1
|
Guo J, Yao H, Chang L, Zhu W, Zhang Y, Li X, Yang B, Dai B, Chen X, Lei L, Chen Z, Li Y, Zheng L, Liu W, Tong W, Su Y, Qin L, Xu J. Magnesium Nanocomposite Hydrogel Reverses the Pathologies to Enhance Mandible Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312920. [PMID: 39385647 DOI: 10.1002/adma.202312920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The healing of bone defects after debridement in medication-related osteonecrosis of the jaw (MRONJ) is a challenging medical condition with impaired angiogenesis, susceptible infection, and pro-inflammatory responses. Magnesium (Mg) nanocomposite hydrogel is developed to specifically tackle multiple factors involved in MRONJ. Mg-oxide nanoparticles tune the gelation kinetics in the reaction between N-hydroxysuccinimide-functionalized hyperbranched poly (ethylene glycol) and proteins. This reaction allows an enhanced mechanical property after instant solidification and, more importantly, also stable gelation in challenging environments such as wet and hemorrhagic conditions. The synthesized hydrogel guides mandible regeneration in MRONJ rats by triggering the formation of type H vessels, activating Osterix+ osteoprogenitor cells, and generating anti-inflammatory microenvironments. Additionally, this approach demonstrates its ability to suppress infection by inhibiting specific pathogens while strengthening stress tolerance in the affected alveolar bone. Furthermore, the enhanced osteogenic properties and feasibility of implantation of the hydrogel are validated in mandible defect and iliac crest defect created in minipigs, respectively. Collectively, this study offers an injectable and innovative bone substitute to enhance mandible defect healing by tackling multiple detrimental pathologies.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Wangyong Zhu
- Department of Dental Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518009, P. R. China
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Boguang Yang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Lei Lei
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, P. R. China
| | - Weiyang Liu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
2
|
Du Y, Guan X, Zhu Y, Jin S, Liu J. LncRNA in periodontal tissue-derived cells on osteogenic differentiation in the periodontitis field. Oral Dis 2024; 30:4087-4097. [PMID: 38655682 DOI: 10.1111/odi.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Periodontitis can lead to the destruction of periodontal tissues and potentially tooth loss. Numerous periodontal tissue-derived cells display osteogenic differentiation potential. The presence of differentially expressed long non-coding RNAs (lncRNAs) in these cells indicate their ability to regulate the process of osteogenic differentiation. We aim to elucidate the various lncRNA-mediated regulatory mechanisms in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis at epigenetic modification, transcriptional, and post-transcriptional levels. SUBJECTS AND METHODS We systematically searched the PubMed, Web of Science, and ScienceDirect databases to identify relevant literature in the field of periodontitis discussing the role of lncRNAs in regulating osteogenic differentiation of periodontal tissue-derived cells. The identified literature was subsequently summarized for comprehensive review. RESULTS In this review, we have comprehensively summarized the regulatory mechanisms of lncRNAs in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis and discussed how these lncRNAs provide novel perspectives for understanding the pathogenesis and progression of periodontitis. CONCLUSION These results indicate the pivotal role of lncRNAs as regulators in the osteogenic differentiation of periodontal tissue-derived cells, providing a solid basis for future investigations on the role of lncRNAs in the periodontitis field.
Collapse
Affiliation(s)
- Yuanhang Du
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yinci Zhu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Suhan Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi, China
| |
Collapse
|
3
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Jeyaraman M, Verma T, Jeyaraman N, Patro BP, Nallakumarasamy A, Khanna M. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? World J Methodol 2023; 13:10-17. [PMID: 37035028 PMCID: PMC10080497 DOI: 10.5662/wjm.v13.i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation. Bone marrow (BM) is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings. MSCs can stimulate and promote osseous regeneration. Due to the difference in the development of long bones and craniofacial bones, the mandibular-derived MSCs (M-MSCs) have distinct differentiation characteristics as compared to that of long bones. Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73, -105, and -106, stage-specific embryonic antigen 4 and Octamer-4, and negative for hematopoietic markers such as CD-14, -34, and -45. As the M-MSCs are derived from neural crest cells, they have embryogenic cells which promote bone repair and high osteogenic potential. In vitro and in vivo animal-based studies demonstrate a higher rate of proliferation and high osteogenic potential for M-MSCs as compared to long-bones MSCs, but in vivo studies in human subjects are lacking. The BM-MSCs have their advantages and limitations. M-MSCs may be utilized as an alternative source of MSCs which can be utilized for tissue engineering and promoting the regeneration of bone. M-MSCs may have potential advantages in the repair of craniofacial or orofacial defects. Considering the utility of M-MSCs in the field of orthopaedics, we have discussed various unresolved questions, which need to be explored for their better utility in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| | - Tushar Verma
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Rathimed Speciality Hospital, Chennai 600040, Tamil Nadu, India
| | - Bishnu Prasad Patro
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Arulkumar Nallakumarasamy
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Manish Khanna
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| |
Collapse
|
5
|
Soares AP, Fischer H, Aydin S, Steffen C, Schmidt-Bleek K, Rendenbach C. Uncovering the unique characteristics of the mandible to improve clinical approaches to mandibular regeneration. Front Physiol 2023; 14:1152301. [PMID: 37008011 PMCID: PMC10063818 DOI: 10.3389/fphys.2023.1152301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The mandible (lower jaw) bone is aesthetically responsible for shaping the lower face, physiologically in charge of the masticatory movements, and phonetically accountable for the articulation of different phonemes. Thus, pathologies that result in great damage to the mandible severely impact the lives of patients. Mandibular reconstruction techniques are mainly based on the use of flaps, most notably free vascularized fibula flaps. However, the mandible is a craniofacial bone with unique characteristics. Its morphogenesis, morphology, physiology, biomechanics, genetic profile, and osteoimmune environment are different from any other non-craniofacial bone. This fact is especially important to consider during mandibular reconstruction, as all these differences result in unique clinical traits of the mandible that can impact the results of jaw reconstructions. Furthermore, overall changes in the mandible and the flap post-reconstruction may be dissimilar, and the replacement process of the bone graft tissue during healing can take years, which in some cases can result in postsurgical complications. Therefore, the present review highlights the uniqueness of the jaw and how this factor can influence the outcome of its reconstruction while using an exemplary clinical case of pseudoarthrosis in a free vascularized fibula flap.
