1
|
Toru Asahina A, Lu J, Chugh P, Sharma S, Sharma P, Tan S, Kovoor J, Stretton B, Gupta A, Sorby-Adams A, Goh R, Harroud A, Clarke MA, Evangelou N, Patel S, Dwyer A, Agzarian M, Bacchi S, Slee M. Prognostic significance of paramagnetic rim lesions in multiple sclerosis: A systematic review. J Clin Neurosci 2024; 129:110810. [PMID: 39232367 DOI: 10.1016/j.jocn.2024.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
The diagnostic potential of paramagnetic rim lesions (PRLs) has been previously established; however, the prognostic significance of these lesions has not previously been consistently described. This study aimed to establish the prognostic role of PRLs in MS with respect to the Expanded Disability Status Scale (EDSS) and rates of disability progression. Databases of PubMed, EMBASE, Scopus and reference lists of selected articles were searched up to 29/04/2023. The review was conducted in accordance with PRISMA guidelines and was registered prospectively on PROSPERO (CRD42023422052). 7 studies were included in the final review. All of the eligible studies found that patients with PRLs tend to have higher baseline EDSS scores. Longitudinal assessments revealed greater EDSS progression in patients with PRLs over time in most studies. However, the effect of location of PRLs within the central nervous system were not assessed across the studies. Only one study investigated progression independent of relapse activity (PIRA) and showed that this clinical entity occurred in a greater proportion in patients with PRLs. This review supports PRLs as a predictor of EDSS progression. This measure has widespread applicability, however further multicentre studies are needed. Future research should explore the impact of PRLs on silent disability, PIRA, take into account different MS phenotypes and the topography of PRLs in prognosis.
Collapse
Affiliation(s)
- Adon Toru Asahina
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia.
| | - Joe Lu
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Pooja Chugh
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Srishti Sharma
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Prakriti Sharma
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| | - Sheryn Tan
- University of Adelaide, Adelaide, SA 5005, Australia
| | - Joshua Kovoor
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Brandon Stretton
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Aashray Gupta
- University of Adelaide, Adelaide, SA 5005, Australia; Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Annabel Sorby-Adams
- University of Adelaide, Adelaide, SA 5005, Australia; Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02138, USA
| | - Rudy Goh
- University of Adelaide, Adelaide, SA 5005, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Lyell McEwin Hospital, Elizabeth Vale, SA 5112, Australia
| | - Adil Harroud
- McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Margareta A Clarke
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikos Evangelou
- Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sandy Patel
- South Australia Medical Imaging, Adelaide, SA 5000, Australia
| | - Andrew Dwyer
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Marc Agzarian
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; South Australia Medical Imaging, Adelaide, SA 5000, Australia
| | - Stephen Bacchi
- Flinders Medical Centre, Bedford Park, SA 5042, Australia; College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia; Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02138, USA
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, SA 5042, Australia
| |
Collapse
|
2
|
Praet J, Anderhalten L, Comi G, Horakova D, Ziemssen T, Vermersch P, Lukas C, van Leemput K, Steppe M, Aguilera C, Kadas EM, Bertrand A, van Rampelbergh J, de Boer E, Zingler V, Smeets D, Ribbens A, Paul F. A future of AI-driven personalized care for people with multiple sclerosis. Front Immunol 2024; 15:1446748. [PMID: 39224590 PMCID: PMC11366570 DOI: 10.3389/fimmu.2024.1446748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sclerosis (MS) is a devastating immune-mediated disorder of the central nervous system resulting in progressive disability accumulation. As there is no cure available yet for MS, the primary therapeutic objective is to reduce relapses and to slow down disability progression as early as possible during the disease to maintain and/or improve health-related quality of life. However, optimizing treatment for people with MS (pwMS) is complex and challenging due to the many factors involved and in particular, the high degree of clinical and sub-clinical heterogeneity in disease progression among pwMS. In this paper, we discuss these many different challenges complicating treatment optimization for pwMS as well as how a shift towards a more pro-active, data-driven and personalized medicine approach could potentially improve patient outcomes for pwMS. We describe how the 'Clinical Impact through AI-assisted MS Care' (CLAIMS) project serves as a recent example of how to realize such a shift towards personalized treatment optimization for pwMS through the development of a platform that offers a holistic view of all relevant patient data and biomarkers, and then using this data to enable AI-supported prognostic modelling.
