1
|
Zhao L, Ni B, Li J, Liu R, Zhang Q, Zheng Z, Yang W, Yu W, Bi L. Evaluation of the impact of customized serum-free culture medium on the production of clinical-grade human umbilical cord mesenchymal stem cells: insights for future clinical applications. Stem Cell Res Ther 2024; 15:327. [PMID: 39334391 PMCID: PMC11438183 DOI: 10.1186/s13287-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The selection of suitable culture medium is critical for achieving good clinical outcomes in cell therapy. To support the commercial application of stem cell therapy, customized culture media not only need to promote stem cell proliferation, but also need to save costs and meet industrial requirements for inter-batch consistency, efficacy, and biosafety. In this study, we developed a series of serum-free media (SFM) and elucidated the effects between different SFM, as well as between SFM and serum-containing meida (SCM), on human umbilical cord mesenchymal stem cells (hUC-MSCs) phenotype and function. We analyze and emphasize from the perspectives of clinical and commercial application why research on customized culture media is critical for the success of enterprises developing novel cellular therapeutics. METHODS We cultured hUC-MSCs with identical cell seeding densities in different formulations of SFM and SCM until passage 10 and examined the changes in cell phenotype and function. We analyzed the results with the commercial application requirments of the cellular therapy industry to assess the potential impact of customized culture media on inter-batch consistency, efficacy, stability, biosafety, and cost-effectiveness of industrial-scale cell production. RESULTS hUC-MSCs cultured in SCM and SFM exhibit consistent cell morphology and surface molecule expression, but hUC-MSCs cultured in SFM demonstrate higher activity, superior proliferative capacity, and greater stability. Furthermore, hUC-MSCs cultured in different SFM exhibit differences in cell activity, proliferative capacity, senescent rate, and S/M ratio of cell cycle, while maintaining a normal karyotype after long-term in vitro cultivation. Moreover, we found that hUC-MSCs cultured in different media exhibit variations in paracrine capacity and in their support of hematopoietic stem cell (HSC) self-renewal. CONCLUSION Considering the substantial funding and time required for cell-based drug development, our results underscore the importances of comprehensively optimizing the composition of medium for the specific disease prior to conducting clinical trials of cell-based therapies. The criteria for selecting culture medium should be based on the requirements of the target disease for cellular function. In addition, we provide a way to formulate different customized SFM, which is beneficial for the development of cell therapy industry.
Collapse
Affiliation(s)
- Lan Zhao
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Beibei Ni
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Jinqing Li
- Division of Hematology and Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Rui Liu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Qi Zhang
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Zhuangbin Zheng
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Wei Yu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| | - Lijun Bi
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
2
|
Zhang M, Zhao X, Li Y, Ye Q, Wu Y, Niu Q, Zhang Y, Fan G, Chen T, Xia J, Wu Q. Advances in serum-free media for CHO cells: From traditional serum substitutes to microbial-derived substances. Biotechnol J 2024; 19:e2400251. [PMID: 39031790 DOI: 10.1002/biot.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
The Chinese hamster ovary (CHO) cell is an epithelial-like cell that produces proteins with post-translational modifications similar to human glycosylation. It is widely used in the production of recombinant therapeutic proteins and monoclonal antibodies. Culturing CHO cells typically requires the addition of a certain proportion of fetal bovine serum (FBS) to maintain cell proliferation and passaging. However, serum is characterized by its complex composition, batch-to-batch variability, high cost, and potential risk of exogenous contaminants such as mycoplasma and viruses, which impact the purity and safety of the synthesized proteins. Therefore, search for serum alternatives and development of serum-free media for CHO-based protein biomanufacturing are of great significance. This review systematically summarizes the application advantages of CHO cells and strategies for high-density expression. It highlights the developmental trends of serum substitutes from human platelet lysates to animal-free extracts and microbial-derived substances and elucidates the mechanisms by which these substitutes enhance CHO cell culture performance and recombinant protein production, aiming to provide theoretical guidance for exploring novel serum alternatives and developing serum-free media for CHO cells.
