1
|
Huang Y, Zhang Y, Wu W, Wang Y, Qiu W, Zhang Z, Yu Y. Fast acoustic droplet ejection based on annular array transducer. ULTRASONICS 2025; 145:107448. [PMID: 39243532 DOI: 10.1016/j.ultras.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Acoustic droplet ejection (ADE) has become the preferred method for liquid transfer in a variety of applications including synthetic biology, genotyping and drug discovery. Comparing with traditional pipetting techniques, the accuracy and data reproducibility of ADE based liquid transfer are improved, waste and cost are reduced, and cross-contamination is eliminated. The key component in the ADE system is the ultrasound transducer, which is responsible for generating focused ultrasound beam for droplet ejection. However, current ADE systems commonly utilize a single-element focused transducer with a fixed focal length that require mechanical movement to focus on the liquid surface, resulting in reduced liquid transfer efficiency. In this study, we first present a high-frequency annular array transducer for the ADE technology, which enables rapid and dynamic axial focusing to the liquid surface without mechanically moving the transducer, thereby accelerating liquid transfer. Experimental results show that the proposed 10 MHz, 5-element annular array transducer has good dynamic axial focusing ability, and can achieve accurate and stable droplet ejection of nanoliter volume at the designed focal length of 26-32 mm. Our results highlight the potential of the annular array transducer in advancing ADE system for rapid liquid transfer. This technology is expected to be useful in a variety of applications where precise and high-throughput liquid transfer is crucial.
Collapse
Affiliation(s)
- Youta Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Yang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; School of Electrical Engineering, University of South China, Hengyang, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Weichang Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China
| | - Yan Wang
- School of Electrical Engineering, University of South China, Hengyang, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China.
| | - Zhiqiang Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 508055 China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen 518055, China.
| | - Yanyan Yu
- National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Jeising S, Nickel AC, Trübel J, Felsberg J, Picard D, Leprivier G, Wolter M, Huynh MK, Olivera MB, Kaulich K, Häberle L, Esposito I, Klau GW, Steinmann J, Beez T, Rapp M, Sabel M, Dietrich S, Remke M, Cornelius JF, Reifenberger G, Qin N. A clinically compatible in vitro drug-screening platform identifies therapeutic vulnerabilities in primary cultures of brain metastases. J Neurooncol 2024; 169:613-623. [PMID: 38985431 PMCID: PMC11341655 DOI: 10.1007/s11060-024-04763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Brain metastases represent the most common intracranial tumors in adults and are associated with a poor prognosis. We used a personalized in vitro drug screening approach to characterize individual therapeutic vulnerabilities in brain metastases. METHODS Short-term cultures of cancer cells isolated from brain metastasis patients were molecularly characterized using next-generation sequencing and functionally evaluated using high-throughput in vitro drug screening to characterize pharmacological treatment sensitivities. RESULTS Next-generation sequencing identified matched genetic alterations in brain metastasis tissue samples and corresponding short-term cultures, suggesting that short-term cultures of brain metastases are suitable models for recapitulating the genetic profile of brain metastases that may determine their sensitivity to anti-cancer drugs. Employing a high-throughput in vitro drug screening platform, we successfully screened the cultures of five brain metastases for response to 267 anticancer compounds and related drug response to genetic data. Among others, we found that targeted treatment with JAK3, HER2, or FGFR3 inhibitors showed anti-cancer effects in individual brain metastasis cultures. CONCLUSION Our preclinical study provides a proof-of-concept for combining molecular profiling with in vitro drug screening for predictive evaluation of therapeutic vulnerabilities in brain metastasis patients. This approach could advance the use of patient-derived cancer cells in clinical practice and might eventually facilitate decision-making for personalized drug treatment.
Collapse
Affiliation(s)
- Sebastian Jeising
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ann-Christin Nickel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Johanna Trübel
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - My Ky Huynh
- Department of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marlene B Olivera
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kerstin Kaulich
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gunnar W Klau
- Department of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Steinmann
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Thomas Beez
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center of Saarland, Homburg/Saar, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Nan Qin
- Department of Hematology, Oncology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany.
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany.
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Düsseldorf, Germany.
| |
Collapse
|
3
|
Ortiz Jordan LM, Vega VF, Shumate J, Peles A, Zeiger J, Scampavia L, Spicer TP. Protocol for high throughput 3D drug screening of patient derived melanoma and renal cell carcinoma. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100141. [PMID: 38218316 PMCID: PMC11542555 DOI: 10.1016/j.slasd.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
High Throughput Screening (HTS) with 3D cell models is possible thanks to the recent progress and development in 3D cell culture technologies. Results from multiple studies have demonstrated different drug responses between 2D and 3D cell culture. It is now widely accepted that 3D cell models more accurately represent the physiologic conditions of tumors over 2D cell models. However, there is still a need for more accurate tests that are scalable and better imitate the complex conditions in living tissues. Here, we describe ultrahigh throughput 3D methods of drug response profiling in patient derived primary tumors including melanoma as well as renal cell carcinoma that were tested against the NCI oncologic set of FDA approved drugs. We also tested their autologous patient derived cancer associated fibroblasts, varied the in-vitro conditions using matrix vs matrix free methods and completed this in both 3D vs 2D rendered cancer cells. The result indicates a heterologous response to the drugs based on their genetic background, but not on their maintenance condition. Here, we present the methods and supporting results of the HTS efforts using these 3D of organoids derived from patients. This demonstrated the possibility of using patient derived 3D cells for HTS and expands on our screening capabilities for testing other types of cancer using clinically approved anti-cancer agents to find drugs for potential off label use.
Collapse
Affiliation(s)
- Luis M Ortiz Jordan
- High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA
| | - Virneliz Fernández Vega
- High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA
| | - Justin Shumate
- High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA
| | - Adam Peles
- High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA
| | - Jordan Zeiger
- High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA
| | - Louis Scampavia
- High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA
| | - Timothy P Spicer
- High-Throughput Molecular Screening Center, Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way #1A1, Jupiter, FL 33458, USA.
| |
Collapse
|
4
|
Schmitz MGJ, Aarts JGM, Burroughs L, Sudarsanam P, Kuijpers TJM, Riool M, de Boer L, Xue X, Bosnacki D, Zaat SAJ, de Boer J, Alexander MR, Dankers PYW. Merging Modular Molecular Design with High Throughput Screening of Cell Adhesion on Antimicrobial Supramolecular Biomaterials. Macromol Rapid Commun 2024:e2300638. [PMID: 38530968 DOI: 10.1002/marc.202300638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Indexed: 03/28/2024]
Abstract
A polymer microarray based on the supramolecular ureido-pyrimidinone (UPy) moiety is fabricated to screen antimicrobial materials for their ability to support cell adhesion. UPy-functionalized additives, either cell-adhesive, antimicrobial or control peptides, are used, and investigated in different combinations at different concentrations, resulting in a library of 194 spots. These are characterized on composition and morphology to evaluate the microarray fabrication. Normal human dermal fibroblasts are cultured on the microarrays and cell adhesion to the spots is systematically analyzed. Results demonstrate enhanced cell adhesion on spots with combinations including the antimicrobial peptides. This study clearly proves the power of the high throughput approach in combination with supramolecular molecules, to screen additive libraries for desired biological response.
Collapse
Affiliation(s)
- Moniek G J Schmitz
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jasper G M Aarts
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Laurence Burroughs
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Phanikrishna Sudarsanam
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Tim J M Kuijpers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Xuan Xue
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dragan Bosnacki
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Morgan R Alexander
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
5
|
Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci 2024; 31:7. [PMID: 38221607 PMCID: PMC10789053 DOI: 10.1186/s12929-024-00994-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interactions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerating the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications in cancer research, and the ongoing challenges.
Collapse
Affiliation(s)
- Waad H Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates.
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Close DA, Johnston PA. WITHDRAWN: Detection and impact of hypoxic regions in multicellular tumor spheroid cultures formed by head and neck squamous cell carcinoma cells lines. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:100130. [PMID: 38101574 DOI: 10.1016/j.slasd.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article previously published at http://dx.doi.org/10.1016/j.slasd.2021.10.008. This duplication was due to an error in the publishing workflow and was not the responsibility of the authors or editors. As a result, the duplicate article has been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- David A Close
- Department of Pharmaceutical Sciences1, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences1, University of Pittsburgh, Pittsburgh, PA 15261, USA.; University of Pittsburgh Medical Center Hillman Cancer Center2, Pittsburgh, PA 15232, USA..
| |
Collapse
|
7
|
Ikeda-Motonakano R, Hirabayashi-Nishimuta F, Yada N, Yamasaki R, Nagai-Yoshioka Y, Usui M, Nakazawa K, Yoshiga D, Yoshioka I, Ariyoshi W. Fabrication of a Three-Dimensional Spheroid Culture System for Oral Squamous Cell Carcinomas Using a Microfabricated Device. Cancers (Basel) 2023; 15:5162. [PMID: 37958336 PMCID: PMC10649954 DOI: 10.3390/cancers15215162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for recurrence, metastasis, and resistance to treatment in many types of cancers; therefore, new treatment strategies targeting CSCs are attracting attention. In this study, we fabricated a polyethylene glycol-tagged microwell device that enabled spheroid formation from human oral squamous carcinoma cells. HSC-3 and Ca9-22 cells cultured in the microwell device aggregated and generated a single spheroid per well within 24-48 h. The circular shape and smooth surface of spheroids were maintained for up to five days, and most cells comprising the spheroids were Calcein AM-positive viable cells. Interestingly, the mRNA expression of CSC markers (Cd44, Oct4, Nanog, and Sox2) were significantly higher in the spheroids than in the monolayer cultures. CSC marker-positive cells were observed throughout the spheroids. Moreover, resistance to cisplatin was enhanced in spheroid-cultured cells compared to that in the monolayer-cultured cells. Furthermore, some CSC marker genes were upregulated in HSC-3 and Ca9-22 cells that were outgrown from spheroids. In xenograft model, the tumor growth in the spheroid implantation group was comparable to that in the monolayer culture group. These results suggest that our spheroid culture system may be a high-throughput tool for producing uniform CSCs in large numbers from oral cancer cells.