Collapse
Affiliation(s)
| | - Lina Anderhalten
- Experimental and Clinical Research Center (ECRC), A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giancarlo Comi
- Department of Neurorehabilitative Sciences, Casa di Cura Igea, Italy
- Department of Neurology, Vita-Salute San Raffaele University-Ospedale San Raffaele, Milan, Italy
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Patrick Vermersch
- Univ. Lille, InsermU1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Koen van Leemput
- Athinoula A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | | | | | | | | | | | - Erik de Boer
- Bristol-Myers Squibb Company Corp, Princeton, NJ, United States
| | - Vera Zingler
- F. Hoffmann-La Roche Ltd., Product Development Medical Affairs, Neuroscience, Basel, Switzerland
| | | | | | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Reeves JA, Mohebbi M, Wicks T, Salman F, Bartnik A, Jakimovski D, Bergsland N, Schweser F, Weinstock-Guttman B, Dwyer MG, Zivadinov R. Paramagnetic rim lesions predict greater long-term relapse rates and clinical progression over 10 years. Mult Scler 2024; 30:535-545. [PMID: 38366920 PMCID: PMC11009059 DOI: 10.1177/13524585241229956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) have been linked to higher clinical disease severity and relapse frequency. However, it remains unclear whether PRLs predict future, long-term disease progression. OBJECTIVES The study aimed to assess whether baseline PRLs were associated with subsequent long-term (10 years) Expanded Disability Status Scale (EDSS) increase and relapse frequency and, if so, whether PRL-associated EDSS increase was mediated by relapse. METHODS This retrospective analysis included 172 people with multiple sclerosis (pwMS) with 1868 yearly clinical visits over a mean follow-up time of 10.2 years. 3T magnetic resonance imaging (MRI) was acquired at baseline and PRLs were assessed on quantitative susceptibility mapping (QSM) images. The associations between PRLs, relapse, and rate of EDSS change were assessed using linear models. RESULTS PRL+ pwMS had greater overall annual relapse rate (β = 0.068; p = 0.010), three times greater overall odds of relapse (exp(β) = 3.472; p = 0.009), and greater rate of yearly EDSS change (β = 0.045; p = 0.010) than PRL- pwMS. Greater PRL number was associated with greater odds of at least one progression independent of relapse activity (PIRA) episode over follow-up (exp(β) = 1.171, p = 0.009). Mediation analysis showed that the association between PRL presence (yes/no) and EDSS increase was 96.7% independent of relapse number. CONCLUSION PRLs are a marker of aggressive ongoing disease inflammatory activity, including more frequent future clinical relapses and greater long-term, relapse-independent disability progression.
Collapse
Affiliation(s)
- Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Maryam Mohebbi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Taylor Wicks
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander Bartnik
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Kauppinen RA. Editorial for "Evaluation of the Blood Brain Barrier, Demyelination, and Neurodegeneration of Paramagnetic Rim Lesions in Multiple Sclerosis on 7 Tesla MRI". J Magn Reson Imaging 2024; 59:952-953. [PMID: 37249089 DOI: 10.1002/jmri.28791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Risto A Kauppinen
- Department of Electric and Electronic Engineering, Faculty of Engineering, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Sacco S, Virupakshaiah A, Papinutto N, Schoeps VA, Akula A, Zhao H, Arona J, Stern WA, Chong J, Hart J, Zamvil SS, Sati P, Henry RG, Waubant E. Susceptibility-based imaging aids accurate distinction of pediatric-onset MS from myelin oligodendrocyte glycoprotein antibody-associated disease. Mult Scler 2023; 29:1736-1747. [PMID: 37897254 PMCID: PMC10687802 DOI: 10.1177/13524585231204414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) and pediatric-onset multiple sclerosis (POMS) share clinical and magnetic resonance imaging (MRI) features but differ in prognosis and management. Early POMS diagnosis is essential to avoid disability accumulation. Central vein sign (CVS), paramagnetic rim lesions (PRLs), and central core lesions (CCLs) are susceptibility-based imaging (SbI)-related signs understudied in pediatric populations that may help discerning POMS from MOGAD. METHODS T2-FLAIR and SbI (three-dimensional echoplanar imaging (3D-EPI)/susceptibility-weighted imaging (SWI) or similar) were acquired on 1.5T/3T scanners. Two readers assessed CVS-positive rate (%CVS+), and their average score was used to build a receiver operator curve (ROC) assessing the ability to discriminate disease type. PRLs and CCLs were identified using a consensual approach. RESULTS The %CVS+ distinguished 26 POMS cases (mean age 13.7 years, 63% females, median EDSS 1.5) from 14 MOGAD cases (10.8 years, 35% females, EDSS 1.0) with ROC = 1, p < 0.0001, (cutoff 41%). PRLs were only detectable in POMS participants (mean 2.1±2.3, range 1-10), discriminating the two conditions with a sensitivity of 69% and a specificity of 100%. CCLs were more sensitive (81%) but less specific (71.43%). CONCLUSION The %CVS+ and PRLs are highly specific markers of POMS. After proper validation on larger multicenter cohorts, consideration should be given to including such imaging markers for diagnosing POMS at disease onset.