Collapse
Affiliation(s)
- Mingcan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarui Xia
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Rzymski P. Avian influenza outbreaks in domestic cats: another reason to consider slaughter-free cell-cultured poultry? Front Microbiol 2023; 14:1283361. [PMID: 38163084 PMCID: PMC10754994 DOI: 10.3389/fmicb.2023.1283361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Avian influenza causes substantial economic loss in the poultry industry and potentially threatens human health. Over recent years, the highly pathogenic avian influenza A/H5N1 virus has led to devastating losses in poultry flocks and wild birds. At the same time, the number of mammalian species identified to be infected with A/H5N1 is increasing, with recent outbreaks in domestic cats, including household individuals, evidenced in July 2023 in Poland, ultimately creating opportunities for the virus to adapt better to mammalian hosts, including humans. Overall, between 2003 and 2023, over 10 outbreaks in felids have been documented globally, and in six of them, feed based on raw chicken was suspected as a potential source of A/H5N1, fuelling a debate on threats posed by A/H5N1 and methods to decrease the associated risks. This article debates that technology allowing the production of slaughter-free meat, including poultry, from cell and tissue cultures could be considered as a part of a mitigation strategy to decrease the overall burden and threat of adaptation of avian influenza viruses to human hosts. By shifting poultry production to the cultured meat industry, the frequency of A/H5N1 outbreaks in farmed birds may be decreased, leading to a reduced risk of virus acquisition by wild and domesticated mammals that have direct contact with birds or eat raw poultry and have close contact with human (including domestic cats), ultimately minimizing the potential of A/H5N1 to adapt better to mammalian host, including humans. This adds to the list of other benefits of cultured meat that are also reviewed in this paper, including decreased antibiotic use, risk of microbial contamination and parasite transmission, and environmental and ethical advantages over conventional slaughtered meat. In conclusion, further development and implementation of this technology, also in the context of poultry production, is strongly advocated. Although cultured poultry is unlikely to replace the conventional process in the near future due to challenges with scaling up the production and meeting the continuously increased demand for poultry meat, it may still decrease the pressures and threats related to the transmission of highly pathogenic avian influenza in selected world regions.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Kulus M, Jankowski M, Kranc W, Golkar Narenji A, Farzaneh M, Dzięgiel P, Zabel M, Antosik P, Bukowska D, Mozdziak P, Kempisty B. Bioreactors, scaffolds and microcarriers and in vitro meat production-current obstacles and potential solutions. Front Nutr 2023; 10:1225233. [PMID: 37743926 PMCID: PMC10513094 DOI: 10.3389/fnut.2023.1225233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
In vitro meat production presents a potential viable alternative for meat consumption, which could provide the consumer with a product indistinguishable from the original, with very similar nutritional and culinary values. Indeed, the alternative products currently accessible often lack comparable nutritional value or culinary attributes to their animal-derived counterparts. This creates challenges for their global acceptance, particularly in countries where meat consumption holds cultural significance. However, while cultured meat research has been progressing rapidly in recent years, some significant obstacles still need to be overcome before its possible commercialization. Hence, this review summarizes the most current knowledge regarding the history of cultured meat, the currently used cell sources and methods used for the purpose of in vitro meat production, with particular focus on the role of bioreactors, scaffolds and microcarriers in overcoming the current obstacles. The authors put the potential microcarrier and scaffold-based solutions in a context, discussing the ways in which they can impact the way forward for the technology, including the use of considering the potential practical and societal barriers to implementing it as a viable food source worldwide.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznań, Poland
| | - Afsaneh Golkar Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Dorota Bukowska
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
