Dong
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Xinyu Li
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Liyun Ling
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Zhichao Deng
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Xuewei Cao
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
- Nankai University Eye Institute, Nankai University
Afflicted Eye Hospital, Nankai University, Tianjin, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
- Tianjin Eye Hospital and Nankai University Eye Institute,
Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai
University Affiliated Eye Hospital, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3197. [PMID: 37110034 PMCID: PMC10143913 DOI: 10.3390/ma16083197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.
Collapse
Affiliation(s)
- Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Jiawei Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
22
|
Xu Y, Liu J, Song W, Wang Q, Sun X, Zhao Q, Huang Y, Li H, Peng Y, Yuan J, Ji B, Ren L. Biomimetic Convex Implant for Corneal Regeneration Through 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205878. [PMID: 36775872 PMCID: PMC10104657 DOI: 10.1002/advs.202205878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Blindness caused by corneal damage affects millions of people worldwide, and this number continues to rise. However, rapid epithelization and a stable epithelium process are the two biggest challenges for traditional corneal materials. These processes are related to corneal curvature, which is an important factor in determination of the corneal healing process and epithelial behavior during corneal damage. In this study, smooth 3D-printed convex corneal implants based on gelatin methacrylate and collagen are generated. As epithelium distribution and adhesion vary in different regions of the natural cornea, this work separates the surfaces into four regions and studies how cells sense topological cues on curvature. It is found that rabbit corneal epithelial cells (RCECs) seeded on steeper slope gradient surfaces on convex structures result in more aligned cell organization and tighter cell-substrate adhesion, which can also be verified through finite element simulation and signaling pathway analysis. In vivo transplantation of convex implants result in a better fit with adjacent tissue and stronger cell adhesion than flat implants, thereby accelerating corneal epithelialization and promoting collagen fibers and neural regeneration within 180 days. Taken together, printed convex corneal implants that facilitate corneal regeneration may offer a translational strategy for the treatment of corneal damage.
Collapse
Affiliation(s)
- Yingni Xu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jia Liu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wenjing Song
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qianchun Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Xiaomin Sun
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qi Zhao
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yongrui Huang
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haochen Li
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Guangzhou Proud Seeing Biotechnology Co., LtdGuangzhou510320P. R. China
| | - Jin Yuan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510623P. R. China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering MechanicsZhejiang UniversityHangzhou310027P. R. China
| | - Li Ren
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Bioland LaboratoryGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhou510005P. R. China
| |
Collapse
|
23
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Balters L, Reichl S. 3D bioprinting of corneal models: A review of the current state and future outlook. J Tissue Eng 2023; 14:20417314231197793. [PMID: 37719307 PMCID: PMC10504850 DOI: 10.1177/20417314231197793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023] Open
Abstract
The cornea is the outermost layer of the eye and serves to protect the eye and enable vision by refracting light. The need for cornea organ donors remains high, and the demand for an artificial alternative continues to grow. 3D bioprinting is a promising new method to create artificial organs and tissues. 3D bioprinting offers the precise spatial arrangement of biomaterials and cells to create 3D constructs. As the cornea is an avascular tissue which makes it more attractive for 3D bioprinting, it could be one of the first tissues to be made fully functional via 3D bioprinting. This review discusses the most common 3D bioprinting technologies and biomaterials used for 3D bioprinting corneal models. Additionally, the current state of 3D bioprinted corneal models, especially specific characteristics such as light transmission, biomechanics, and marker expression, and in vivo studies are discussed. Finally, the current challenges and future prospects are presented.
Collapse
Affiliation(s)
- Leon Balters
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
25
|
Kim H, Jang JH, Han W, Hwang HJ, Jang J, Kim JY, Cho DW. Extracellular matrix-based sticky sealants for scar-free corneal tissue reconstruction. Biomaterials 2023; 292:121941. [PMID: 36495802 DOI: 10.1016/j.biomaterials.2022.121941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Regenerative medicine requires both tissue restoration and ease of compliance for clinical application. Considering this, sticky tissue sealants have been shown to have great potentials over surgical suturing and wound treatment. However, tissue sealants currently used pose challenges such as uncontrollable adhesion formation, mechanical mismatch, and lack of tissue restoration. A new sticky sealant based on gelatinized cornea-derived extracellular matrix (GelCodE) with a visible light-activating system is firstly being introduced in this study. De novo tissue regeneration relies on the matrisome in charge of tissue-organization and development within GelCodE while visible light-based photopolymerization with ruthenium/sodium persulfate rapidly induces covalent bonds with the adjacent tissues. The ease of not only in vivo application, biocompatibility, and biointegration, but also exceptional de novo tissue formation is demonstrated in this study. Interestingly, newly regenerated tissues were shown to have normal tissue-like matrices with little scar formation. Hence, this work presents a promising strategy to meet clinical demands for scar-free tissue recovery with superior ease of clinical application.