Collapse
Affiliation(s)
- Reiko Ikeda-Motonakano
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Fumika Hirabayashi-Nishimuta
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Naomi Yada
- Division of Oral Pathology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
| | - Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Kohji Nakazawa
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan;
| | - Daigo Yoshiga
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Izumi Yoshioka
- Division of Oral Medicine, Department of Science of Physical Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (F.H.-N.); (D.Y.); (I.Y.)
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.I.-M.); (R.Y.); (Y.N.-Y.)
| |
Collapse
|
8
|
Nayak P, Bentivoglio V, Varani M, Signore A. Three-Dimensional In Vitro Tumor Spheroid Models for Evaluation of Anticancer Therapy: Recent Updates. Cancers (Basel) 2023; 15:4846. [PMID: 37835541 PMCID: PMC10571930 DOI: 10.3390/cancers15194846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Advanced tissue engineering processes and regenerative medicine provide modern strategies for fabricating 3D spheroids. Several different 3D cancer models are being developed to study a variety of cancers. Three-dimensional spheroids can correctly replicate some features of solid tumors (such as the secretion of soluble mediators, drug resistance mechanisms, gene expression patterns and physiological responses) better than 2D cell cultures or animal models. Tumor spheroids are also helpful for precisely reproducing the three-dimensional organization and microenvironmental factors of tumors. Because of these unique properties, the potential of 3D cell aggregates has been emphasized, and they have been utilized in in vitro models for the detection of novel anticancer drugs. This review discusses applications of 3D spheroid models in nuclear medicine for diagnosis and therapy, immunotherapy, and stem cell and photodynamic therapy and also discusses the establishment of the anticancer activity of nanocarriers.
Collapse
Affiliation(s)
- Pallavi Nayak
- Nuclear Medicine Unit, University Hospital Sant’Andrea, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy; (V.B.); (M.V.); (A.S.)
| | | | | | | |
Collapse
|
9
|
Moshksayan K, Harihara A, Mondal S, Hegarty E, Atherly T, Sahoo DK, Jergens AE, Mochel JP, Allenspach K, Zoldan J, Ben-Yakar A. OrganoidChip facilitates hydrogel-free immobilization for fast and blur-free imaging of organoids. Sci Rep 2023; 13:11268. [PMID: 37438409 DOI: 10.1038/s41598-023-38212-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Organoids are three-dimensional structures of self-assembled cell aggregates that mimic anatomical features of in vivo organs and can serve as in vitro miniaturized organ models for drug testing. The most efficient way of studying drug toxicity and efficacy requires high-resolution imaging of a large number of organoids acquired in the least amount of time. Currently missing are suitable platforms capable of fast-paced high-content imaging of organoids. To address this knowledge gap, we present the OrganoidChip, a microfluidic imaging platform that incorporates a unique design to immobilize organoids for endpoint, fast imaging. The chip contains six parallel trapping areas, each having a staging and immobilization chamber, that receives organoids transferred from their native culture plates and anchors them, respectively. We first demonstrate that the OrganoidChip can efficiently immobilize intestinal and cardiac organoids without compromising their viability and functionality. Next, we show the capability of our device in assessing the dose-dependent responses of organoids' viability and spontaneous contraction properties to Doxorubicin treatment and obtaining results that are similar to off-chip experiments. Importantly, the chip enables organoid imaging at speeds that are an order of magnitude faster than conventional imaging platforms and prevents the acquisition of blurry images caused by organoid drifting, swimming, and fast stage movements. Taken together, the OrganoidChip is a promising microfluidic platform that can serve as a building block for a multiwell plate format that can provide high-throughput and high-resolution imaging of organoids in the future.
Collapse
Affiliation(s)
- Khashayar Moshksayan
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Anirudha Harihara
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Evan Hegarty
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Dipak K Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Albert E Jergens
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Jonathan P Mochel
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adela Ben-Yakar
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Rajan RG, Fernandez-Vega V, Sperry J, Nakashima J, Do LH, Andrews W, Boca S, Islam R, Chowdhary SA, Seldin J, Souza GR, Scampavia L, Hanafy KA, Vrionis FD, Spicer TP. In Vitro and In Vivo Drug-Response Profiling Using Patient-Derived High-Grade Glioma. Cancers (Basel) 2023; 15:3289. [PMID: 37444398 PMCID: PMC10339991 DOI: 10.3390/cancers15133289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genomic profiling cannot solely predict the complexity of how tumor cells behave in their in vivo microenvironment and their susceptibility to therapies. The aim of the study was to establish a functional drug prediction model utilizing patient-derived GBM tumor samples for in vitro testing of drug efficacy followed by in vivo validation to overcome the disadvantages of a strict pharmacogenomics approach. METHODS High-throughput in vitro pharmacologic testing of patient-derived GBM tumors cultured as 3D organoids offered a cost-effective, clinically and phenotypically relevant model, inclusive of tumor plasticity and stroma. RNAseq analysis supplemented this 128-compound screening to predict more efficacious and patient-specific drug combinations with additional tumor stemness evaluated using flow cytometry. In vivo PDX mouse models rapidly validated (50 days) and determined mutational influence alongside of drug efficacy. We present a representative GBM case of three tumors resected at initial presentation, at first recurrence without any treatment, and at a second recurrence following radiation and chemotherapy, all from the same patient. RESULTS Molecular and in vitro screening helped identify effective drug targets against several pathways as well as synergistic drug combinations of cobimetinib and vemurafenib for this patient, supported in part by in vivo tumor growth assessment. Each tumor iteration showed significantly varying stemness and drug resistance. CONCLUSIONS Our integrative model utilizing molecular, in vitro, and in vivo approaches provides direct evidence of a patient's tumor response drifting with treatment and time, as demonstrated by dynamic changes in their tumor profile, which may affect how one would address that drift pharmacologically.
Collapse
Affiliation(s)
- Robin G. Rajan
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
| | - Virneliz Fernandez-Vega
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| | - Jantzen Sperry
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Jonathan Nakashima
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Long H. Do
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Warren Andrews
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Simina Boca
- Innovation Center for Biomedical Informatics (ICBI), Departments of Oncology and Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite G100, Washington, DC 20007, USA;
| | - Rezwanul Islam
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Sajeel A. Chowdhary
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
| | - Jan Seldin
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA; (J.S.); (G.R.S.)
| | - Glauco R. Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA; (J.S.); (G.R.S.)
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| | - Khalid A. Hanafy
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Frank D. Vrionis
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Timothy P. Spicer
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| |
Collapse
|
11
|
Yang S, Ooka M, Margolis RJ, Xia M. Liver three-dimensional cellular models for high-throughput chemical testing. CELL REPORTS METHODS 2023; 3:100432. [PMID: 37056374 PMCID: PMC10088249 DOI: 10.1016/j.crmeth.2023.100432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Drug-induced hepatotoxicity is a leading cause of drug withdrawal from the market. High-throughput screening utilizing in vitro liver models is critical for early-stage liver toxicity testing. Traditionally, monolayer human hepatocytes or immortalized liver cell lines (e.g., HepG2, HepaRG) have been used to test compound liver toxicity. However, monolayer-cultured liver cells sometimes lack the metabolic competence to mimic the in vivo condition and are therefore largely appropriate for short-term toxicological testing. They may not, however, be adequate for identifying chronic and recurring liver damage caused by drugs. Recently, several three-dimensional (3D) liver models have been developed. These 3D liver models better recapitulate normal liver function and metabolic capacity. This review describes the current development of 3D liver models that can be used to test drugs/chemicals for their pharmacologic and toxicologic effects, as well as the advantages and limitations of using these 3D liver models for high-throughput screening.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masato Ooka
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Jared Margolis
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Feodoroff M, Mikkonen P, Turunen L, Hassinen A, Paasonen L, Paavolainen L, Potdar S, Murumägi A, Kallioniemi O, Pietiäinen V. Comparison of two supporting matrices for patient-derived cancer cells in 3D drug sensitivity and resistance testing assay (3D-DSRT). SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00025-4. [PMID: 36934951 DOI: 10.1016/j.slasd.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 03/21/2023]
Abstract
Central to the success of functional precision medicine of solid tumors is to perform drug testing of patient-derived cancer cells (PDCs) in tumor-mimicking ex vivo conditions. While high throughput (HT) drug screening methods have been well-established for cells cultured in two-dimensional (2D) format, this approach may have limited value in predicting clinical responses. Here, we describe the results of the optimization of drug sensitivity and resistance testing (DSRT) in three-dimensional (3D) growth supporting matrices in a HT mode (3D-DSRT) using the hepatocyte cell line (HepG2) as an example. Supporting matrices included widely used animal-derived Matrigel and cellulose-based hydrogel, GrowDex, which has earlier been shown to support 3D growth of cell lines and stem cells. Further, the sensitivity of ovarian cancer PDCs, from two patients included in the functional precision medicine study, was tested for 52 drugs in 5 different concentrations using 3D-DSRT. Shortly, in the optimized protocol, the PDCs are embedded with matrices and seeded to 384-well plates to allow the formation of the spheroids prior to the addition of drugs in nanoliter volumes with acoustic dispenser. The sensitivity of spheroids to drug treatments is measured with cell viability readout (here, 72 h after addition of drugs). The quality control and data analysis are performed with openly available Breeze software. We show the usability of both matrices in established 3D-DSRT, and report 2D vs 3D growth condition dependent differences in sensitivities of ovarian cancer PDCs to MEK-inhibitors and cytotoxic drugs. This study provides a proof-of-concept for robust and fast screening of drug sensitivities of PDCs in 3D-DSRT, which is important not only for drug discovery but also for personalized ex vivo drug testing in functional precision medicine studies. These findings suggest that comparing results of 2D- and 3D-DSRT is essential for understanding drug mechanisms and for selecting the most effective treatment for the patient.