In vitro culture of the zoonotic nematode Anisakis pegreffii (Nematoda, Anisakidae). Parasit Vectors 2023; 16:51. [PMID: 36732837 PMCID: PMC9896804 DOI: 10.1186/s13071-022-05629-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Anisakiasis is a foodborne disease caused by the third-stage larvae (L3) of two species belonging to the genus Anisakis: Anisakis pegreffii and Anisakis simplex sensu stricto. Both species have been the subject of different -omics studies undertaken in the past decade, but a reliable in vitro culture protocol that would enable a more versatile approach to functional studies has never been devised. In nature, A. pegreffii shows a polyxenous life-cycle. It reproduces in toothed whales (final host) and disseminates embryonated eggs via cetacean faeces in the water column. In the environment, a first- (L1) and second-stage larva (L2) develops inside the egg, and subsequently hatched L2 is ingested by a planktonic crustacean or small fish (intermediate host). In the crustacean pseudocoelom, the larva moults to the third stage (L3) and grows until the host is eaten by a fish or cephalopod (paratenic host). Infective L3 migrates into the visceral cavity of its paratenic host and remains in the state of paratenesis until a final host preys on the former. Once in the final host's gastric chambers, L3 attaches to mucosa, moults in the fourth stage (L4) and closes its life-cycle by becoming reproductively mature. METHODS Testing two commercially available media (RPMI 1640, Schneider's Drosophila) in combination with each of the six different heat-inactivated sera, namely foetal bovine, rabbit, chicken, donkey, porcine and human serum, we have obtained the first reliable, fast and simple in vitro cultivation protocol for A. pegreffii. RESULTS Schneider's Drosophila insect media supplemented with 10% chicken serum allowed high reproducibility and survival of adult A. pegreffii. The maturity was reached already at the beginning of the third week in culture. From collected eggs, hatched L2 were maintained in culture for 2 weeks. The protocol also enabled the description of undocumented morphological and ultrastructural features of the parasite developmental stages. CONCLUSIONS Closing of the A. pegreffii life-cycle from L3 to reproducing adults is an important step from many research perspectives (e.g., vaccine and drug-target research, transgenesis, pathogenesis), but further effort is necessary to optimise the efficient moulting of L2 to infective L3.
Collapse
|
6
|
Ghoreishi AS, Iranmanesh E, Rastegarpouyani H, Mokhtarian S, Poshtchaman Z, Javadi ZS, Khoshdel A. Better isolation, proliferation and differentiation of human adipose-derived mesenchymal stem cells using human serum. Eur J Transl Myol 2023; 33. [PMID: 36714911 PMCID: PMC10141746 DOI: 10.4081/ejtm.2023.10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/30/2022] [Indexed: 01/28/2023] Open
Abstract
Mesenchymal stem cells have many applications in medicine. Attention to the proliferation and differentiation of stem cell differentiation is an important issue. The aim of this study was to investigate the possibility of optimal isolation, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) using human serum. Human serum (HS) was obtained from the venous blood of eight healthy individuals. The rate of proliferation and differentiation of ADSCs and expression of surface markers was assessed by flow cytometry. Bone differentiation was assessed using Alizarin Red staining. Data were analyzed using statistical software. Over time, HS showed more proliferation than fetal bovine serum (FBS) -enriched cells (p <0.05). Differentiation of ADSCs cells ls in HS-enriched medium is faster and more pronounced than differentiation in the control group. The expression of surface markers in the medium containing HS was the same as the medium containing FBS where the expression levels of CD105 and CD95 were found to be positive and the expression of CD34 and CD45 was negative. Due to the better proliferation of adipose tissue-derived mesenchymal cells in the medium containing HS than FBS, it is suggested that human serum be used in future clinical studies. Also, HS is healthier, safer, more accessible, and more affordable than FBS.
Collapse
Affiliation(s)
- Atena Sadat Ghoreishi
- Department of Clinical Biochemistry, Faculty of Para-Medicine, Jiroft University of Medical Sciences, Jiroft.
| | - Ehsan Iranmanesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman.
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL, USA Institute for Molecular Biophysics, Florida State University, Tallahassee, FL.
| | - Sogand Mokhtarian
- Department of Cell and Molecular Biology, Islamic Azad University of Shahr-e-Qods, Tehran.
| | - Zahra Poshtchaman
- MSc of Critical care Nursing, Department of Nursing, Esfarayen Faculty of Medical Sciences, Esfarayen.
| | - Zeinab Sadat Javadi
- Yazd hospital Mehrab Shohada, Shahid Sadoughi University of Medical Sciences, Yazd.
| | - Alireza Khoshdel
- Department of Clinical Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan.