Collapse
Affiliation(s)
- Simone Sacco
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Akash Virupakshaiah
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nico Papinutto
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Vinicius A Schoeps
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amit Akula
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Haojun Zhao
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Arona
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - William A Stern
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Janet Chong
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Janace Hart
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Scott S Zamvil
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Emmanuelle Waubant
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Margoni M, Preziosa P, Storelli L, Gueye M, Moiola L, Filippi M, Rocca MA. Paramagnetic rim and core sign lesions in paediatric multiple sclerosis patients. J Neurol Neurosurg Psychiatry 2023; 94:873-876. [PMID: 36990675 DOI: 10.1136/jnnp-2022-331027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Mor Gueye
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
7
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
8
|
Hemond CC, Baek J, Ionete C, Reich DS. Paramagnetic rim lesions are associated with pathogenic CSF profiles and worse clinical status in multiple sclerosis: A retrospective cross-sectional study. Mult Scler 2022; 28:2046-2056. [PMID: 35748669 PMCID: PMC9588517 DOI: 10.1177/13524585221102921] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Paramagnetic rims have been observed as a feature of some multiple sclerosis (MS) lesions on susceptibility-sensitive magnetic resonance imaging (MRI) and indicate compartmentalized inflammation. OBJECTIVE To investigate clinical, MRI, and intrathecal (cerebrospinal fluid, CSF) associations of paramagnetic rim lesions (PRLs) using 3T MRI in MS. METHODS This is a retrospective, cross-sectional analysis. All patients underwent 3T MRI using a T2*-weighted sequence with susceptibility postprocessing (susceptibility-weighted angiography (SWAN) protocol, GE). SWAN-derived filtered-phase maps and corresponding T2-FLAIR images were manually reviewed to determine PRL. Descriptive statistics, t-tests, and regression determined demographic, clinical, MRI, and CSF associations with PRL. RESULTS A total of 147 MS patients were included; 79 of whom had available CSF. Forty-three percent had at least one PRL. PRL status (presence/absence) did not vary by sex or Expanded Disability Status Scale (EDSS) but was associated with younger age, shorter disease duration, worse disease severity, high-efficacy therapy use, and poorer dexterity, as well as lower age-adjusted brain volumes and cognitive processing speeds. PRL status was moreover associated with blood-brain barrier disruption as determined by pathologically elevated albumin quotient. Sensitivity analyses remained supportive of these findings. CONCLUSION PRLs, an emerging noninvasive biomarker of chronic neuroinflammation, are confirmed to be associated with greater disease severity and newly shown to be preliminarily associated with blood-brain barrier disruption.
Collapse
Affiliation(s)
- Christopher C. Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Jonggyu Baek
- Department of Population and Quantitative Health, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Carolina Ionete
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Daniel S. Reich
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Krajnc N, Bsteh G, Kasprian G, Zrzavy T, Kornek B, Berger T, Leutmezer F, Rommer P, Lassmann H, Hametner S, Dal-Bianco A. Peripheral Hemolysis in Relation to Iron Rim Presence and Brain Volume in Multiple Sclerosis. Front Neurol 2022; 13:928582. [PMID: 35865643 PMCID: PMC9295598 DOI: 10.3389/fneur.2022.928582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Iron rim lesions (IRLs) represent chronic lesion activity and are associated with a more severe disease course in multiple sclerosis (MS). How the iron rims around the lesions arise in patients with MS (pwMS), and whether peripheral hemolysis may be a source of iron in rim associated macrophages, is unclear. Objective To determine a potential correlation between peripheral hemolysis parameters and IRL presence in pwMS. Methods This retrospective study included pwMS, who underwent a 3T brain MRI between 2015 and 2020 and had a blood sample drawn at ± 2 weeks. Patients with vertigo served as a control group. Results We analyzed 75 pwMS (mean age 37.0 years [SD 9.0], 53.3% female) and 43 controls (mean age 38.3 years [SD 9.8], 51.2% female). Median number of IRLs was 1 (IQR 4), 28 (37.3%) pwMS had no IRLs. IRL patients showed significantly higher Expanded Disability Status Scale (EDSS) compared to non-IRL patients (median EDSS 2.3 [IQR 2.9] vs. 1.3 [IQR 2.9], p = 0.017). Number of IRLs correlated significantly with disease duration (rs = 0.239, p = 0.039), EDSS (rs = 0.387, p < 0.001) and Multiple Sclerosis Severity Scale (MSSS) (rs = 0.289, p = 0.014). There was no significant difference in hemolysis parameters between non-IRL, IRL patients (regardless of gender and/or disease type) and controls, nor between hemolysis parameters and the number of IRLs. Total brain volume was associated with fibrinogen (β= −0.34, 95% CI −1.32 to −0.145, p = 0.016), and absolute cortical and total gray matter volumes were associated with hemoglobin (β = 0.34, 95% CI 3.39–24.68, p = 0.011; β = 0.33, 95% CI 3.29–28.95, p = 0.015; respectively). Conclusion Our data do not suggest an association between hemolysis parameters and IRL presence despite a significant association between these parameters and markers for neurodegeneration.