Collapse
Affiliation(s)
- Michaela Feodoroff
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; Laboratory of Immunovirotherapy, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Piia Mikkonen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; UPM-Kymmene Oyj, Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | | | - Lassi Paavolainen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Vega VF, Yang D, Jordán LO, Ye F, Conway L, Chen LY, Shumate J, Baillargeon P, Scampavia L, Parker C, Shen B, Spicer TP. Protocol for 3D screening of lung cancer spheroids using natural products. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:20-28. [PMID: 36681384 PMCID: PMC10291515 DOI: 10.1016/j.slasd.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for ∼84% of all lung cancer cases. NSCLC remains one of the leading causes of cancer-associated death, with a 5-year survival rate less than 25%. This type of cancer begins with healthy cells that change and start growing out of control, leading to the formation of lesions or tumors. Understanding the dynamics of how the tumor microenvironment promotes cancer initiation and progression that leads to cancer metastasis is crucial to help identify new molecular therapies. 3D primary cell tumor models have received renewed recognition due to their ability to better mimic the complexity of in vivo tumors and as a potential bridge between traditional 2D culture and in vivo studies. Vast improvements in 3D cell culture technologies make them much more cost effective and efficient largely because of the use of a cell-repellent surfaces and a novel angle plate adaptor technology. To exploit this technology, we accessed the Natural Products Library (NPL) at UF Scripps, which consists of crude extracts, partially purified fractions, and pure natural products (NPs). NPs generally are not very well represented in most drug discovery libraries and thus provide new insights to discover leads that could potentially emerge as novel molecular therapies. Herein we describe how we combined these technologies for 3D screening in 1536 well format using a panel of ten NSCLC cells lines (5 wild type and 5 mutant) against ∼1280 selected members of the NPL. After further evaluation, the selected active hits were prioritized to be screened against all 10 NSCLC cell lines as concentration response curves to determine the efficacy and selectivity of the compounds between wild type and mutant 3D cell models. Here, we demonstrate the methods needed for automated 3D screening using microbial NPs, exemplified by crude extracts, partially purified fractions, and pure NPs, that may lead to future use targeting human cancer.
Collapse
Affiliation(s)
- Virneliz Fernández Vega
- Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Dong Yang
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA; Natural Products Discovery Center, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Luis Ortiz Jordán
- Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Fei Ye
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Louis Conway
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Li Yun Chen
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Justin Shumate
- Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Pierre Baillargeon
- Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Louis Scampavia
- Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Christopher Parker
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ben Shen
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA; Natural Products Discovery Center, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Timothy P Spicer
- Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA.
| |
Collapse
|
14
|
Ikeda H, Kawami M, Imoto M, Kakeya H. Identification of the polyether ionophore lenoremycin through a new screening strategy for targeting cancer stem cells. J Antibiot (Tokyo) 2022; 75:671-678. [PMID: 36207416 DOI: 10.1038/s41429-022-00571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
Targeting and eradicating cancer stem cells (CSCs), also termed tumor-initiating cells, are promising strategies for preventing cancer progression and recurrence. To identify candidate compounds targeting CSCs, we established a new screening strategy with colorectal CSC spheres and non-CSC spheres in three-dimensional (3D) culture system. Through chemical screening using our system with in-house microbial metabolite library, we identified polyether cation ionophores that selectively inhibited CSC sphere formation, whereas CSC spheres were resistant to conventional anticancer agents. One of the hit compounds, the most selective and effective microbial metabolite lenoremycin, decreased CSC populations via inducing reactive oxygen species production. This study demonstrated that our newly established screening system is useful for discovering agents that selectively eliminate CSCs.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Misato Kawami
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masaya Imoto
- Department of Neurology, Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
15
|
Lee Y, Chen Z, Lim W, Cho H, Park S. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator. Curr Protoc 2022; 2:e529. [PMID: 36066205 DOI: 10.1002/cpz1.529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor spheroid models are widely used for drug screening as in vitro models of the tumor microenvironment. There are various ways in which tumor spheroid models can be prepared, including the self-assembly of cells using low-adherent plates, micro-patterned plates, or hanging-drop plates. Recently, drug high-throughput screening (HTS) approaches have incorporated the use of these culture systems. These HTS culture systems, however, require complicated equipment, such as robot arms, detectors, and software for handling solutions and data processing. Here, we describe protocols that allow tumor spheroids to be tested with different concentrations of a drug in a parallel fashion using a microfluidic device that generates a gradient of anti-cancer drugs. This microfluidic spheroid culture device with a concentration gradient generator (μFSCD-CGG) enables the formation of 50 tumor spheroids and the testing of drugs at five different concentrations. First, we provide a protocol for the fabrication of the μFSCD-CGG, which has both a culture array in which tumor cells are injected and aggregate to form spheroids and a concentration gradient generator for drug testing. Second, we provide a protocol for tumor spheroid formation and HTS of anti-cancer drugs using the device. Finally, we provide a protocol for assessing the response of tumor spheroids at different drug concentrations. To address the needs of the pharmaceutical industry, this protocol can be used for various cell types, including stem cells, and the number of tumor spheroids and drug concentration ranges that can be tested in the μFSCD-CGG can be increased. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Fabrication of a microfluidic spheroid culture device with a concentration gradient generator (μFSCD-CGG) Basic Protocol 2: Seeding cells and formation of spheroids in the μFSCD-CGG Basic Protocol 3: Drug treatment and assessment of cell viability in the μFSCD-CGG.
Collapse
Affiliation(s)
- Yugyeong Lee
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Hansang Cho
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, Korea
- Department of Biophysics, Sungkyunkwan University (SKKU), Suwon, Korea
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Sungsu Park
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| |
Collapse
|
16
|
Poornima K, Francis AP, Hoda M, Eladl MA, Subramanian S, Veeraraghavan VP, El-Sherbiny M, Asseri SM, Hussamuldin ABA, Surapaneni KM, Mony U, Rajagopalan R. Implications of Three-Dimensional Cell Culture in Cancer Therapeutic Research. Front Oncol 2022; 12:891673. [PMID: 35646714 PMCID: PMC9133474 DOI: 10.3389/fonc.2022.891673] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Replicating the naturalistic biomechanical milieu of cells is a primary requisite to uncover the fundamental life processes. The native milieu is significantly not replicated in the two-dimensional (2D) cell cultures. Alternatively, the current three-dimensional (3D) culture techniques can replicate the properties of extracellular matrix (ECM), though the recreation of the original microenvironment is challenging. The organization of cells in a 3D manner contributes to better insight about the tumorigenesis mechanism of the in vitro cancer models. Gene expression studies are susceptible to alterations in their microenvironment. Physiological interactions among neighboring cells also contribute to gene expression, which is highly replicable with minor modifications in 3D cultures. 3D cell culture provides a useful platform for identifying the biological characteristics of tumor cells, particularly in the drug sensitivity area of translational medicine. It promises to be a bridge between traditional 2D culture and animal experiments and is of great importance for further research in tumor biology. The new imaging technology and the implementation of standard protocols can address the barriers interfering with the live cell observation in a natural 3D physiological environment.
Collapse
Affiliation(s)
- Kolluri Poornima
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Muddasarul Hoda
- Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saad Mohamed Asseri
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | | | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills, and Simulation, Panimalar Medical College Hospital and Research Institute, Chennai, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
17
|
Fernandez-Vega V, Hou S, Plenker D, Tiriac H, Baillargeon P, Shumate J, Scampavia L, Seldin J, Souza GR, Tuveson DA, Spicer TP. Lead identification using 3D models of pancreatic cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:159-166. [PMID: 35306207 PMCID: PMC10258910 DOI: 10.1016/j.slasd.2022.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023]
Abstract
Recent technological advances have enabled 3D tissue culture models for fast and affordable HTS. We are no longer bound to 2D models for anti-cancer agent discovery, and it is clear that 3D tumor models provide more predictive data for translation of preclinical studies. In a previous study, we validated a microplate 3D spheroid-based technology for its compatibility with HTS automation. Small-scale screens using approved drugs have demonstrated that drug responses tend to differ between 2D and 3D cancer cell proliferation models. Here, we applied this 3D technology to the first ever large-scale screening effort completing HTS on over 150K molecules against primary pancreatic cancer cells. It is the first demonstration that a screening campaign of this magnitude using clinically relevant, ex-vivo 3D pancreatic tumor models established directly from biopsy, can be readily achieved in a fashion like traditional drug screen using 2D cell models. We identified four unique series of compounds with sub micromolar and even low nanomolar potency against a panel of patient derived pancreatic organoids. We also applied the 3D technology to test lead efficacy in autologous cancer associated fibroblasts and found a favorable profile for better efficacy in the cancer over wild type primary cells, an important milestone towards better leads. Importantly, the initial leads have been further validated in across multiple institutes with concordant outcomes. The work presented here represents the genesis of new small molecule leads found using 3D models of primary pancreas tumor cells.
Collapse
Affiliation(s)
- Virneliz Fernandez-Vega
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Shurong Hou
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Dennis Plenker
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Hervé Tiriac
- University of San Diego, California, Moores Cancer Center, Department of Surgery, San Diego, CA, USA
| | - Pierre Baillargeon
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Justin Shumate
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Louis Scampavia
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Jan Seldin
- Greiner Bio-One North America, Inc., Monroe, NC, USA
| | | | - David A Tuveson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Timothy P Spicer
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
18
|
Mukundan S, Bell J, Teryek M, Hernandez C, Love AC, Parekkadan B, Chan LLY. Automated Assessment of Cancer Drug Efficacy On Breast Tumor Spheroids in Aggrewell™400 Plates Using Image Cytometry. J Fluoresc 2022; 32:521-531. [PMID: 34989923 DOI: 10.1007/s10895-021-02881-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022]
Abstract
Tumor spheroid models have proven useful in the study of cancer cell responses to chemotherapeutic compounds by more closely mimicking the 3-dimensional nature of tumors in situ. Their advantages are often offset, however, by protocols that are long, complicated, and expensive. Efforts continue for the development of high-throughput assays that combine the advantages of 3D models with the convenience and simplicity of traditional 2D monolayer methods. Herein, we describe the development of a breast cancer spheroid image cytometry assay using T47D cells in Aggrewell™400 spheroid plates. Using the Celigo® automated imaging system, we developed a method to image and individually track thousands of spheroids within the Aggrewell™400 microwell plate over time. We demonstrate the use of calcein AM and propidium iodide staining to study the effects of known anti-cancer drugs Doxorubicin, Everolimus, Gemcitabine, Metformin, Paclitaxel and Tamoxifen. We use the image cytometry results to quantify the fluorescence of calcein AM and PI as well as spheroid size in a dose dependent manner for each of the drugs. We observe a dose-dependent reduction in spheroid size and find that it correlates well with the viability obtained from the CellTiter96® endpoint assay. The image cytometry method we demonstrate is a convenient and high-throughput drug-response assay for breast cancer spheroids under 400 μm in diameter, and may lay a foundation for investigating other three-dimensional spheroids, organoids, and tissue samples.