| |
Collapse
|
7
|
Piletz JE, Cooper J, Chidester K, Erson K, Melton S, Osemeka A, Patterson M, Strickland K, Wan JX, Williams K. Transepithelial Effect of Probiotics in a Novel Model of Gut Lumen to Nerve Signaling. Nutrients 2022; 14:nu14224856. [PMID: 36432542 PMCID: PMC9697698 DOI: 10.3390/nu14224856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the gut microbiome changes brain function, behavior, and psychiatric and neurological disorders. The Gut-Brain Axis (GBA) provides a neuronal pathway to explain this. But exactly how do commensal bacteria signal through the epithelial layer of the large intestine to activate GBA nerve afferents? An in vitro model is described. We differentiated two human cell lines: Caco2Bbe1 into mature epithelium on 0.4-micron filters and then SH-SY5Y into mature neurons in 24-well plates. These were co-cultured by placing the epithelium-laden filters 1 mm above the neurons. Twenty-four hours later they were tri-cultured by apical addition of 107Lactobacillus rhamnosus or Lactobacillus fermentum which settled on the epithelium. Alone, the Caco2bbe1 cells stimulated neurite outgrowth in underlying SH-SY5Y. Beyond this, the lactobacilli were well tolerated and stimulated further neurite outgrowth by 24 h post-treatment, though not passing through the filters. The results provide face validity for a first-of-kind model of transepithelial intestinal lumen-to nerve signaling. The model displays the tight junctional barrier characteristics found in the large intestine while at the same time translating stimulatory signals from the bacteria through epithelial cells to attracted neurons. The model is easy to set-up with components widely available.
Collapse
Affiliation(s)
- John E. Piletz
- Office of Global Education, Mississippi College, Clinton, MS 39058, USA
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
- Correspondence: ; Tel.: +1-(601)-925-7762 or +1-601-853-0966
| | - Jason Cooper
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Kevin Chidester
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Kyle Erson
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Sydney Melton
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Anthony Osemeka
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Megan Patterson
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | | | - Jing Xuan Wan
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | - Kaitlin Williams
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| |
Collapse
|
8
|
Lee DY, Lee SY, Yun SH, Jeong JW, Kim JH, Kim HW, Choi JS, Kim GD, Joo ST, Choi I, Hur SJ. Review of the Current Research on Fetal Bovine Serum and the
Development of Cultured Meat. Food Sci Anim Resour 2022; 42:775-799. [PMID: 36133630 PMCID: PMC9478980 DOI: 10.5851/kosfa.2022.e46] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this review is to summarize studies that investigate blood and the
main components of fetal bovine serum (FBS) in vertebrates, including major
livestock, and review the current research on commercializing cultured meat.
Detailed research on FBS is still lacking; however, some studies have shown that
FBS consists of proteins, carbohydrates, growth factors, cytokines, fats,
vitamins, minerals, hormones, non-protein nitrogen, and inorganic compounds.
However, there are few studies on how the composition of FBS differs from blood
or serum composition in adult animals, which is probably one of the main reasons
for not successfully replacing FBS. Moreover, recent studies on the development
of FBS replacers and serum-free media have shown that it is difficult to
conclude whether FBS has been completely replaced or serum-free media have been
developed successfully. Our review of the industrialization of cultured meat
reveals that many basic studies on the development of cultured meat have been
conducted, but it is assumed that the study to reduce or replace ingredients
derived from fetuses such as FBS has not yet been actively developed. Therefore,
developing inexpensive and edible media is necessary for the successful
industrialization of cultured meat.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyun Woo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Gap-Don Kim
- Graduate School of International
Agricultural Technology, Institutes of Green Bio Science and Technology,
Seoul National University, Pyeongchang 25354, Korea
| | - Seon Tea Joo
- Division of Applied Life Science (BK21
Four), Institute of Agriculture & Life Science, Gyeongsang National
University, Jinju 52828, Korea
| | - Inho Choi
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
- Corresponding author: Sun Jin
Hur, Department of Animal Science and Technology, Chung-Ang University, Anseong
17546, Korea, Tel: +82-31-670-4673, Fax: +82-31-670-3108, E-mail:
| |
Collapse
|
9
|
Koch E, Hopmann C, Fröhlich LF, Schebb NH. Fatty acid and oxylipin concentration differ markedly between different fetal bovine serums: A cautionary note. Lipids 2021; 56:613-616. [PMID: 34435366 DOI: 10.1002/lipd.12321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 12/31/2022]
Abstract