Collapse
Affiliation(s)
- Nik Krajnc
- Medical University of Vienna, Department of Neurology, Vienna, Austria
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gabriel Bsteh
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Gregor Kasprian
- Medical University of Vienna, Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Tobias Zrzavy
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Barbara Kornek
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Thomas Berger
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Fritz Leutmezer
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Paulus Rommer
- Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Assunta Dal-Bianco
- Medical University of Vienna, Department of Neurology, Vienna, Austria
- *Correspondence: Assunta Dal-Bianco
| |
Collapse
|
10
|
Wu J, Luo X, Huang N, Li Y, Luo Y. Misdiagnosis of HIV With Toxoplasmosis Encephalopathy With Progressive Memory Loss as the Initial Symptom: A Case Report. Front Neurol 2022; 13:809811. [PMID: 35370876 PMCID: PMC8964960 DOI: 10.3389/fneur.2022.809811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Toxoplasmosis encephalopathy (TE) is a kind of encephalopathy parasitic disease caused by Toxoplasma gondii. It is the most common opportunistic for central system infection in patients with acquired immunodeficiency syndrome (AIDS) or human immunodeficiency virus. Without early diagnosis and proper treatment, this opportunistic infection can be life-threatening. The common clinical manifestations of the disease include altered mental state, epilepsy, cranial nerve damage, paresthesia, cerebellar signs, meningitis, motor disorders, and neuropsychiatry. The most common presentation in about 75% of cases is a subacute episode of focal neurological abnormalities such as hemiplegia, personality changes, or aphasia. Imaging needs to be differentiated from multiple sclerosis, lymphoma, and metastases. We report a case of acquired immune deficiency syndrome complicated with toxoplasma encephalopathy with rapid progressive memory loss as the initial symptom and misdiagnosed as multiple sclerosis. Through the comprehensive analysis of the clinical symptoms and imaging examination of this disease, we hope to enhance the confidence of clinicians in the diagnosis of this disease.
Collapse
Affiliation(s)
- Jingjing Wu
- Medical College of Soochow University, Suzhou, China.,Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Xiumei Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Yuanyuan Li
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| |
Collapse
|
11
|
Caruana G, Auger C, Pessini LM, Calderon W, de Barros A, Salerno A, Sastre-Garriga J, Montalban X, Rovira À. SWI as an Alternative to Contrast-Enhanced Imaging to Detect Acute MS Lesions. AJNR Am J Neuroradiol 2022; 43:534-539. [PMID: 35332015 PMCID: PMC8993188 DOI: 10.3174/ajnr.a7474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Acute inflammatory activity of MS lesions is traditionally assessed through contrast-enhanced T1-weighted MR images. The aim of our study was to determine whether a qualitative evaluation of non-contrast-enhanced SWI of new T2-hyperintense lesions might help distinguish acute and chronic lesions and whether it could be considered a possible alternative to gadolinium-based contrast agents for this purpose. MATERIALS AND METHODS Serial MR imaging studies from 55 patients with MS were reviewed to identify 169 new T2-hyperintense lesions. Two blinded neuroradiologists determined their signal pattern on SWI, considering 5 categories (hypointense rings, marked hypointensity, mild hypointensity, iso-/hyperintensity, indeterminate). Two different blinded neuroradiologists evaluated the presence or absence of enhancement in postcontrast T1-weighted images of the lesions. The Fisher exact test was used to determine whether each category of signal intensity on SWI was associated with gadolinium enhancement. RESULTS The presence of hypointense rings or marked hypointensity showed a strong association with the absence of gadolinium enhancement (P < .001), with a sensitivity of 93.0% and a specificity of 82.9%. The presence of mild hypointensity or isohyperintensity showed a strong association with the presence of gadolinium enhancement (P < .001), with a sensitivity of 68.3% and a specificity of 99.2%. CONCLUSIONS A qualitative analysis of the signal pattern on SWI of new T2-hyperintense MS lesions allows determining the likelihood that the lesions will enhance after administration of a gadolinium contrast agent, with high specificity albeit with a moderate sensitivity. While it cannot substitute for the use of contrast agent, it can be useful in some clinical settings in which the contrast agent cannot be administered.
Collapse
Affiliation(s)
- G Caruana
- From the Neuroradiology Section (G.C., C.A., L.M.P., W.C., A.d.B., A.S., À.R.)
| | - C Auger
- From the Neuroradiology Section (G.C., C.A., L.M.P., W.C., A.d.B., A.S., À.R.)
| | - L M Pessini
- From the Neuroradiology Section (G.C., C.A., L.M.P., W.C., A.d.B., A.S., À.R.)
| | - W Calderon
- From the Neuroradiology Section (G.C., C.A., L.M.P., W.C., A.d.B., A.S., À.R.)
| | - A de Barros
- From the Neuroradiology Section (G.C., C.A., L.M.P., W.C., A.d.B., A.S., À.R.)
| | - A Salerno
- From the Neuroradiology Section (G.C., C.A., L.M.P., W.C., A.d.B., A.S., À.R.)
| | - J Sastre-Garriga
- Department of Radiology, and Servei de Neurologia-Neuroimmunologia (J.S.-G., X.M.). Centre d'Esclerosi Múltiple de Catalunya, Institut de Recerca Vall d'Hebron, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - X Montalban
- Department of Radiology, and Servei de Neurologia-Neuroimmunologia (J.S.-G., X.M.). Centre d'Esclerosi Múltiple de Catalunya, Institut de Recerca Vall d'Hebron, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - À Rovira
- From the Neuroradiology Section (G.C., C.A., L.M.P., W.C., A.d.B., A.S., À.R.)