Collapse
Affiliation(s)
- Shilpaa Mukundan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jordan Bell
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA
| | - Matthew Teryek
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Charles Hernandez
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA
| | - Andrea C Love
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.,Department of Medicine, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, USA.
| |
Collapse
|
19
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Peirsman A, Blondeel E, Ahmed T, Anckaert J, Audenaert D, Boterberg T, Buzas K, Carragher N, Castellani G, Castro F, Dangles-Marie V, Dawson J, De Tullio P, De Vlieghere E, Dedeyne S, Depypere H, Diosdi A, Dmitriev RI, Dolznig H, Fischer S, Gespach C, Goossens V, Heino J, Hendrix A, Horvath P, Kunz-Schughart LA, Maes S, Mangodt C, Mestdagh P, Michlíková S, Oliveira MJ, Pampaloni F, Piccinini F, Pinheiro C, Rahn J, Robbins SM, Siljamäki E, Steigemann P, Sys G, Takayama S, Tesei A, Tulkens J, Van Waeyenberge M, Vandesompele J, Wagemans G, Weindorfer C, Yigit N, Zablowsky N, Zanoni M, Blondeel P, De Wever O. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nat Methods 2021; 18:1294-1303. [PMID: 34725485 PMCID: PMC8566242 DOI: 10.1038/s41592-021-01291-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.
Collapse
Affiliation(s)
- Arne Peirsman
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.410566.00000 0004 0626 3303Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Eva Blondeel
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tasdiq Ahmed
- grid.213917.f0000 0001 2097 4943Wallace H Coulter Department of Biomedical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA USA
| | - Jasper Anckaert
- grid.510942.bOncoRNALab, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Dominique Audenaert
- grid.5342.00000 0001 2069 7798VIB Screening Core and Ghent University Expertise Centre for Bioassay Development and Screening (C-BIOS-VIB), Ghent University, Ghent, Belgium
| | - Tom Boterberg
- grid.410566.00000 0004 0626 3303Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Krisztina Buzas
- grid.9008.10000 0001 1016 9625Department of Immunology, University of Szeged, Faculty of Medicine-Faculty of Science and Informatics, Szeged, Hungary
| | - Neil Carragher
- grid.4305.20000 0004 1936 7988Institute of Genetics and Cancer, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Gastone Castellani
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Flávia Castro
- grid.5808.50000 0001 1503 7226i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Virginie Dangles-Marie
- grid.508487.60000 0004 7885 7602Translational Research Department, Institut Curie, PSL Research University, and Faculty of Pharmacy, Paris, France ,grid.508487.60000 0004 7885 7602Faculty of Pharmacy, Université Paris Descartes, Paris, France
| | - John Dawson
- grid.4305.20000 0004 1936 7988Institute of Genetics and Cancer, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Pascal De Tullio
- grid.4861.b0000 0001 0805 7253Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics Group, Université de Liège, Liège, Belgium
| | - Elly De Vlieghere
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Sándor Dedeyne
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Herman Depypere
- grid.410566.00000 0004 0626 3303Menopause and Breast Clinic, Ghent University Hospital, Ghent, Belgium
| | - Akos Diosdi
- grid.418331.c0000 0001 2195 9606Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Szeged, Hungary
| | - Ruslan I. Dmitriev
- grid.5342.00000 0001 2069 7798Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Helmut Dolznig
- grid.22937.3d0000 0000 9259 8492Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Suzanne Fischer
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Christian Gespach
- grid.462844.80000 0001 2308 1657INSERM U938 Hospital Saint-Antoine Research Center CRSA, Team Céline Prunier, TGFbeta Signaling in Cellular Plasticity and Cancer, Sorbonne University, Paris, France
| | - Vera Goossens
- grid.5342.00000 0001 2069 7798VIB Screening Core and Ghent University Expertise Centre for Bioassay Development and Screening (C-BIOS-VIB), Ghent University, Ghent, Belgium
| | - Jyrki Heino
- grid.1374.10000 0001 2097 1371Department of Life Technologies, University of Turku, Turku, Finland
| | - An Hendrix
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Peter Horvath
- grid.418331.c0000 0001 2195 9606Synthetic and Systems Biology Unit, Hungarian Academy of Sciences, Biological Research Center (BRC), Szeged, Hungary
| | - Leoni A. Kunz-Schughart
- OncoRay – National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Carl Gustav Carus Faculty of Medicine at TU Dresden, and Helmholtz-Zentrum Dresden–Rossendorf, Dresden, Germany
| | - Sebastiaan Maes
- grid.410566.00000 0004 0626 3303Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christophe Mangodt
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- grid.510942.bOncoRNALab, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Soňa Michlíková
- OncoRay – National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Carl Gustav Carus Faculty of Medicine at TU Dresden, and Helmholtz-Zentrum Dresden–Rossendorf, Dresden, Germany
| | - Maria José Oliveira
- grid.5808.50000 0001 1503 7226i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Francesco Pampaloni
- grid.7839.50000 0004 1936 9721Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ‘Dino Amadori’, Meldola, Italy
| | - Cláudio Pinheiro
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Jennifer Rahn
- grid.22072.350000 0004 1936 7697Departments of Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Stephen M. Robbins
- grid.22072.350000 0004 1936 7697Departments of Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Elina Siljamäki
- grid.1374.10000 0001 2097 1371Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Gwen Sys
- grid.5342.00000 0001 2069 7798Department of Orthopedics and Traumatology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Shuichi Takayama
- grid.213917.f0000 0001 2097 4943Wallace H Coulter Department of Biomedical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA USA
| | - Anna Tesei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ‘Dino Amadori’, Meldola, Italy
| | - Joeri Tulkens
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Michiel Van Waeyenberge
- grid.410566.00000 0004 0626 3303Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Jo Vandesompele
- grid.510942.bOncoRNALab, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Glenn Wagemans
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Claudia Weindorfer
- grid.22937.3d0000 0000 9259 8492Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Nurten Yigit
- grid.510942.bOncoRNALab, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ‘Dino Amadori’, Meldola, Italy
| | - Phillip Blondeel
- grid.410566.00000 0004 0626 3303Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- grid.510942.bLaboratory of Experimental Cancer Research, Cancer Research Institute, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Gündel B, Liu X, Löhr M, Heuchel R. Pancreatic Ductal Adenocarcinoma: Preclinical in vitro and ex vivo Models. Front Cell Dev Biol 2021; 9:741162. [PMID: 34746135 PMCID: PMC8569794 DOI: 10.3389/fcell.2021.741162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.
Collapse
Affiliation(s)
- Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
- Department of Upper GI, C1:77, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
22
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
23
|
Du Y, Li X, Niu Q, Mo X, Qui M, Ma T, Kuo CJ, Fu H. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J Mol Cell Biol 2021; 12:630-643. [PMID: 32678871 PMCID: PMC7751183 DOI: 10.1093/jmcb/mjaa036] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The recent advent of robust methods to grow human tissues as 3D organoids allows us to recapitulate the 3D architecture of tumors in an in vitro setting and offers a new orthogonal approach for drug discovery. However, organoid culturing with extracellular matrix to support 3D architecture has been challenging for high-throughput screening (HTS)-based drug discovery due to technical difficulties. Using genetically engineered human colon organoids as a model system, here we report our effort to miniaturize such 3D organoid culture with extracellular matrix support in high-density plates to enable HTS. We first established organoid culturing in a 384-well plate format and validated its application in a cell viability HTS assay by screening a 2036-compound library. We further miniaturized the 3D organoid culturing in a 1536-well ultra-HTS format and demonstrated its robust performance for large-scale primary compound screening. Our miniaturized organoid culturing method may be adapted to other types of organoids. By leveraging the power of 3D organoid culture in a high-density plate format, we provide a physiologically relevant screening platform to model tumors to accelerate organoid-based research and drug discovery.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Xingnan Li
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Tingxuan Ma
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Oksdath Mansilla M, Salazar-Hernandez C, Perrin SL, Scheer KG, Cildir G, Toubia J, Sedivakova K, Tea MN, Lenin S, Ponthier E, Yeo ECF, Tergaonkar V, Poonnoose S, Ormsby RJ, Pitson SM, Brown MP, Ebert LM, Gomez GA. 3D-printed microplate inserts for long term high-resolution imaging of live brain organoids. BMC Biomed Eng 2021; 3:6. [PMID: 33789767 PMCID: PMC8015192 DOI: 10.1186/s42490-021-00049-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2 mm of size, which need to be constantly agitated to allow proper oxygenation. The culture conditions are, therefore, not suitable for whole-brain organoid live imaging, required to study developmental processes and disease progression within physiologically relevant time frames (i.e. days, weeks, months). RESULTS Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates high-resolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids. CONCLUSIONS This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.