Fetal bovine serum (FBS) has been used as a universal supplement in cell culture for more than six decades. This includes the investigation of lipid and lipid mediator formation and biology. Little is known about the (polyunsaturated) fatty acid composition and their oxidation products in FBS. Therefore, we analyzed six different FBS purchased from three different companies regarding their fatty acid and oxylipin concentrations. We found pronounced differences in the fatty acid concentrations. Even two batches of "standardized" FBS batches from one company showed drastic differences (e.g., for eicosapentaenoic acid 5 ± 1 μM vs. 11 ± 1 μM). Oxylipin concentrations also markedly differ between the FBS lots. The highest differences were found for 12-lipoxygenase products (e.g., 12-hydroxyeicosatetraenoic acid free 21-87 nM and total 58-108 nM), probably due to inconsistent serum generation procedures. Our results indicate that for cell culture studies dealing with lipid metabolism, researchers should carefully characterize their used FBS to ensure reliability and reproducibility of study outcomes.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Carolin Hopmann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Laura-Fabienne Fröhlich
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
10
|
Cetin AE, Topkaya SN, Yalcin-Ozuysal O, Khademhosseini A. Refractive Index Sensing for Measuring Single Cell Growth. ACS NANO 2021; 15:10710-10721. [PMID: 34029478 DOI: 10.1021/acsnano.1c04031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Accessing cell growth on adhesive substrates is critical for identifying biophysical properties of cells and their therapeutic response to drug therapies. However, optical techniques have low sensitivity, and their reliability varies with cell type, whereas microfluidic technologies rely on cell suspension. In this paper, we introduced a plasmonic functional assay platform that can precisely measure cell weight and the dynamic change in real-time for adherent cells. Possessing this ability, our platform can determine growth rates of individual cells within only 10 min to map the growth profile of populations in short time intervals. The platform could successfully determine heterogeneity within the growth profile of populations and assess subpopulations exhibiting distinct growth profiles. As a proof of principle, we investigated the growth profile of MCF-7 cells and the effect of two intracellular metabolisms critical for their proliferation. We first investigated the negative effect of serum starvation on cell growth. We then studied ornithine decarboxylase (ODC) activity, a key enzyme which is involved in proliferation, and degraded under low osmolarity that inhibits cell growth. We successfully determined the significant distinction between growth profiles of MCF-7 cells and their ODC-overproducing variants that possess strong resistance to the negative effects of low osmolarity. We also demonstrated that an exogenous parameter, putrescine, could rescue cells from ODC inhibition under hypoosmotic conditions. In addition to the ability of accessing intracellular activities through ex vivo measurements, our platform could also determine therapeutic behaviors of cancer cells in response to drug treatments. Here, we investigated difluoromethylornithine (DFMO), which has antitumor effects on MCF-7 cells by inhibiting ODC activity. We successfully demonstrated the susceptibility of MCF-7 cells to such drug treatment, while its DFMO-resistant subpopulation could survive in the presence of this antigrowth agent. By rapidly determining cell growth kinetics in small samples, our plasmonic platform may be of broad use to basic research and clinical applications.
Collapse
Affiliation(s)
- Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir 35620, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| |
Collapse
|
11
|
The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism. Stem Cells Int 2021; 2021:6659244. [PMID: 33727935 PMCID: PMC7939743 DOI: 10.1155/2021/6659244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022] Open
Abstract
In vitro and in vivo analyses are closely connected, and the reciprocal relationship between the two comprises a key assumption with concern to the conducting of meaningful research. The primary purpose of in vitro analysis is to provide a solid background for in vivo and clinical study purposes. The fields of cell therapy, tissue engineering, and regenerative medicine depend upon the high quality and appropriate degree of the expansion of mesenchymal stromal cells (MSCs) under low-risk and well-defined conditions. Hence, it is necessary to determine suitable alternatives to fetal bovine serum (FBS—the laboratory gold standard) that comply with all the relevant clinical requirements and that provide the appropriate quantity of high-quality cells while preserving the required properties. Human serum (autologous and allogeneic) and blood platelet lysates and releasates are currently considered to offer promising and relatively well-accessible MSC cultivation alternatives. Our study compared the effect of heat-inactivated FBS on MSC metabolism as compared to its native form (both are used as the standard in laboratory practice) and to potential alternatives with concern to clinical application—human serum (allogeneic and autologous) or platelet releasate (PR-SRGF). The influence of the origin of the serum (fetal versus adult) was also determined. The results revealed the key impact of the heat inactivation of FBS on MSCs and the effectiveness of human sera and platelet releasates with respect to MSC behaviour (metabolic activity, proliferation, morphology, and cytokine production).