Collapse
Affiliation(s)
- Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Je-Hwan Jang
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea
| | - Wonil Han
- Division of Integrative Bioscience and Biotechnology, POSTECH, 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Hyun-Jeong Hwang
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea; Department of Convergence IT Engineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea.
| | - Joon Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea; KU Center for Animal Blood Medical Science, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Mörö A, Samanta S, Honkamäki L, Rangasami VK, Puistola P, Kauppila M, Narkilahti S, Miettinen S, Oommen O, Skottman H. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication 2022; 15. [PMID: 36579828 DOI: 10.1088/1758-5090/acab34] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Corneal transplantation remains gold standard for the treatment of severe cornea diseases, however, scarcity of donor cornea is a serious bottleneck. 3D bioprinting holds tremendous potential for cornea tissue engineering (TE). One of the key technological challenges is to design bioink compositions with ideal printability and cytocompatibility. Photo-crosslinking and ionic crosslinking are often used for the stabilization of 3D bioprinted structures, which can possess limitations on biological functionality of the printed cells. Here, we developed a hyaluronic acid-based dopamine containing bioink using hydrazone crosslinking chemistry for the 3D bioprinting of corneal equivalents. First, the shear thinning property, viscosity, and mechanical stability of the bioink were optimized before extrusion-based 3D bioprinting for the shape fidelity and self-healing property characterizations. Subsequently, human adipose stem cells (hASCs) and hASC-derived corneal stromal keratocytes were used for bioprinting corneal stroma structures and their cell viability, proliferation, microstructure and expression of key proteins (lumican, vimentin, connexin 43,α-smooth muscle actin) were evaluated. Moreover, 3D bioprinted stromal structures were implanted intoex vivoporcine cornea to explore tissue integration. Finally, human pluripotent stem cell derived neurons (hPSC-neurons), were 3D bioprinted to the periphery of the corneal structures to analyze innervation. The bioink showed excellent shear thinning property, viscosity, printability, shape fidelity and self-healing properties with high cytocompatibility. Cells in the printed structures displayed good tissue formation and 3D bioprinted cornea structures demonstrated excellentex vivointegration to host tissue as well asin vitroinnervation. The developed bioink and the printed cornea stromal equivalents hold great potential for cornea TE applications.
Collapse
Affiliation(s)
- Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Laura Honkamäki
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vignesh K Rangasami
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Maija Kauppila
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere 33520, Finland
| | - Oommen Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Heli Skottman
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
27
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2022; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Corresponding author. Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
28
|
Kim H, Park K, Yon JM, Kim SW, Lee SY, Jeong I, Jang J, Lee S, Cho DW. Predicting multipotency of human adult stem cells derived from various donors through deep learning. Sci Rep 2022; 12:21614. [PMID: 36517519 PMCID: PMC9749643 DOI: 10.1038/s41598-022-25423-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Adult stem cell-based therapeutic approaches have great potential in regenerative medicine because of their immunoregulatory properties and multidifferentiation capacity. Nevertheless, the outcomes of stem cell‑based therapies to date have shown inconsistent efficacy owing to donor variation, thwarting the expectation of clinical effects. However, such donor dependency has been elucidated by biological consequences that current research could not predict. Here, we introduce cellular morphology-based prediction to determine the multipotency rate of human nasal turbinate stem cells (hNTSCs), aiming to predict the differentiation rate of keratocyte progenitors. We characterized the overall genes and morphologies of hNTSCs from five donors and compared stemness-related properties, including multipotency and specific lineages, using mRNA sequencing. It was demonstrated that transformation factors affecting the principal components were highly related to cell morphology. We then performed a convolutional neural network-based analysis, which enabled us to assess the multipotency level of each cell group based on their morphologies with 85.98% accuracy. Surprisingly, the trend in expression levels after ex vivo differentiation matched well with the deep learning prediction. These results suggest that AI‑assisted cellular behavioral prediction can be utilized to perform quantitative, non-invasive, single-cell, and multimarker characterizations of live stem cells for improved quality control in clinical cell therapies.
Collapse
Affiliation(s)
- Hyeonji Kim
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Keonhyeok Park
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Jung-Min Yon
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591 South Korea
| | - Sung Won Kim
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591 South Korea
| | - Soo Young Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Iljoo Jeong
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Jinah Jang
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.49100.3c0000 0001 0742 4007Department of Convergence IT Engineering, POSTECH, Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| | - Seungchul Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| | - Dong-Woo Cho
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| |
Collapse
|
29
|
Su G, Li G, Wang W, Xu L. Application Prospect and Preliminary Exploration of GelMA in Corneal Stroma Regeneration. Polymers (Basel) 2022; 14:polym14194227. [PMID: 36236174 PMCID: PMC9571618 DOI: 10.3390/polym14194227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Corneal regeneration has become a prominent study area in recent decades. Because the corneal stroma contributes about 90% of the corneal thickness in the corneal structure, corneal stromal regeneration is critical for the treatment of cornea disease. Numerous materials, including deacetylated chitosan, hydrophilic gel, collagen, gelatin methacrylate (GelMA), serine protein, glycerol sebacate, and decellularized extracellular matrix, have been explored for keratocytes regeneration. GelMA is one of the most prominent materials, which is becoming more and more popular because of its outstanding three-dimensional scaffold structure, strong mechanics, good optical transmittance, and biocompatibility. This review discussed recent research on corneal stroma regeneration materials and related GelMA.