| |
Collapse
|
12
|
Disease correlates of rim lesions on quantitative susceptibility mapping in multiple sclerosis. Sci Rep 2022; 12:4411. [PMID: 35292734 PMCID: PMC8924224 DOI: 10.1038/s41598-022-08477-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Quantitative susceptibility mapping (QSM), an imaging technique sensitive to brain iron, has been used to detect paramagnetic rims of iron-laden active microglia and macrophages in a subset of multiple sclerosis (MS) lesions, known as rim+ lesions, that are consistent with chronic active lesions. Because of the potential impact of rim+ lesions on disease progression and tissue damage, investigating their influence on disability and neurodegeneration is critical to establish the impact of these lesions on the disease course. This study aimed to explore the relationship between chronic active rim+ lesions, identified as having a hyperintense rim on QSM, and both clinical disability and imaging measures of neurodegeneration in patients with MS. The patient cohort was composed of 159 relapsing-remitting multiple sclerosis patients. The Expanded Disability Status Scale (EDSS) and Brief International Cognitive Assessment for Multiple Sclerosis, which includes both the Symbol Digit Modalities Test and California Verbal Learning Test-II, were used to assess clinical disability. Cortical thickness and thalamic volume were evaluated as imaging measures of neurodegeneration. A total of 4469 MS lesions were identified, of which 171 QSM rim+ (3.8%) lesions were identified among 57 patients (35.8%). In a multivariate regression model, as the overall total lesion burden increased, patients with at least one rim+ lesion on QSM performed worse on both physical disability and cognitive assessments, specifically the Symbol Digit Modalities Test (p = 0.010), California Verbal Learning Test-II (p = 0.030), and EDSS (p = 0.001). In a separate univariate regression model, controlling for age (p < 0.001) and having at least one rim+ lesion was related to more cortical thinning (p = 0.03) in younger patients (< 45 years). Lower thalamic volume was associated with older patients (p = 0.038) and larger total lesion burden (p < 0.001); however, the association did not remain significant with rim+ lesions (p = 0.10). Our findings demonstrate a novel observation that chronic active lesions, as identified on QSM, modify the impact of lesion burden on clinical disability in MS patients. These results support further exploration of rim+ lesions for therapeutic targeting in MS to reduce disability and subsequent neurodegeneration.
Collapse
|
13
|
Predictive MRI Biomarkers in MS—A Critical Review. Medicina (B Aires) 2022; 58:medicina58030377. [PMID: 35334554 PMCID: PMC8949449 DOI: 10.3390/medicina58030377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: In this critical review, we explore the potential use of MRI measurements as prognostic biomarkers in multiple sclerosis (MS) patients, for both conventional measurements and more novel techniques such as magnetization transfer, diffusion tensor, and proton spectroscopy MRI. Materials and Methods: All authors individually and comprehensively reviewed each of the aspects listed below in PubMed, Medline, and Google Scholar. Results: There are numerous MRI metrics that have been proven by clinical studies to hold important prognostic value for MS patients, most of which can be readily obtained from standard 1.5T MRI scans. Conclusions: While some of these parameters have passed the test of time and seem to be associated with a reliable predictive power, some are still better interpreted with caution. We hope this will serve as a reminder of how vast a resource we have on our hands in this versatile tool—it is up to us to make use of it.
Collapse
|
14
|
Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, Rocca MA. Slowly Expanding Lesions Predict 9-Year Multiple Sclerosis Disease Progression. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1139. [PMID: 35105685 PMCID: PMC8808355 DOI: 10.1212/nxi.0000000000001139] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022]
Abstract
Background and Objectives Chronic active lesions contribute to multiple sclerosis (MS) severity, but their association with long-term disease progression has not been evaluated yet. White matter (WM) lesions showing linear expansion over time on serial T1- and T2-weighted scans (i.e., slowly expanding lesions [SELs]) have been proposed as a marker of chronic inflammation. In this study, we assessed whether SEL burden and microstructural abnormalities were associated with Expanded Disability Status Scale (EDSS) score worsening and secondary progressive (SP) conversion at 9.1-year follow-up in patients with relapsing-remitting (RR) MS. Methods In 52 patients with RRMS, SELs were identified among WM lesions by linearly fitting the Jacobian of the nonlinear deformation field between time points obtained combining 3T brain T1- and T2-weighted scans acquired at baseline and months 6, 12, and 24. Logistic regression analysis was applied to investigate the associations of SEL number, volume, magnetization transfer ratio (MTR), and T1-weighted signal intensity with disability worsening (i.e., EDSS score increase) and SP conversion after a median follow-up of 9.1 years. Results At follow-up, 20/52 (38%) patients with MS showed EDSS score worsening; 13/52 (25%) showed SP conversion. A higher baseline EDSS score (for each point higher: OR = 3.15 [95% CI = 1.61; 8.38], p = 0.003), a higher proportion of SELs among baseline lesions (for each % increase: OR = 1.22 [1.04; 1.58], p = 0.04), and lower baseline MTR values of SELs (for each % higher: OR = 0.66 [0.41; 0.92], p = 0.033) were significant independent predictors of EDSS score worsening at follow-up (C-index = 0.892). A higher baseline EDSS score (for each point higher: OR = 6.37 [1.98; 20.53], p = 0.002) and lower baseline MTR values of SELs (for each % higher: OR = 0.48 [0.25; 0.89], p = 0.02) independently predicted SPMS conversion (C-index = 0.947). Discussion The proportion of SELs is associated with MS progression after 9 years. More severe SEL microstructural abnormalities independently predict EDSS score worsening and SPMS conversion. The quantification of SEL burden and damage using T1-, T2-weighted, and MTR sequences may identify patients with RRMS at a higher risk of long-term disability progression and SPMS conversion. Classification of Evidence This study provides Class III evidence that in patients with RRMS starting treatment with natalizumab or fingolimod, the proportion of SELs on brain MRI was associated with EDSS score worsening and SPMS conversion at 9-year follow-up.