Collapse
Affiliation(s)
- Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ana Prates Soares,
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Centrum für Muskuloskeletale Chirurgie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrin Aydin
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Guo J, Yao H, Li X, Chang L, Wang Z, Zhu W, Su Y, Qin L, Xu J. Advanced Hydrogel systems for mandibular reconstruction. Bioact Mater 2023; 21:175-193. [PMID: 36093328 PMCID: PMC9413641 DOI: 10.1016/j.bioactmat.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Mandibular defect becomes a prevalent maxillofacial disease resulting in mandibular dysfunctions and huge psychological burdens to the patients. Considering the routine presence of oral contaminations and aesthetic restoration of facial structures, the current clinical treatments are however limited, incapable to reconstruct the structural integrity and regeneration, spurring the need for cost-effective mandibular tissue engineering. Hydrogel systems possess great merit for mandibular reconstruction with precise involvement of cells and bioactive factors. In this review, current clinical treatments and distinct mode(s) of mandible formation and pathological resorption are summarized, followed by a review of hydrogel-related mandibular tissue engineering, and an update on the advanced fabrication of hydrogels with improved mechanical property, antibacterial ability, injectable form, and 3D bioprinted hydrogel constructs. The exploration of advanced hydrogel systems will lay down a solid foundation for a bright future with more biocompatible, effective, and personalized treatment in mandibular reconstruction.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixuan Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wangyong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Director of Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Miyata H, Ishii M, Suehiro F, Komabashiri N, Ikeda N, Sakurai T, Nishimura M. Elucidation of adipogenic differentiation regulatory mechanism in human maxillary/mandibular bone marrow-derived stem cells. Arch Oral Biol 2023; 146:105608. [PMID: 36549198 DOI: 10.1016/j.archoralbio.2022.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aims to investigate the underlying molecular mechanisms that regulate the adipogenic differentiation of maxillary/mandibular bone marrow-derived mesenchymal stem cells (MBMSCs). DESIGN MBMSCs and iliac bone marrow-derived MSCs (IBMSCs) were compared for osteogenic, chondrogenic, and adipogenic differentiation. Cell surface antigen expression was examined using flow cytometry, and stem cell marker expression was assessed using real-time polymerase chain reaction (PCR). Various adipogenic regulatory factors' expression was evaluated using real-time PCR and western blotting. RESULTS No significant differences in cell surface antigen profiles or stem cell marker expression in MBMSCs and IBMSCs were observed. MBMSCs and IBMSCs displayed similar osteogenic and chondrogenic potentials, whereas MBMSCs showed significantly lower adipogenic potentials than those shown by IBMSCs. Expression of CCAAT/enhancer binding protein β (C/EBPβ), C/EBPδ, early B-cell factor 1 (Ebf-1), and Krüppel-like factor 5 (KLF5), which are early adipogenic differentiation factors, was suppressed in MBMSCs compared to that in IBMSCs. Peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which play important roles in the terminal differentiation of adipocytes, was lower in MBMSCs than that in IBMSCs. Furthermore, the level of zinc finger protein 423 (Zfp423), which is involved in the commitment of undifferentiated MSCs to the adipocyte lineage, was significantly lower in MBMSCs than that in IBMSCs. CONCLUSIONS MBMSCs are negatively regulated in the commitment of undifferentiated MSCs to the adipocyte lineage (preadipocytes) as well as in the terminal differentiation of preadipocytes into mature adipocytes. These results may elucidate the site-specific characteristics of MBMSCs.
Collapse
Affiliation(s)
- Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan.
