1
|
Cho SM, Young Kim RJ, Park JM, Chung HM, Kim DY. Trueness, physical properties, and surface characteristics of additive-manufactured zirconia crown. J Mech Behav Biomed Mater 2024; 154:106536. [PMID: 38579394 DOI: 10.1016/j.jmbbm.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study aimed to conduct a comparison of trueness and physical and surface properties among five distinct types of additive manufactured (AM) zirconia crowns and zirconia crowns produced using the subtractive manufacturing (SM). MATERIAL AND METHODS Zirconia crowns were fabricated using five distinct techniques, each varying in the method of slurry transfer and photocuring source. Each experimental group utilized either one of the four digital light processing (DLP)-based techniques (DLP spreading, DLP spreading gradation, DLP vat and DLP circular spreading) or the stereolithography (SLA)-based technique (SLA spreading). The control (CON) group employed SM. To assess accuracy, trueness was measured between the scan and reference data. To analyze the physical properties, voids were examined using high-energy spiral micro-computed tomography scans, and the crystal structure analysis was performed using X-ray diffraction (XRD). Surface roughness was assessed through laser scanning microscopy. RESULTS Differences in the trueness of internal surfaces of crowns were found among the groups (P < 0.05). Trueness varied across the measurement surfaces (occlusal, lateral, and marginal) in all the groups except for the DLP spreading gradation group (P < 0.05). Voids were observed in all AM groups. All groups showed similar XRD patterns. All AM groups showed significantly greater surface roughness compared to the CON group (P < 0.001). CONCLUSION The AM zirconia crowns showed bubbles and a rougher surface compared to the SM crowns. All groups exhibited typical zirconia traits and trueness levels within clinically acceptable limits, suggesting that current zirconia AM techniques could be suitable for dental applications.
Collapse
Affiliation(s)
- Su-Min Cho
- Dental Research Institute, Seoul National University School of Dentistry, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| | - Ryan Jin Young Kim
- Dental Research Institute, Seoul National University School of Dentistry, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| | - Ji-Man Park
- Department of Prosthodontics & Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| | - Hye-Min Chung
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Deok-Yeong Kim
- Dental Research Institute, Seoul National University School of Dentistry, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Cameron AB, Choi JJE, Ip A, Lyons N, Yaparathna N, Dehaghani AE, Feih S. Assessment of the trueness of additively manufactured mol3% zirconia crowns at different printing orientations with an industrial and desktop 3D printer compared to subtractive manufacturing. J Dent 2024; 144:104942. [PMID: 38494044 DOI: 10.1016/j.jdent.2024.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVES This study endeavours to investigate the effect of printing orientation on the trueness of additively manufactured molar zirconia crowns. The areal surface roughness and the characteristics of the marginal regions of the crowns were also considered. METHODS Twelve molar crowns were manufactured at 0°, 45°, and, 90° printing orientations in a Lithoz and AON zirconia printer, respectively. Twelve milled crowns were used as a comparison. Samples were scanned and analysed in metrology software to determine the trueness of the groups. Regions of interest were defined as the margins, intaglio surface and contact points. Areal surface roughness and print layer thickness were further analysed using a confocal laser scanning microscope. RESULTS The results indicate that there are clear differences between the investigated desktop (AON) and industrial (Lithoz) 3D printer. The 45° Lithoz group is the only sample group showing no significantly different results in trueness for all regions analysed compared to the milled group. Areal surface roughness analysis indicates that the print layers in the marginal regions are within clinically tolerable limits and surface characteristics. CONCLUSIONS The printing orientation for zirconia crowns is critical to trueness, and differences are evident between different AM apparatuses. Considerations for design and orientation between different apparatuses should therefore be considered when utilising direct additive manufacturing processes. The areal surface roughness of the marginal regions is within acceptable clinical limits for all manufacturing processes and print orientations considered. CLINICAL SIGNIFICANCE The materials and apparatuses for additive manufacturing of zirconia crowns are now clinically acceptable from the perspective of the trueness of a final crown for critical functional surfaces and areal surface roughness of the marginal regions.
Collapse
Affiliation(s)
- Andrew B Cameron
- School of Medicine and Dentistry, Griffith University, Southport, Queensland, 4222, Australia; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia.
| | - Joanne Jung Eun Choi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | - Nathan Lyons
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia; Queensland College of Art, Griffith University, Southport, Queensland, 4222, Australia
| | - Navodika Yaparathna
- School of Medicine and Dentistry, Griffith University, Southport, Queensland, 4222, Australia
| | - Ali Ebrahimzadeh Dehaghani
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Stefanie Feih
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia; School of Engineering and Built Environment, Griffith University, Southport, Queensland, 4222, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
3
|
Gunel A, Guncu MB, Uzel SM, Aktas G, Arikan H, Reiss N, Turkyilmaz I. Analysis of the impact of various finish line designs and occlusal morphologies on the accuracy of digital impressions. J Dent Sci 2023. [DOI: 10.1016/j.jds.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
4
|
Abualsaud R, Abussaud M, Assudmi Y, Aljoaib G, Khaled A, Alalawi H, Akhtar S, Matin A, Gad MM. Physiomechanical and Surface Characteristics of 3D-Printed Zirconia: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6988. [PMID: 36234329 PMCID: PMC9572578 DOI: 10.3390/ma15196988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study is to examine the physiomechanical and surface properties of 3D-printed zirconia in comparison to milled zirconia. A total of 80 disc-shaped (14 × 1.5 ± 0.2 mm) specimens (20 milled and 60 3D-printed (at three different orientations; horizontal, vertical, and tilted)) were manufactured from 3-mol% yttria-stabilized tetragonal zirconia. Five specimens per group were evaluated for crystalline phase, grain size, density, porosity, surface roughness, wettability, microhardness, and SEM analysis of the surface. Biaxial flexural strength (BFS) was measured (n = 15) followed by Weibull analysis and SEM of fractured surfaces. Statistical analysis was performed using one-way ANOVA and Tukey’s post hoc test at α = 0.05. All groups showed a predominant tetragonal phase, with a 450 nm average grain size. There was no significant difference between groups with regards to density, porosity, and microhardness (p > 0.05). The tilted group had the highest surface roughness (0.688 ± 0.080 µm), significantly different from the milled (p = 0.012). The horizontal group presented the highest contact angle (89.11 ± 5.22°), significantly different from the milled and tilted (p > 0.05). The BFS of the milled group (1507.27 ± 340.10 MPa) was significantly higher than all other groups (p < 0.01), while vertical and tilted had a similar BFS that was significantly lower than horizontal (p < 0.005). The highest and lowest Weibull modulus were seen with tilted and milled, respectively. Physical properties of all groups were comparable. The surface roughness of the tilted group was higher than milled. The horizontal group had the highest hydrophobicity. Printing orientations influenced the flexural strength of 3D-printed zirconia. Clinical implications: This study demonstrates how the printing orientation affects the physiomechanical characteristics of printed zirconia.
Collapse
Affiliation(s)
- Reem Abualsaud
- Substitutive Dental Sciences Department, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maissan Abussaud
- Intern, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Yara Assudmi
- Intern, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ghadah Aljoaib
- Intern, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abrar Khaled
- Intern, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Haidar Alalawi
- Substitutive Dental Sciences Department, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Asif Matin
- IRC Membranes & Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammed M. Gad
- Substitutive Dental Sciences Department, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|