Collapse
|
30
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
31
|
Tan G, Ioannou N, Mathew E, Tagalakis AD, Lamprou DA, Yu-Wai-Man C. 3D printing in Ophthalmology: From medical implants to personalised medicine. Int J Pharm 2022; 625:122094. [PMID: 35952803 DOI: 10.1016/j.ijpharm.2022.122094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
3D printing was invented thirty years ago. However, its application in healthcare became prominent only in recent years to provide solutions for drug delivery and clinical challenges, and is constantly evolving. This cost-efficient technique utilises biocompatible materials and is used to develop model implants to provide a greater understanding of human anatomy and diseases, and can be used for organ transplants, surgical planning and for the manufacturing of advanced drug delivery systems. In addition, 3D printed medical devices and implants can be customised for each patient to provide a more tailored treatment approach. The advantages and applications of 3D printing can be used to treat patients with different eye conditions, with advances in 3D bioprinting offering novel therapy applications in ophthalmology. The purpose of this review paper is to provide an in-depth understanding of the applications and advantages of 3D printing in treating different ocular conditions in the cornea, glaucoma, retina, lids and orbits.
Collapse
Affiliation(s)
- Greymi Tan
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Nicole Ioannou
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
32
|
Barroso IA, Man K, Hall TJ, Robinson TE, Louth SET, Cox SC, Ghag AK. Photocurable antimicrobial silk-based hydrogels for corneal repair. J Biomed Mater Res A 2022; 110:1401-1415. [PMID: 35257514 PMCID: PMC9313849 DOI: 10.1002/jbm.a.37381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is the current gold standard treatment to restore visual acuity to patients with severe corneal diseases and injuries. Due to severe donor tissue shortage, efforts to develop a corneal equivalent have been made but the challenge remains unmet. Another issue of concern in ocular surgery is the difficult instillation and fast drainage of antibiotic ocular eye drops as bacterial infections can jeopardize implant success by delaying or impairing tissue healing. In this study, we developed antimicrobial silk-based hydrogels that have the potential to be photoactivated in situ, fully adapting to the corneal injury shape. Gentamicin-loaded methacrylated-silk (SilkMA) hydrogels were prepared within minutes using low UV intensity (3 mW/cm2 ). SilkMA gels provided a Young's modulus between 21 and 79 kPa together with a light transmittance spectrum and water content (83%-90%) similar to the human cornea. Polymer concentration (15%-25%) was found to offer a tool for tailoring the physical properties of the hydrogels. We confirmed that the methacrylation did not affect the material's in vitro degradation and biocompatibility by observing fibroblast adhesion and proliferation. Importantly, agar diffusion tests showed that the synthesized hydrogels were able to inhibit Staphylococcus aureus and Pseudomonas aeruginosa growth for 72 h. These characteristics along with their injectability and viscoelasticity demonstrate the potential of SilkMA hydrogels to be applied in several soft tissue engineering fields. As such, for the first time we demonstrate the potential of photocurable antimicrobial SilkMA hydrogels as a novel biomaterial to facilitate corneal regeneration.
Collapse
Affiliation(s)
- Inês A. Barroso
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Kenny Man
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Thomas J. Hall
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | | | | | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Anita K. Ghag
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
33
|
Aghamirsalim M, Mobaraki M, Soltani M, Kiani Shahvandi M, Jabbarvand M, Afzali E, Raahemifar K. 3D Printed Hydrogels for Ocular Wound Healing. Biomedicines 2022; 10:biomedicines10071562. [PMID: 35884865 PMCID: PMC9313212 DOI: 10.3390/biomedicines10071562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/21/2022] Open
Abstract
Corneal disease is one of the most significant causes of blindness around the world. Presently, corneal transplantation is the only way to treat cornea blindness. It should be noted that the amount of cornea that people donate is so much less than that required (1:70). Therefore, scientists have tried to resolve this problem with tissue engineering and regenerative medicine. Fabricating cornea with traditional methods is difficult due to their unique properties, such as transparency and geometry. Bioprinting is a technology based on additive manufacturing that can use different biomaterials as bioink for tissue engineering, and the emergence of 3D bioprinting presents a clear possibility to overcome this problem. This new technology requires special materials for printing scaffolds with acceptable biocompatibility. Hydrogels have received significant attention in the past 50 years, and they have been distinguished from other materials because of their unique and outstanding properties. Therefore, hydrogels could be a good bioink for the bioprinting of different scaffolds for corneal tissue engineering. In this review, we discuss the use of different types of hydrogel for bioink for corneal tissue engineering and various methods that have been used for bioprinting. Furthermore, the properties of hydrogels and different types of hydrogels are described.
Collapse
Affiliation(s)
- Mohamadreza Aghamirsalim
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 14176-14411, Iran; (M.A.); (M.J.)