Collapse
|
12
|
Piletz JE, Mao Y, Roy D, Qizilbash B, Nkamssi E, Weir E, Graham J, Emmanuel M, Iqbal S, Brue K, Sengupta B. Transepithelial Anti-Neuroblastoma Response to Kale among Four Vegetable Juices Using In Vitro Model Co-Culture System. Nutrients 2021; 13:nu13020488. [PMID: 33540724 PMCID: PMC7913023 DOI: 10.3390/nu13020488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Juicing vegetables is thought to be an anticancer treatment. Support exists for a rank order of anticancer greens (kale > dandelion > lettuce > spinach) based on degrees of bioavailability of different phytochemicals, also offset by some noxious molecules (i.e., calcium-oxalate). We developed a new in vitro transepithelial anti-neuroblastoma model system. The juices were diluted as predicted once in the small intestine. They were applied to apical Caco-2Bbe1 cells atop dividing SH-SY5Y neuroblastoma cells, and changes in transepithelial electrical resistance (TEER) and cell growth were considered with juice spectroscopies. Studied first in monoculture, kale and dandelion were the most cytostatic juices on SH-SY5Ys, lettuce showed no effect, and high (4.2%) spinach was cytotoxic. In co-culture, high (4.2%) kale was quickest (three days) to inhibit neuroblastoma growth. By five days, dandelion and kale were equally robust. Lettuce showed small anti-proliferative effects at five days and spinach remained cytotoxic. Spinach’s cytotoxicity corresponded with major infrared bands indicative of oxalate. Kale juice uniquely induced reactive oxygen species and S-phase cell cycle arrest in SH-SY5Y. The superiority of kale and dandelion was also apparent on the epithelium, because raising TEER levels is considered healthy. Kale’s unique features corresponded with a major fluorescent peak that co-eluted with kaempferol during high performance liquid chromatography. Because the anticancer rank order was upheld, the model appears validated for screening anticancer juices.
Collapse
Affiliation(s)
- John E. Piletz
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
- Correspondence: (J.E.P.); (B.S.); Tel.: +1-(601)-925-7818 (J.E.P.); +1-(936)-468-2485 (B.S.)
| | - Yuhan Mao
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Debarshi Roy
- Department of Biology, Alcorn State University, Lorman, MS 39096, USA;
| | - Bilal Qizilbash
- Qizilbash Labs, 345 Woodstone Road, Suite K6, Clinton, MS 39056, USA;
| | - Eurielle Nkamssi
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Enleyona Weir
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA; (E.W.); (J.G.); (M.E.)
| | - Jessica Graham
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA; (E.W.); (J.G.); (M.E.)
| | - Mary Emmanuel
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA; (E.W.); (J.G.); (M.E.)
| | - Suwaira Iqbal
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Kellie Brue
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Bidisha Sengupta
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX 75962, USA
- Correspondence: (J.E.P.); (B.S.); Tel.: +1-(601)-925-7818 (J.E.P.); +1-(936)-468-2485 (B.S.)