| | - Fumio Suehiro
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Naohiro Komabashiri
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| |
Collapse
|
8
|
Liu J, Watanabe K, Dabdoub SM, Lee BS, Kim DG. Site-specific characteristics of bone and progenitor cells in control and ovariectomized rats. Bone 2022; 163:116501. [PMID: 35872108 DOI: 10.1016/j.bone.2022.116501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One-third of postmenopausal women experience at least one osteoporotic bone fracture in their lifetime that occurs spontaneously or from low-impact events. However, osteoporosis-associated jaw bone fractures are extremely rare. It was also observed that jaw bone marrow stem cells (BMSCs) have a higher capacity to form mineralized tissues than limb BMSCs. At present, the underlying causes and mechanisms of variations between jaw bone and limb bone during postmenopause are largely unknown. Thus, the objective of the current study was to examine the site-specific effects of estrogen deficiency using comprehensive analysis of bone quantity and quality, and its association with characterization of cellular components of bone. Nine rats (female, 6 months old) for each bilateral sham and ovariectomy (OVX) surgery were obtained and maintained for 2 months after surgery. A hemi-mandible and a femur from each rat were characterized for parameters of volume, mineral density, cortical and trabecular morphology, and static and dynamic mechanical analysis. Another set of 5 rats (female, 9 months old) was obtained for assays of BMSCs. Following cytometry to identify BMSCs, bioassays for proliferation, and osteogenic, adipogenic, chondrogenic differentiation, and cell mitochondrial stress tests were performed. In addition, mRNA expression of BMSCs was analyzed. OVX decreased bone quantity and quality (mineral content, morphology, and energy dissipation) of femur while those of mandible were not influenced. Cellular assays demonstrated that mandible BMSCs showed greater differentiation than femur BMSCs. Gene ontology pathway analysis indicated that the mandibular BMSCs showed most significant differential expression of genes in the regulatory pathways of osteoblast differentiation, SMAD signaling, cartilage development, and glucose transmembrane transporter activity. These findings suggested that active mandibular BMSCs maintain bone formation and mineralization by balancing the rapid bone resorption caused by estrogen deficiency. These characteristics likely help reduce the risk of osteoporotic fracture in postmenopausal jawbone.
Collapse
Affiliation(s)
- Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Shareef M Dabdoub
- Division of Biostatistics and Computational Biology, Department of Periodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA.
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Guo J, Yang X, Chen J, Wang C, Kang Y, Jiang T, Chen M, Li W, Zhou C, Chen Z. Accelerated Bone Regeneration by an Astaxanthin-Modified Antioxidant Aerogel through Relieving Oxidative Stress via the NRF2 Signaling Pathway. ACS Biomater Sci Eng 2022; 8:4524-4534. [PMID: 36073984 DOI: 10.1021/acsbiomaterials.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bone regeneration of critical-sized bone defects (CSBDs) with biomimetic collagen-based aerogels remains a significant challenge due to the oxidative stress on the microenvironment. The excessive oxidative stress could induce apoptosis and dysfunction of host-derived cells. Astaxanthin (ATX) exhibits excellent antioxidant ability to block free radical chain reactions. In the present study, hybrid antioxidant collagen-derived aerogels (ATX-Col aerogels) were fabricated by a simple one-step method through the covalent cross-linking of Col and ATX. The resulting ATX-Col aerogels show porous and interconnected structures due to freeze-drying strategies. The ATX-Col aerogels exhibited excellent biocompatibility and biosafety. Furthermore, ATX-Col aerogels demonstrated favorable antioxidant capacity by eliminating intracellular ROS by activating the NRF2 signaling pathway. Finally, excellent reparative effects in repairing rat cranial defects were observed in ATX-Col aerogels. Taken together, ATX-Col aerogels can accelerate bone regeneration by relieving oxidative stress via the NRF2 signaling pathway and act as a potential bone graft for CSBD. This study provides a simple method of developing antioxidant aerogels for bone regeneration.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Chen
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Cheng Y, Du Y, Zhang X, Zhang P, Liu Y. Conditional knockout of Cdc20 attenuates osteogenesis in craniofacial bones. Tissue Cell 2022; 77:101829. [DOI: 10.1016/j.tice.2022.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
11
|
Examination of the Quality of Particulate and Filtered Mandibular Bone Chips for Oral Implants: An In Vitro Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
(1) Background: Autologous bone is supposed to contain vital cells that might improve the osseointegration of dental implants. The aim of this study was to investigate particulate and filtered bone chips collected during oral surgery intervention with respect to their osteogenic potential and the extent of microbial contamination to evaluate its usefulness for jawbone reconstruction prior to implant placement. (2) Methods: Cortical and cortical-cancellous bone chip samples of 84 patients were collected. The stem cell character of outgrowing cells was characterized by expression of CD73, CD90 and CD105, followed by osteogenic differentiation. The degree of bacterial contamination was determined by Gram staining, catalase and oxidase tests and tests to evaluate the genera of the found bacteria (3) Results: Pre-surgical antibiotic treatment of the patients significantly increased viability of the collected bone chip cells. No significant difference in plasticity was observed between cells isolated from the cortical and cortical-cancellous bone chip samples. Thus, both types of bone tissue can be used for jawbone reconstruction. The osteogenic differentiation was independent of the quantity and quality of the detected microorganisms, which comprise the most common bacteria in the oral cavity. (4) Discussion: This study shows that the quality of bone chip-derived stem cells is independent of the donor site and the extent of present common microorganisms, highlighting autologous bone tissue, assessable without additional surgical intervention for the patient, as a useful material for dental implantology.