Collapse
Affiliation(s)
- Mariana Oksdath Mansilla
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia.
| | - Camilo Salazar-Hernandez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Sally L Perrin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Kaitlin G Scheer
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Gökhan Cildir
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA, 5000, Australia
| | - Kristyna Sedivakova
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Melinda N Tea
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Sakthi Lenin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Elise Ponthier
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Erica C F Yeo
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Santosh Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA, 5042, Australia
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Rebecca J Ormsby
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Michael P Brown
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Lisa M Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
25
|
Guo Q, Su X, Zhang X, Shao M, Yu H, Li D. A review on acoustic droplet ejection technology and system. SOFT MATTER 2021; 17:3010-3021. [PMID: 33710210 DOI: 10.1039/d0sm02193h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pace of change in chemical and biological research enabled by improved detection systems demands fundamental liquid handling and sample preparation changes. The acoustic droplet ejection (ADE)-based liquid handling method has the advantages of improving precision and data reproducibility, reducing costs, hands-on time, and eliminating waste. ADE gradually replaced traditional aspiration-and-dispense liquid-handling robots in applications such as synthetic biology, genotyping, personalized medicine, and next-generation sequencing. This review emphatically introduces the setup of the ADE system and the critical technologies of each part, including acoustic droplet generation, optimized design of the source fluid wells, droplet coalescence, and power control. The advantages and disadvantages of these technologies are discussed, and the future development of acoustic droplet ejection technology is also predicted.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
26
|
Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery. Drug Discov Today 2021; 26:1369-1381. [PMID: 33677144 DOI: 10.1016/j.drudis.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
The success of preclinical drug discovery strongly relies on the ability of experimental models to resemble human pathophysiology. The number of compounds receiving approval for clinical use is limited, and this has led to the development of more physiologically relevant cellular models aimed at making preclinical results more prone to be successfully translated into clinical use. In this review, we summarize the technologies available in the field of high-throughput screening (HTS) using complex cellular models, and describe collaborative initiatives, such as EU-OPENSCREEN, which can efficiently support researchers to easily access state-of-the-art chemical biology platforms for improving the drug discovery process.
Collapse
|
27
|
Riss T, Trask OJ. Factors to consider when interrogating 3D culture models with plate readers or automated microscopes. In Vitro Cell Dev Biol Anim 2021; 57:238-256. [PMID: 33564998 PMCID: PMC7946695 DOI: 10.1007/s11626-020-00537-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/02/2020] [Indexed: 11/27/2022]
Abstract
Along with the increased use of more physiologically relevant three-dimensional cell culture models comes the responsibility of researchers to validate new assay methods that measure events in structures that are physically larger and more complex compared to monolayers of cells. It should not be assumed that assays designed using monolayers of cells will work for cells cultured as larger three-dimensional masses. The size and barriers for penetration of molecules through the layers of cells result in a different microenvironment for the cells in the outer layer compared to the center of three-dimensional structures. Diffusion rates for nutrients and oxygen may limit metabolic activity which is often measured as a marker for cell viability. For assays that lyse cells, the penetration of reagents to achieve uniform cell lysis must be considered. For live cell fluorescent imaging assays, the diffusion of fluorescent probes and penetration of photons of light for probe excitation and fluorescent emission must be considered. This review will provide an overview of factors to consider when implementing assays to interrogate three dimensional cell culture models.
Collapse
Affiliation(s)
- Terry Riss
- Promega Corporation, Cell Health, 2800 Woods Hollow Road, Fitchburg, WI, 53711, USA.
| | - O Joseph Trask
- PerkinElmer Inc., Life Sciences and Technology, 940 Winter Street, Waltham, MA, 02451, USA
| |
Collapse
|
28
|
Vej-Nielsen JM, Rogowska-Wrzesinska A. 3D-ViaFlow: A Quantitative Viability Assay for Multicellular Spheroids. Methods Mol Biol 2021; 2273:159-171. [PMID: 33604852 DOI: 10.1007/978-1-0716-1246-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional cell culture became an essential method in molecular and cell biology research. Accumulating results show that cells grown in 3D, display increased functionality and are capable of recapitulating physiological functions that are not observed in classical in vitro models. Spheroid-based cell culture allows the cells to establish their own extracellular matrix and intricate intercellular connections promoting a tissue-like growth environment.In this paper we present the 3D-ViaFlow method that combines an optimised dual live-dead cell staining with flow cytometry to deliver a quantitative estimation of viability of cells in multicellular spheroids. The method is optimised for monolayer cultures and multicellular spheroids created from HepG2/C3A human hepatocytes or coculture of HepG2/C3A and endothelial cell line HMEC-1. It includes protocol for spheroids disassembling, labeling of cells with fluorescein diacetate and propidium iodide and instructions for flow cytometry gating optimized for analysis of heterogeneous cell populations form spheroids.
Collapse
Affiliation(s)
- Joel Mario Vej-Nielsen
- Institute for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
29
|
Bhaumik S, Boyer J, Banerjee C, Clark S, Sebastiao N, Vela E, Towne P. Fluorescent multiplexing of 3D spheroids: Analysis of biomarkers using automated immunohistochemistry staining platform and multispectral imaging. J Cell Biochem 2020; 121:4974-4990. [PMID: 32692912 PMCID: PMC7689845 DOI: 10.1002/jcb.29827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 11/25/2022]
Abstract
In preclinical cancer studies, three-dimensional (3D) cell spheroids and aggregates are preferred over monolayer cell cultures due to their architectural and functional similarity to solid tumors. We performed a proof-of-concept study to generate physiologically relevant and predictive preclinical models using non-small cell lung adenocarcinoma, and colon and colorectal adenocarcinoma cell line-derived 3D spheroids and aggregates. Distinct panels were designed to determine the expression profiles of frequently studied biomarkers of the two cancer subtypes. The lung adenocarcinoma panel included ALK, EGFR, TTF-1, and CK7 biomarkers, and the colon and colorectal adenocarcinoma panel included BRAF V600E, MSH2, MSH6, and CK20. Recent advances in immunofluorescence (IF) multiplexing and imaging technology enable simultaneous detection and quantification of multiple biomarkers on a single slide. In this study, we performed IF staining of multiple biomarkers per section on formalin-fixed paraffin-embedded 3D spheroids and aggregates. We optimized protocol parameters for automated IF and demonstrated staining concordance with automated chromogenic immunohistochemistry performed with validated protocols. Next, post-acquisition spectral unmixing of the captured fluorescent signals were utilized to delineate four differently stained biomarkers within a single multiplex IF image, followed by automated quantification of the expressed markers. This workflow has the potential to be adapted to preclinical high-throughput screening and drug efficacy studies utilizing 3D spheroids from cancer cell lines and patient-derived organoids. The process allows for cost, time, and resource savings through concurrent staining of several biomarkers on a single slide, the ability to study the interactions of multiple expressed proteins within a single region of interest, and enable quantitative assessment of biomarkers in cancer cells.
Collapse
|
30
|
Mahboubian A, Vllasaliu D, Dorkoosh FA, Stolnik S. Temperature-Responsive Methylcellulose–Hyaluronic Hydrogel as a 3D Cell Culture Matrix. Biomacromolecules 2020; 21:4737-4746. [DOI: 10.1021/acs.biomac.0c00906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- AliReza Mahboubian
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Driton Vllasaliu
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 14399-56131, Iran
| | - Snjezana Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
31
|
Ekert JE, Deakyne J, Pribul-Allen P, Terry R, Schofield C, Jeong CG, Storey J, Mohamet L, Francis J, Naidoo A, Amador A, Klein JL, Rowan W. Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS DISCOVERY 2020; 25:1174-1190. [PMID: 32495689 DOI: 10.1177/2472555220923332] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pharmaceutical industry is continuing to face high research and development (R&D) costs and low overall success rates of clinical compounds during drug development. There is an increasing demand for development and validation of healthy or disease-relevant and physiological human cellular models that can be implemented in early-stage discovery, thereby shifting attrition of future therapeutics to a point in discovery at which the costs are significantly lower. There needs to be a paradigm shift in the early drug discovery phase (which is lengthy and costly), away from simplistic cellular models that show an inability to effectively and efficiently reproduce healthy or human disease-relevant states to steer target and compound selection for safety, pharmacology, and efficacy questions. This perspective article covers the various stages of early drug discovery from target identification (ID) and validation to the hit/lead discovery phase, lead optimization, and preclinical safety. We outline key aspects that should be considered when developing, qualifying, and implementing complex in vitro models (CIVMs) during these phases, because criteria such as cell types (e.g., cell lines, primary cells, stem cells, and tissue), platform (e.g., spheroids, scaffolds or hydrogels, organoids, microphysiological systems, and bioprinting), throughput, automation, and single and multiplexing endpoints will vary. The article emphasizes the need to adequately qualify these CIVMs such that they are suitable for various applications (e.g., context of use) of drug discovery and translational research. The article ends looking to the future, in which there is an increase in combining computational modeling, artificial intelligence and machine learning (AI/ML), and CIVMs.
Collapse
Affiliation(s)
- Jason E Ekert
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Julianna Deakyne
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Philippa Pribul-Allen
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Rebecca Terry
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Christopher Schofield
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | | | - Joanne Storey
- Research Office of Animal Welfare, Ethics and Strategy, Research, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Lisa Mohamet
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Jo Francis
- Screening Profiling and Mechanistic Biology, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Anita Naidoo
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Alejandro Amador
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Jean-Louis Klein
- Novel Human Genetics, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Wendy Rowan
- Novel Human Genetics, Research, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
32
|
Kim S, Choung S, Sun RX, Ung N, Hashemi N, Fong EJ, Lau R, Spiller E, Gasho J, Foo J, Mumenthaler SM. Comparison of Cell and Organoid-Level Analysis of Patient-Derived 3D Organoids to Evaluate Tumor Cell Growth Dynamics and Drug Response. SLAS DISCOVERY 2020; 25:744-754. [PMID: 32349587 PMCID: PMC7372585 DOI: 10.1177/2472555220915827] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3D cell culture models have been developed to better mimic the physiological environments that exist in human diseases. As such, these models are advantageous over traditional 2D cultures for screening drug compounds. However, the practicalities of transitioning from 2D to 3D drug treatment studies pose challenges with respect to analysis methods. Patient-derived tumor organoids (PDTOs) possess unique features given their heterogeneity in size, shape, and growth patterns. A detailed assessment of the length scale at which PDTOs should be evaluated (i.e., individual cell or organoid-level analysis) has not been done to our knowledge. Therefore, using dynamic confocal live cell imaging and data analysis methods we examined tumor cell growth rates and drug response behaviors in colorectal cancer (CRC) PDTOs. High-resolution imaging of H2B-GFP-labeled organoids with DRAQ7 vital dye permitted tracking of cellular changes, such as cell birth and death events, in individual organoids. From these same images, we measured morphological features of the 3D objects, including volume, sphericity, and ellipticity. Sphericity and ellipticity were used to evaluate intra- and interpatient tumor organoid heterogeneity. We found a strong correlation between organoid live cell number and volume. Linear growth rate calculations based on volume or live cell counts were used to determine differential responses to therapeutic interventions. We showed that this approach can detect different types of drug effects (cytotoxic vs cytostatic) in PDTO cultures. Overall, our imaging-based quantification workflow results in multiple parameters that can provide patient- and drug-specific information for screening applications.