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran;
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran;
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Correspondence:
| | - Mohammad Kiani Shahvandi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran;
| | - Mahmoud Jabbarvand
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 14176-14411, Iran; (M.A.); (M.J.)
| | - Elham Afzali
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman 76169-13555, Iran;
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
34
|
Yazdanpanah G, Shen X, Nguyen T, Anwar KN, Jeon O, Jiang Y, Pachenari M, Pan Y, Shokuhfar T, Rosenblatt MI, Alsberg E, Djalilian AR. A Light-Curable and Tunable Extracellular Matrix Hydrogel for In Situ Suture-Free Corneal Repair. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2113383. [PMID: 35692510 PMCID: PMC9187264 DOI: 10.1002/adfm.202113383] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 05/15/2023]
Abstract
Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Mohammad Pachenari
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| |
Collapse
|
35
|
Salehi AOM, Keshel SH, Rafienia M, Nourbakhsh MS, Baradaran-Rafii A. Promoting keratocyte stem like cell proliferation and differentiation by aligned polycaprolactone-silk fibroin fibers containing Aloe vera. BIOMATERIALS ADVANCES 2022; 137:212840. [PMID: 35929269 DOI: 10.1016/j.bioadv.2022.212840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
There is a long history behind applying biological macromolecules like Aloe vera (AV) in regenerative medicine; endowed with anti-inflammatory and antimicrobial activities besides improving immune activity, AV has always been of particular interest to regenerate/reconstruct injuries and burns. In the present study, aligned electrospun polycaprolactone (PCL)-silk fibroin (SF) fibers containing different percentages of AV (0, 2.5, 5, and 7.5%wt) were fabricated for stromal regeneration. The results illustrated that a uniform bead-free structure was obtained, and the AV incorporation decreased the mean fiber diameter from 552 down to 182 nm and led to more alignment in the fibers. The Young's modulus raised from 4.96 to 5.26 MPa by higher amount of AV up to 5%wt. It is noteworthy that both the fiber alignment and AV affected the scaffolds' transparency and water uptake to increase. The human stromal keratocyte cells (hSKC)s culture revealed that the addition of AV and morphological properties of scaffolds encouraged cell adhesion and proliferation. The mRNA expression level for keratocan and ALDH3A1 and immunocytochemistry F-actin revealed the positive effect of AV on hSKCs differentiation. Our study indicated the promising potential of AV as a biological macromolecule for stromal tissue regeneration.
Collapse
Affiliation(s)
- Amin Orash Mahmoud Salehi
- Biomaterials Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran; Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran 19857-17443, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Mohammad Sadegh Nourbakhsh
- Biomaterials Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran; Department of Materials and Metallurgical Engineering, Semnan University, Semnan 35131-19111, Iran.
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 19857-17443, USA.
| |
Collapse
|
36
|
Tafti MF, Aghamollaei H, Moghaddam MM, Jadidi K, Alio JL, Faghihi S. Emerging tissue engineering strategies for the corneal regeneration. J Tissue Eng Regen Med 2022; 16:683-706. [PMID: 35585479 DOI: 10.1002/term.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Cornea as the outermost layer of the eye is at risk of various genetic and environmental diseases that can damage the cornea and impair vision. Corneal transplantation is among the most applicable surgical procedures for repairing the defected tissue. However, the scarcity of healthy tissue donations as well as transplantation failure has remained as the biggest challenges in confront of corneal grafting. Therefore, alternative approaches based on stem-cell transplantation and classic regenerative medicine have been developed for corneal regeneration. In this review, the application and limitation of the recently-used advanced approaches for regeneration of cornea are discussed. Additionally, other emerging powerful techniques such as 5D printing as a new branch of scaffold-based technologies for construction of tissues other than the cornea are highlighted and suggested as alternatives for corneal reconstruction. The introduced novel techniques may have great potential for clinical applications in corneal repair including disease modeling, 3D pattern scheming, and personalized medicine.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge L Alio
- Department of Research and Development, VISSUM, Alicante, Spain.,Cornea, Cataract and Refractive Surgery Department, VISSUM, Alicante, Spain.,Department of Pathology and Surgery, Division of Ophthalmology, Faculty of Medicine, Miguel Hernández University, Alicante, Spain
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
37
|
Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. MICROMACHINES 2022; 13:mi13030363. [PMID: 35334656 PMCID: PMC8956046 DOI: 10.3390/mi13030363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
The need for organ transplants has risen, but the number of available organ donations for transplants has stagnated worldwide. Regenerative medicine has been developed to make natural organs or tissue-like structures with biocompatible materials and solve the donor shortage problem. Using biomaterials and embedded cells, a bioprinter enables the fabrication of complex and functional three-dimensional (3D) structures of the organs or tissues for regenerative medicine. Moreover, conventional surgical 3D models are made of rigid plastic or rubbers, preventing surgeons from interacting with real organ or tissue-like models. Thus, finding suitable biomaterials and printing methods will accelerate the printing of sophisticated organ structures and the development of realistic models to refine surgical techniques and tools before the surgery. In addition, printing parameters (e.g., printing speed, dispensing pressure, and nozzle diameter) considered in the bioprinting process should be optimized. Therefore, machine learning (ML) technology can be a powerful tool to optimize the numerous bioprinting parameters. Overall, this review paper is focused on various ideas on the ML applications of 3D printing and bioprinting to optimize parameters and procedures.