Collapse
|
12
|
Hsu YJ, Wei SY, Lin TY, Fang L, Hsieh YT, Chen YC. A strategy to engineer vascularized tissue constructs by optimizing and maintaining the geometry. Acta Biomater 2022; 138:254-272. [PMID: 34774782 DOI: 10.1016/j.actbio.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Abstract
The success of engineered tissues is limited by the need for rapid perfusion of a functional vascular network that can control tissue engraftment and promote survival after implantation. Diabetic conditions pose an additional challenge, because high glucose and lipid concentrations cause an aggressive oxidative environment that impairs vessel remodeling and stabilization and impedes integration of engineered constructs into surrounding tissues. Thus, to achieve rapid vasculogenesis, angiogenesis, and anastomosis, hydrogels incorporating cells in their structure have been developed to facilitate formation of functional vascular networks within implants. However, their transport diffusivity decreases with increasing thickness, preventing the formation of a thick vascularized tissue. To address this, we used diffusion-based computational simulations to optimize the geometry of hydrogel structures. The results show that the micro-patterned constructs improved diffusion, thus supporting cell viability, and spreading while retaining their mechanical properties. Thick cell-laden bulk, linear, or hexagonal infill patterned hydrogels were implanted; and structural stability due to skin mobility was improved by the protective spacer. Larger and thicker perfused vascular networks formed in the hexagonal structures (∼17 mm diameter, ∼1.5 mm thickness) in both normal and diabetic mice on day 3, and they became functional and uniformly distributed on day 7. Moreover, transplanted islets were rapidly integrated subcutaneously in this engineered functional vascular bed, which significantly enhanced islet viability and insulin secretion. In summary, we developed a promising strategy for generating large, thick vascularized tissue constructs, which may support transplanted islet cells. These constructs showed potential for engineering other vascularized tissues in regenerative therapy. STATEMENT OF SIGNIFICANCE: Diffusion-based computational simulations were used to optimize the geometry of hydrogel structures, i.e., hexagonal cell-laden hydrogels. To maintain the hydrogel's structural integrity, a spacer was designed and co-implanted subcutaneously to increase the permeability of explants. The spacer provides the structural integrity to improve the permeability of the implanted hydrogel. Otherwise, the implanted hydrogel may be easily squeezed and deformed by compression from the skin mobility of mice. Here, we successfully developed a cell-based strategy for rapidly generating large, functional vasculature (diameter ∼17 mm and thickness ∼1.5 mm) in both normal and diabetic mice and demonstrated its advantages over currently available methods in a clinically-relevant animal model. This concept could serve as a basis for engineering and repairing other tissues in animals.
Collapse
|
13
|
Park BH, Jeong ES, Lee S, Jang JH. Bio-functionalization and in-vitro evaluation of titanium surface with recombinant fibronectin and elastin fragment in human mesenchymal stem cell. PLoS One 2021; 16:e0260760. [PMID: 34914752 PMCID: PMC8675760 DOI: 10.1371/journal.pone.0260760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.
Collapse
Affiliation(s)
- Bo-Hyun Park
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Eui-Seung Jeong
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
- * E-mail:
| |
Collapse
|
14
|
Lyu P, Li B, Li P, Bi R, Cui C, Zhao Z, Zhou X, Fan Y. Parathyroid Hormone 1 Receptor Signaling in Dental Mesenchymal Stem Cells: Basic and Clinical Implications. Front Cell Dev Biol 2021; 9:654715. [PMID: 34760881 PMCID: PMC8573197 DOI: 10.3389/fcell.2021.654715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are two peptides that regulate mineral ion homeostasis, skeletal development, and bone turnover by activating parathyroid hormone 1 receptor (PTH1R). PTH1R signaling is of profound clinical interest for its potential to stimulate bone formation and regeneration. Recent pre-clinical animal studies and clinical trials have investigated the effects of PTH and PTHrP analogs in the orofacial region. Dental mesenchymal stem cells (MSCs) are targets of PTH1R signaling and have long been known as major factors in tissue repair and regeneration. Previous studies have begun to reveal important roles for PTH1R signaling in modulating the proliferation and differentiation of MSCs in the orofacial region. A better understanding of the molecular networks and underlying mechanisms for modulating MSCs in dental diseases will pave the way for the therapeutic applications of PTH and PTHrP in the future. Here we review recent studies involving dental MSCs, focusing on relationships with PTH1R. We also summarize recent basic and clinical observations of PTH and PTHrP treatment to help understand their use in MSCs-based dental and bone regeneration.
Collapse
Affiliation(s)
- Ping Lyu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Comparison of Surface Functionalization of PLGA Composite to Immobilize Extracellular Vesicles. Polymers (Basel) 2021; 13:polym13213643. [PMID: 34771200 PMCID: PMC8587822 DOI: 10.3390/polym13213643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelialization by materials provides a promising approach for the rapid re-endothelialization of a cardiovascular implantation. Although previous studies have focused on improving endothelialization through the immobilization of bioactive molecules onto the surface of biodegradable implants, comparative studies of effective surface modification have not yet been reported. Here, we conducted a comparative study on the surface modification of poly(lactide-co-glycolide) (PLGA)-based composites to graft mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) using three different materials, fibronectin (FN), polyethylenimine (PEI), and polydopamine (PDA), which have different bond strengths of ligand–receptor interaction, ionic bond, and covalent bond, respectively. Further in vitro analysis exhibited that MSC-EVs released from all modified films sustainably, but the MSC-EVs grafted onto the surface coated with PEI are more effective than other groups in increasing angiogenesis and reducing the inflammatory responses in endothelial cells. Therefore, the overall results demonstrated that PEI is a desirable coating reagent for the immobilization of MSC-EVs on the surface of biodegradable implants.