Collapse
Affiliation(s)
- Seungil Kim
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Choung
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ren X Sun
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nolan Ung
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natasha Hashemi
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emma J Fong
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roy Lau
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Erin Spiller
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jordan Gasho
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jasmine Foo
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Kochanek SJ, Close DA, Camarco DP, Johnston PA. Maximizing the Value of Cancer Drug Screening in Multicellular Tumor Spheroid Cultures: A Case Study in Five Head and Neck Squamous Cell Carcinoma Cell Lines. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:329-349. [PMID: 31983262 PMCID: PMC7343231 DOI: 10.1177/2472555219896999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With approval rates <5% and the probability of success in oncology clinical trials of 3.4%, more physiologically relevant in vitro three-dimensional models are being deployed during lead generation to select better drug candidates for solid tumors. Multicellular tumor spheroids (MCTSs) resemble avascular tumor nodules, micrometastases, or the intervascular regions of large solid tumors with respect to morphology, cell-cell and cell-extracellular matrix contacts, and volume growth kinetics. MCTSs develop gradients of nutrient and oxygen concentration resulting in diverse microenvironments with differential proliferation and drug distribution zones. We produced head and neck squamous cell carcinoma (HNSCC) MCTSs in 384-well U-bottom ultra-low-attachment microtiter plates and used metabolic viability and imaging methods to measure morphologies, growth phenotypes and the effects of 19 anticancer drugs. We showed that cell viability measurements underestimated the impact of drug exposure in HNSCC MCTS cultures, but that incorporating morphology and dead-cell staining analyses increased the number of drugs judged to have substantially impacted MCTS cultures. A cumulative multiparameter drug impact score enabled us to stratify MCTS drug responses into high-, intermediate-, and low-impact tiers, and maximized the value of these more physiologically relevant tumor cultures. It is conceivable that the viable cells present in MCTS cultures after drug exposure arise from drug-resistant populations that could represent a source of drug failure and recurrence. Long-term monitoring of treated MCTS cultures could provide a strategy to determine whether these drug-resistant populations represent circumstances where tumor growth is delayed and may ultimately give rise to regrowth.
Collapse
Affiliation(s)
- Stanton J. Kochanek
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel P. Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul A. Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Lee OW, Austin S, Gamma M, Cheff DM, Lee TD, Wilson KM, Johnson J, Travers J, Braisted JC, Guha R, Klumpp-Thomas C, Shen M, Hall MD. Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:9-20. [PMID: 31498718 PMCID: PMC10791069 DOI: 10.1177/2472555219873068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.
Collapse
Affiliation(s)
- Olivia W. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Shelley Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Madison Gamma
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Dorian M. Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Tobie D. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Joseph Johnson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jameson Travers
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John C. Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
35
|
Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Could 3D models of cancer enhance drug screening? Biomaterials 2019; 232:119744. [PMID: 31918229 DOI: 10.1016/j.biomaterials.2019.119744] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Cancer is a multifaceted pathology, where cellular and acellular players interact to drive cancer progression and, in the worst-case, metastasis. The current methods to investigate the heterogeneous nature of cancer are inadequate, since they rely on 2D cell cultures and animal models. The cell line-based drug efficacy and toxicity assays are not able to predict the tumor response to anti-cancer agents and it is already widely discussed how molecular pathway are not recapitulated in vitro so called flat biology. On the other side, animal models often fail to detect the side-effects of drugs, mimic the metastatic progression or the interaction between cancer and immune system, due to biologic difference in human and animals. Moreover, ethical and regulatory issues limit animal experimentation. Every year pharma/biotech companies lose resources in drug discovery and testing processes that are successful only in 5% of the cases. There is an urgent need to validate accurate and predictive platforms in order to enhance drug-testing process taking into account the physiopathology of the tumor microenvironment. Three dimensional in vitro tumor models could enhance drug manufactures in developing effective drugs for cancer diseases. The 3D in vitro cancer models can improve the predictability of toxicity and drug sensitivity in cancer. Despite the demonstrated advantages of 3D in vitro disease systems when compared to 2D culture and animal models, they still do not reach the standardization required for preclinical trials. This review highlights in vitro models that may be used as preclinical models, accelerating the drug development process towards more precise and personalized standard of care for cancer patients. We describe the state-of-the art of 3D in vitro culture systems, with a focus on how these different approaches could be coupled in order to achieve a compromise between standardization and reliability in recapitulating tumor microenvironment and drug response.
Collapse
Affiliation(s)
- Virginia Brancato
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Vitor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui Luis Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
36
|
Baker AEG, Bahlmann LC, Tam RY, Liu JC, Ganesh AN, Mitrousis N, Marcellus R, Spears M, Bartlett JMS, Cescon DW, Bader GD, Shoichet MS. Benchmarking to the Gold Standard: Hyaluronan-Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901166. [PMID: 31322299 DOI: 10.1002/adma.201901166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Many 3D in vitro models induce breast cancer spheroid formation; however, this alone does not recapitulate the complex in vivo phenotype. To effectively screen therapeutics, it is urgently needed to validate in vitro cancer spheroid models against the gold standard of xenografts. A new oxime-crosslinked hyaluronan (HA) hydrogel is designed, manipulating gelation rate and mechanical properties to grow breast cancer spheroids in 3D. This HA-oxime breast cancer model maintains the gene expression profile most similar to that of tumor xenografts based on a pan-cancer gene expression profile (comprising 730 genes) of three different human breast cancer subtypes compared to Matrigel or conventional 2D culture. Differences in gene expression between breast cancer cultures in HA-oxime versus Matrigel or 2D are confirmed for 12 canonical pathways by gene set variation analysis. Importantly, drug response is dependent on the culture method. Breast cancer cells respond better to the Rac inhibitor (EHT-1864) and the PI3K inhibitor (AZD6482) when cultured in HA-oxime versus Matrigel. This study demonstrates the superiority of an HA-based hydrogel as a platform for in vitro breast cancer culture of both primary, patient-derived cells and cell lines, and provides a hydrogel culture model that closely matches that in vivo.
Collapse
Affiliation(s)
- Alexander E G Baker
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Laura C Bahlmann
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Roger Y Tam
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Jeffrey C Liu
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Ahil N Ganesh
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Nikolaos Mitrousis
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Richard Marcellus
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, Ontario, M5G 0A3, Canada
| | - Melanie Spears
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, Ontario, M5G 0A3, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - John M S Bartlett
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, Ontario, M5G 0A3, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, M5G 2C1, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
| | - Molly S Shoichet
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
37
|
Baillargeon P, Shumate J, Hou S, Fernandez-Vega V, Marques N, Souza G, Seldin J, Spicer TP, Scampavia L. Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening. SLAS Technol 2019; 24:420-428. [PMID: 31225974 DOI: 10.1177/2472630319854337] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Affordable and physiologically relevant three-dimensional (3D) cell-based assays used in high-throughput screening (HTS) are on the rise in early drug discovery. These technologies have been aided by the recent adaptation of novel microplate treatments and spheroid culturing techniques. One such technology involves the use of nanoparticle (NanoShuttle-PL) labeled cells and custom magnetic drives to assist in cell aggregation to ensure rapid 3D structure formation after the cells have been dispensed into microtiter plates. Transitioning this technology from a low-throughput manual benchtop application, as previously published by our lab, into a robotically enabled format achieves orders of magnitude greater throughput but required the development of specialized support hardware. This effort included in-house development, fabrication, and testing of ancillary devices that assist robotic handing and high-precision placement of microtiter plates into an incubator embedded with magnetic drives. Utilizing a "rapid prototyping" approach facilitated by cloud-based computer-aided design software, we built the necessary components using hobby-grade 3D printers with turnaround times that rival those of traditional manufacturing/development practices at a substantially reduced cost. This approach culminated in a first-in-class HTS-compatible 3D system in which we have coupled 3D bioprinting to a fully automated HTS robotic platform utilizing our novel magnetic incubator shelf assemblies.
Collapse
Affiliation(s)
- Pierre Baillargeon
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Justin Shumate
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Shurong Hou
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA.,2 Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Virneliz Fernandez-Vega
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Nicholas Marques
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | | | | | - Timothy P Spicer
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| | - Louis Scampavia
- 1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
38
|
Papariello A, Newell-Litwa K. Human-Derived Brain Models: Windows into Neuropsychiatric Disorders and Drug Therapies. Assay Drug Dev Technol 2019; 18:79-88. [PMID: 31090445 DOI: 10.1089/adt.2019.922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human-derived neurons and brain organoids have revolutionized our ability to model brain development in a dish. In this review, we discuss the potential for human brain models to advance drug discovery for complex neuropsychiatric disorders. First, we address the advantages of human brain models to screen for new drugs capable of altering CNS activity. Next, we propose an experimental pipeline for using human-derived neurons and brain organoids to rapidly assess drug impact on key events in brain development, including neurite extension, synapse formation, and neural activity. The experimental pipeline begins with automated high content imaging for analysis of neurites, synapses, and neuronal viability. Following morphological examination, multi-well microelectrode array technology examines neural activity in response to drug treatment. These techniques can be combined with high throughput sequencing and mass spectrometry to assess associated transcriptional and proteomic changes. These combined technologies provide a foundation for neuropsychiatric drug discovery and future clinical assessment of patient-specific drug responses.