| |
Collapse
|
13
|
COVID-19 Pandemic Is a Call to Search for Alternative Protein Sources as Food and Feed: A Review of Possibilities. Nutrients 2021; 13:nu13010150. [PMID: 33466241 PMCID: PMC7830574 DOI: 10.3390/nu13010150] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a global health challenge with substantial adverse effects on the world economy. It is beyond any doubt that it is, again, a call-to-action to minimize the risk of future zoonoses caused by emerging human pathogens. The primary response to contain zoonotic diseases is to call for more strict regulations on wildlife trade and hunting. This is because the origins of coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), as well as other viral pathogens (e.g., Ebola, HIV) are traceable to wild animals. Although COVID-19 is not related to livestock animals, the pandemic increased general attention given to zoonotic viral infections—the risk of which can also be associated with livestock. Therefore, this paper discusses the potential transformation of industrial livestock farming and the production of animal products, particularly meat, to decrease the risks for transmission of novel human pathogens. Plant-based diets have a number of advantages, but it is unrealistic to consider them as the only solution offered to the problem. Therefore, a search for alternative protein sources in insect-based foods and cultured meat, important technologies enabling safer meat production. Although both of these strategies offer a number of potential advantages, they are also subject to the number of challenges that are discussed in this paper. Importantly, insect-based foods and cultured meat can provide additional benefits in the context of ecological footprint, an aspect important in light of predicted climate changes. Furthermore, cultured meat can be regarded as ethically superior and supports better food security. There is a need to further support the implementation and expansion of all three approaches discussed in this paper, plant-based diets, insect-based foods, and cultured meat, to decrease the epidemiological risks and ensure a sustainable future. Furthermore, cultured meat also offers a number of additional benefits in the context of environmental impact, ethical issues, and food security.
Collapse
|
14
|
Manukyan L, Marinaki ME, Mihranyan A. Would 20 nm Filtered Fetal Bovine Serum-Supplemented Media Support Growth of CHO and HEK-293 Cells? ACS APPLIED BIO MATERIALS 2020; 3:8344-8351. [PMID: 33381749 PMCID: PMC7756488 DOI: 10.1021/acsabm.0c01372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
![]()
Virus safety of fetal bovine serum
(FBS) is a critical issue for
cell culture and clinical applications of cell therapies. The size
exclusion filtration of FBS-supplemented cell culture media through
small-size virus retentive filter paper is presented to investigate
its effect on cell culture. A substantial proportion of proteins (ca.
45%) was removed by nanofiltration, yet important transport proteins
(albumin, fetuins, macroglobulins, transferrin) were unaffected. The
cell viability of Chinese hamster ovary (CHO) and human embryonic
kidney 293 (HEK-293) cells that were grown in media supplemented with
nanofiltered FBS was surprisingly high, despite the observed protein
losses. Protein depletion following nanofiltration resulted in detectable
levels of autophagy markers.
Collapse
Affiliation(s)
- Levon Manukyan
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Maria-Eleni Marinaki
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Albert Mihranyan
- Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| |
Collapse
|
15
|
Induced Pluripotent Stem Cell-Differentiated Chondrocytes Repair Cartilage Defect in a Rabbit Osteoarthritis Model. Stem Cells Int 2020; 2020:8867349. [PMID: 33224204 PMCID: PMC7671807 DOI: 10.1155/2020/8867349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to explore the therapeutic effect of iPSC-mesenchymal stem cell (MSC)-derived chondrocytes in a rabbit osteoarthritis (OA) model. The iPSCs were characterized by gene expressions, immunostaining of pluripotent markers, and in vivo teratoma formation. iPSC-differentiated MSCs were characterized by flow cytometry and trilineage differentiation. A rabbit OA model was established by the transection of the anterior cruciate ligament. The therapeutic effect of transplanted iPSC-MSC-chondrocytes on the OA was evaluated by the histology, immunostaining, and qPCR of defective cartilage. The results showed iPSC could express pluripotency markers such as OCT4, SOX2, and NANOG and form an embryoid body and a teratoma. After differentiation of iPSCs for 30 days, MSCs were established. The iPSC-MSC could express typical MSC markers such as CD29, CD44, CD90, CD105, and HLA-ABC. They could differentiate into adipocytes, osteocytes, and chondrocytes. In this model, iPSC-MSC-chondrocytes significantly improved the histology and ICRS (International Cartilage Repair Society) scores. The transplanted cartilage expressed less IL-1β, TNF-α, and MMP13 than control cartilage. In conclusion, the iPSCs we derived might represent an emerging source for differentiated MSC-chondrocyte and might rescue cartilage defects through its anti-inflammatory and anti-catabolic effects.