Collapse
|
16
|
Hu Y, Hao X, Liu C, Ren C, Wang S, Yan G, Meng Y, Mishina Y, Shi C, Sun H. Acvr1 deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKL-induced osteoclastogenesis. J Cell Physiol 2021; 236:4580-4591. [PMID: 33251612 PMCID: PMC8048423 DOI: 10.1002/jcp.30183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is well known in bone homeostasis. However, the physiological effects of BMP signaling on mandibles are largely unknown, as the mandible has distinct functions and characteristics from other bones. In this study, we investigated the roles of BMP signaling in bone homeostasis of the mandibles by deleting BMP type I receptor Acvr1 in osteoblast lineage cells with Osterix-Cre. We found mandibular bone loss in conditional knockout mice at the ages of postnatal day 21 and 42 in an age-dependent manner. The decreased bone mass was related to compromised osteoblast differentiation together with enhanced osteoclastogenesis, which was secondary to the changes in osteoblasts in vivo. In vitro study revealed that deletion of Acvr1 in the mandibular bone marrow stromal cells (BMSCs) significantly compromised osteoblast differentiation. When wild type bone marrow macrophages were cocultured with BMSCs lacking Acvr1 both directly and indirectly, both proliferation and differentiation of osteoclasts were induced as evidenced by an increase of multinucleated cells, compared with cocultured with control BMSCs. Furthermore, we demonstrated that the increased osteoclastogenesis in vitro was at least partially due to the secretion of soluble receptor activator of nuclear factor-κB ligand (sRANKL), which is probably the reason for the mandibular bone loss in vivo. Overall, our results proposed that ACVR1 played essential roles in maintaining mandibular bone homeostasis through osteoblast differentiation and osteoblast-osteoclast communication via sRANKL.
Collapse
Affiliation(s)
- Yue Hu
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Xinqing Hao
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Chunxia Ren
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Shuangshuang Wang
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Guangxing Yan
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Yuan Meng
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Ce Shi
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| |
Collapse
|
17
|
Kim JY, Rhim WK, Yoo YI, Kim DS, Ko KW, Heo Y, Park CG, Han DK. Defined MSC exosome with high yield and purity to improve regenerative activity. J Tissue Eng 2021; 12:20417314211008626. [PMID: 33959246 PMCID: PMC8060739 DOI: 10.1177/20417314211008626] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital
components of regenerative medicine. Typically, various isolation methods of
exosomes from cell culture medium have been developed to increase the isolation
yield of exosomes. Moreover, the exosome-depletion process of serum has been
considered to result in clinically active and highly purified exosomes from the
cell culture medium. Our aim was to compare isolation methods, ultracentrifuge
(UC)-based conventional method, and tangential flow filtration (TFF)
system-based method for separation with high yield, and the bioactivity of the
exosome according to the purity of MSC-derived exosome was determined by the
ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome
depending on exosome depletion processes of FBS. The TFF-based isolation yield
of exosome derived from human umbilical cord MSC (UCMSC) increased two orders
(92.5 times) compared to UC-based isolation method. Moreover, by optimizing the
process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome,
evaluated using the expression level of MSC exosome surface marker (CD73), was
about 15.6 times enhanced and the concentration of low-density
lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved
to be negligibly detected. The wound healing and angiogenic effects of highly
purified UCMSC-derived exosomes were improved about 23.1% and 71.4%,
respectively, with human coronary artery endothelial cells (HCAEC). It suggests
that the defined MSC exosome with high yield and purity could increase
regenerative activity.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.,Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea.,Department of Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Yong-In Yoo
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Yun Heo
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea.,Department of Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
18
|
Huang X, Liang J, Gao Y, Hou Y, Song Y, Kong L. Ckip-1 regulates C3H10T1/2 mesenchymal cell proliferation and osteogenic differentiation via Lrp5. Exp Ther Med 2021; 21:342. [PMID: 33732315 PMCID: PMC7903475 DOI: 10.3892/etm.2021.9773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Casein kinase-2 interaction protein-1 (Ckip-1) is a negative regulator of bone formation. The identification of novel Ckip-1-related targets and their associated signaling pathways that regulate mesenchymal stem cell (MSC) osteogenic differentiation is required. The present study aimed to evaluate the effects of Ckip-1 knockdown on C3H10T1/2 MSC proliferation and osteogenic differentiation, and to explore the role of the canonical Wnt-signaling receptor Lrp5. Ckip-1-knockdown (shCkip-1), Ckip-1-overexpression (Ckip-1) and their corresponding control [shCtrl and empty vector (EV), respectively] cell groups were used in the present study. Immunofluorescence localization of Ckip-1 was observed. The expression of the key molecules of the canonical Wnt signaling pathway was examined in C3H10T1/2 cells following osteogenic induction. Moreover, the effects of Lrp5 knockdown in the presence or absence of Ckip-1 knockdown were examined on C3H10T1/2 cell proliferation and osteogenic differentiation. The results indicated an increase in cell proliferation and osteogenic differentiation in the shCkip-1 group compared with the shCtrl group. The expression levels of LDL receptor related protein 5 (Lrp5), lymphoid enhancer binding factor 1 (Lef1) and transcription factor 1 in C3H10T1/2 cells were significantly increased in shCkip-1 cells following 7-day osteoinduction compared with shCtrl cells. Moreover, the involvement of Lrp5 in shCkip-1-induced osteogenic differentiation of C3H10T1/2 cells was further verified. The results indicated that Ckip-1 reduced C3H10T1/2 MSC proliferation and osteogenic differentiation via the canonical Wnt-signaling receptor Lrp5, which is essential for the improvement of bone tissue engineering.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,School of Stomatology of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jianfei Liang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ye Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Hou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong 266001, P.R. China