Collapse
Affiliation(s)
- Jaemyung Shin
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
| | - Yoonjung Lee
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
| | - Zhangkang Li
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
| | - Jinguang Hu
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Simon S. Park
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
| | - Keekyoung Kim
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
- Correspondence:
| |
Collapse
|
38
|
Wang Y, Wang J, Ji Z, Yan W, Zhao H, Huang W, Liu H. Application of Bioprinting in Ophthalmology. Int J Bioprint 2022; 8:552. [PMID: 35669325 PMCID: PMC9159480 DOI: 10.18063/ijb.v8i2.552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an emerging technology that is widely used in regenerative medicine. With the continuous development of the technology, it has attracted great attention and demonstrated promising prospects in ophthalmologic applications. In this paper, we review the three main types of 3D bioprinting technologies: Vat polymerization-based bioprinting, extrusion-based bioprinting, and jetting-based bioprinting. We also present in this review the analysis of the usage of both natural and synthesized hydrogels as well as the types of cells adopted for bioinks. Cornea and retina are the two main types of ocular tissues developed in bioprinting, while other device and implants were also developed for the ocular disease treatment. We also summarize the advantages and limitations as well as the future prospects of the current bioprinting technologies based on systematic reviews.
Collapse
Affiliation(s)
- Yanfang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400045, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Innovation Platform for Translation of 3D Printing Application, The third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jiejie Wang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziyu Ji
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou 646000, China
| | - Wei Yan
- Department of Anatomy, Hebei Medical University, Shijiazhuang 050011, China
| | - Hong Zhao
- School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong 523000, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Innovation Platform for Translation of 3D Printing Application, The third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huan Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
39
|
Fakhoury Y, Ellabban A, Attia U, Sallam A, Elsherbiny S. Three-dimensional printing in ophthalmology and eye care: current applications and future developments. Ther Adv Ophthalmol 2022; 14:25158414221106682. [PMID: 35782482 PMCID: PMC9247992 DOI: 10.1177/25158414221106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) printing uses a process of adding material in a layer-by-layer fashion to form the end product. This technology is advancing rapidly and is being increasingly utilized in the medical field as it becomes more accessible and cost-effective. It has an increasingly important role in ophthalmology and eyecare as its current and potential applications are extensive and slowly evolving. Three-dimensional printing represents an important method of manufacturing customized products such as orbital implants, ocular prostheses, ophthalmic models, surgical instruments, spectacles and other gadgets. Surgical planning, simulation, training and teaching have all benefitted from this technology. Advances in bioprinting seem to be the future direction of 3D printing with possibilities of printing out viable ocular tissues such as corneas and retinas in the future. It is expected that more ophthalmologists and other clinicians will use this technology in the near future.
Collapse
Affiliation(s)
- Yazan Fakhoury
- Medical Doctor, St James’s University Hospital,
Beckett St, Harehills, Leeds, LS9 7TF, UK
| | - Abdallah Ellabban
- Hull University Teaching Hospitals NHS Trust,
Kingston upon Hull, UK
- Suez Canal University, Ismailia, Egypt
| | - Usama Attia
- Manufacturing Technology Centre (MTC),
Coventry, UK
| | - Ahmed Sallam
- Jones Eye Institute, University of Arkansas for
Medical Sciences, Little Rock, AR, USA
| | - Samer Elsherbiny
- Machen Eye Unit, Warwick Hospital, South
Warwickshire NHS Foundation Trust, Warwick, UK
- Warwick Medical School, University of Warwick,
Coventry, UK
| |
Collapse
|
40
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
41
|
Larochelle RD, Mann SE, Ifantides C. 3D Printing in Eye Care. Ophthalmol Ther 2021; 10:733-752. [PMID: 34327669 PMCID: PMC8320416 DOI: 10.1007/s40123-021-00379-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing enables precise modeling of anatomical structures and has been employed in a broad range of applications across medicine. Its earliest use in eye care included orbital models for training and surgical planning, which have subsequently enabled the design of custom-fit prostheses in oculoplastic surgery. It has evolved to include the production of surgical instruments, diagnostic tools, spectacles, and devices for delivery of drug and radiation therapy. During the COVID-19 pandemic, increased demand for personal protective equipment and supply chain shortages inspired many institutions to 3D-print their own eye protection. Cataract surgery, the most common procedure performed worldwide, may someday make use of custom-printed intraocular lenses. Perhaps its most alluring potential resides in the possibility of printing tissues at a cellular level to address unmet needs in the world of corneal and retinal diseases. Early models toward this end have shown promise for engineering tissues which, while not quite ready for transplantation, can serve as a useful model for in vitro disease and therapeutic research. As more institutions incorporate in-house or outsourced 3D printing for research models and clinical care, ethical and regulatory concerns will become a greater consideration. This report highlights the uses of 3D printing in eye care by subspecialty and clinical modality, with an aim to provide a useful entry point for anyone seeking to engage with the technology in their area of interest.