Collapse
|
16
|
Thrifty, Rapid Intestinal Monolayers (TRIM) Using Caco-2 Epithelial Cells for Oral Drug Delivery Experiments. Pharm Res 2019; 36:172. [PMID: 31659456 DOI: 10.1007/s11095-019-2712-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 01/17/2023]
Abstract
PURPOSE Caco-2 monolayers are the most common model of the intestinal epithelium and are critical to the development of oral drug delivery strategies and gastrointestinal disease treatments. However, current monolayer systems are cost- and/or time-intensive, hampering progress. This study evaluates two separate methods to reduce resource input: FB Essence as a fetal bovine serum (FBS) alternative and a new, 3-day Caco-2 system deemed "thrifty, rapid intestinal monolayers" (TRIM). METHODS Caco-2 cells were cultured with FB Essence and compared to cells in 10% FBS for proliferation and monolayer formation. TRIM were compared to commonly-used 21-day and Corning® HTS monolayer systems, as well as mouse intestines, for permeability behavior, epithelial gene expression, and tight junction arrangement. RESULTS No amount of FB Essence maintained Caco-2 cells beyond 10 passages. In contrast, TRIM compared favorably in permeability and gene expression to intestinal tissues. Furthermore, TRIM cost $109 and required 1.3 h of time per 24-well plate, compared to $164 and 3.7 h for 21-day monolayers, and $340 plus 1.0 h for the HTS system. CONCLUSIONS TRIM offer a new approach to generating Caco-2 monolayers that resemble the intestinal epithelium. They are anticipated to accelerate the pace of in vitro intestinal experiments while easing financial burden.
Collapse
|
17
|
Ramalingam M, Huh YJ, Lee YI. The Impairments of α-Synuclein and Mechanistic Target of Rapamycin in Rotenone-Induced SH-SY5Y Cells and Mice Model of Parkinson's Disease. Front Neurosci 2019; 13:1028. [PMID: 31611767 PMCID: PMC6769080 DOI: 10.3389/fnins.2019.01028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). α-synuclein (α-syn) is known to regulate mitochondrial function and both PINK1 and Parkin have been shown to eliminate damaged mitochondria in PD. Mechanistic target of rapamycin (mTOR) is expressed in several distinct subcellular compartments and mediates the effects of nutrients, growth factors, and stress on cell growth. However, the contributions of these various regulators to DAergic cell death have been demonstrated mainly in culture with serum, which is known to dramatically influence endogenous growth rate and toxin susceptibility through nutrient and growth factor signaling. Therefore, we compared neurotoxicity induced by the mitochondrial inhibitor rotenone (ROT, 5 or 10 μM for 24 h) in SH-SY5Y cells cultured with 10% fetal bovine serum (FBS), 1% FBS, or 1% bovine serum albumin (BSA, serum-free). In addition, C57BL/6J mice were injected with 12 μg ROT into the right striatum, and brains examined by histology and Western blotting 2 weeks later for evidence of DAergic cell death and the underlying signaling mechanisms. ROT dose-dependently reduced SH-SY5Y cell viability in all serum groups without a significant effect of serum concentration. ROT injection also significantly reduced immunoreactivity for the DAergic cell marker tyrosine hydroxylase (TH) in both the mouse striatum and SNpc. Western blotting revealed that ROT inhibited TH and Parkin expression while increasing α-syn and PINK1 expression in both SH-SY5Y cells and injected mice, consistent with disruption of mitochondrial function. Moreover, expression levels of the mTOR signaling pathway components mTORC, AMP-activated protein kinase (AMPK), ULK1, and ATG13 were altered in ROT-induced PD. Further, serum level influenced mTOR signaling in the absence of ROT and the changes in response to ROT. Signs of endoplasmic reticulum (ER) stress and altered expression of tethering proteins mediating mitochondria-associated ER contacts (MAMs) were also altered concomitant with ROT-induced neurodegeneration. Taken together, this study demonstrates that complex mechanism involving mitochondrial dysfunction, altered mTOR nutrient-sensing pathways, ER stress, and disrupted MAM protein dynamics are involved in DAergic neurodegeneration in response to ROT.
Collapse
Affiliation(s)
| | | | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, South Korea
| |
Collapse
|