| | - Liang Kong
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
19
|
Sun Z, Yan K, Liu S, Yu X, Xu J, Liu J, Li S. Semaphorin 3A promotes the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells in inflammatory environments by suppressing the Wnt/β-catenin signaling pathway. J Mol Histol 2021; 52:1245-1255. [PMID: 33566267 DOI: 10.1007/s10735-020-09941-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
After periodontal treatment, the local inflammatory environment surrounding periodontal tissues cannot be entirely eliminated. The means by which alveolar bone repair and regeneration are promoted in inflammatory environments have important clinical significance. As a powerful protein that promotes the differentiation of osteocytes, semaphorin 3A (Sema3A) shows potential for bone regeneration therapy. However, the effect of Sema3A on osteogenic differentiation in an inflammatory environment, as well as the underlying mechanism, have not yet been explored. We used lentivirus to transduce rat bone marrow-derived mesenchymal stem cells (rBMSCs) to stably overexpress Sema3A. Lipopolysaccharide from Escherichia coli (E. coli LPS) was used to stimulate rBMSCs to establish an inflammatory environment. ALP staining, Alizarin red staining, ALP activity tests, quantitative RT-PCR (qRT-PCR), and Western blotting were used to elucidate the effect of Sema3A on the osteogenesis of rBMSCs in inflammatory environments. XAV939 and LiCl were used to determine whether the Wnt/β-catenin signaling pathway was involved in attenuating the inhibition of Sema3A-induced osteogenic differentiation by LPS. The qRT-PCR and Western blot results demonstrated that the lentiviral vector (LV-NC) and lentiviral-Sema3A (LV-Sema3A) were successfully transduced into rBMSCs. An inflammatory environment could be established by stimulating rBMSCs with 1 μg/ml E. coli LPS. After Sema3A overexpression, mineral deposition was exacerbated, and the BSP and Runx2 gene and protein expression levels were increased. Furthermore, E. coli LPS activated the Wnt/β-catenin signaling pathway and decreased rBMSC osteogenesis, but these effects were attenuated by Sema3A. In conclusion, Sema3A could protect BMSCs from LPS-mediated inhibition of osteogenic differentiation in inflammatory environments by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhaoze Sun
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Kaixian Yan
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shuang Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xijiao Yu
- Department of Endodontics, Jinan Stomatological Hospital, No. 101 Jingliu Road, Jinan, 250001, Shandong, China
| | - Jingyi Xu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jinhua Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
20
|
Lee S, Lee DS, Jang JH. Recombinant laminin α5 LG1-3 domains support the stemness of human mesenchymal stem cells. Exp Ther Med 2020; 21:166. [PMID: 33456533 DOI: 10.3892/etm.2020.9597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix components laminin and elastin serve key roles in stem cell therapy. Elastin-like polypeptides (ELPs), derived from a soluble form of elastin, affect the proliferation and differentiation of various types of cells. In the present study, a novel protein was designed containing globular domains 1-3 of laminin α5 (Lα5LG1-3) fused to ELPs (Lα5LG1-3/ELP). Lα5LG1-3/ELP was expressed in Escherichia coli and displayed a molecular size of ~70 kDa on 12% SDS-polyacrylamide gels. The cellular activities, such as cellular adhesion (adhesion assay) and proliferation (MTT cytotoxicity assay), of human mesenchymal stem cells (hMSCs) treated with 1 µg/ml of Lα5LG1-3/ELP were enhanced compared with those of untreated cells. Additionally, the number of undifferentiated hMSCs and their degree of stemness were assessed based on the gene expression levels of the stem cell markers cluster differentiation 90 (CD90), endoglin (CD105) and CD73. The expression levels of these markers were upregulated by 2.42-, 2.29- and 1.92-fold, respectively, in the hMSCs treated with Lα5LG1-3/ELP compared with the levels in untreated controls. Thus, Lα5LG1-3/ELP may be used to enhance the viability of hMSCs and preserve their undifferentiated state, whereby the clinical applications of hMSCs may be improved.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
21
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
22
|
Watanabe K, Lewis S, Guo X, Ni A, Lee BS, Deguchi T, Kim DG. Regional variations of jaw bone characteristics in an ovariectomized rat model. J Mech Behav Biomed Mater 2020; 110:103952. [PMID: 32957244 DOI: 10.1016/j.jmbbm.2020.103952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Postmenopausal osteoporosis causes severe loss of bone quantity and quality in limb bone but has a lesser effect on jaw bone. Thus, the objective of this study was to examine whether ovariectomy (OVX) and mastication alter the regional variation of jaw bone characteristics. Sprague-Dawley female rats (6 months) were given a bilateral OVX or a sham operation (SHAM) (n = 10 for each group). After 2 months post-OVX, the hemi-mandible from each rat was dissected. A micro-computed tomography based mean, standard deviation (SD), the lower and upper 5th percentile (Low5 and High5) values of tissue mineral density (TMD) histograms were assessed for whole bone (WB), alveolar bone (AB), cortical bone (CB), and trabecular bone (TB) regions. Morphology of TB and periodontal ligament (PDL) was also obtained. Layers of AB were segmented up to 400 μm from the PDL. Mechanical properties at the tissue level were measured by nanoindentation at the same site by a single loading-unloading cycle of indentation in hydration. The AB and TB regions had significantly lower TMD Mean, Low5, and High5 but higher SD than the CB region for both sham and OVX groups (p < 0.01). TMD parameters of the OVX group rapidly increased up to 60 μm away from the PDL and were significantly higher than those of the sham group starting at 280 μm and farther in the CB region (p < 0.05). All values of morphological and nanoindentation parameters were not significantly different between sham and OVX groups (p > 0.06). Estrogen deficiency induced by OVX did not deteriorate bone characteristics including mineral density, morphology, and nanoindentation parameters in rat mandibles. Masticatory loading had an effect on the TMD parameters at the limited region of AB. These results provide insight into why osteoporosis-associated jaw bone fractures are extremely rare.