Collapse
Affiliation(s)
- Paolo Preziosa
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Lucia Moiola
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Mariaemma Rodegher
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (P.P., E.P., A.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (P.P., L.M., M.R., M.F., M.A.R.); Neurorehabilitation Unit (M.F.); Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F., M.A.R.); Milan, Italy.
| |
Collapse
|
15
|
Dal-Bianco A, Schranzer R, Grabner G, Lanzinger M, Kolbrink S, Pusswald G, Altmann P, Ponleitner M, Weber M, Kornek B, Zebenholzer K, Schmied C, Berger T, Lassmann H, Trattnig S, Hametner S, Leutmezer F, Rommer P. Iron Rims in Patients With Multiple Sclerosis as Neurodegenerative Marker? A 7-Tesla Magnetic Resonance Study. Front Neurol 2022; 12:632749. [PMID: 34992573 PMCID: PMC8724313 DOI: 10.3389/fneur.2021.632749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system, characterized by inflammatory-driven demyelination. Symptoms in MS manifest as both physical and neuropsychological deficits. With time, inflammation is accompanied by neurodegeneration, indicated by brain volume loss on an MRI. Here, we combined clinical, imaging, and serum biomarkers in patients with iron rim lesions (IRLs), which lead to severe tissue destruction and thus contribute to the accumulation of clinical disability. Objectives: Subcortical atrophy and ventricular enlargement using an automatic segmentation pipeline for 7 Tesla (T) MRI, serum neurofilament light chain (sNfL) levels, and neuropsychological performance in patients with MS with IRLs and non-IRLs were assessed. Methods: In total 29 patients with MS [15 women, 24 relapsing-remitting multiple sclerosis (RRMS), and five secondary-progressive multiple sclerosis (SPMS)] aged 38 (22–69) years with an Expanded Disability Status Score of 2 (0–8) and a disease duration of 11 (5–40) years underwent neurological and neuropsychological examinations. Volumes of lesions, subcortical structures, and lateral ventricles on 7-T MRI (SWI, FLAIR, and MP2RAGE, 3D Segmentation Software) and sNfL concentrations using the Simoa SR-X Analyzer in IRL and non-IRL patients were assessed. Results: (1) Iron rim lesions patients had a higher FLAIR lesion count (p = 0.047). Patients with higher MP2Rage lesion volume exhibited more IRLs (p <0.014) and showed poorer performance in the information processing speed tested within 1 year using the Symbol Digit Modalities Test (SDMT) (p <0.047). (2) Within 3 years, patients showed atrophy of the thalamus (p = 0.021) and putamen (p = 0.043) and enlargement of the lateral ventricles (p = 0.012). At baseline and after 3 years, thalamic volumes were lower in IRLs than in non-IRL patients (p = 0.045). (3) At baseline, IRL patients had higher sNfL concentrations (p = 0.028). Higher sNfL concentrations were associated with poorer SDMT (p = 0.004), regardless of IRL presence. (4) IRL and non-IRL patients showed no significant difference in the neuropsychological performance within 1 year. Conclusions: Compared with non-IRL patients, IRL patients had higher FLAIR lesion counts, smaller thalamic volumes, and higher sNfL concentrations. Our pilot study combines IRL and sNfL, two biomarkers considered indicative for neurodegenerative processes. Our preliminary data underscore the reported destructive nature of IRLs.