Collapse
Affiliation(s)
- Ryan D Larochelle
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Scott E Mann
- Department of Otolaryngology, University of Colorado, Aurora, CO, USA
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA
| | - Cristos Ifantides
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA.
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA.
| |
Collapse
|
42
|
Barroso IA, Man K, Villapun VM, Cox SC, Ghag AK. Methacrylated Silk Fibroin Hydrogels: pH as a Tool to Control Functionality. ACS Biomater Sci Eng 2021; 7:4779-4791. [PMID: 34586800 DOI: 10.1021/acsbiomaterials.1c00791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The last decade has witnessed significant progress in the development of photosensitive polymers for in situ polymerization and 3D printing applications. Light-mediated sol-gel transitions have immense potential for tissue engineering applications as cell-laden materials can be crosslinked within minutes under mild environmental conditions. Silk fibroin (SF) is extensively explored in regenerative medicine applications due to its ease of modification and exceptional mechanical properties along with cytocompatibility. To efficiently design SF materials, the in vivo assembly of SF proteins must be considered. During SF biosynthesis, changes in pH, water content, and metal ion concentrations throughout the silkworm gland divisions drive the transition from liquid silk to its fiber form. Herein, we study the effect of the glycidyl-methacrylate-modified SF (SilkMA) solution pH on the properties and secondary structure of SilkMA hydrogels by testing formulations prepared at pH 5, 7, and 8. Our results demonstrate an influence of the prepolymer solution pH on the hydrogel rheological properties, compressive modulus, optical transmittance, and network swellability. The hydrogel pH did not affect the in vitro viability and morphology of human dermal fibroblasts. This work demonstrates the utility of the solution pH to tailor the SilkMA conformational structure development toward utility and function and shows the need to strictly control the pH to reduce batch-to-batch variability and ensure reproducibility.
Collapse
Affiliation(s)
- Inês A Barroso
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Kenny Man
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Victor M Villapun
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| | - Anita K Ghag
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K
| |
Collapse
|
43
|
Chameettachal S, Puranik CJ, Veluthedathu MN, Chalil NB, John R, Pati F. Thickening of Ectatic Cornea through Regeneration Using Decellularized Corneal Matrix Injectable Hydrogel: A Strategic Advancement to Mitigate Corneal Ectasia. ACS APPLIED BIO MATERIALS 2021; 4:7300-7313. [PMID: 35006959 DOI: 10.1021/acsabm.1c00821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ectatic corneal diseases are a group of eye disorders characterized by progressive thinning and outward bulging of the cornea, resulting in vision impairment. A few attempts have been made to use cornea-derived extracellular matrix hydrogels for corneal tissue engineering; however, no studies have investigated its application in corneal ectasia. In this study, we have first developed an animal surgical model that mimics a few specific phenotypes of ectatic cornea. Later, we investigated the potential of decellularized cornea matrix hydrogels (dCMH) from both human and bovine sources in increasing the thickness of the cornea in the developed surgical model. Our data advocate that surgical stromal depletion can be followed to establish ectatic models and can also provide information on the biocompatibility of materials, its integration with native stroma, degradation over time, and tissue remodeling. We observed that dCMH from both sources could integrate with ectatic thin corneal stroma and helps in regaining the thickness by regenerating a reasonably functional and transparent stroma; however, no significant difference was spotted between the dCMH made from human and bovine corneal tissue sources. Hence, this study is a promising step toward developing a non-invasive technique for the treatment of corneal ectasia by using dCMH.
Collapse
Affiliation(s)
- Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy Hyderabad, Telangana 502284, India
| | - Charuta J Puranik
- Oculus Regenerus Eye Care and Research Center, Nanalnagar, Hyderabad, Telangana 500008, India
| | - Mohamed Nijas Veluthedathu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy Hyderabad, Telangana 502284, India
| | - Najathulla Bhagavathi Chalil
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy , Hyderabad, Telangana 502284, India
| | - Renu John
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy Hyderabad, Telangana 502284, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy Hyderabad, Telangana 502284, India
| |
Collapse
|
44
|
Zhao F, Cheng J, Zhang J, Yu H, Dai W, Yan W, Sun M, Ding G, Li Q, Meng Q, Liu Q, Duan X, Hu X, Ao Y. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Acta Biomater 2021; 131:262-275. [PMID: 34157451 DOI: 10.1016/j.actbio.2021.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Decellularized extracellular matrix (dECM) hydrogels are being increasingly investigated for use in bio-inks for three-dimensional cell printing given their good cytocompatibility and biomimetic properties. The osmotic pressure and stiffness of bio-ink are important factors affecting the biological functions of printed cells. However, little attention has been given to the osmotic pressure and stiffness of the dECM bio-inks. Here, we compared three types of commonly used acidic solutions in the bio-fabrication of a tendon derived dECM bio-ink for 3D cell printing (0.5 M acetic acid, 0.1 M hydrochloric acid and 0.02 M hydrochloric acid). We found that low pH value of 0.1 M hydrochloric acid could accelerate the digestion process for dECM powders. This could lead to a much softer dECM hydrogel with storage modulus less than 100 Pa. This soft dECM hydrogel facilitated the spreading and proliferation of stem cells encapsulated within it. It also showed better tendon-inducing ability compared with two others much stiffer dECM hydrogels. However, this over-digested dECM hydrogel was more unstable as it could shrink with the culture time going on. For 0.5 M acetic acid made dECM bio-ink, the hyperosmotic state of the bio-ink led to much lower cellular viability rates. Postprocess (Dilution or dialysis) to tailor the osmotic pressure of hydrogels could be a necessary step before mixed with cells. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation. And a balance should be made between the digestion period, strength of acidic solution, as well as the size and concentration of the dECM powders. STATEMENT OF SIGNIFICANCE: The dECM bio-ink has been widely used in 3D cell printing for tissue engineering and organ modelling. In this study, we found that different types of acid have different digestion and dissolution status for the dECM materials. A much softer tendon derived dECM hydrogel with lower stiffness could facilitate the cellular spreading, proliferation and tendon differentiation. We also demonstrated that the osmotic pressure should be taken care of in the preparation of dECM bio-ink with 0.5 M acetic acid. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation.