Collapse
Affiliation(s)
- Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Samantha Lewis
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaohan Guo
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Toru Deguchi
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Xing Z, Cai J, Sun Y, Cao M, Li Y, Xue Y, Finne-Wistrand A, Kamal M. Altered Surface Hydrophilicity on Copolymer Scaffolds Stimulate the Osteogenic Differentiation of Human Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12071453. [PMID: 32610488 PMCID: PMC7407625 DOI: 10.3390/polym12071453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent studies have suggested that both poly(l-lactide-co-1,5-dioxepan-2-one) (or poly(LLA-co-DXO)) and poly(l-lactide-co-ε-caprolactone) (or poly(LLA-co-CL)) porous scaffolds are good candidates for use as biodegradable scaffold materials in the field of tissue engineering; meanwhile, their surface properties, such as hydrophilicity, need to be further improved. METHODS We applied several different concentrations of the surfactant Tween 80 to tune the hydrophilicity of both materials. Moreover, the modification was applied not only in the form of solid scaffold as a film but also a porous scaffold. To investigate the potential application for tissue engineering, human bone marrow mesenchymal stem cells (hMSCs) were chosen to test the effect of hydrophilicity on cell attachment, proliferation, and differentiation. First, the cellular cytotoxicity of the extracted medium from modified scaffolds was investigated on HaCaT cells. Then, hMSCs were seeded on the scaffolds or films to evaluate cell attachment, proliferation, and osteogenic differentiation. The results indicated a significant increasing of wettability with the addition of Tween 80, and the hMSCs showed delayed attachment and spreading. PCR results indicated that the differentiation of hMSCs was stimulated, and several osteogenesis related genes were up-regulated in the 3% Tween 80 group. Poly(LLA-co-CL) with 3% Tween 80 showed an increased messenger Ribonucleic acid (mRNA) level of late-stage markers such as osteocalcin (OC) and key transcription factor as runt related gene 2 (Runx2). CONCLUSION A high hydrophilic scaffold may speed up the osteogenic differentiation for bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Xing
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| | - Jiazheng Cai
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yang Sun
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mengnan Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Correspondence: (Y.L.); (Y.X.)
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
- Correspondence: (Y.L.); (Y.X.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mustafa Kamal
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| |
Collapse
|
24
|
Li C, Wang F, Zhang R, Qiao P, Liu H. Comparison of Proliferation and Osteogenic Differentiation Potential of Rat Mandibular and Femoral Bone Marrow Mesenchymal Stem Cells In Vitro. Stem Cells Dev 2020; 29:728-736. [PMID: 32122257 DOI: 10.1089/scd.2019.0256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chuanjie Li
- Medical College of Naikai University, Tianjin, People's Republic of China
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Feifan Wang
- Medical College of Naikai University, Tianjin, People's Republic of China
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Rong Zhang
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Pengyan Qiao
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongchen Liu
- Medical College of Naikai University, Tianjin, People's Republic of China
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
25
|
Soltanyzadeh M, Salimi A, Halabian R, Ghollasi M. The effect of female sex steroid hormones on osteogenic differentiation of endometrial stem cells. Mol Biol Rep 2020; 47:3663-3674. [PMID: 32335804 DOI: 10.1007/s11033-020-05461-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
Bone regeneration is a significant and crucial health issue worldwide. Tissue bioengineering has shown itself to be the best substitute for common clinical treatment of bone loss. The suitable cell source is human endometrial stem cells (hEnSCs) which have several suitable characteristics for this approach. Since sex steroid hormones are involved in expansion and conservation of the skeleton, the effect of two sex steroid hormones known as estrogen (17-β estradiol) and progesterone on osteogenic differentiation of hEnSCs were examined. For this purpose, hEnSCs were treated with 17-β estradiol and progesterone separately (1 × 10-6 M) and simultaneously (1 × 10-7 M). Osteogenic differentiation tests including measurement of total mineral calcium content, Alizarin Red staining, the quantitative expression levels of some osteogenic markers by Real-time RT-PCR, and immunofluorescence staining were performed at 7 and 14 days of differentiation. To exhibit the morphology of the cells in osteogenic and culture medium, the hEnSCs were stained with Acridine Orange (AO) solution. In this research, MTT assay and AO staining revealed progesterone and 17-β estradiol increase the proliferation of hEnSCs in a dose-dependent manner. Furthermore, the results of calcium content analysis, Real-time RT-PCR assay, and all tests of differentiation staining have shown that 17-β estradiol and progesterone cannot induce hEnSCs' osteogenic differentiation. In conclusion, it is indicated that 17-β estradiol and progesterone do not have positive effects on hEnSCs' osteogenic differentiation in vitro.