Collapse
Affiliation(s)
| | - R Schranzer
- Department of Neurology, Vienna, Austria.,Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | - G Grabner
- Department of Neurology, Vienna, Austria.,Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | | | - S Kolbrink
- Department of Neurology, Vienna, Austria
| | - G Pusswald
- Department of Neurology, Vienna, Austria
| | - P Altmann
- Department of Neurology, Vienna, Austria
| | | | - M Weber
- Department of Biomedical Imaging and Image-Guided Therapy, High Field Magnetic Resonance Centre, Vienna, Austria
| | - B Kornek
- Department of Neurology, Vienna, Austria
| | | | - C Schmied
- Department of Neurology, Vienna, Austria
| | - T Berger
- Department of Neurology, Vienna, Austria
| | - H Lassmann
- Department of Neuroimmunology, Center for Brain Research, Vienna, Austria
| | - S Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High Field Magnetic Resonance Centre, Vienna, Austria
| | - S Hametner
- Department of Neurology, Vienna, Austria.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - P Rommer
- Department of Neurology, Vienna, Austria
| |
Collapse
|
16
|
Nylund M, Sucksdorff M, Matilainen M, Polvinen E, Tuisku J, Airas L. Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Commun 2022; 4:fcab301. [PMID: 34993478 PMCID: PMC8727984 DOI: 10.1093/braincomms/fcab301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic active lesions are promotors of neurodegeneration and disease progression in multiple sclerosis. They harbour a dense rim of activated innate immune cells at the lesion edge, which promotes lesion growth and thereby induces damage. Conventional MRI is of limited help in identifying the chronic active lesions, so alternative imaging modalities are needed. Objectives were to develop a PET-based automated analysis method for phenotyping of chronic lesions based on lesion-associated innate immune cell activation and to comprehensively evaluate the prevalence of these lesions in the various clinical subtypes of multiple sclerosis, and their association with disability. In this work, we use 18 kDa translocator protein-PET imaging for phenotyping chronic multiple sclerosis lesions at a large scale. For this, we identified 1510 white matter T1-hypointense lesions from 91 multiple sclerosis patients (67 relapsing–remitting patients and 24 secondary progressive patients). Innate immune cell activation at the lesion rim was measured using PET imaging and the 18 kDa translocator protein-binding radioligand 11C-PK11195. A T1-hypointense lesion was classified as rim-active if the distribution volume ratio of 11C-PK11195-binding was low in the plaque core and considerably higher at the plaque edge. If no significant ligand binding was observed, the lesion was classified as inactive. Plaques that had considerable ligand binding both in the core and at the rim were classified as overall-active. Conventional MRI and disability assessment using the Expanded Disability Status Scale were performed at the time of PET imaging. In the secondary progressive cohort, an average of 19% (median, interquartile range: 11–26) of T1 lesions were rim-active in each individual patient, compared to 10% (interquartile range: 0–20) among relapsing–remitting patients (P = 0.009). Secondary progressive patients had a median of 3 (range: 0–11) rim-active lesions, versus 1 (range: 0–18) among relapsing–remitting patients (P = 0.029). Among those patients who had rim-active lesions (n = 63), the average number of active voxels at the rim was higher among secondary progressive compared to relapsing–remitting patients (median 158 versus 74; P = 0.022). The number of active voxels at the rim correlated significantly with the Expanded Disability Status Scale (R = 0.43, P < 0.001), and the volume of the rim-active lesions similarly correlated with the Expanded Disability Status Scale (R = 0.45, P < 0.001). Our study is the first to report in vivo phenotyping of chronic lesions at large scale, based on 18 kDa translocator protein-PET. Patients with higher disability displayed a higher proportion of rim-active lesions. The in vivo lesion phenotyping methodology offers a new tool for individual assessment of smouldering (rim-active) lesion burden.
Collapse
Affiliation(s)
- Marjo Nylund
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eero Polvinen
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | | | - Laura Airas
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
17
|
Ng Kee Kwong KC, Mollison D, Meijboom R, York EN, Kampaite A, Martin SJ, Hunt DPJ, Thrippleton MJ, Chandran S, Waldman AD. Rim lesions are demonstrated in early relapsing-remitting multiple sclerosis using 3 T-based susceptibility-weighted imaging in a multi-institutional setting. Neuroradiology 2022; 64:109-117. [PMID: 34664112 PMCID: PMC8724059 DOI: 10.1007/s00234-021-02768-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Rim lesions, characterised by a paramagnetic rim on susceptibility-based MRI, have been suggested to reflect chronic inflammatory demyelination in multiple sclerosis (MS) patients. Here, we assess, through susceptibility-weighted imaging (SWI), the prevalence, longitudinal volume evolution and clinical associations of rim lesions in subjects with early relapsing-remitting MS (RRMS). METHODS Subjects (n = 44) with recently diagnosed RRMS underwent 3 T MRI at baseline (M0) and 1 year (M12) as part of a multi-centre study. SWI was acquired at M12 using a 3D segmented gradient-echo echo-planar imaging sequence. Rim lesions identified on SWI were manually segmented on FLAIR images at both time points for volumetric analysis. RESULTS Twelve subjects (27%) had at least one rim lesion at M12. A linear mixed-effects model, with 'subject' as a random factor, revealed mixed evidence for the difference in longitudinal volume change between rim lesions and non-rim lesions (p = 0.0350 and p = 0.0556 for subjects with and without rim lesions, respectively). All 25 rim lesions identified showed T1-weighted hypointense signal. Subjects with and without rim lesions did not differ significantly with respect to age, disease duration or clinical measures of disability (p > 0.05). CONCLUSION We demonstrate that rim lesions are detectable in early-stage RRMS on 3 T MRI across multiple centres, although their relationship to lesion enlargement is equivocal in this small cohort. Identification of SWI rims was subjective. Agreed criteria for defining rim lesions and their further validation as a biomarker of chronic inflammation are required for translation of SWI into routine MS clinical practice.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Daisy Mollison