Collapse
|
45
|
Vasanthan KS, Srinivasan V, Pandita D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regen Med 2021; 16:775-802. [PMID: 34427104 DOI: 10.2217/rme-2021-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of tissue engineering involves regeneration and repair of damaged tissue and organs using various combinations of cells, growth factors and scaffolds. The extracellular matrix (ECM) forms the integral part of the scaffold to induce cell proliferation thereby leading to new tissue formation. Decellularization technique provides decellularized ECM (dECM), free of cells while preserving the in vivo biomolecules. In this review, we focus on the detailed methodology of diverse decellularization techniques for various organs of different animals, and the biomedical applications employing the dECM. A culmination of different methods of decellularization is optimized, which offers a suitable microenvironment mimicking the native in vivo topography for in vitro organ regeneration. A detailed assessment of the dECM provides information on the microarchitecture, presence of ECM proteins, biocompatibility and cell proliferation. dECM has also been processed as scaffolds and drug-delivery vehicles, and utilized for regeneration.
Collapse
Affiliation(s)
- Kirthanashri S Vasanthan
- Amity Institute of Molecular Medicine & Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Deepti Pandita
- Delhi Pharmaceutical Science & Research University, Government of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
46
|
Park W, Gao G, Cho DW. Tissue-Specific Decellularized Extracellular Matrix Bioinks for Musculoskeletal Tissue Regeneration and Modeling Using 3D Bioprinting Technology. Int J Mol Sci 2021; 22:7837. [PMID: 34360604 PMCID: PMC8346156 DOI: 10.3390/ijms22157837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The musculoskeletal system is a vital body system that protects internal organs, supports locomotion, and maintains homeostatic function. Unfortunately, musculoskeletal disorders are the leading cause of disability worldwide. Although implant surgeries using autografts, allografts, and xenografts have been conducted, several adverse effects, including donor site morbidity and immunoreaction, exist. To overcome these limitations, various biomedical engineering approaches have been proposed based on an understanding of the complexity of human musculoskeletal tissue. In this review, the leading edge of musculoskeletal tissue engineering using 3D bioprinting technology and musculoskeletal tissue-derived decellularized extracellular matrix bioink is described. In particular, studies on in vivo regeneration and in vitro modeling of musculoskeletal tissue have been focused on. Lastly, the current breakthroughs, limitations, and future perspectives are described.
Collapse
Affiliation(s)
- Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China;
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
47
|
Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther 2021; 6:177. [PMID: 33986257 PMCID: PMC8119699 DOI: 10.1038/s41392-021-00566-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Rapid development of vaccines and therapeutics is necessary to tackle the emergence of new pathogens and infectious diseases. To speed up the drug discovery process, the conventional development pipeline can be retooled by introducing advanced in vitro models as alternatives to conventional infectious disease models and by employing advanced technology for the production of medicine and cell/drug delivery systems. In this regard, layer-by-layer construction with a 3D bioprinting system or other technologies provides a beneficial method for developing highly biomimetic and reliable in vitro models for infectious disease research. In addition, the high flexibility and versatility of 3D bioprinting offer advantages in the effective production of vaccines, therapeutics, and relevant delivery systems. Herein, we discuss the potential of 3D bioprinting technologies for the control of infectious diseases. We also suggest that 3D bioprinting in infectious disease research and drug development could be a significant platform technology for the rapid and automated production of tissue/organ models and medicines in the near future.
Collapse
Affiliation(s)
- Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-Ro, Gwangju, 61186, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Kyungbuk, 37673, Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Kyungbuk, 37673, Korea
| | - Junyoung Kwon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Kyungbuk, 37673, Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon, Kyungnam, 51508, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Kyungbuk, 37673, Korea.
- Department of Convergence IT Engineering, POSTECH, 77 Cheongam-Ro, Pohang, Kyungbuk, 37673, Korea.