Collapse
Affiliation(s)
- Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
26
|
Lee MN, Song JH, Oh SH, Tham NT, Kim JW, Yang JW, Kim ES, Koh JT. The primary cilium directs osteopontin-induced migration of mesenchymal stem cells by regulating CD44 signaling and Cdc42 activation. Stem Cell Res 2020; 45:101799. [PMID: 32339903 DOI: 10.1016/j.scr.2020.101799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
The primary cilium acts as a sensory organelle with diverse receptors and ion channels to detect extracellular cues and regulate cellular functions, including cell migration. The migration of mesenchymal stem cells (MSCs) to bone remodeling sites is important for bone homeostasis. Recently, we have suggested that osteopontin (OPN) is a significant chemoattractant in MSC migration to bone remodeling sites. The objective of this study was to determine whether the primary cilium acts as a chemoattractant sensory unit to detect OPN cues and control MSC migration. We found that the loss of primary cilium induced by silencing of IFT88 reduced OPN-induced migration of MSCs. The effect of IFT88 silencing on cellular attachment, spreading, and proliferation was negligible. The loss of primary cilium did not affect the level of integrinβ1 or CD44, two known receptors for OPN. Interestingly, CD44 was localized to the primary cilium by OPN stimulus. Knockdown of IFT88 or CD44 dysregulated OPN-induced signaling activation and abolished OPN-induced Cdc42 activation. Our findings suggest that the primary cilium acts as a chemoattractant sensor for OPN to regulate MSC migration by controlling not only CD44-mediated OPN signaling, but also Cdc42-mediated actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Mi Nam Lee
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ju Han Song
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sin-Hye Oh
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Nguyen Thi Tham
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jung-Woo Kim
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jin-Woo Yang
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Eung-Sam Kim
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jeong-Tae Koh
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea.
| |
Collapse
|
27
|
Yan DY, Tang J, Chen L, Wang B, Weng S, Xie Z, Wu ZY, Shen Z, Bai B, Yang L. Imperatorin promotes osteogenesis and suppresses osteoclast by activating AKT/GSK3 β/β-catenin pathways. J Cell Mol Med 2019; 24:2330-2341. [PMID: 31883297 PMCID: PMC7011130 DOI: 10.1111/jcmm.14915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is caused by disturbance in the dynamic balance of bone remodelling, a physiological process, vital for maintenance of healthy bone tissue in adult humans. In this process, a new bone is formed by osteoblasts and the pre‐existing bone matrix is resorbed by osteoclasts. Imperatorin, a widely available and inexpensive plant extract with antioxidative and apoptotic effects, is reported to treat osteoporosis. However, the underlying mechanism and specific effects on bone metabolism have not been elucidated. In this study, we used rat bone marrow‐derived mesenchymal stem cells and found that imperatorin can activate RUNX2, COL1A1 and osteocalcin by promoting the Ser9 phosphorylation of GSK3β and entry of β‐catenin into the nucleus. Imperatorin also enhanced the production of phospho‐AKT (Ser473), an upstream factor that promotes the Ser9 phosphorylation of GSK3β. We used ipatasertib, a pan‐AKT inhibitor, to inhibit the osteogenic effect of imperatorin, and found that imperatorin promotes osteogenesis via AKT/GSK3β/β‐catenin pathway. Next, we used rat bone marrow‐derived monocytes, to check whether imperatorin inhibits osteoclast differentiation via AKT/GSK3β/β‐catenin pathway. Further, we removed the bilateral ovaries of rats to establish an osteoporotic model. Intragastric administration of imperatorin promoted osteogenesis and inhibited osteoclast in vivo. Our experiments showed that imperatorin is a potential drug for osteoporosis treatment.
Collapse
Affiliation(s)
- De-Yi Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahao Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingzhang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sheji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongjie Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijian Shen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingli Bai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Sun P, Zhang Q, Nie W, Zhou X, Chen L, Du H, Yang S, You Z, He J, He C. Biodegradable Mesoporous Silica Nanocarrier Bearing Angiogenic QK Peptide and Dexamethasone for Accelerating Angiogenesis in Bone Regeneration. ACS Biomater Sci Eng 2019; 5:6766-6778. [PMID: 33423470 DOI: 10.1021/acsbiomaterials.9b01521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the repair of large segmental bone defects, bone tissue is often unable to heal due to the destruction of the vascular network near the wound site. An ideal bone repair material should have both angiogenic and osteogenic capabilities. To achieve this goal, we used biodegradable mesoporous silica nanoparticles (MSNs) as a delivery vehicle for dexamethasone (DEX), a small-molecule drug that induces osteogenic differentiation. Subsequently, chitosan was covalently modified onto the surface of the nanoparticles by glycidoxypropyltrimethoxysilane (GPTMS) to construct nanoparticulate delivery systems (DEX@chi-MSNs) that induce osteoblast formation. The QK peptide, which mimics the α-helical structure of vascular endothelial growth factor (VEGF) binding to the receptor, was adsorbed to the surface of chitosan-modified MSNs nanoparticles (QK@chi-MSNs) to render them with angiogenic ability. The QK@chi-MSNs can promote the formation of the tubular structure of human umbilical vein endothelial cells (HUVECs) and angiogenesis in vivo, as demonstrated by a chicken embryo chorioallantoic test (CAM) and subcutaneous embedding test. The DEX@chi-MSNs can improve alkaline phosphatase (ALP) activity, mineralized nodule formation, and the expression of osteogenic-related genes and proteins by BMSCs. Furthermore, the ability of bone repair and angiogenesis was evaluated in a critical size skull defect model in rats by using nanocarriers loaded with both DEX and QK (QK/DEX@chi-MSNs). The results of computed tomography (CT) scan, histological examination, and immunofluorescence staining indicated that QK/DEX@chi-MSNs can promote bone formation and angiogenesis in vivo, which has broad application prospects in bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiawen He
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, People's Republic of China
| | | |
Collapse
|