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Elizabeth N. York
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Agniete Kampaite
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | | | - David P. J. Hunt
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | | |
Collapse
|
18
|
Pinto C, Cambron M, Dobai A, Vanheule E, Casselman JW. Smoldering lesions in MS: if you like it then you should put a rim on it. Neuroradiology 2021; 64:703-714. [PMID: 34498108 DOI: 10.1007/s00234-021-02800-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE In multiple sclerosis (MS), chronic active/smoldering white matter lesions presenting with hypointense rims on susceptibility-weighted imaging (SWI) of the brain have been recognized as an important radiological feature. The aim of this work was to study the prevalence of paramagnetic rim lesions (RLs) in MS patients in a clinical setting and to assess differences in demographic and clinical variables regarding the presence of RLs. METHODS All 3 T brain magnetic resonance (MR) studies performed in MS patients between July 2020 and January 2021 were reviewed. In all patients, RLs were assessed on three-dimensional (3D) SWI images and the T2 FLAIR lesion load volume was assessed. Demographic, laboratory (oligoclonal bands in CSF), and clinical data, including functional status with Expanded Disability Status Scale (EDSS), were retrieved from the clinical files. RESULTS Of the 192 patients, 113 (59%) presented with at least 1 RL. In the RL-positive group, the mean RL count was 4.81 ranging from 1 to 37. There was no significant difference in the number of RLs between the different types of MS (p = 0.858). Regarding the presence of RLs, there were no significant differences based on gender (p = 0.083), disease duration (p = 0.520), treatment regime (p = 0.326), EDSS score (p = 0.103), and the associated T2 FLAIR lesion load volume. CONCLUSION SWI RLs were frequently detected in our cohort regardless of the MS type, T2 FLAIR lesion load volume, demographic features, disease duration, or clinical score. Our results suggest that RLs are not associated with more severe forms of the disease. Today, RLs can be seen on 3 T 3D SWI, although this is not a clinical standard sequence yet. Therefore, it should be considered an additional helpful MR sequence in the diagnostic workup of MS, although more studies are warranted to establish the role of RLs as prognostic markers.
Collapse
Affiliation(s)
- Catarina Pinto
- Neuroradiology Department, Centro Hospitalar Universitário Do Porto, Porto, Portugal
- Department of Radiology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium
| | - Melissa Cambron
- Department of Neurology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium
| | - Adrienn Dobai
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, Budapest, 1088, Hungary
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa street 6, Budapest, 1083, Hungary
| | - Eva Vanheule
- Department of Radiology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium
- Department of Radiology, UZ-Gent, Gent, Belgium
| | - Jan W Casselman
- Department of Radiology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium.
- University Ghent, Gent, Belgium.
- Department of Radiology, AZ St. Augustinus, Oosterveldlaan 24, B-2610, Antwerpen, Belgium.
| |
Collapse
|
19
|
Absinta M, Dal-Bianco A. Slowly expanding lesions are a marker of progressive MS - Yes. Mult Scler 2021; 27:1679-1681. [PMID: 34474630 DOI: 10.1177/13524585211013748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Martina Absinta
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA/Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
20
|
AlTokhis AI, AlOtaibi AM, Felmban GA, Constantinescu CS, Evangelou N. Iron Rims as an Imaging Biomarker in MS: A Systematic Mapping Review. Diagnostics (Basel) 2020; 10:diagnostics10110968. [PMID: 33218056 PMCID: PMC7698946 DOI: 10.3390/diagnostics10110968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune, inflammatory, demyelinating and degenerative disease of the central nervous system (CNS). To date, there is no definitive imaging biomarker for diagnosing MS. The current diagnostic criteria are mainly based on clinical relapses supported by the presence of white matter lesions (WMLs) on MRI. However, misdiagnosis of MS is still a significant clinical problem. The paramagnetic, iron rims (IRs) around white matter lesions have been proposed to be an imaging biomarker in MS. This study aimed to carry out a systematic mapping review to explore the detection of iron rim lesions (IRLs), on clinical MR scans, and describe the characteristics of IRLs presence in MS versus other MS-mimic disorders. Methods: Publications from 2001 on IRs lesions were reviewed in three databases: PubMed, Web of Science and Embase. From the initial result set 718 publications, a final total of 38 papers were selected. Results: The study revealed an increasing interest in iron/paramagnetic rims lesions studies. IRs were more frequently found in periventricular regions and appear to be absent in MS-mimics. Conclusions IR is proposed as a promising imaging biomarker for MS.
Collapse
Affiliation(s)
- Amjad I. AlTokhis
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- Correspondence:
| | - Abdulmajeed M. AlOtaibi
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Applied Medical Sciences, King Saud bin Abdulaziz University, Riyadh 14611, Saudi Arabia
| | - Ghadah A. Felmban
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Applied Medical Sciences, King Saud bin Abdulaziz University, Riyadh 14611, Saudi Arabia
| | - Cris S. Constantinescu
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
| | - Nikos Evangelou
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
| |
Collapse
|