Collapse
Affiliation(s)
- Alexis Papariello
- Graduate Program of Pharmacology and Toxicology, East Carolina University Brody School of Medicine, Greenville, North Carolina
| | - Karen Newell-Litwa
- Department of Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, North Carolina
| |
Collapse
|
39
|
Baillargeon P, Fernandez-Vega V, Sridharan BP, Brown S, Griffin PR, Rosen H, Cravatt B, Scampavia L, Spicer TP. The Scripps Molecular Screening Center and Translational Research Institute. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:386-397. [PMID: 30682260 PMCID: PMC7724958 DOI: 10.1177/2472555218820809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Scripps Research Molecular Screening Center (SRMSC) was founded in 2004 and comprises more than $22 million of specialized automation. As part of the Translational Research Institute (TRI), it comprises early drug discovery labs and medicinal chemistry. Together with Scripps Research at the La Jolla, California, campus, this represents one of the most competitive academic industrial screening centers worldwide. The SRMSC uses automated platforms, one a screening cell and the other a cherry-picking platform. Matched technologies are available throughout Scripps to allow scientists to develop assays and prepare them for automated screening. The library comprises more than 1 million drug-like compounds, including a proprietary collection of >665,000 molecules. Internal chemistry has included ~40,000 unique compounds that are not found elsewhere. These collections are screened against a myriad of disease targets, including cell-based and biochemical assays that are provided by Scripps faculty or from global investigators. Scripps has proven competence in all detection formats, including high-content analysis, fluorescence, bioluminescence resonance energy transfer (BRET), time-resolved fluorescence resonance energy transfer (TR-FRET), fluorescence polarization (FP), luminescence, absorbance, AlphaScreen, and Ca++ signaling. These technologies are applied to NIH-derived collaborations as well as biotech and pharma initiatives. The SRMSC and TRI are recognized for discovering multiple leads, including Ozanimod.
Collapse
Affiliation(s)
- Pierre Baillargeon
- Department of Molecular Medicine, Scripps Research Florida, 130 Scripps Way, Jupiter, Florida, USA
| | - Virneliz Fernandez-Vega
- Department of Molecular Medicine, Scripps Research Florida, 130 Scripps Way, Jupiter, Florida, USA
| | - Banu Priya Sridharan
- Department of Molecular Medicine, Scripps Research Florida, 130 Scripps Way, Jupiter, Florida, USA
| | - Steven Brown
- Department of Molecular Medicine, Scripps Research California, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Patrick R. Griffin
- Department of Molecular Medicine, Scripps Research Florida, 130 Scripps Way, Jupiter, Florida, USA
| | - Hugh Rosen
- Department of Molecular Medicine, Scripps Research California, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Benjamin Cravatt
- Department of Molecular Medicine, Scripps Research California, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Louis Scampavia
- Department of Molecular Medicine, Scripps Research Florida, 130 Scripps Way, Jupiter, Florida, USA
| | - Timothy P. Spicer
- Department of Molecular Medicine, Scripps Research Florida, 130 Scripps Way, Jupiter, Florida, USA
| |
Collapse
|
40
|
Eglen RM, Klein JL. Three-Dimensional Cell Culture: A Rapidly Emerging Approach to Cellular Science and Drug Discovery. SLAS DISCOVERY 2019; 22:453-455. [PMID: 28520520 DOI: 10.1177/2472555217702448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Doh I, Kwon YJ, Ku B, Lee DW. Drug Efficacy Comparison of 3D Forming and Preforming Sphere Models with a Micropillar and Microwell Chip Platform. SLAS DISCOVERY 2019; 24:476-483. [PMID: 30753787 DOI: 10.1177/2472555218821292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC), a major histological subtype of liver cancer, is the third most common cause of cancer-related death worldwide. Currently, many curative standard treatments using target-specific chemotherapeutic agents are being developed. However, drug efficacy tests based on the 2D monolayer cell culture model do not effectively screen the best drug candidates because they do not accurately reflect in vivo tumor microenvironments. Thus, to select the best drug candidates or repositioning drugs, we developed new 3D in vitro hepatic tumor models, including 3D forming and preformed sphere models. A micropillar and microwell chip platform was used for the 3D in vitro liver cell-based model for high-throughput screening. We measured the efficacy of 60 drugs and sorted the most efficacious drugs by comparing the drug response of the 2D monolayer model with the 3D forming and preformed sphere models. Among the 60 drugs, 17 drugs (28.3%) showed a significant high efficacy in the 3D preformed sphere model, while 45 drugs (75%) showed an efficacy in the 2D model. We also calculated the IC50 values of the 17 drugs and found that 7 drugs exhibited a high sensitivity in HCC, which was in agreement with previous studies.
Collapse
Affiliation(s)
- Il Doh
- 1 Center for Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Yong-Jun Kwon
- 2 Early Discovery & Technology Development Group, Ksilink, Strasbourg, France
| | - Bosung Ku
- 3 Medical & Bio Device (MBD), Suwon, Republic of Korea
| | - Dong Woo Lee
- 4 Department of Biomedical Engineering, Konyang University, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Zhou W, Yin Y, Smith E, Chou J, Shumate J, Scampavia L, Spicer TP, Carpino N, French JB. Discovery and Characterization of Two Classes of Selective Inhibitors of the Suppressor of the TCR Signaling Family of Proteins. ACS Infect Dis 2019; 5:250-259. [PMID: 30485744 DOI: 10.1021/acsinfecdis.8b00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The suppressor of T-cell receptor signaling (Sts) proteins, Sts-1, has recently emerged as a potential immunostimulatory target for drug development. Genetic inactivation of the Sts proteins dramatically increases host survival of systemic infection and leads to improved pathogen clearance. The protein tyrosine phosphatase (PTP) activity of these proteins arises from a C-terminal 2-histidine phosphatase (HP) domain. To identify new inhibitors of the HP activity of Sts-1, we miniaturized a phosphatase assay to a 1536-well format and conducted a 20 580 compound screen. Among the hits were two classes of structurally related compounds, tetracycline variants and sulfonated azo dyes. These hits had low micromolar to nanomolar IC50 values. Orthogonal screening confirmed the validity of these inhibitors and demonstrated that both act competitively on Sts-1 phosphatase activity. When tested on other PTPs, PTP1B and SHP1, it was found that the tetracycline PTP1B, SHP1, the tetracycline variant (doxycycline), and the sulfonated azo dye (Congo red) are selective inhibitors of Sts-1HP, with selectivity indices ranging from 19 to as high as 200. The planar polyaromatic moieties present in both classes of compounds suggested a common binding mode. The mutation of either tryptophan 494 or tyrosine 596, located near the active site of the protein, reduced the Ki of the inhibitors from 3- to 18-fold, indicating that these residues may help to promote the binding of substrates with aromatic groups. This work provides new insights into substrate selectivity mechanisms and describes two classes of compounds that can serve as probes of function or as a basis for future drug discovery.
Collapse
Affiliation(s)
| | | | - Emery Smith
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | - Justin Shumate
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Louis Scampavia
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Timothy P. Spicer
- Department of Molecular Medicine, Scripps Research Molecular Screening Center, Scripps Research, 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | | |
Collapse
|
43
|
Kochanek SJ, Close DA, Johnston PA. High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads. Assay Drug Dev Technol 2018; 17:17-36. [PMID: 30592624 DOI: 10.1089/adt.2018.896] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multicellular tumor spheroid (MCTS) cultures represent more physiologically relevant in vitro cell tumor models that recapitulate the microenvironments and cell-cell or cell-extracellular matrix interactions which occur in solid tumors. We characterized the morphologies, viability, and growth behaviors of MCTSs produced by 11 different head and neck squamous cell carcinoma (HNSCC) cell lines seeded into and cultured in ultra-low attachment microtiter plates (ULA-plates) over extended periods of time. HNSCC MCTS cultures developed microenvironments, which resulted in differences in proliferation rates, metabolic activity, and mitochondrial functional activity between cells located in the outer layers of the MCTS and cells in the interior. HNSCC MCTS cultures exhibited drug penetration and distribution gradients and some developed necrotic cores. Perhaps the most profound effect of culturing HNSCC cell lines in MCTS cultures was their dramatically altered and varied growth phenotypes. Instead of the exponential growth that are characteristic of two-dimensional HNSCC growth inhibition assays, some MCTS cultures displayed linear growth rates, categorized as rapid, moderate, or slow, dormant MCTSs remained viable but did not grow, and some MCTSs exhibited death phenotypes that were either progressive and slow or rapid. The ability of MCTS cultures to develop microenvironments and to display a variety of different growth phenotypes provides in vitro models that are more closely aligned with solid tumors in vivo. We anticipate that the implementation MCTS models to screen for new cancer drugs for solid tumors like HNSCC will produce leads that will translate better in in vivo animal models and patients.
Collapse
Affiliation(s)
- Stanton J Kochanek
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,2 University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy. Molecules 2018; 23:molecules23123355. [PMID: 30567363 PMCID: PMC6321514 DOI: 10.3390/molecules23123355] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D) cell culture is considered more clinically relevant in mimicking the structural and physiological conditions of tumors in vivo compared to two-dimensional cell cultures. In recent years, high-throughput screening (HTS) in 3D cell arrays has been extensively used for drug discovery because of its usability and applicability. Herein, we developed a microfluidic spheroid culture device (μFSCD) with a concentration gradient generator (CGG) that enabled cells to form spheroids and grow in the presence of cancer drug gradients. The device is composed of concave microwells with several serpentine micro-channels which generate a concentration gradient. Once the colon cancer cells (HCT116) formed a single spheroid (approximately 120 μm in diameter) in each microwell, spheroids were perfused in the presence of the cancer drug gradient irinotecan for three days. The number of spheroids, roundness, and cell viability, were inversely proportional to the drug concentration. These results suggest that the μFSCD with a CGG has the potential to become an HTS platform for screening the efficacy of cancer drugs.