- Institute of Convergence Science, Yonsei University, 50 Yonsei-Ro, Seoul, 03722, Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Kyungbuk, 37673, Korea.
- Institute of Convergence Science, Yonsei University, 50 Yonsei-Ro, Seoul, 03722, Korea.
| |
Collapse
|
48
|
Yazdanpanah G, Jiang Y, Rabiee B, Omidi M, Rosenblatt MI, Shokuhfar T, Pan Y, Naba A, Djalilian AR. Fabrication, Rheological, and Compositional Characterization of Thermoresponsive Hydrogel from Cornea. Tissue Eng Part C Methods 2021; 27:307-321. [PMID: 33813860 DOI: 10.1089/ten.tec.2021.0011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fabricating thermoresponsive hydrogels from decellularized tissues is a trending and promising approach to develop novel biomaterials for tissue engineering and therapeutic purposes. There are differences in the characteristics of the produced hydrogels related to the source tissue as well as the decellularization and solubilization protocols used. Detailed characterization of the hydrogels will support the efforts to optimize their application as biomaterials for tissue engineering and therapeutics. Here, we describe an optimized method for fabricating an in situ thermoresponsive hydrogel from decellularized porcine cornea extracellular matrix (COMatrix), and provide a detailed characterization of its structure, thermoresponsive rheological behavior (heat-induced sol-gel transition), as well as exploring its protein composition using proteomics. COMatrix forms a transparent gel (10-min time to gelation) after in situ curing with heat, characterized by alteration in light absorbance and rheological indexes. The rheological characterization of heat-formed COMatrix gel shows similar behavior to common biomaterials utilized in tissue engineering. The fibrillar structure of COMatrix gel was observed by scanning electron microscopy showing that the density of fibers attenuates in lower concentrations. Mass spectrometry-based proteomic analysis revealed that COMatrix hydrogel is rich in proteins with known regenerative properties such as lumican, keratocan, and laminins in addition to structural collagen proteins (Data is available via ProteomeXchange with identifier PXD020606). COMatrix hydrogel is a naturally driven biomaterial with favorable biomechanical properties and protein content with potential application as a therapeutic biomaterial in ocular regeneration and tissue engineering. Impact statement Fabrication and application of decellularized porcine corneal extracellular matrix is an emerging approach for corneal tissue engineering and regeneration. There are several protocols for decellularization of porcine cornea with various efficiencies. Here, we are presenting an optimized protocol for decellularization of porcine cornea followed by fabrication of a thermoresponsive hydrogel from the decellularized cornea matrix. Moreover, the fabricated hydrogel was rheologically and compositionally characterized as crucial features to be employed for further application of this hydrogel in corneal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Meisam Omidi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
49
|
Yazdanpanah G, Shah R, Raghurama R Somala S, Anwar KN, Shen X, An S, Omidi M, Rosenblatt MI, Shokuhfar T, Djalilian AR. In-situ porcine corneal matrix hydrogel as ocular surface bandage. Ocul Surf 2021; 21:27-36. [PMID: 33895367 DOI: 10.1016/j.jtos.2021.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Bioactive substrates can be used therapeutically to enhance wound healing. Here, we evaluated the effect of an in-situ thermoresponsive hydrogel from decellularized porcine cornea ECM, COMatrix (COrnea Matrix), for application as an ocular surface bandage for corneal epithelial defects. METHODS COMatrix hydrogel was fabricated from decellularized porcine corneas. The effects of COMatrix hydrogel on attachment and proliferation of human corneal epithelial cells (HCECs) were evaluated in vitro. The effect of COMatrix on the expressions of the inflammatory genes, IL-1β, TNF-α, and IL-6 was assessed by RT-PCR. The in-situ application and also repairing effects of COMatrix hydrogel as an ocular bandage was studied in a murine model of corneal epithelial wound. The eyes were examined by optical coherence tomography (OCT) and slit-lamp microscopy in vivo and by histology and immunofluorescence post-mortem. RESULTS In vitro, COMatrix hydrogel significantly enhanced the attachment and proliferation of HCECs relative to control. HCECs exposed to COMatrix had less induced expression of TNF-α (P < 0.05). In vivo, COMatrix formed a uniform hydrogel that adhered to the murine ocular surface after in-situ curing. Corneal epithelial wound closure was significantly accelerated by COMatrix hydrogel compared to control (P < 0.01). There was significant increase in the expression of proliferation marker Ki-67 in wounded corneal epithelium by COMatrix hydrogel compared to control (P < 0.05). CONCLUSIONS COMatrix hydrogel is a naturally derived bioactive material with potential application as an ocular surface bandage to enhance epithelial wound healing.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ritu Shah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Sri Raghurama R Somala
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Seungwon An
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE, Alvarez MM, Santiago GTD. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. Int J Bioprint 2021; 7:333. [PMID: 34007938 PMCID: PMC8126700 DOI: 10.18063/ijb.v7i2.337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies (32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still represent a stage of emergence of bioprinting technology.
Collapse
Affiliation(s)
- Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | | | | | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, Mexico 64849
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| |
Collapse
|