Collapse
|
45
|
Parrish J, Lim KS, Baer K, Hooper GJ, Woodfield TBF. A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models. LAB ON A CHIP 2018; 18:2757-2775. [PMID: 30117514 DOI: 10.1039/c8lc00485d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Traditional 2D monolayer cell cultures and submillimeter 3D tissue construct cultures used widely in tissue engineering are limited in their ability to extrapolate experimental data to predict in vivo responses due to their simplistic organization and lack of stimuli. The rise of biofabrication and bioreactor technologies has sought to address this through the development of techniques to spatially organize components of a tissue construct, and devices to supply these tissue constructs with an increasingly in vivo-like environment. Current bioreactors supporting both parenchymal and barrier tissue constructs in interconnected systems for body-on-a-chip platforms have chosen to emphasize study throughput or system/tissue complexity. Here, we report a platform to address this disparity in throughput and both system complexity (by supporting multiple in situ assessment methods) and tissue complexity (by adopting a construct-agnostic format). We introduce an ANSI/SLAS-compliant microplate and docking station fabricated via stereolithography (SLA), or precision machining, to provide up to 96 samples (Ø6 × 10 mm) with two individually-addressable fluid circuits (192 total), loading access, and inspection window for imaging during perfusion. Biofabricated ovarian cancer models were developed to demonstrate the in situ assessment capabilities via microscopy and a perfused resazurin-based metabolic activity assay. In situ microscopy highlighted flexibility of the sample housing to accommodate a range of sample geometries. Utility for drug screening was demonstrated by exposing the ovarian cancer models to an anticancer drug (doxorubicin) and generating the dose-response curve in situ, while achieving an assay quality similar to static wellplate culture. The potential for quantitative analysis of temporal tissue development and screening studies was confirmed by imaging soft- (gelatin) and hard-tissue (calcium chloride) analogs inside the bioreactor via spectral computed tomography (CT) scanning. As a proof-of-concept for particle tracing studies, flowing microparticles were visualized to inform the design of hydrogel constructs. Finally, the ability for mechanistic yet high-throughput screening was demonstrated in a vascular coculture model adopting endothelial and mesenchymal stem cells (HUVEC-MSC), encapsulated in gelatin-norbornene (gel-NOR) hydrogel cast into SLA-printed well inserts. This study illustrates the potential of a scalable dual perfusion bioreactor platform for parenchymal and barrier tissue constructs to support a broad range of multi-organ-on-a-chip applications.
Collapse
Affiliation(s)
- J Parrish
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.
| | | | | | | | | |
Collapse
|
46
|
Hou S, Tiriac H, Sridharan BP, Scampavia L, Madoux F, Seldin J, Souza GR, Watson D, Tuveson D, Spicer TP. Advanced Development of Primary Pancreatic Organoid Tumor Models for High-Throughput Phenotypic Drug Screening. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:574-584. [PMID: 29673279 PMCID: PMC6013403 DOI: 10.1177/2472555218766842] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022]
Abstract
Traditional high-throughput drug screening in oncology routinely relies on two-dimensional (2D) cell models, which inadequately recapitulate the physiologic context of cancer. Three-dimensional (3D) cell models are thought to better mimic the complexity of in vivo tumors. Numerous methods to culture 3D organoids have been described, but most are nonhomogeneous and expensive, and hence impractical for high-throughput screening (HTS) purposes. Here we describe an HTS-compatible method that enables the consistent production of organoids in standard flat-bottom 384- and 1536-well plates by combining the use of a cell-repellent surface with a bioprinting technology incorporating magnetic force. We validated this homogeneous process by evaluating the effects of well-characterized anticancer agents against four patient-derived pancreatic cancer KRAS mutant-associated primary cells, including cancer-associated fibroblasts. This technology was tested for its compatibility with HTS automation by completing a cytotoxicity pilot screen of ~3300 approved drugs. To highlight the benefits of the 3D format, we performed this pilot screen in parallel in both the 2D and 3D assays. These data indicate that this technique can be readily applied to support large-scale drug screening relying on clinically relevant, ex vivo 3D tumor models directly harvested from patients, an important milestone toward personalized medicine.
Collapse
Affiliation(s)
- Shurong Hou
- The Scripps Research Institute Molecular
Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL,
USA
- These authors contributed equally to
this work
| | - Hervé Tiriac
- Cancer Center, Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, USA
- These authors contributed equally to
this work
| | - Banu Priya Sridharan
- The Scripps Research Institute Molecular
Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL,
USA
| | - Louis Scampavia
- The Scripps Research Institute Molecular
Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL,
USA
| | - Franck Madoux
- The Scripps Research Institute Molecular
Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL,
USA
- Amgen, Inc., Thousand Oaks, CA,
USA
| | - Jan Seldin
- Greiner Bio-One North America, Inc.,
Monroe, NC, USA
| | - Glauco R. Souza
- Nano3D Biosciences, Inc. and University
of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - David Tuveson
- Cancer Center, Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, USA
- Co-communicated by D.T. and T.P.S
| | - Timothy P. Spicer
- The Scripps Research Institute Molecular
Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL,
USA
- Co-communicated by D.T. and T.P.S
| |
Collapse
|
47
|
Kota S, Hou S, Guerrant W, Madoux F, Troutman S, Fernandez-Vega V, Alekseeva N, Madala N, Scampavia L, Kissil J, Spicer TP. A novel three-dimensional high-throughput screening approach identifies inducers of a mutant KRAS selective lethal phenotype. Oncogene 2018; 37:4372-4384. [PMID: 29743592 PMCID: PMC6138545 DOI: 10.1038/s41388-018-0257-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
Abstract
The RAS proteins are the most frequently mutated oncogenes in cancer, with highest frequency found in pancreatic, lung, and colon tumors. Moreover, the activity of RAS is required for the proliferation and/or survival of these tumor cells and thus represents a high-value target for therapeutic development. Direct targeting of RAS has proven challenging for multiple reasons stemming from the biology of the protein, the complexity of downstream effector pathways and upstream regulatory networks. Thus, significant efforts have been directed at identifying downstream targets on which RAS is dependent. These efforts have proven challenging, in part due to confounding factors such as reliance on two-dimensional adherent monolayer cell cultures that inadequately recapitulate the physiologic context to which cells are exposed in vivo. To overcome these issues, we implemented a High Throughput Screening (HTS) approach using a spheroid-based 3-dimensional culture format, thought to more closely reflect conditions experienced by cells in vivo. Using isogenic cell pairs, differing in the status of KRAS, we identified Proscillaridin A as a selective inhibitor of cells harboring the oncogenic KRasG12V allele. Significantly, the identification of Proscillaridin A was facilitated by the 3D screening platform and would not have been discovered employing standard 2D culturing methods.
Collapse
Affiliation(s)
- Smitha Kota
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA
| | - Shurong Hou
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA
| | - William Guerrant
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA
| | - Franck Madoux
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA.,Amgen Inc., Thousand Oaks, CA, USA
| | - Scott Troutman
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA
| | | | - Nina Alekseeva
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA
| | - Neeharika Madala
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA
| | - Louis Scampavia
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA
| | - Joseph Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA.
| | - Timothy P Spicer
- Department of Molecular Medicine, The Scripps Research Institute, Florida, USA.
| |
Collapse
|
48
|
Thomsen AR, Aldrian C, Bronsert P, Thomann Y, Nanko N, Melin N, Rücker G, Follo M, Grosu AL, Niedermann G, Layer PG, Heselich A, Lund PG. A deep conical agarose microwell array for adhesion independent three-dimensional cell culture and dynamic volume measurement. LAB ON A CHIP 2017; 18:179-189. [PMID: 29211089 DOI: 10.1039/c7lc00832e] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicellular spheroids represent a well-established 3D model to study healthy and diseased cells in vitro. The use of conventional 3D cell culture platforms for the generation of multicellular spheroids is limited to cell types that easily self-assemble into spheroids because less adhesive cells fail to form stable aggregates. A high-precision micromoulding technique developed in our laboratory produces deep conical agarose microwell arrays that allow the cultivation of uniform multicellular aggregates, irrespective of the spheroid formation capacity of the cells. Such hydrogel arrays warrant a steady nutrient supply for several weeks, permit live volumetric measurements to monitor cell growth, enable immunohistochemical staining, fluorescence-based microscopy, and facilitate immediate harvesting of cell aggregates. This system also allows co-cultures of two distinct cell types either in direct cell-cell contact or at a distance as the hydrogel permits diffusion of soluble compounds. Notably, we show that co-culture of a breast cancer cell line with bone marrow stromal cells enhances 3D growth of the cancer cells in this system.
Collapse
Affiliation(s)
- Andreas R Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Smith E, Giuliano KA, Shumate J, Baillargeon P, McEwan B, Cullen MD, Miller JP, Drew L, Scampavia L, Spicer TP. A Homogeneous Cell-Based Halide-Sensitive Yellow Fluorescence Protein Assay to Identify Modulators of the Cystic Fibrosis Transmembrane Conductance Regulator Ion Channel. Assay Drug Dev Technol 2017; 15:395-406. [DOI: 10.1089/adt.2017.810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Emery Smith
- Department of Molecular Medicine, The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, Florida
| | | | - Justin Shumate
- Department of Molecular Medicine, The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, Florida
| | - Pierre Baillargeon
- Department of Molecular Medicine, The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, Florida
| | - Brigid McEwan
- Proteostasis Therapeutics, Inc., Cambridge, Massachusetts
| | | | - John P. Miller
- Proteostasis Therapeutics, Inc., Cambridge, Massachusetts
| | - Lawrence Drew
- Proteostasis Therapeutics, Inc., Cambridge, Massachusetts
| | - Louis Scampavia
- Department of Molecular Medicine, The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, Florida
| | - Timothy P. Spicer
- Department of Molecular Medicine, The Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, Florida
| |
Collapse
|
50
|
Singhera F, Cooper E, Scampavia L, Spicer T. Using bead injection to model dispensing of 3-D multicellular spheroids into microtiter plates. Talanta 2017; 177:74-76. [PMID: 29108585 DOI: 10.1016/j.talanta.2017.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/28/2022]
Abstract
Biomedical translational research has relied on two dimensional (2D) cell cultures for drug discovery over the decades, requiring cells to grow on a flat surface which does not always accurately model in vivo biological states. Three dimensional (3D) cell cultures, also known as 3D spheroids or organoids, grow as cellular tissues that are more physiologically relevant especially with respect to emulating cancer tumor-like structures [1]. While attractive, current methods for generating 3D spheroids has yet to replace 2D culturing methods used for drug discovery efforts that employ high-throughput screening (HTS), having limitations with scalability, reproducibility, and compatibility predominantly associated with conventional microtiter plate usage. Presented is a novel use of bead injection for the reproducible placement of spheroids and beads into high density microtiter plates of a 384- and 1536- well format.
Collapse
Affiliation(s)
- Fakhar Singhera
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL, USA
| | - Emily Cooper
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL, USA
| | - Louis Scampavia
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL, USA.
| | - Timothy Spicer
- The Scripps Research Institute Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, 130 Scripps Way, Jupiter, FL, USA
| |
Collapse
|